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Abstract
We study the identity testing problem for restricted Boltzmann machines (RBMs), and more

generally, for undirected graphical models. In this problem, given sample access to the Gibbs
distribution corresponding to an unknown or hidden model M⇤ and given an explicit model M ,
the goal is to distinguish if either M = M⇤ or if the models are (statistically) far apart.

We establish the computational hardness of identity testing for RBMs (i.e., mixed Ising models
on bipartite graphs), even when there are no latent variables or an external �eld. Speci�cally, we
show that unless RP = NP, there is no polynomial-time identity testing algorithm for RBMs when
�d = !(log n), where d is the maximum degree of the visible graph and � is the largest edge
weight (in absolute value); when �d = O(log n) there is an e�cient identity testing algorithm
that utilizes the structure learning algorithm of Klivans and Meka (2017). We prove similar lower
bounds for purely ferromagnetic RBMs with inconsistent external �elds and for the ferromagnetic
Potts model. To prove our results, we introduce a novel methodology to reduce the corresponding
approximate counting problem to testing utilizing the phase transition exhibited by these models.

Keywords: distribution testing, identity testing, graphical models, Restricted Boltzmann Ma-
chines, Potts model

1. Introduction

For graphical models, there are several fundamental computational tasks which are essential for
utilizing these models. These computational problems can be broadly labeled as follows: sampling,
counting, structure learning, and testing. Our big picture aim is to understand the relationship
between these problems. The speci�c focus in this paper is on the computational complexity of
the identity testing problem for undirected graphical models and its connections to the hardness of
the counting problem.
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Identity testing is a basic question in statistics for testing whether a given model �ts a dataset.
Roughly speaking, given data D sampled from the posterior or likelihood distribution of an un-
known/hidden modelM⇤ and given an explicit modelM , can we distinguish whetherM = M⇤?

We study identity testing in the context of undirected graphical models (Murphy, 2012), which
correspond to (pairwise) Markov random �elds in probability theory and computer vision (Geman
and Gra�gne, 1986) and to spin systems in statistical physics (Georgii, 2011). We focus attention
on examples of graphical models of particular interest: the Ising model, the Potts model, and Re-
stricted Boltzmann Machines. The Ising model is the simplest example of an undirected graphical
model, and, in fact, it is one of the most well-studied models in statistical physics where it is used
to study phase transitions. The Potts model is the generalization of the Ising model from a two
state system to an integer q � 3 state system. It is also well-studied in statistical physics as the
nature of the phase transition changes as q increases (Duminil-Copin et al., 2016, 2017).

Restricted Boltzmann Machines (RBMs) are a simple class of undirected graphical models
corresponding to the Ising model on bipartite graphs. Originally introduced by Smolensky in
1986 (Smolensky, 1986), they have played an important role in the history of computational learn-
ing theory. They have two layers of variables: one layer corresponding to the observed variables
and another layer corresponding to the hidden/latent variables, and no intralayer connections so
that the underlying graph is bipartite. Learning was shown to be practical in these restricted mod-
els (Hinton, 2002; Hinton et al., 2006) and henceforth played a seminal role in the development of
deep learning (Salakhutdinov and Hinton, 2009; Osindero and Hinton, 2008; Salakhutdinov et al.,
2007; Hinton and Salakhutdinov, 2009).

We de�ne �rst the Potts model, as both the Ising model and RBMs may be viewed as special
cases of this model. The Potts model is speci�ed by a graph G = (V,E), a set of vertex labels
or spins [q] = {1, . . . , q}, a set of edge weights de�ned by � : E ! R and a set of vertex
weights h : V ⇥ [q] ! R. Con�gurations of the Potts model are the collection of vertex labelings
⌦ = {1, . . . , q}V . The Gibbs distribution associated with the Potts model is a distribution over all
con�gurations � 2 ⌦ such that:

µ(�) = µG,�,h(�) :=
1
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where Z = ZG,�,h is the normalizing factor or partition function given by:
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When �(e) > 0 for every e 2 E, the model is called ferromagnetic and neighboring vertices
prefer to align to the same spin. Conversely, when �(e) < 0 for every e 2 E the model is called
antiferromagnetic. Models where � is allowed to be both positive or negative for distinct edges are
called mixed models.

The Ising model corresponds to the special case where there are only two spins; i.e., q = 2.
RBMs are mixed Ising models restricted to bipartite graphs; that is, G is bipartite with bipartition
V = L [ R. Since the focus in this paper is on lower bounds, we often consider the case of no
external �eld (h = 0) in order to obtain stronger hardness results.
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Given a model speci�cation, that is, a graph G = (V,E), an edge weight function � and an
external �eld h, the goal in the sampling problem is to generate samples from the Gibbs distribution
µ = µG,�,h (or from a distribution close to µ in total variation distance). The corresponding count-
ing problem is to compute the partition function Z = ZG,�,h. The (exact) counting problem is #P-
hard (Valiant, 1979) even for restricted classes of graphs (Greenhill, 2000; Vadhan, 2001), and hence
the focus on the approximate counting problem of obtaining an FPRAS (fully-polynomial random-
ized approximation scheme1) for Z . For a general class of models, the approximate counting and
the approximate sampling problems are equivalent, i.e., there are polynomial-time reductions be-
tween them (Jerrum et al., 1986; Štefankovič et al., 2009; Kolmogorov, 2018). A seminal result of
Jerrum and Sinclair (Jerrum and Sinclair, 1993) (see also (Randall and Wilson, 1999; Collevecchio
et al., 2016; Guo and Jerrum, 2017)) presented an FPRAS for the partition function of the ferro-
magnetic Ising model.

Another two fundamental problems for undirected graphical models are structure learning and
identity testing. The structure learning problem is as follows: given oracle access to samples from
the Gibbs distribution µM⇤ for an unknown (i.e., “hidden”) modelM⇤

= (G⇤,�⇤, h⇤), can we learn
G⇤ (i.e., the structure of the model) in polynomial-time with probability at least 2/3? In the case
of no latent variables (so the samples from the Gibbs distribution reveal the label of all vertices V
of G) recent work of Klivans and Meka (Klivans and Meka, 2017) (see also (Bresler, 2015; Vu�ray
et al., 2019; Hamilton et al., 2017; Vu�ray et al., 2016; Wu et al., 2019)) learns n-vertex graphs with
O(log n) ⇥ exp(O(�d)) samples and O(n2

log n) ⇥ exp(O(�d)) time where d is the maximum
degree of G and � := maxe2E |�(e)| is the maximum edge weight in absolute value; this bound
has nearly-optimal sample complexity from an information-theory perspective (Santhanam and
Wainwright, 2012).

For RBMs with latent variables (thus samples only reveal the labels for vertices on one sideR),
structure learning can be done in time O(ndL+1

) where dL is the maximum degree of the latent
variables (Bresler et al., 2013; Klivans and Meka, 2017; Bresler et al., 2019). Recent work of Bresler,
Koehler andMoitra (Bresler et al., 2019) proves that there is no algorithmwith running time no(dL)

assuming k-sparse noisy parity on n bits is hard to learn in time no(k); they also show that for the
special case of ferromagnetic RBMs with hidden variables there is a structure learning algorithm
with O(log n)⇥ exp(O(�d2)) sample complexity and O(n2

log n)⇥ exp(O(�d2)) running time;
see also (Bresler and Buhai, 2020; Goel, 2020).

In the identity testing problem we are given oracle access to samples from the Gibbs distribu-
tion µM⇤ for an unknown model M⇤

= (G⇤,�⇤, h⇤) (as in structure learning) and we are also
given an explicit modelM = (G,�, h). Our goal is to determine, with probability� 2/3, if either
M = M⇤ or if the models are (1� ")-far apart; speci�cally, if the total variation distance between
their Gibbs distributions is at least 1� " for a given " > 0. (We note that previous works assumed
separation � " in the later case, whereas we prove hardness even when we assume separation
� 1� ".)

It is known that identity testing cannot be solved in polynomial time for general graphical
models in the presence of hidden variables unless RP = NP (Bogdanov et al., 2008) . In this paper
we assume there are no hidden variables and hence the samples from µM⇤ reveal the label of

1. A fully polynomial-time randomized approximation scheme (FPRAS) for an optimization problem with optimal
solutionZ produces an approximate solution Ẑ such that, with probability at least 1��, (1�")Ẑ  Z  (1+")Ẑ
with running time polynomial in the instance size, "�1 and log(��1).
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every vertex in the graph G; this setting is more interesting for hardness results. We explore a
more re�ned picture of hardness of identity testing vs. polynomial-time algorithms.

It is known that identity testing can be reduced to sampling (Daskalakis et al., 2018) or structure
learning (Bezáková et al., 2020): given an e�cient algorithm for the associated sampling problem
or an e�cient algorithm for structure learning, then one can e�ciently solve the identity testing
problem. Hence, identity testing is (computationally) easier than sampling and structure learn-
ing. (To be precise, one needs to solve both the structure learning and the parameter estimation
problems to solve identity testing; the algorithm of Klivans and Meka (Klivans and Meka, 2017)
does in fact provide this.) This raises the question of whether identity testing can be e�ciently
solved in cases where sampling and structure learning are known to be hard. We prove (for the
models studied here) that when sampling and structure learning are hard, then identity testing is
also hard.

