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ABSTRACT
Domain modeling is a central component in education tech-
nologies as it represents the target domain students are sup-
posed to train on and eventually master. Automatically
generating domain models can lead to substantial cost and
scalability benefits. Automatically extracting key concepts
or knowledge components from, for instance, textbooks can
enable the development of automatic or semi-automatic pro-
cesses for creating domain models. We explore in this work
the use of transformer based pre-trained models for the task
of keyphrase extraction. Specifically, we investigate and
evaluate four different variants of BERT, a pre-trained trans-
former based architecture, that vary in terms of training
data, training objective, or training strategy to extract knowl-
edge components from textbooks for the domain of intro-to-
programming. We report results obtained using the follow-
ing BERT-based models: BERT, CodeBERT, SciBERT and
RoBERTa.
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1. INTRODUCTION
Computer-based adaptive instructional technologies, our fo-
cus, must have a representation of the target domain, i.e., a
domain model. Hence, there is a need for domain modeling,
which specifies the key knowledge components or units of
knowledge that students have to master in a target domain,
such as physics, biology, or computer programming. Fur-
thermore, a domain model should include a structure that
specifies the relationship among the knowledge components,
typically in the form of a prerequisite knowledge structure
suggesting which basic concepts must be mastered before

more complex concepts that rely on the basic concepts, e.g.,
addition should be mastered before multiplication [14, 17,
8]. The prerequisite knowledge structure of a domain model
implies a specific trajectory or trajectories towards mastery
that students must follow. According to some, a domain
model should also include links to related learning objects,
i.e., instructional tasks, which help students practice to mas-
ter the targeted concepts. More recently, A broader view of
the domain model has been argued, which should include
all the key concepts, skills, ideas, principles, and the values,
identity, and epistemology of the community of experts or
professionals active in the target domain [1].

Domain models can be developed from different information
sources: experts, textbooks (written by domain and ped-
agogical experts), and learner performance data. Expert-
driven approaches to domain modeling are expensive, time-
consuming, and not very scalable within and across domains.
To overcome these challenges, automated or semi-automated
approaches are much needed. This work explores such novel
automated methods for domain model discovery from text-
books, specifically for the target domain of intro to com-
puter programming. In particular, we explore to what extent
the process can be automated. While the proposed meth-
ods are fully automated, their output is not perfect, which
means a human expert must be involved to curate the out-
put before being used in an existing adaptive instructional
system. Nevertheless, this semi-automated process is much
more cost-effective and scalable than the manual approach
to building domain models. It should be noted that another
source of information for domain modeling for programming
that has been explored in the past is code itself, e.g., using
a Java parser [18, 38, 15].

There are two advantages of using textbooks to extract do-
main models for programming compared to using code only.
First, textbooks contain both code examples and textual ex-
planations of the concepts, which is advantageous for higher-
level concepts such as sorting, which is challenging to infer
from a block of code that implements it. Second, concepts
extracted directly from code are difficult to interpret and are
often programming language-specific constructs. A textual
description can accompany the grammar of a programming
language in the form of comments or descriptions, but this
requires substantial additional expert involvement. Build-



ing more interpretable automated ways to extract domain
models from source code is an interesting research topic be-
yond this paper’s scope. In this work, we experiment with a
pretrained transformer-based model to extract key concepts
or knowledge components from computer science (intro to
programming) textbooks. We use the code examples in text-
books, but we do not parse them to extract candidate key
concepts but to rank the concepts extracted from the textual
explanations.

Transformer-based pretrained models, which are trained on
massive unlabelled text collections, have been successful in
various NLP tasks such as keyphrase extraction [3, 33] which
is relevant to this work. However, with the rise of many pre-
trained models for various specific tasks, there is a need to
explore which of these pretrained models are helpful for what
tasks. In this work on domain model discovery for computer
programming, we explore an overgeneration-and-ranking ap-
proach for keyphrase extraction using four pretrained trans-
former models: BERT[11], CodeBERT[13], RoBERTa [25],
and SciBERT [2]. These pretrained models vary in different
aspects, such as training data and training mechanisms. For
instance, BERT is trained on general domain corpora such as
news articles and Wikipedia, RoBERTa is trained on a larger
dataset of English language corpora consisting of books,
news, web text; SciBERT is trained on papers on com-
puter science and biomedical domain whereas CodeBERT is
pretrained in NL-PL (Natural language-Programming lan-
guage) pairs for multiple programming languages. In this
study, we experiment with embeddings obtained from each
of these methods to evaluate and compare domain-specific
models such as CodeBERT and SciBERT versus models such
as Roberta and BERT trained on general corpora for the
tasks of keyphrase extraction and subsequently domain mod-
eling.

