
Automatic Question Generation for Scaffolding

Self-Explanations for Code Comprehension ⋆

Lasang J. Tamang, Rabin Banjade, Jeevan Chapagain, and Vasile Rus

University of Memphis, Memphis, TN, USA
{ljtamang,rbnjade1,jchpgain,vrus}@memphis.edu

Abstract. This work presents two systems, Machine Noun Question
Generation (QG) and Machine Verb QG, developed to generate short
questions and gap-fill questions, which Intelligent Tutoring Systems then
use to guide students’ self-explanations during code comprehension. We
evaluate our system by comparing the quality of questions generated
by the system against human expert-generated questions. Our result
shows that these systems performed similarly to humans in most cri-
teria. Among the machines, we find that Machine Noun QG performed
better.

Keywords: Automatic question generation · Self-explanation · Program
comprehension · Intelligent Tutoring System · Authoring

1 Introduction

This work is part of our larger effort to develop Intelligent Tutoring Systems
(ITS) to help students learn computer programming. Such ITS uses questions
to be provided as hints meant to scaffold students’ self-explanation [9] during
code comprehension. When done by human experts, which is currently the norm,
authoring such questions is expensive and hard to scale, often taking 100-200
hours to prepare 1-hour instructional content [1]. In this work, we develop two
systems called Machine Noun Question Generator (QG) and Machine Verb QG
for automatically generating short questions and gap-fill questions using expert
generated code-block explanations that ITS employs to scaffold student self-
explanation during code comprehension.

Some prior works [10, 11, 5] automatically create clones of programming ex-
ercises that provide opportunities to practice more as opposed to scaffolding
students’ self-explanation for the particular code, which is the focus of our work.
Other works like [2, 8] automatically generated short questions from static anal-
yses of code, using the template-based QG approach, which requires significant
time to design the templates. Unlike past work, we do not use a template ap-
proach for question generation. Instead, we use the current state-of-art model
ProphetNet [6] which inputs textual explanations of the code, leading to a more

⋆ This work is supported by the National Science Foundation under grant number
1822816 and 1934745. All findings and opinions expressed are solely the authors’.

2 L. Tamang et al.

computer language-independent approach for question generation. Also, it can
produce a more profound and broader variety of questions compared to the lim-
ited type of questions that the expert-provided templates can generate.

In sum, this paper answers the following research questions:

1. Is it possible to automatically generate short questions that are linguisti-
cally well-formed, pedagogically sound, and indistinguishable from human-
generated questions?

2. Is it possible to automatically produce gap-fill questions useful for ITS?
3. How do questions generated by machines compare to expert questions?
4. How do Machine Noun QG and Machine Verb QG compare in teperfor-

mance?

2 Dataset

The dataset used for this work consists of 10 code examples with explanations
followed by short and gap-fill questions for each code block, as shown below,
prepared and refined by our group of subject experts in several iterations.

public class AverageOfNumbers {

public static void main(String[] args) {

/* Code-Block 1, Expert-Explanation, short and gap-fill questions*/

double[] numArray = {8,6,11,7};

double sum = 0.0; double average;

/* Code-Block 2

The sum of numbers is calculated using a for loop that iterates over

each number in the numArray array and adds each number to the sum.

When the for loop completes execution, the value of the sum is 32.

1. How is a sum of numbers calculated?

The sum of numbers is calculated using a _____ that iterates over

each number of numArray and adds each number to the sum.

2. What is the value of sum when the for loop completes execution?

When the forloop completes execution, the value of the sum is __.

*/

for (int i = 0; i < numArray.length; i++) {

sum += numArray[i];

}

/*Code-Block 3, Expert-Explanation, short and gap-fill questions*/

average = sum / numArray.length;

System.out.format("The average is: %.2f", average);

}}

Automatic Question Generation Using Expert Code Explanation 3

3 System Design

3.1 Machine Noun QG

First, Machine Noun QG segments the expert’s explanation for each code block
into individual sentences using a library called pySBD, a pipeline extension in
spaCy v2.0. Then, we extract noun chunks for each sentence, also using spaCy.
When a sentence has multiple noun chunks, the first step is to discard any noun
chunk with more than four words; Chau and colleagues define ”single words or
short phrases of two to four words” as domain concepts [4, 3] (i.e., ideally what
we would like to target with our questions). Then, we select the longest noun
chunk from the remaining noun chunks because longer inputs are beneficial for
the question generator. If two noun chunks have the same length, we select the
noun chunk that has appeared first in the sentence, assuming that an important
keyphrase comes first.