1.1 Our results

The "-identity testing problem for the Ising and Potts models is formally de�ned as follows. For
positive integers n and d, and positive real numbers � and h, let MRBM(n, d,�, h) denote the
family of RBMs on n-vertex bipartite graphs G = (V,E) of maximum degree at most d, where
the absolute value of all edge interactions is at most � and the �eld |h(v, i)|  h for all v 2 V and
i 2 [q]; see De�nition 4. We de�neMP����(n, d,�, h) analogously for the family of Potts models,
without the restriction of G being bipartite.

Given an RBM M 2 MRBM(n, d,�, h), and sample access to a distribution µM⇤ for
an unknown RBM M⇤ 2 MRBM(n, d,�, h), distinguish with probability at least 3/4
between the cases:

1. µM = µM⇤ ; 2. kµM � µM⇤k�� � 1� ".

The choice of 3/4 for the probability of success is arbitrary, and it can be replaced by any constant
in the interval (12 , 1) at the expense of a constant factor in the running time of the algorithm. The
"-identity testing problem for the Potts model is de�ned in the same manner, but assuming that
bothM andM⇤ belong toM�����(n, d,�, h) instead.

Our �rst result concerns the identity testing problem onMRBM(n, d,�, 0); that is, RBMs with
both positive and negative edge weights (i.e., mixed RBMs) without external �elds (i.e., h(v, i) = 0

for all v 2 V , i 2 [q]). We show that for RBMs the approach utilizing structure learning is essen-
tially best possible. In particular we prove that when �d = !(log n) there is no poly-time identity
testing algorithm, unless RP = NP. Note that when �d = O(log n), the algorithm of Klivans
and Meka (Klivans and Meka, 2017) for structure learning and parameter estimation provides an
identity testing algorithm with poly(n) sample complexity and running time.

Theorem 1 Suppose n, d are positive integers such that 3  d  n✓ for constant ✓ 2 (0, 1) and
let " 2 (0, 1). If RP 6= NP, then for all real � > 0 satisfying �d = !(log n) there is no polynomial
running time algorithm to solve the "-identity testing problem for the classMRBM(n, d,�, 0) of mixed
RBMs without external �elds.

We note that the sample complexity of identity testing on MRBM(n, d,�, 0), and more gen-
erally for any family of Ising models, is poly(n, d,�) (Daskalakis et al., 2018); the above result
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establishes the computational hardness of the problem on MRBM(n, d,�, 0). Moreover, in con-
trast to Theorem 1, Daskalakis, Dikkala and Kamath (Daskalakis et al., 2018) provided a poly-time
identity testing algorithm for all ferromagnetic Ising model with consistent �elds (the external �eld
is consistent if it only favors the same unique spin at every vertex; otherwise it is called inconsis-
tent; see De�nition 21). Their algorithm crucially utilizes the known poly-time sampling methods
for the ferromagnetic Ising model (Jerrum and Sinclair, 1993; Randall and Wilson, 1999; Collevec-
chio et al., 2016; Guo and Jerrum, 2017). On the hardness side, super-polynomial lower bounds
were recently established for identity testing for the antiferromagnetic Ising model on general (not
necessarily bipartite) graphs when �d = !(log n) (Bezáková et al., 2020). This previous result uti-
lizes the hardness of the maximum cut problem, since maximum cuts correspond to the “ground
states” (maximum likelihood con�gurations) of the antiferromagnetic model; this is not the case
for RBMs, and new insights are required (see Section 1.2 for a more detailed discussion). In par-
ticular we show a new approach to reduce from the counting problem.

Ferromagnetic and antiferromagnetic RBMs are equivalent models; that is, there is a one-to-
one correspondence between con�gurations with the same weight. Therefore, the results estab-
lished in (Daskalakis et al., 2018) solve the identity testing problem for both ferromagnetic and
antiferromagnetic RBMs with no latent variables, even in the presence of a consistent external
�eld. Moreover, Klivans and Meka’s algorithm from (Klivans and Meka, 2017) together with the
hardness results of Theorem 1 provides a fairly complete picture of the computational complexity
of identity testing for (mixed) RBMs with no external �eld (h = 0).

Our next result concerns the hardness of identity testing for purely ferromagnetic RBMswith an
inconsistent magnetic �eld; that is, a �eld that favors one spin for some of the vertices and the other
spin for the rest; see De�nition 21. For this we utilize the complexity of #BIS, which is the problem
of counting the independent sets in a bipartite graph. #BIS is believed not to have an FPRAS,
and it has achieved considerable interest in approximate counting as a tool for proving relative
complexity hardness (Dyer et al., 2004; Goldberg and Jerrum, 2012; Dyer et al., 2010; Bulatov et al.,
2013; Chen et al., 2015; Cai et al., 2016; Galanis et al., 2016a). Let M+

RBM(n, d,�, h) be set of all
ferromagnetic RBMs in MRBM(n, d,�, h).

Theorem 2 Suppose n, d are positive integers such that 3  d  n✓ for constant ✓ 2 (0, 1) and let
" 2 (0, 1). If #BIS does not admit an FPRAS, there exists h = O(1) such that when �d = !(log n)
there is no polynomial running time algorithm that solves the "-identity testing problem for the class
M+

RBM(n, d,�, h) of ferrromagnetic RBMs with inconsistent external �elds.

Given the e�cient identity testing algorithm for ferromagnetic Ising models (Daskalakis et al.,
2018; Jerrum and Sinclair, 1993), we may ask whether there are other (ferromagnetic) models that
allow e�cient testing algorithms. A prime candidate is the ferromagnetic Potts model. Both the
ferromagnetic Ising and Potts models have a rich structure; for instance, their random-cluster
representation (Grimmett, 2006) enables sophisticated (andwidely-used) sampling algorithms such
as the Swendsen-Wang algorithm (Swendsen and Wang, 1987). However, while there are e�cient
samplers for the ferromagnetic Ising model for all graphs G and all edge interactions � (Jerrum
and Sinclair, 1993; Collevecchio et al., 2016; Guo and Jerrum, 2017), the case of the ferromagnetic
Potts model (i.e., q > 2 spins) looks less promising. In fact, it is unlikely that there is an e�cient
sampling/counting algorithm for general ferromagnetic Potts models since this is a known #BIS-
hard problem (Goldberg and Jerrum, 2012; Galanis et al., 2016b); this is due to a phenomena called
phase co-existence, which we will also exploit; see Section 2.2.1. Given the weaker hardness of

5



B����� �� ��.

sampling and approximate counting for the ferromagnetic Potts model, the hardness of the identity
problem was less clear.

We prove that identity testing for the ferromagnetic Potts model is in fact hard in the same
regime of parameters where sampling and structure learning are known to be hard. Speci�cally, we
observe that the structure learning algorithm from (Klivans and Meka, 2017) applies to the Potts
model, and hence implies a testing algorithm when �d = O(log n); we establish lower bounds
when �d = !(log n) that hold even for the simpler case of models with no external �eld.

Theorem 3 Suppose n, d, q � 3 are positive integers such that 3  d  n✓ for constant ✓ 2 (0, 1)
and let " 2 (0, 1). If #BIS does not admit an FPRAS, then there is no polynomial running time
algorithm that solves the "-identity testing problem for the classM+

P����(n, d,�, 0) of ferromagnetic
q-state Potts models without an external �eld. Moreover, our lower bound applies restricted to the class
of ferromagnetic Potts models on bipartite graphs inM+

P����(n, d,�, 0).

1.2 Our techniques

Our proof is a general approach that allows us to obtain hardness results for several models of
interest. Speci�cally, we devise a methodology to reduce the problem of approximate counting
(i.e., approximating partition functions) to identity testing. For this we consider a decision version
of approximate counting and prove that this variant is as hard as the standard approximation
problem; this �rst step of our reduction applies to many other models of interest (see Theorem 7
and Section 6).

In the second step of our reduction, given a hard counting instance, we use insights about the
phase transition of the models to construct a testing instance whose output allows us to solve the
decision version of approximate counting. The actual reduction is generic (see Theorem 14), but
the insights about each model are needed to build a suitable testing instance; this construction is
the only part of our proof that is model speci�c, whereas every other step in the proof applies to
more general spin systems. Our approach is nicely illustrated in the context of the ferromagnetic
Potts model; that is, in the proof of Theorem 3 in Section 2. There, we utilize the phase transition
phenomenon in the associated mean-�eld Potts model which corresponds to the complete graph.
In particular, there is a phase co-existence corresponding to a �rst-order phase transition which
we utilize to approximate the partition function of the input graph; see Section 2.