The paper is organized as follows. Section 2 discusses rel-
evant works to domain modeling. In section 3, we detail
the methodology followed to generate domain models from
textbooks. Section 4 presents the evaluation dataset and the
metrics used to evaluate the performance of the pretrained
models. A conclusion section follows the results.

2. RELATED WORK
Our work focuses on extracting key knowledge components
from textbooks using embeddings obtained from transformer
based pretrained models in an unsupervised manner. This
section presents most relevant prior works to concept ex-
traction, unsupervised keyphrase extraction, and pretrained
models in NLP.

Concept extraction or identifying important concepts that a
learner should master has been studied for various applica-
tions in the educational domain, such as concept-based text-
book indexing (adaptive hyperbook for constructive teach-
ing, Elm-art [5]), concept prediction [19], and concept hier-
archy creation [36]. Concept extraction is related to keyphrase
extraction, which is extracting the most important concepts
in a given document. Keyphrase extraction has been ex-
plored using different approaches: rule-based, supervised,
and unsupervised including deep-learning [30]. Typically,
keyphrase extraction consists of two steps: candidate gen-
eration and ranking. The first step extracts key concepts

based on heuristics, such as all noun phrases, while the sec-
ond step ranks the extracted candidate phrases based on
scoring rubric that indicates the importance of the candi-
date phrase for the document and/or goal. In our work,
we use unsupervised embedding-based ranking methods for
candidate concepts generated from sections or subtopics in
chapters in intro-to-programming textbooks. We consider a
subtopic as a reference document when assessing the impor-
tance of each candidate key concept.

Existing unsupervised keyphrase extraction methods can be
broadly categorized as statistics based such as TF-IDF, e.g.,
KP-Miner [12], graph-based such as TextRank [27], Sin-
gleRank [35] and topic-based methods such as TopicRank [4]
even though many of the works use a combination rather
than a single approach. Recent advances in representational
methods of words, phrases and documents like Word2Vec [28],
Doc2vec [20], and Sent2vec [29] led to novel ranking meth-
ods for keyphrase extraction [3, 23, 33]. For instance, Em-
bedRank [3] uses sentence embeddings based on Doc2vec or
Sent2vec to represent candidate phrases and the document
in the same high dimensional vector space based on which
a ranking of the candidate key concepts is obtained using
the cosine similarity score between the embedding vectors
of the candidate phrases and the documents. Our work is
similar in the sense that we use pretrained embeddings for
keyphrase extraction in the context of domain modeling.

Embeddings obtained using transformer [34] based pretrained
models [31, 32, 37] have shown dramatic improvements in
various tasks in different domains such as software engineer-
ing, computer vision, and education. The reason behind
this improvement is the high-quality semantic representa-
tions. Models such as BERT have been trained on different
domain-specific data, some examples being BioBERT [21]
in biology, legalBERT [7] in legal documents, SciBERT in
scientific articles, and CodeBERT on code and natural lan-
guage text pairs. To the best of our knowledge, experi-
ments on how these embeddings affect the downstream task
of knowledge component extraction and consequently on do-
main modeling have not been done before. In this work, we
experimented with embeddings obtained from four BERT
models, BERT, CodeBERT, SciBERT, and RoBERTa, for
knowledge component extraction and the larger task of do-
main modelling.

3. METHODOLOGY
Our method to extract knowledge components from intro-to-
programming textbooks is based on pretrained embeddings
inferred from various BERT-based models. To evaluate the
automated methods, we annotated a dataset by selecting key
concepts for each section in five randomly selected chapters
in two textbooks. As noted, we rely on an overgeneration-
and-ranking approach for key concept extraction. The em-
beddings are mainly used to rank the key candidate phrases.
Since textbooks for intro-to-programming contain both code
examples and related explanatory text, we can use bimodal
pretrained models such as CodeBERT trained on both text
and code. Even though we provide code to the CodeBERT
model as input, the model is used only for ranking candi-
date keyphrases, i.e., our approach and evaluation is based
on candidate concepts generated from the textual parts of
the textbooks. We could consider statements, code blocks,



and code comments as sources of candidate concepts. How-
ever, we limit the scope of this work to candidate concepts
from the textual part of intro to computer programming
textbooks.

In this section, we explain the preprocessing steps, such as
candidate concept extraction, phrase and document embed-
ding generation, and candidate concept ranking. We also
discuss the performance metrics of specificity and relevancy.
Before applying methods related to candidate concept ex-
traction, we resolve pronouns in the text to boost our knowl-
edge component extraction methodology by resolving pro-
nouns such as ’it’,’ this’, and ’their’ using a pretrained deep
learning model [22] based on span ranking architecture.