Next, We pass a pair of <sentence, selected noun chunk for the sentence> to a
pre-trained sequence-to-sequence model ProphetNet [6] fine-tuned for question
generation tasks using the SQUAD [7] dataset. The model outputs the short
question. The gap-fill question is created by masking the sentence’s noun chunk.

3.2 Machine Verb QG

Machine Verb QG works the same way as Machine Noun QG except it targets
verb phrase in the input sentences. We extract verb phrases in a sentence by
matching the pattern = [’POS’: ’VERB’, ’OP’: ’?’, ’POS’: ’ADV’, ’OP’: ’*’,
’POS’: ’AUX’, ’OP’: ’*’, ’POS’: ’VERB’, ’OP’: ’+’], using Matcher in the spacy
library.

4 Evaluation

The two independent annotators (Ph.D. students in Computer Science) anno-
tated a total of 450 questions, each 150 (75 short +75 gap-fill) questions gen-
erated by Machine Noun QG, Machine Verb QG, and experts (question in our
dataset), using the evaluation criteria as described below. The inter-annotator
agreement, measured by Cohen’s Kappa, is 0.30, 0.39, 0.71, 0.93, 0.37, 0.37, and
0.91 for grammaticality, semantic correctness, domain relevancy, answerability,
helpfulness, recognizability and gap-fill questions, respectively.

We evaluated short questions using the following criteria.

1. Grammaticality: Is the question grammatically correct?
2. Semantic Correctness: Is the question semantically correct?
3. Domain Relevancy: Is the question relevant to the target domain, i.e.,

does it target a programming concept?
4. Answerability: Does the question have a clear answer in the input text?
5. Helpfulness: Is the question likely to help the student think about the target

concept and produce an answer close to the expert-provided explanation?

4 L. Tamang et al.

6. Recognizability: How likely is it that a human generated the question?

The scale for the first two, second two, and last two are 1 (Very Poor) to 5
(Very Good), Yes/No, and 1 (Not Likely) to 5 (Very Likely), respectively.

Each gap-fill question is labeled into one of the following categories.

1. Good: asks about key concepts and would be reasonably difficult to answer.
2. OK: asks about a) key concept but might be difficult to answer or b) likely

key concept (weak concept).
3. Bad: asks about 1) an unimportant aspect or 2) has an answer that can be

figured out from the context of the sentence.
4. Acceptable: OK or Good questions are automatically labeled as acceptable.

5 Results

The overview of quality of short and gap-fill questions is shown in Table 1
and Table 2, respectively. To check whether the difference is significant, we use
independent-samples t-tests for the mean score and the Chi-square test of inde-
pendence for the proportion. We present below a detailed analysis and interpre-
tation of these results in accordance with our research questions.

5.1 Short Questions

Table 1. Performance of Machine Noun QG, Machine Verb QG, and Human on Short-
questions. SD= Standard Deviation.

Machine Noun QG Machine Verb QG Human

mean grammaticality 4.51(SD=0.62 4.64(SD=0.48) 4.67(SD=0.48)

mean semantic correctness 4.76(SD=0.46) 4.49(SD=0.80 4.84(SD=0.57)

mean helpfulness 4.27(SD=0.96 3.44(SD=0.96) 4.31(SD=0.77)

mean recognizability 3.49(SD=1.33) 2.76(SD=1.17) 4.49(SD=0.91)

answerability(Yes)% 89.3 54.7 97.3

domain Relevancy (Yes)% 92 89.3 93.3

Both Machine Noun QG and Machine Verb QG generated linguistically well-
formed, i.e., grammatically and semantically very good questions with mean
scores for grammaticality of 4.51 and 4.64 and semantic correctness of 4.76 and
4.49, respectively.

Likewise, it is possible to automatically generate short questions which are
pedagogically sound as measured by domain relevancy, answerability, and help-
fulness criterion. The systems generated questions relevant to the domain in
program comprehension in an impressive proportion: 92% by the Machine Noun
QG and 89.3% by the Machine Verb QG. While the Machine Noun QG pro-
duced almost all, i.e., 93% answerable questions, the Machine Verb QG gen-
erated slightly more than half, i.e., 54.7% questions that are answerable. The

Automatic Question Generation Using Expert Code Explanation 5

average helpfulness score of Machine Noun QG questions is 4.27 and, therefore,
is likely to help students articulate the expected answer. On the other hand, the
Machine Verb QG’s average helpfulness score is only 3.44, indicating it may or
may not help students scaffold explanation for the code.

Also, it is possible for the system to automatically generate short questions
that are indistinguishable from human-generated questions, measured by recog-
nizability. The mean recognizability score for Machine Noun QG is 3.49, indi-
cating that human annotators think humans likely generate these. On the other
hand, the mean recognizability score for the Machine Verb QG system is 2.76,
which signifies that it at least challenges or makes annotators hard to say who
generated the questions, i.e., they think the question has equal chances of being
created by human or machine.