In the third and �nal step of the reduction, we reduce the maximum degree of the graph in the
testing instance by using random bipartite graphs as gadgets, as has been done in seminal hardness
results for approximate counting (Sly, 2010; Sly and Sun, 2012), and more recently in (Bezáková
et al., 2020) for the hardness of testing for the antiferromagnetic Ising model. This step is also
generic and applies to a large class of models; see Section 5 and speci�cally Theorem 28. One
interesting implication of our approach is that our gadget and reduction yields always bipartite
graphs, and hence we immediately get hardness results for bipartite graphs for all of the models
studied in this paper.

We pause to brie�y contrast the above proof approach with that in (Bezáková et al., 2020),
where it was established hardness of identity testing for the antiferromagnetic Ising model. As
mentioned earlier, in the antiferromagnetic Isingmodel, the con�gurationswith the highest weight
or likelihood (i.e., the ground states) correspond to the maximum cuts of the original graph. Hence,
it is natural to prove hardness of identity testing for the antiferromagnetic Ising model using a
reduction from the maximum cut problem. The ground states of ferromagnetic systems, on the
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other hand, correspond to the monochromatic con�gurations, so there is no hard optimization
problem in the background to utilize in the reduction. (The similar obstacle for RBMs is that
the maximum cut problem is trivial in bipartite graphs, so we cannot hope to use it to prove
hardness.) We use the hardness of approximating the partition function instead, and consequently
our reduction is of a completely di�erent �avor to that in (Bezáková et al., 2020); we utilize the
unique nature of the phase transition in these models in an essential way. We also mention that,
using signi�cantly di�erent reductions, the hardness of approximating partition functions has
also been employed for proving the hardness of the parameter estimation problem mentioned
earlier (Montanari, 2015; Bresler et al., 2014).

To reduce the degree of the graphs in our construction we do utilize insights and certain tech-
nical lemmas from (Bezáková et al., 2020). Speci�cally, those concerning the expansion of random
near-regular bipartite graphs. We note that the models we consider on these random graphs are
di�erent than those in (Bezáková et al., 2020); in particular, we consider mixed models and allowed
external �elds, whereas in (Bezáková et al., 2020) these gadgets are purely antiferromagnetic and
there is no external �eld.

We present our proof approach in the context of the ferromagnetic Potts model �rst, specif-
ically in Section 2 we prove Theorem 3. The proofs for RBMs, namely Theorems 1 and 2 which
follow the same approach, are provided in Sections 3 and 4, respectively.

2. Testing ferromagnetic Potts models

In this section we prove Theorem 3, our lower bound for identity testing for the ferromagnetic
Potts model. To prove this theorem, we introduce a new methodology to reduce approximate
counting (i.e., the problem of �nding an FPRAS for the partition function of a model), to identity
testing. We later use this framework to establish our lower bounds for identity testing for RBMs
(i.e., Theorems 1 and 2); we believe our methods could be used to establish the hardness of identity
testing for other spin systems.

We introduce some useful notation next. Recall that in the introduction we de�ne the families
of modelsMRBM,M+

RBM,MP���� andM+
P����. We formalize and extend this notation as follows.

De�nition 4 For integers n, d � 3 and �, h 2 R, let MP����(n, d,�, h, q) denote the family of
q-state Potts models on n-vertex graphs G = (VG, EG) of maximum degree at most d with edge
interactions and external �eld given by �G : EG ! R and hG : VG ⇥ [q] ! R, respectively, such
that:

(i) for every edge {u, v} 2 EG, |�G({u, v})|  �; and

(ii) for every vertex v 2 VG and spin i 2 [q], |hG(v, i)|  h.

Remark 5 We omit q from the notation above as it is usually clear from context. For the special case
of q = 2, i.e., the Ising model, we use MI����; when q = 2 and the underlying graph is bipartite we
useMRBM. In addition, we add “+” or “�” as a superscript to the notation to denote the corresponding
ferromagnetic or antiferromagnetic subfamilies; e.g., M+

P����(n, d,�, h) denotes the subset of ferro-
magnetic Potts models in MP����(n, d,�, h). Finally, we add a circum�ex, e.g., M̂+

P����(n, d,�, h),
for the subfamily of models where every edge weight is exactly equal to �.
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2.1 Step 1: Decision version of approximate counting

Our starting point is always a known hard approximate counting instance. For the ferromagnetic
Potts model, we consider the problem of approximating its partition function on a graph G. As
mentioned in the introduction, this problem is known to be #BIS-hard, even under the additional
assumptions that all edges have the same interaction parameter 0 < �G = ⇥(1) and that there
is no external �eld (i.e., h = 0) (Goldberg and Jerrum, 2012; Galanis et al., 2016b). Our goal is to
design an FPRAS for the partition function ZG,�G

:= ZG,�G,0 using a polynomial-time algorithm
for identity testing, thus establishing the #BIS-hardness of this problem.

Our �rst step is to reduce the problem of approximating ZG,�G
to a natural decision variant of

the problem. This decision version will be more naturally solved by the testing algorithm and is
more generally de�ned as follows:

De�nition 6 (Decision r-approximate counting) Given a Potts model (G,�G,hG),
an approximation ratio r > 1 and an input Ẑ 2 R, distinguish with probability at least
5/8 between the following two cases:

(i) ZG,�G,hG
 1

r
Ẑ (ii) ZG,�G,hG

� rẐ

We show that the decision version of approximate counting is as hard as the standard problem
of approximating ZG,�G,hG

.

Theorem 7 Let n, d � 1 be integers and let �, h � 0 be real numbers. Suppose that there is no
FPRAS for the counting problem for a family of Potts modelsM, where

M 2 {M̂+
P����(n, d,�, h),M̂

�
I����(n, d,�, h),M̂

+
I����(n, d,�, h)}.

Then, for any c > 0 there is no polynomial-time algorithm for the decision version of nc-approximate
counting forM.

Our proof of this theorem is provided in Section 6.

2.2 Step 2: Testing instance construction

We �rst construct a hard instance for the identity testing problem for the ferromagnetic Potts
model on general graphs, with no restriction on the maximum degree and with a constant upper
bound on the edge interactions. We prove �rst that identity testing is #BIS-hard in this setting.

Theorem 8 Consider a ferromagnetic Potts model with no external �eld (h = 0) where the interac-
tion on every edge is ferromagnetic and bounded from above by a constant �0 > 0. Then, there is no
polynomial-time identity testing algorithm for the model unless there is an FPRAS for #BIS.

To establish this theorem, we construct an identity testing instance that allows us to solve the
decision variant of approximate counting (see De�nition 6). We note that this theorem does not
immediately imply Theorem 3 from the introduction becausewe allow the degree to be unbounded;
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speci�cally, Theorem 8 establishes hardness forM+
P����(n, n,�, 0). The next step of the proof uses

this result and a degree-reducing gadget to establish Theorem 3 (see Section 2.3). Our main gadget
in the proof of Theorem 8will be a complete graphH onm vertices; this is known as themean-�eld
case in statistical physics.

2.2.1 T�� ������������� ���������� q������ P���� �����

Let H = Km be a complete graph on m vertices and let �H be the interaction strength on the
edges of H . By symmetry, the q-state Potts con�gurations on a complete graph can be described
by their “signature”—by “signature” we mean the vector (�1, . . . ,�q) 2 Zq where �i � 0 is the
number of vertices that have spin i; note that

P
q

i=1 �i = m.
In the complete graph, the ferromagnetic Potts model is known to undergo an “order-disorder”

phase transition. Speci�cally, there exists a critical value �H = Bo/m such that when �H <
Bo/m, long-range correlations do not exist; the system is then said to be in a “disordered” state
as the typical con�gurations have signature ⇡ (m/q, . . . ,m/q) where each spin has roughly the
same density (up to lower order terms). In contrast, when �H > Bo/m, typical con�gurations
have a dominant spin and the remaining spins are uniformly distributed. These con�gurations
are thus referred to as “majority” con�gurations. More precisely there exists a constant ↵ =

↵(�H) > 1/q and, with high probability, con�gurations from theGibbs distribution have signature
⇡
⇣
↵m, (1�↵)m

q�1 , . . . , (1�↵)m
q�1

⌘
up to permutations and lower order terms.

When q � 3, the phase transition is known to be of �rst-order, which means that when �H =

Bo/m, a sample from the Potts distribution may have signature⇡ (m/q, . . . ,m/q)with constant
probability, or signature ⇡

⇣
↵m, (1�↵)m

q�1 , . . . , (1�↵)m
q�1

⌘
(up to permutations) also with constant

probability. This phenomena is referred to as phase co-existence, and it is known (or conjectured) to
be present in a variety of graphs, being the root reason for the hardness of sampling and counting
for the ferromagnetic Potts model. In contrast, in the Ising model (i.e., when q = 2), there is
no phase co-existence; in this case, the majority density ↵(Bo/m) is 1/q and the two phases—
disordered and majority—coincide at the critical point.