3.1 Candidate Concept extraction
The step of candidate concept extraction consists of noun
phrase extraction and filtering. We used Stanford CoreNLP
Tools 1 for tokenizing, part-of-speech tagging, and noun
phrase chunking. We only considered noun phrases which
are unigrams (one token), bigrams (two consecutive tokens),
trigrams (three consecutive tokens), and quadigrams (four
consecutive tokens), for candidate generation.

3.2 Phrase and Document Embedding
From the prior step of generating 3.1 candidate phrases we
obtain a tokenized form of a document D represented as D =
t1, t2, t3...., tN where tn represent tokens. We also obtain
a list of candidate phrases C0, C1, ..., CN . Based on this,
we then obtain contextualized embeddings for each of the
tokens as shown by the Equation 1.

E1, E2, E3....EN = Model(t1, t2, t3...tN ) (1)

where En represents embeddings of each token, and the
model refers to any of the four pretrained models we chose:
BERT, CodeBERT, SciBERT or RoBERTa.

Each document embedding is obtained using average pool-
ing across all the tokens of the document. Similarly, to ob-
tain embedding for each candidate phrase from a document,
we average across embeddings of tokens. Although the best
pooling strategy is still an area of active research, we opted
for the average pooling strategy as it has shown better per-
formance than using the output of the first token [CLS] for
different tasks[9].

3.3 Ranking
We have experimented with a number of ranking and per-
formance metrics as presented in this section.

3.3.1 Cosine Similarity
Once the embeddings for each document and phrase are ob-
tained, we compute the cosine similarity (normalized dot
product) between the phrase and document embedding vec-
tors. The cosine similarity scores for candidate phrases cap-
ture the semantic ‘relatedness’ or ‘closeness’ of a phrase to
the underlying document. Those scores are used to rank
candidate phrases.

1https://nlp.stanford.edu/software/tagger.shtml

3.3.2 Adjusted Maximal Marginal Relevance To Bal-

ance General and Specific Concept Ranking
Our goal is to extract all important knowledge components
of a target domain. A challenge to this coverage problem
is that key concepts can have different granularity levels,
making it more challenging to design a single metric that
ranks more general and more specific concepts highly.

For instance, in the context of a chapter focusing on the
concept of ‘loop’, some of the important key concepts are
‘for loop’ or ‘while loop’, which are broad, high-level types
of loops. Nonetheless, a more specific concept such as a
nested loop or loop continuation condition is important too.

In order to extract both the general and specific concepts,
candidate key phrases must be similar to the current doc-
ument and less relevant to other documents. Furthermore,
in order to rank higher topic-specific concepts so that top k

candidates consist of more topic-specific concepts, we mod-
ified the Maximal Marginal Relevance(MMR) [6] metric,
which was used initially in information retrieval and text
summarization to control relevancy and diversity of retrieved
documents. The embedding-based keyphrase extraction method
proposed by Bennani-Smires et al.[3] used a modified version
of MMR to tackle redundant key phrases from a document.
In our case, we modify MMR to balance through the control
parameter λ general and specific key candidate phrases.

As indicated in the equation 2, we balance the similarity of
a candidate phrase Ci to the current document doc, which
is captured by the first term on the right-hand side of the
equation, with its similarity with other documents which is
indicated by the second term that represents the similar-
ity between the candidate phrase Ci from all the other N

documents in the corpus.

If a candidate phrase is highly relevant to a document other
than the current document, the similarity measure with the
current document is penalized, indicating the term is not
specific enough to the current document.

MMRadjusted :=arg max
Ci∈K

[λ · sim1 (Ci, doc)

− (1 − λ) max
docj∈N\doc

sim2 (Ci, docj)

] (2)

4. EXPERIMENT AND RESULTS
As already noted, we experimented with four pretrained
models and evaluated their performance on a dataset that
we built.

4.1 Dataset
The evaluation dataset was built based on sections from two
intro-to-programming textbooks,“Introduction to JAVA pro-
gramming” [24] and “JAVA How to program” [10]. From
each of the two textbooks, we randomly selected 20 sections
that focus on some specific concepts such as ‘while-loop,’
‘sorting arrays,’ and ‘exception handling overview.’

For each of the 20 sections, two computer science gradu-
ate students manually extracted the key concepts using a



two-phase annotation scheme. In the first phase, each anno-
tator selected key concepts. The inter-annotator agreement
in this phase was 0.7 as measured by Cohen’s Kappa [26].
Then, annotators discussed iteratively and extensively until
a final agreement was reached. The resulting key concepts
form our gold standard for evaluating the proposed meth-
ods. We have also asked each annotator to rank the gold
standard concepts. This ranking is used for another perfor-
mance metric that compares the automated ranking to the
human ranking.