Comparison: Compared to human, Machine Noun QG performed compara-
bly; we did not find significant difference in mean or proportion in any criteria.
However, Machine Verb QG significantly under-performed to human in helpful-
ness [t(141.27) = -6.09, p=0.00] and answerablity [χ2(1, n=150) = 35.12, p =
0.00.] criteria, but, no significant difference in rest of criteria. Between machines,
Machine Noun QG significantly outperformed machine verb in semantic correct-
ness [t(118.62)=2.51, p=0.01] and helpfulness [t(148) = 5.26, p=0.00], and they
pefromed similalry in rest of criterion.

5.2 Gap-Fill Questions

Table 2. Performance of Machine Noun QG, Machine Verb QG, and Human on Gap-
Fill Questions.

Bad % Okay % Good % Acceptable%

Machine Noun QG 16 73.3 10.7 84

Machine Verb QG 20 38.7 41.3 80

Human 2.7 53.3 44 97.3

These systems can produce a majority of acceptable gap-fill-questions, i.e.,
84% by Machine Noun QG and 80% by Machine Verb QG.

Comparison: Compared to human, both Machine Noun QG [χ2(1, n=150)=6.38,
p =0.012] and Machine Verb QG [χ2(1, n=150)=9.55, p =0.002] significantly
under-performed in gap-fill QG task. There is no significant difference in the
proportions of acceptable gap-fill questions generated between Machine Noun
QG and Machine Verb QG, χ2(1, n=150)=0.19, p=0.67.

6 Conclusion

In this work, we developed Machine Noun QG and Machine Verb QG systems
to automatically generate short and gap-fill questions that ITS can use to scaf-
fold students by presenting them as a hint. Our evaluation shows that these

6 L. Tamang et al.

systems can generate short questions which are linguistically well-formed, ped-
agogically sound, and likely indistinguishable from human-generated questions.
We also found that most gap-fill questions generated by machines are of accept-
able quality to be used by ITS. Compared to human experts, Machine Noun QG
performed comparable for short questions but under-performed for gap-fill ques-
tions in almost all criteria. Between the systems, Machine Noun QG performed
better.

In our future work, we plan to automate the generation of code explanations
using code examples and the surrounding text in programming textbooks and
then use the explanations to generate the questions automatically, thus making
the process fully automated.

References

1. Aleven, V., Mclaren, B.M., Sewall, J., Koedinger, K.R.: A new paradigm for intel-
ligent tutoring systems: Example-tracing tutors. International Journal of Artificial
Intelligence in Education 19(2), 105–154 (2009)

2. Alshaikh, Z., Tamang, L.J., Rus, V.: Experiments with auto-generated socratic
dialogue for source code understanding. In: CSEDU (2). pp. 35–44 (2021)

3. Banjade, R., Oli, P., Tamang, L.J., Chapagain, J., Rus, V.: Domain model discovery
from textbooks for computer programming intelligent tutors. In: The International
FLAIRS Conference Proceedings. vol. 34 (2021)

4. Chau, H., Labutov, I., Thaker, K., He, D., Brusilovsky, P.: Automatic concept
extraction for domain and student modeling in adaptive textbooks. International
Journal of Artificial Intelligence in Education 31(4), 820–846 (2021)

5. Hsiao, I.H., Brusilovsky, P., Sosnovsky, S.: Web-based parameterized questions for
object-oriented programming. In: E-Learn: World Conference on E-Learning in
Corporate, Government, Healthcare, and Higher Education. pp. 3728–3735. Asso-
ciation for the Advancement of Computing in Education (AACE) (2008)

6. Qi, W., Yan, Y., Gong, Y., Liu, D., Duan, N., Chen, J., Zhang, R., Zhou, M.:
Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. arXiv
preprint arXiv:2001.04063 (2020)

7. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

8. Tamang, L.J., Alshaikh, Z., Khayi, N.A., Oli, P., Rus, V.: A comparative study
of free self-explanations and socratic tutoring explanations for source code com-
prehension. In: Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. pp. 219–225 (2021)

9. Tamang, L.J., Alshaikh, Z., Khayi, N.A., Rus, V.: The effects of open self-
explanation prompting during source code comprehension. In: The Thirty-Third
International Flairs Conference (2020)

10. Thomas, A., Stopera, T., Frank-Bolton, P., Simha, R.: Stochastic tree-based gen-
eration of program-tracing practice questions. In: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. pp. 91–97 (2019)

11. Zavala, L., Mendoza, B.: On the use of semantic-based aig to automatically gener-
ate programming exercises. In: Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. pp. 14–19 (2018)