We now formalize the notion of the majority phase M , the disordered phase D, and the re-
maining con�gurations S with their corresponding partition functions ZM

H
, ZD

H
, and ZS

H
. The

majority phase is de�ned with respect to a �xed constant ↵̂ = ↵̂(Bo) which is the density of the
dominant color at the phase coexistence point Bo/m. Let ⌦H denote the set of Potts con�gura-
tions on H and for � 2 ⌦H , let (�1, . . . ,�q) 2 Zq denote its signature. Consider the following
sets:

M :=

(
� 2 ⌦H

�� 9j 2 [q] : |�j � ↵̂m|  m3/4 and
�����i �

1� ↵̂

q � 1
m

����  m3/4 for i 2 [q] \ {j}
)
,

D :=

(
� 2 ⌦H

�� 8i 2 [q] : |�i �m/q|  m3/4

)
,

and S := ⌦H \ (M [D).
For a con�guration � on the complete graph H = (EH , VH), let

w�

H(�H) = exp

0

@
X

{u,v}2E(H)

�H (�(u) = �(v))

1

A

9
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denote the weight of � in the mean-�eld model (H,�H). Consider the contributions of each type
of con�guration to the partition function. That is,

ZM
H (�H) :=

X

�2M
w�

H(�H), ZD
H(�H) :=

X

�2D
w�

H(�H), ZS
H(�H) :=

X

�2S
w�

H(�H).

Hence, the partition function of (H,�H) is given by ZH(�H) = ZM
H
(�H) + ZD

H
(�H) + ZS

H
(�H).

We note that in our reduction later, we will choose a speci�c �H > 0 depending on the instance
of the approximate counting problem and the parameters of the identity testing algorithm; hence,
to emphasize the e�ect of �H , we parameterize ZM

H
(and other functions in this section) in terms

of �H .
The following two lemmas detail the relevant behavior of the mean-�eld Potts model at and

around the critical pointBo/m. We note that as a consequence of the �rst-order phase transition,
there is a critical window around Bo/m where the non-dominant phase (i.e., disorder or major-
ity) is still much more likely than any other type con�gurations; this phenomena is known as
metastability and will also be crucial for us.

First we establish that in the critical window aroundBo/m the majorityM and disorderedD
con�gurations are exponentiallymore likely than the remaining con�gurationsS. Several variants
of this result have been proved in some fashion before (see, e.g., Bollobás et al., 1996; Luczak and
Łuczak, 2006; Goldberg and Jerrum, 2012; Cu� et al., 2012; Gheissari et al., 2018; Galanis et al., 2015;
Blanca and Sinclair, 2015). However, the precise bound we require in our proofs does not seem to
be available in the literature.

Lemma 9 There exists constants c, c0 > 0 such that for any �H satisfying |�H�Bo/m|  c0m�3/2

we have
ZS
H(�H)  min{ZM

H (�H), ZD
H(�H)} exp(�c

p
m).

In addition, we show that we can �nd in poly(m) time a value for the parameter �H in the
critical window to achieve a speci�ed ratio R of the majority partition function ZM

H
(�H) to the

disordered partition function ZD
H
(�H).

Lemma 10 There exist constants c, c0 > 0 such that for any R 2 [e�c
p
m, ec

p
m
] and any constant

� 2 (0, 1), we can e�ciently �nd �H > 0 in poly(m) time such that |�H �Bo/m|  c0m�3/2 and

(1� �)R  ZM
H
(�H)

ZD
H
(�H)

 R. (1)

The proof of these two lemmas are provided in Appendix A.

2.2.2 I������� ������� ���������

Visible Model Construction. Let (G,�G) be the instance of the ferromagnetic Potts model with
no external �eld (i.e., h = 0) for which we are trying to approximate the partition function ZG,�G

;
we shall assumeG = (VG, EG) is anN -vertex graph and that every edge has interaction strength
0 < �G = ⇥(1). Let H = (VH , EH) be a complete graph on m = N10 vertices. The graph
F = (VF , EF ) is the result of connecting the vertices ofH andG with a complete bipartite graph

10
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Km,N with edges Em,N ; that is, VF = VG [ VH and EF = EH [ EG [ Em,N . We consider the
Potts model on the graph F with edge interactions �F : EF ! R given by:

�F (e) =

8
><

>:

�H if e 2 EH

�G if e 2 EG

� if e 2 Em,N ,

where �H ,� > 0 will be chosen later. We use n := N +m for the number of vertices of F , and,
with a slight abuse of notation, we use F for the Potts model (F,�F ) which will play the role of
the visible model in our reduction; µF denotes the corresponding Gibbs distribution.

We study �rst the properties of “typical” con�gurations on G conditional on a con�guration
� on the complete graphH . For this, we introduce some additional notation. Let ⌦F , ⌦H and ⌦G

be the set of Potts con�guration on the graph F ,H andG respectively; note that⌦F = ⌦H ⇥⌦G.
For � 2 ⌦H , de�ne

Z�

F (�H) :=

X

⌘2⌦F :⌘(VH)=�

w⌘

F
(�H)

where the weight w⌘

F
(�H) of con�guration ⌘ is given by

w⌘

F
(�H) = exp

0

@
X

{u,v}2EF

�F ({u, v}) (⌘(u) = ⌘(v))

1

A ;

that is, Z�

F
(�H) is the total contribution to the partition ZF (�H) of F of the con�gurations that

agree with � on H .
If we �x a con�guration � onH and look at the con�guration onG (under the Gibbs distribu-

tion on F conditional on �) then � will act as an external �eld on the vertices ofG. We show that
if � is in the majority phase (i.e., in the set M ), then the con�guration on G will be monochro-
matic with high probability as these con�gurations will maximize the number of monochromatic
edges between G and H . In contrast, when � is in the disordered phase (i.e., in D), then every
con�guration onGwill have (roughly) the same number of monochromatic edges betweenG and
H ; hence, the partition function Z�

F
(�H) in this case will be proportional to ZG,�G

.
To formalize this, we split the partition function of F into three parts depending on the signa-

ture on the complete graph H . Let

ZM
F (�H) =

X

�2M
Z�

F (�H), ZD
F (�H) =

X

�2D
Z�

F (�H), and ZS
F (�H) =

X

�2S
Z�

F (�H);

then, ZF (�H) = ZM
F
(�H) + ZD

F
(�H) + ZS

F
(�H).

The following lemma details the above description of the properties of con�gurations on the
original instance G conditional on the con�guration on the complete graph H .

Lemma 11 For any constants � 2 (0, 1) and c > 0, and any �H such that |�H�Bo/m|  cm�3/2,
there exists constants c1, c2 > 0 such that for any � 2

h
c1N

m
, c2

Nm3/4

i
:

1. When the con�guration on H is in the majority phase, the con�guration on G is likely to be
monochromatic; more precisely,

e�� · ZM
H · exp (↵̂�Nm+ �G|EG|)  ZM

F (�H)  e� · ZM
H · exp (↵̂�Nm+ �G|EG|) . (2)

11
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2. When the con�guration onH is in the disordered phase, the con�guration on G will have very
limited in�uence from the con�guration on H ; more precisely,

e�� · ZD
H · ZG · exp (�Nm/q)  ZD

F (�H)  e� · ZD
H · ZG · exp (�Nm/q) . (3)

3. The remaining con�gurations on H have a small contribution to the partition function of the
model F ; more precisely,

ZS
F (�H)  ZF (�H) exp

�
�⌦(

p
m)

�
. (4)

We remark that the factors exp(↵̂�Nm + �G|EG|) and exp(�Nm/q) in (2) and (3), respec-
tively, account for the contribution of all the monochromatic edges inG and betweenG andH in
each case.

Proof of Lemma 11 We �x �H and, for ease of notation, we drop the dependence on �H
throughout the proof; i.e., ZM

F
(�H) becomes ZM

F
, w�

H
(�H) becomes wH(�) for � 2 ⌦H and

w⌘

F
(�H) becomes wF (⌘) for ⌘ 2 ⌦F .
Let � 2 ⌦H and ⌧ 2 ⌦G. When computing weight for con�guration � [ ⌧ (i.e., the con�gura-

tion of F that results from combining the spins assignment of � and ⌧ inH andG, respectively, it
will be convenient to separate the interaction of edges in H (that captures the phase coexistence
in the mean-�eld model) and the interaction in G and between H and G (that captures the e�ect
of di�erent phases on G). Thus, let

wF\H(� [ ⌧) :=
wF (� [ ⌧)

wH(�)
.

Then,
ZM
F =

X

�2M

X

⌧2⌦G

wH(�)wF\H(� [ ⌧).