4.2 Evaluation Metrics
We evaluated the four pretrained models using two approaches.
First, we evaluated the key concept extraction using preci-
sion, recall, and the F-score at rank k for k = 5, 10, 15. This
evaluation approach is widely used in key-phrase extraction
systems[30]. The other evaluation approach is based on the
Normalized Discounted Cumulative Gain at p (NDCGp) [16].
NDCGp compares the target ranking to the positions that
key concepts occupy in the gold standard ranking and pe-
nalizes any mismatches. We opt for this evaluation to eval-
uate the extracted concepts based on MMRadjusted ranking
method described earlier.

4.3 Results
First, we report results based on precision, recall, and F-
score for top k ranks where k = 5, 10, 15 using cosine similarity-
based ranking. We also report results for NDCGp where p=
10 using adjusted MMR metric with λ = 0.5 and λ = 1. The
NDCGp ranking results obtained using λ = 1 for adjusted
MMR metric is same as ranking using cosine similarity only.
Since the average number of key concepts per section in the
gold standard is 11, we chose p = 10 for normalized dis-
counted cumulative gain (NDCG) reporting.

Table 1: Precision, recall and Fscore at 5,10,15 for knowledge
component extraction

K Model P R F
5 BERT 0.66 0.423 0.499

CodeBERT 0.54 0.342 0.405
RoBERTa 0.5 0.288 0.354
SciBERT 0.58 0.41 0.480

10 BERT 0.578 0.659 0.597
CodeBERT 0.456 0.521 0.473
RoBERTa 0.522 0.589 0.538
SciBERT 0.533 0.608 0.55

15 BERT 0.516 0.801 0.615
CodeBERT 0.367 0.578 0.442
RoBERTa 0.434 0.673 0.516
SciBERT 0.483 0.745 0.576

Table 1 shows Precision, recall and F-scores for different
pretrained embeddings for k = 5, 10, 15. We can see that
BERT has the highest precision, recall, and F-score for all
the values of k. Similarly, SciBERT yields better perfor-
mance compared to RoBERTa and CodeBERT. We can ob-
serve that even though CodeBERT is trained in NL-PL pairs
for different programming languages, it does not provide any
advantage over BERT. This might be because the training
data for CodeBERT, which is specific to the code in Github,
relates to higher-level software engineering concepts than
intro-to-programming concepts. Also, the natural language

Table 2: Normalized Discounted Cumulative Gain(NDCG10)
using MMRadjusted for λ = 1 and λ = 0.5.

Model
NDCG@10

λ = 1 λ = 0.5
BERT 0.83 0.87

CodeBERT 0.75 0.73
SciBERT 0.81 0.80
RoBERTa 0.76 0.77

texts used for training CodeBERT is mainly code documen-
tation which might not be directly relevant to basic pro-
gramming concepts. RoBERTa, even though trained with a
different strategy and more data, does not show any better
performance than BERT and SciBERT.

Also, it is evident from the results that SciBERT, trained in
scholarly documents from computer science and biomedical
domain, performs on par with BERT. The results show that
even though BERT is not trained on any domain-specific
data, it performs better than other models trained with more
domain-specific or more data.

Table 2 shows the NDCG score using MMR adjusted in equa-
tion 2. The results are obtained using λ = 1 which is equiv-
alent to using cosine similarity only and λ = 0.5 which gives
equal importance to the general and specific components in
the adjusted MMR metric. As shown in the results, BERT
outperforms other embedding methods similar to the eval-
uation results shown in Table 1 based on precisioin, recall,
and F-measure. The value of NDCG of all the models ex-
cept for CodeBERT was higher when ranking was done using
λ = 0.5 for MMRadjusted compared to value of λ set to 1.

5. DISCUSSION AND CONCLUSION
Our results indicate that we can use pretrained models for
domain model extraction. We also noticed that even though
models like CodeBERT and SciBERT are trained on domain-
specific data, they did not provide any advantage mainly due
to the nature of their training data. Our experiments also
evaluated ranking based on Maximal Marginal Relevance to
balance general and specific concepts. The main idea behind
the evaluation was to check if adjusted MMR as we propose,
ranks topic-specific concepts higher. Even though control
parameter λ can be trained across different documents to
get a more precise value based on cumulative gain we used
0.5 for key concept extraction using a relevance score based
on Mean Marginal Relevance to provide equal importance
to general and specific concepts. Evaluation based on Table
2 shows that MMRadjusted ranking obtained when λ = 0.5
is closer to gold-standard ranking or preferred ranking by
human annotators.
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