For � 2 M , let (�1, . . . ,�q) 2 Zq be its signature; suppose w.l.o.g. that �1 is such that |�1 �
↵̂m|  m3/4 and |�i � 1�↵̂

q�1m|  m3/4 for all i 2 {2, . . . , q}. Consider the con�guration ⌘1 on G
that assigns spin 1 to every vertex of G and let a = maxi2{2,...,q} �i. For any other con�guration
⌧ 6= ⌘1 on G with t � 1 vertices not assigned spin 1, we have that

wF\H(�[ ⌧)  exp (�G|EG|+ �(�1(N � t) + at))  exp (�G|EG|+ �(�1(N � 1) + a)) , (5)

since there are at most |EG| monochromatic edges in G and at least one vertex in G has a vertex
assigned a spin di�erent from 1 (thus there are at most �1(N � 1) + a monochromatic edges
between G and H). Hence, we get

wF\H(� [ ⌧)

wF\H(� [ ⌘1)
 exp (�G|EG|+ �(�1(N � 1) + a))

exp (�G|EG|+ �1N�)
 e(a��1)�  e(�↵

0
m+2m3/4)�  e�↵

00
m� ,

where ↵0
= ↵̂ � (1 � ↵̂)/(q � 1) > 0 and the rightmost inequality is true for some ↵00 > 0 and

su�ciently largem. For c1 = (2 log q)/↵00 we have for � � c1N/m

wF\H(� [ ⌧)

wF\H(� [ ⌘1)
 q�2N .

12
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Hence X

⌧ 6=⌘12⌦G

wF\H(� [ ⌧)  q�NwF\H(� [ ⌘1). (6)

Now,

wF\H(� [ ⌘1) = exp (�G|EG|+ �1N�)

 exp

⇣
�G|EG|+ ↵̂mN� +m3/4N�

⌘

 e�/2 exp (�G|EG|+ ↵̂mN�) , (7)

where in the last equality we take c2 = �/2 and use the fact that �  c2/(Nm3/4
). Therefore,

when � 2 M is such that |�1 � ↵̂m| < m3/4, we have
X

⌧2⌦G

wF\H(� [ ⌧)  (1 + q�N
)wF\H(� [ ⌘1)  e� exp (�G|EG|+ ↵̂mN�) ,

for N su�ciently large. By symmetry, we then get that

ZM
F 

X

�2M
wH(�)e� exp (�G|EG|+ ↵̂mN�) = e�ZM

H exp (�G|EG|+ ↵̂mN�) .

The lower bound in (2) can be derived in similar fashion and part 1 of the lemma follows.
For part 2, suppose that � 2 D and let ⌧ 2 ⌦G. Let ⌧i be the number of vertices ofG assigned

spin i in ⌧ and let wG(⌧) denote the weight of ⌧ for the Potts model (G,�G). Then,

wF\H(� [ ⌧) = wG(⌧) exp

 
�

qX

i=1

�i⌧i

!

 wG(⌧) exp
⇣
m3/4N� + �mN/q

⌘

 e�wG(⌧) exp (�mN/q) , (8)

since recall we set c2 = �/2. Hence,

ZD
F =

X

�2D

X

⌧2⌦G

wH(�)wF\H(� [ ⌧)  e�ZD
HZG exp (�mN/q) .

The lower bound for ZD
F
can be derived analogously and part 2 of the lemma follows.

Finally for part 3, note that

ZS
F =

X

�2S

X

⌧2⌦G

wH(�)wF\H(� [ ⌧)  qN exp
�
�GN

2
+ �Nm

�
ZS
H

 min{ZM
H , ZD

H} exp
�
�⌦(

p
m)

�
,

where the last inequality follows for su�ciently large N and m from Lemma 9 and the fact that
� < c2/(Nm3/4

). Then,
ZS
F

ZF

 ZS
F

ZM
F

 exp
�
�⌦(

p
m)

�
,

13



B����� �� ��.

and the result follows. ⌅

Hidden Model Construction. We now construct our hidden model and show that we can e�-
ciently generate samples from its Gibbs distribution. LetF ⇤ be the graph obtained by our construc-
tion above where we replace the graph G by a complete graph on N vertices. More precisely, let
K = KN be a complete graph onN vertices and let F ⇤ be the graph that results from connecting
the vertices ofK and H with a complete bipartite graphKN,m.

The edges of K have parameter �K = �G + 4 log q, whereas the remaining edges have the
same interaction strength as in F ; that is, edges between K and H will have parameter � and
those inH parameter �H . This Potts model on F ⇤, which again with a slight abuse of notation we
denote by F ⇤, will act as the hidden model. We choose �K = �G+4 log q, so thatK is more likely
to be monochromatic thanG. Let µF ⇤ the corresponding Gibbs distribution on F ⇤. We show next
that we can e�ciently generate samples from µF ⇤ .

Lemma 12 There is an exact sampling algorithm for the distributionµF ⇤ with running time poly(n).

Proof Because of symmetry there are at most n2q types of con�gurations—described by their sig-
natures on H and K ; recall that n = m +N . We can then enumerate every signature, explicitly
compute its probability and sample from the resulting distribution. This involves computingmulti-
nomial coe�cients, but they can each be expressed as product of q binomial coe�cients which can
be easily computed in poly(n) time. Once the signature is generated from the correct distribution,
we can simply take a random permutation of the vertices to assign their spins.

Proof Overview. We provide the high-level idea of the reduction next. Recall that our goal is
to provide a polynomial-time algorithm for the decision version of the r-approximate counting
problem for the ferromagnetic Potts model (G,�G). That is, for a real number Ẑ we want to
determine whether ZG  1

r
Ẑ or ZG � rẐ , where ZG := ZG,�G

is the partition function of the
model (G,�G) .

For any “reasonable” Ẑ 2 R (i.e., Ẑ that is not too small or too large, in which case the
approximate counting problem becomes trivial), we can �nd a value of the parameter �H for our
construction such that

ZD
F
(�H)

ZM
F
(�H)

⇡ 1p
"L

ZG

Ẑ
,

where L = L(n) and " = "(n) are the sample complexity and accuracy parameter of the testing
algorithm, respectively. This is possible because of the �rst-order phase transition of the ferro-
magnetic mean-�eld q-state Potts model for q � 3, and the associated phase coexistence and
metastability phenomena discusses earlier; see Section 2.2.1. (Speci�cally, by Lemma 10 we can
�nd �H so that ZM

H
(�H)/ZD

H
(�H) ⇡ R for any target R, and then we can use Lemma 11 to

translate this value to a value for ZG · ZM
F
(�H)/ZD

F
(�H).)

For this choice of �H and setting r ⇡
p

L/", note that if ZG  1
r
Ẑ , then ZD

F
(�H)/ZM

F
(�H)

is small (. 1/L). Conversely, when ZG � rẐ , the ratio is large (& 1/"). Therefore, to distinguish
whether ZG  1

r
Ẑ or ZG � rẐ it is su�cient to determine whether the ratio ZD

F
(�H)/ZM

F
(�H)

is small or large. For this we can use the identity testing algorithm. In particular, when the ratio
is small (. 1/L), the majority phase ofH is dominant in F , and G will likely be monochromatic.

14
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Since this is also the case in F ⇤ (i.e.,K is monochromatic with high probability), then the models
F and F ⇤ will be close in total variation distance (. 1/L), and the testing algorithm using only
L samples would output Y��. Otherwise, when ZD

F
(�H)/ZM

F
(�H) is large (& 1/"), the disorder

phase is dominant, so F and F ⇤ are likely to disagree on the spins of G and K ; this implies that
their total variation distance is large (& 1� "), and so the tester would output N�. We proceed to
�esh out the technical details next.

Lemma 13 Let " 2 (0, 1) be a constant, L = L(n) = poly(n) and r = 96"�1
p
"L+ 1. Sup-

pose Ẑ 2 R is such that rq exp(�G|EG|)  Ẑ  1
r
qN exp(�G|EG|). Then, there exists constants

c, c1, c2 > 0 such that the following holds. For any � 2
h
c1N

m
, c2

Nm3/4

i
, we can �nd �H > 0 in the

range |�H �Bo/m|  cm�3/2 in poly(n) time such that all of the following holds:

(i) 1
4
p
"L+1

ZG

Ẑ
 Z

D
F
(�H)

Z
M
F
(�H)

 1p
"L+1

ZG

Ẑ
, and Z

S
F
(�H)

ZF (�H)  e�c3
p
m
;

(ii) Z
D
F⇤ (�H)

Z
M
F⇤ (�H)

 2
r
p
"L+1

, and Z
S
F⇤ (�H)

ZF⇤ (�H)  e�c3
p
m
;

(iii) If ZG  1
r
Ẑ , then kµF � µF ⇤k��  1

16L ;

(iv) If ZG � rẐ , then kµF � µF ⇤k�� � 1� ".

Proof Let ↵0 = ↵̂ � 1/q. By parts 1 and 2 of Lemma 11, for any �H such that |�H �Bo/m| 
cm�3/2 and any � 2

h
c1N

m
, c2

Nm3/4

i
for suitable constants c1, c2 > 0, we have

2

3
· exp (�↵0�Nm� �G|EG|) ·

ZD
H

ZM
H

· ZG  ZD
F

ZM
F

 4

3
· exp (�↵0�Nm� �G|EG|) ·

ZD
H

ZM
H

· ZG,

where for ease of notation we dropped the dependence on �H and set ZG = ZG,�G
. Moreover,

part 3 of the same lemma implies that there exists a constant c3 > 0 such that

ZS
F

ZF

 e�c3
p
m. (9)

Recall that n = m +N and m = N10. By Lemma 10, we can �nd �H > 0 in poly(m) time such
that |�H �Bo/m|  cm�3/2 and

3

8
p
"L+ 1

· exp (↵0�Nm+ �G|EG|) ·
1

Ẑ
 ZD

H

ZM
H

 3

4
p
"L+ 1

· exp (↵0�Nm+ �G|EG|) ·
1

Ẑ
;

(10)
note that the assumptions rq exp(�G|EG|)  Ẑ  1

r
qN exp(�G|EG|) and r = poly(n) ensure

that ZD
H
/ZM

H
is in the desired range. Thus, for this choice of �H we get

1

4
p
"L+ 1

ZG

Ẑ
 ZD

F

ZM
F

 1p
"L+ 1

ZG

Ẑ
. (11)

This establishes part (i) of the lemma.
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For part (ii), we note that Lemma 11 holds for the hidden model F ⇤ (with F and G replaced
by F ⇤ and K , respectively), without any change in the proof. Hence, we get

ZD
F ⇤

ZM
F ⇤

 4

3
· exp (�↵0�Nm� �K |EK |) · Z

D
H

ZM
H

· ZK (12)

and
ZS
F ⇤

ZF ⇤
 e�c3

p
m. (13)

Thus, for our choice of �H we deduce from (10), (12) and (13) that

ZD
F ⇤

ZM
F ⇤

 1p
"L+ 1

exp(�G|EG|� �K |EK |) · ZK

Ẑ
 2

r
p
"L+ 1

,

where the last inequality follows from q exp(�K |EK |)/ZK � 1/2 when �K � 4 log q and the
assumption that Ẑ � rq exp(�G|EG|).

We prove part (iii) next. Suppose that ZG  1
r
Ẑ and let ⌫F be the conditional distribution of

µF conditioned on the con�guration onH being in the majority phase (i.e., in the setM ). That is,
for � 2 ⌦H and ⌧ 2 ⌦G,

⌫F (� [ ⌧) = (� 2 M)
µF (� [ ⌧)ZF

ZM
F

.

From the de�nition of total variation distance we have

kµF � ⌫F k�� =

X

⌘2⌦F :µF (⌘)�⌫F (⌘)

µF (⌘)� ⌫F (⌘) =
ZD
F
+ ZS

F

ZF

.

From (9), (11) and the assumption that ZG  1
r
Ẑ , we get

kµF � ⌫F k��  ZD
F

ZM
F

+
ZS
F

ZF

 1p
"L+ 1

ZG

Ẑ
+ e�c3

p
m  1

r
p
"L+ 1

+ e�c3
p
m.

Since r = 96"�1
p
"L+ 1, it follows that

kµF � ⌫F k��  "

96("L+ 1)
+ e�c3

p
m  1

96L
+ e�c3

p
m. (14)

Similarly, for the distribution µF ⇤ and the conditional distribution ⌫F ⇤ of the majority phase, we
also have

kµF ⇤ � ⌫F ⇤k��  ZD
F ⇤

ZM
F ⇤

+
ZS
F ⇤

ZF ⇤
 2

r
p
"L+ 1

+ e�c3
p
m  min

⇢
1

48L
,
"

48

�
+ e�c3

p
m. (15)

LetA be the event that all vertices ofG are assigned the same spin. By drawing a sample from
⌫F and sequentially resampling the spin of each vertex of G, we deduce from a union bound and
the fact ↵̂ > 1/q that

1� ⌫F (A)  N ·
exp

⇣
�GN + �(1�↵̂

q�1m+m3/4
)

⌘

exp
�
�(↵̂m�m3/4)

�  e���m

16
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for a suitable constant � > 0; similarly

1� ⌫F ⇤(A)  e���m.

Let ⇢ = ⌫F ( · |A) denote the conditional distribution of ⌫F given A. Observe that ⇢ does not
depend on the graph G, because we condition on the event that all vertices from G receive the
same spin, and thus the structure ofG does not a�ect the conditional distribution ⇢. In particular,
we have ⇢ = ⌫F ( · |A) = ⌫F ⇤( · |A). Thus, we get

k⌫F � ⌫F ⇤k��  k⌫F � ⇢k�� + k⌫F ⇤ � ⇢k�� = 1� ⌫F (A) + 1� ⌫F ⇤(A)  2e���m. (16)

From (14), (15), (16) and the triangle inequality, we conclude that

kµF � µF ⇤k��  kµF � ⌫F k�� + kµF ⇤ � ⌫F ⇤k�� + k⌫F � ⌫F ⇤k��

 1

32L
+ 2e�c3

p
m
+ 2e���m  1

16L
.

and part (i) follows.
Finally, for part (iv), suppose that ZG � rẐ . Then,

kµF � ⌫F k�� = 1� ZM
F

ZF

� 1� ZM
F

ZD
F

� 1� 4
p
"L+ 1

Ẑ

ZG

� 1� 4

r

p
"L+ 1 = 1� "

24
. (17)

Thus, equations (17), (15), (16) and the triangle inequality imply that

kµF � µF ⇤k�� � kµF � ⌫F k�� � kµF ⇤ � ⌫F ⇤k�� � k⌫F � ⌫F ⇤k��
� 1� "

16
� e�c3

p
m � 2e���m � 1� ",

and the result follows.

2.2.3 A ������� ��������� ���� �������� �� �������

Theorem 8 will follow from Lemmas 12 and 13 using the following general reduction from the
decision version of r-approximate counting to testing.

Theorem 14 Let (G,�G, hG) be a Potts model on an N -vertex graph G with partition function
ZG and let Ẑ 2 R. Let " 2 (0, 1) be a constant, n = poly(N) and suppose there exists an "-
identity testing algorithm for a family of Potts modelsM on n-vertex graphs with sample complexity
L = L(n) = poly(n) and poly(n) running time. Suppose that given (G,�G, hG), Ẑ , " and L,
there exists r = poly(L, "�1

) such that we can construct two models F, F ⇤ 2 M in poly(n) time
satisfying:

(i) If ZG  1
r
Ẑ , then kµF � µF ⇤k��  1

16L ;

(ii) If ZG � rẐ , then kµF � µF ⇤k�� � 1� "; and

(iii) We can generate samples from a distribution µ���
F ⇤ such that

��µF ⇤ � µ���
F ⇤
��
��  � in time

poly(n, ��1
).

17
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Then, there is a poly(N) running time algorithm for the decision version of r-approximate counting
for (G,�G, hG) that succeeds with probability at least 5/8.

Proof Recall that the input to the decision version of r-approximate counting is the model de�ned
by (G,�G, hG) and a real number Ẑ > 0; the goal is to determine whether ZG  1

r
Ẑ or ZG � rẐ .

The algorithm proceeds as follows:

1. Construct the Potts models F and F ⇤ in M.

2. Generate L = L(n) �-approximate samples S = {�1, . . . ,�L} from µ���
F ⇤ , setting � =

1
16L .

3. The input to the testing algorithm, henceforth called the T�����, is F , which plays the role
of the visible model, and the samples S .

4. If the T����� outputs Y��, then return ZG  1
r
Ẑ .

5. If the T����� outputs N�, then return ZG � rẐ .

We show next that our output for decision version of r-approximate counting is correct with
probability at least 5/8. Consider �rst the case when ZG  1

r
Ẑ . If this is the case, then by

assumption we have kµF � µF ⇤k��  1
16L and

kµF ⇤ � µ���
F ⇤ k��  1

16L
. (18)

So, by the triangle inequality,

kµF � µ���
F ⇤ k��  1

8L
.

Let (µF )
⌦L, (µF ⇤)⌦L and (µ���

F ⇤ )
⌦L be the product distributions corresponding to L independent

samples from µF , µF ⇤ and µ���
F ⇤ respectively. We have

��(µF )
⌦L � (µ���

F ⇤ )
⌦L

��
��  L kµF � µ���

F ⇤ k��  1

8
.

Hence, if ⇡ is the optimal coupling of the distributions (µ���
F ⇤ )

⌦L and (µF )
⌦L, and (S,S 0

) is sam-
pled from ⇡, then S ⇠ (µ���

F ⇤ )
⌦L, S 0 ⇠ (µF )

⌦L and ⇡(S 6= S0
)  1

8 . Therefore,

Pr[T����� outputs N� when given samples S where S ⇠ (µ���
F ⇤ )

⌦L
]

= Pr[T����� outputs N� when given samples S where (S,S 0
) ⇠ ⇡]

 Pr[T����� outputs N� when given samples S 0 where (S,S 0
) ⇠ ⇡] + ⇡(S 6= S0

)

= Pr[T����� outputs N� when given samples S 0 where S 0 ⇠ (µF )
⌦L

] + ⇡(S 6= S0
)

 1

4
+

1

8
 3

8
. (19)

Hence, the T����� returns Y�� (and our output is correct) with probability at least 5/8.
Now, if ZG � rẐ , then by assumption kµF � µF ⇤k�� > 1� ". Moreover, by (18)

��(µF ⇤)
⌦L � (µ���

F ⇤ )
⌦L

��
��  L kµF ⇤ � µ���

F ⇤ k��  1

8
.

18
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Thus, analogously to (19) (i.e., using the optimal coupling for (µ���
F ⇤ )

⌦L and (µF ⇤)⌦L), we get

Pr
⇥
T����� outputs Y�� when given samples S where S ⇠ (µ���

F ⇤ )
⌦L

⇤
 3

8
.

Hence, the T����� returns N� with probability at least 5/8. Therefore, we can conclude that our
algorithm for decision r-approximate counting succeeds with probability at least 5/8. The result
then follows from the fact that the running time of the algorithm is poly(N), as each step of the
algorithm takes at most poly(N) time by our assumptions.

2.2.4 P���� �� T������ 8

We can now prove Theorem 8 which states hardness of identity testing for the ferromagnetic Potts
model on general graphs.

Proof of Theorem 8 Consider the ferromagnetic Potts model on an N -vertex graph G =

(VG, EG) with constant edge weight �G in every edge and no external �eld. Let Ẑ > 0 be a real
number and letn = N10

+N . Suppose there is an "-identity testing algorithm forM+
P����(n, n,�G, 0)

with sample complexity L = L(n) = poly(n) and running time poly(n). Let r = 96"�1
p
"L+ 1;

our goal is to determine whether ZG  1
r
Ẑ or ZG � rẐ where ZG := ZG,�G

.
We construct the Potts models F and F ⇤ as describe in Section 2.2.2 with corresponding Gibbs

distributions µF and µF ⇤ using the values of � and �H supplied by Lemma 13; hence the models
F and F ⇤ belong toM+

P����(n, n,�G, 0), since �G > max{�,�H}.
Lemmas 13 ensures that when

rqe�G|EG|  Ẑ  qN

r
e�G|EG|, (20)

conditions (i) and (ii) in Theorem 14 are satis�ed. Moreover, Lemma 12 gives condition (iii). Thus,
Theorem 14 implies that we have an algorithm for the decision version of r-approximate counting
for the Potts model on G when Ẑ satis�es (20). Meanwhile, we can bound ZG crudely by

qe�G|EG|  ZG  qNe�G|EG|.

Thus, if Ẑ < rq exp(�G|EG|)  rZG, we can output Ẑ  1
r
ZG. Similarly, when

Ẑ >
1

r
qN exp(�G|EG|) �

1

r
ZG

we can output Ẑ � rZG. Therefore, we have a poly(N) algorithm for the decision version
of r-approximate counting for M̂+

P����(N,N,�G, 0) where N = ⇥(n1/10
), r = poly(N) and

�G = ⇥(1). The result then follows from Theorem 7 and the fact that there is no FPRAS for
M̂+

P����(N,N,�G, 0) unless there is one for #BIS (Goldberg and Jerrum, 2012; Galanis et al., 2016b).
⌅

19



B����� �� ��.

2.3 Step 3: Degree reduction

The following result provides a reduction from identity testing in the family MP����(n̂, d, �̂, ĥ)
to identity testing in MP����(n, n,�, h), under some mild assumptions on the model parameters;
this allows us to deduce the hardness of identity problem on graphs of bounded degree as stated
in Theorem 3 using the main result Theorem 8 from the previous section.

Theorem 15 Let n̂, d 2 N+ be such that 3  d  n̂1�⇢ for some constant ⇢ 2 (0, 1). Suppose
that for some constants �, h � 0 there is no poly(n) running time "-identity testing algorithm for
MP����(n, n,�, h). Then there exists a constant c 2 (0, 1) such that, for any constant "̂ > " there is
no poly(n̂) running time "̂-identity testing algorithm forMP����(n̂, d, �̂, ĥ) provided �̂d = !(log n̂)
and ĥ  hn̂�c.

This theorem is a special case of our more general result in Theorem 28, which we prove in
Section 5. We conclude with the proof of Theorem 3.

Proof of Theorem 3 Follows from Theorems 8 and 15. ⌅

3. Testing mixed RBMs with no external �elds

In this section, we show that identity testing for RBMs with arbitrary edges interactions is com-
putationally hard, even in the absence of an external �eld (i.e., h = 0); speci�cally, we prove
Theorem 1 from the introduction. For this, we establish �rst the hardness of the identity testing
problem for antiferromagnetic Ising models with bounded edge interactions. We then reduce this
problem to identity testing for mixed RBMs using our degree reduction machinery (see Sections
and 2.3 and 5) which conveniently also turns our instance into a bipartite graph.

We start by reducing the problem of approximating the partition function of the antiferro-
magnetic Ising models to identity testing. Hence, the following well-known result concerning the
hardness of approximate counting in the antiferromagnetic setting plays an important role for us.

Theorem 16 ((Sly and Sun, 2012; Galanis et al., 2016c)) Let d � 3 be an integer and let �0 >
�c(d) := arctanh(1/(d � 1)) be a real number. Then, for a su�ciently large integer N , there is no
FPRAS for the partition function of the antiferromagnetic Ising model on d-regularN -vertex graphs
with interaction �0 on every edge, unless RP = NP.

The next step in our proof is a reduction from the decision version of approximate counting
(see De�nition 6) to identity testing.

Theorem 17 Let " 2 (0, 1) be any constant. There exists 0 < �0 = O(1) such that an "-identity
testing algorithm for M�

I����(n, n,�0, 0) with poly(n) sample complexity and running time can be
used to solve the decision r-approximate counting problem for M̂�

I����(N, 3,�0.6, 0) in poly(N)

time, where N = ⇥(
p
n) and r = poly(N).

We can now provide the proof of Theorem 1.
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Proof of Theorem 1 From Theorems 16 and 7, it follows that for any c > 0 there is no
poly(N) running time algorithm for the decision version of N c-approximate counting for the
family M̂�

I����(N, 3,�0.6, 0) unless RP = NP. Theorem 17 then implies that, under the same
assumption that RP = NP, there is no "-identity testing algorithm for M�

I����(n, n,�0, 0) with
poly(n) sample complexity and running time for constant " 2 (0, 1), N = ⇥(

p
n) and a suitable

constant �0 > 0. The result then follows from Theorem 28. ⌅

We provide in the next section the missing proof of Theorem 17

3.1 Reducing counting to testing for the antiferromagnetic Ising model: proof of
Theorem 17

Testing instance construction. Consider an antiferromagnetic Ising model on an N -vertex 3-
regular graph G = (VG, EG) with the same inverse temperature parameter �G = �0.6 on every
edge an no external �eld. We provide an algorithm for the decision version of r-approximate
counting for ZG := ZG,�G,0, using the presumed identity testing algorithm.

De�ne F to be a graph with the vertex set

VF = VG [ {s1, s2}[
n
u(i)
v,j

: v 2 VG, 1  i  N, j 2 {1, 2}
o
[
n
w(i)
j

: 1  i  N2, j 2 {1, 2}
o

and the edge set

EF = EG [
n
{u(i)

v,j
, v}, {u(i)

v,j
, sj} : v 2 VG, 1  i  N, j 2 {1, 2}

o

[
n
{w(i)

j
, sj} : 1  i  N2, j 2 {1, 2}

o

[
n
{w(i)

1 , w(i)
2 } : 1  i  N2

o
;

see Figure 1. Observe that F has n = 4N2
+N +2 vertices. Given two real numbers �1,�2 > 0,

we then de�ne an antiferromagnetic Ising model on the graph F as follows:

1. Every edge {u, v} 2 EG has weight �0.6.

2. For every v 2 VG, 1  i  N and j = 1, 2, the two edges {u(i)
v,j

, v} and {u(i)
v,j

, sj} have
weight ��1;

3. For every 1  i  N2, the edges {w(i)
1 , s1}, {w(i)

2 , s2} and {w(i)
1 , w(i)

2 } have weight ��2.

We slight abuse of notation, we use F for the resulting Ising model on F and µ := µF for the
corresponding Gibbs distribution. F will be the visible model of our testing instance.

For the hidden model F ⇤, we consider the same construction above but replacing G with an
independent set IN on VG. Let µ⇤

:= µF ⇤ be the corresponding the Gibbs distribution. We note
�rst that we can e�ciently sample from µ⇤.

Lemma 18 There is an exact sampling algorithm for the distribution µ⇤ with running time poly(n).

Proof Con�gurations in ⌦F ⇤ can be classi�ed by their type, which is given by the spins of s1, s2
and the number of spin 1’s in the independent set IN . There are 4(N + 1) types in total. Ob-
serve that con�gurations of each type have the same weight by symmetry, and this weight can be
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v

G

u(1)
v,1

u(N)
v,1

u(1)
v,2

u(N)
v,2

s1

s2

w(1)
1

w(1)
2

w(N2)
1

w(N2)
2

�

�

�

��

��

Figure 1: The graph F . For every vertex v 2 VG and j 2 {1, 2}, v and sj are connected by N
disjoint paths of length 2. Also, s1 and s2 are connected by N2 disjoint paths of length
3.

computed e�ciently since given the spins of s1, s2 and IN the remaining graph has only isolated
vertices and edges. Also it is easy to get the number of con�gurations of each type. Thus, to sam-
ple from µ⇤, we can �rst sample a type from the induced distribution on types, and then sample a
con�guration of the given type uniformly at random.

Our hidden and visible models F and F ⇤ are related as follows.

Lemma 19 Let " 2 (0, 1) be a constant, L = L(n) = poly(n) and r = 96"�1
p
"L+ 1. Suppose

Ẑ 2 R is such that r2Ne�0.9N  Ẑ  1
r
2
N . Then, for any �1 � 3, we can �nd 0 < �2 < �1 + 2 in

poly(n) time such that all of the following holds:

(i) 1
4
p
"L+1

ZG

Ẑ
 Z

D
F

Z
M
F

 1p
"L+1

ZG

Ẑ
;

(ii) Z
D
F⇤

Z
M
F⇤

 1
r
p
"L+1

;

(iii) If ZG  1
r
Ẑ , then kµ� µ⇤k��  1

16L ;

(iv) If ZG � rẐ , then kµ� µ⇤k�� � 1� ".

The proof of Lemma 19 is provided in Section 3.2. We proceed �rst with the proof of Theo-
rem 17 which follows along the lines of the proof of Theorem 8.
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Proof of Theorem 17 Consider an antiferromagnetic Ising model on an N -vertex 3-regular
graph G = (VG, EG) with edge weight �G = �0.6 on every edge and no external �eld; note
that this model belongs to the family M̂�

I����(N, 3,�0.6, 0). Let Ẑ > 0 be a real number, let
n = 4N2

+ N + 2 and suppose there is an "-identity testing algorithm for M�
I����(n, n,�0, 0)

with sample complexity L = L(n) = poly(n) and running time poly(n), where �0 > 0 is a
suitable constant we choose later. Let r = 96"�1

p
"L+ 1; we want to check whether ZG  1

r
Ẑ

or ZG � rẐ where ZG := ZG,�G
.

We construct the Ising models F and F ⇤ with Gibbs distribution µ and µ⇤, respectively as
described above. We set �1 = 3 and use the �2 supplied by Lemma 19; hence the models F and
F ⇤ belong toM�

I����(n, n,�0, 0), provided �0 � max{�1,�2}.
By Lemma 19 when r2Ne�0.9N  Ẑ  1

r
2
N , conditions (i) and (ii) from Theorem 14 are

satis�ed; condition (iii) is given by Lemma 18. Hence, we have an algorithm for the decision
version of r-approximate counting for the Isingmodel onG for Ẑ in this range. Otherwise, observe
that the weight of every con�guration is at least e�0.9N , which corresponds to the weight of the
monochromatic con�guration, and at most 1. Thus, 2Ne�0.9N  ZG  2

N . If Ẑ < r2Ne�0.9N 
rZG, then we can output Ẑ  1

r
ZG. Similarly, Ẑ > 1

r
2
N � 1

r
ZG and we output Ẑ � rZG.

Thus, we have a poly(N) running time algorithm for the decision version of r-approximate
counting for M̂�

I����(N, 3,�0.6, 0) where N = ⇥(n1/2
) and r = poly(N), as desired. ⌅

3.2 Proof of Lemma 19

Our construction of the visible and hidden models is inspired by our construction in Section 2.2
for the ferromagnetic Potts model. In particular, the two vertices {s1, s2} play the role of the
complete graph H in our construction in Section 2.2.2. We partition ⌦F = {+,�}VF into two
disjoint subsets ⌦F = ⌦

M
F

[ ⌦D
F
, depending on whether �(s1) = �(s2) (the majority phase) or

�(s1) 6= �(s2) (the disordered phase); more precisely, the set of majority con�gurations is given
by

⌦
M
F = {� 2 ⌦F : �(s1) = �(s2)}

and the set of disordered con�gurations is

⌦
D
F = {� 2 ⌦F : �(s1) 6= �(s2)} .

The partition function for the majority phase is de�ned naturally as

ZM
F =

X

�2⌦M
F

exp

0

@
X

{u,v}2EF

�F ({u, v}) {�(u) = �(v)}

1

A ,

and similarly for ZD
F
. Therefore, we have ZF = ZM

F
+ ZD

F
. In the same way, we also de�ne the

partition functions ZM
F ⇤ and ZD

F ⇤ for the hidden model on the graph F ⇤ (notice that ⌦M
F ⇤ = ⌦

M
F

and ⌦D
F ⇤ = ⌦

D
F
).

Proof of Lemma 19 Consider the following subset of con�gurations in ⌦M
F

given by

⌦
M0
F

=
�
� 2 ⌦M

F : 8v 2 VG,�(v) = �(s1)
 
.
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We also de�ne the corresponding partition function ZM0
F

and ZM0
F ⇤ in the same way as above. We

claim that ZM0
F

(resp., ZM0
F ⇤ ) is a good approximation (with only exponentially small error) of the

partition function ZM
F

(resp., ZM
F ⇤ ) that we are interested in.

Claim 20 If �1 � 3, then (1� e�2N
)ZM

F
 ZM0

F
 ZM

F
and (1� e�2N

)ZM
F ⇤  ZM0

F ⇤  ZM
F ⇤ .

The proof of the following claim is postponed to the end of the section. We then derive explicit
formula for ZD

F
and ZM0

F
. For con�gurations in ⌦D

F
, every spin assignment to the vertices of G,

s1 and s2 is multiplied by a 2e��1(e�2�1 + 1) factor, corresponding to the weight of the edges
{u(i)

v,j
, v}, {u(i)

v,j
, sj}, j 2 {1, 2} for every vertex v 2 VG and every 1  i  N , and by a 3e�2�2 +1

factor for the edges {w(i)
1 , s1}, {w(i)

2 , s2} and {w(i)
1 , w(i)

2 } for every 1  i  N2. For con�gurations
in ⌦M0

F
, each monochromatic con�guration on G is multiplied by a (e�2�1 + 1)

2 factor for the
edges {u(i)

v,j
, v}, {u(i)

v,j
, sj}, j 2 {1, 2} for every vertex v 2 VG and every 1  i  N , and by

e�3�2 + 3e��2 for the edges {w(i)
1 , s1}, {w(i)

2 , s2} and {w(i)
1 , w(i)

2 } for every 1  i  N2. Thus,
we obtain

ZD
F = 2

⇣
3e�2�2 + 1

⌘
N

2 ⇣
2e��1

⇣
e�2�1 + 1

⌘⌘
N

2

ZG;

ZM0
F

= 2

⇣
e�3�2 + 3e��2

⌘
N

2 ⇣
e�2�1 + 1

⌘2N2

e�0.9N .

Let g(x) = (3e�2x
+ 1)/(e�3x

+ 3e�x
) and recall that coshx =

1
2(e

x
+ e�x

). We then deduce
that

ZD
F

ZM0
F

=

✓
g(�2)

cosh�1

◆
N

2

e0.9NZG. (21)

Now for �1 � 3, we show that we can pick �2 > 0 such that

1

2
p
"L+ 1

e�0.9N

Ẑ

✓

g(�2)

cosh�1

◆
N

2

 1p
"L+ 1

e�0.9N

Ẑ
. (22)

Such �2 > 0 always exists and satis�es �2 < �1 + 2. To see this, we note that the function g(x)
is a continuous increasing function for x � 0 with g(0) = 1 and g(1) = 1. Since Ẑ  1

r
2
N , we

get

1

N2
log

✓
1

4
p
"L+ 1

e�0.9N

Ẑ

◆
+ log(cosh�1) �

1

N2
log

✓
1

4
p
"L+ 1

r2�Ne�0.9N

◆
+ �1 � 1

� � 2

N
+ 3� 1 > 0,

where the second inequality follows from r/(4
p
"L+ 1) = 6/" � 1. This shows that

✓
1

2
p
"L+ 1

e�0.9N

Ẑ

◆ 1
N2

cosh�1 � 1

and thus implies the existence of �2 > 0. Meanwhile, since Ẑ � r2Ne�0.9N we have

1

N2
log

✓
1p

"L+ 1

e�0.9N

Ẑ

◆
+ log(cosh�1) 

1

N2
log

✓
1p

"L+ 1

1

r
2
�N

◆
+ �1 < �1,
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where the second inequality follows from r
p
"L+ 1 = 96"�1

("L+ 1) � 1. This shows that

e�1 > g(�2) =
3e�2�2 + 1

e�3�2 + 3e��2
� 1

4e��2
� e�2�2

and thus �2 < �1+2. Finally, we can compute a �2 satisfying (22) in poly(n) time by, for example,
the binary search algorithm.

Combining Claim 20 and equations (21) and (22), we deduce that

1

4
p
"L+ 1

ZG

Ẑ
 (1� e�2N

)
ZD
F

ZM0
F

 ZD
F

ZM
F

 ZD
F

ZM0
F

 1p
"L+ 1

ZG

Ẑ
.

This shows the �rst part of the lemma. For part (ii), we can compute ZD
F ⇤ and ZM0

F ⇤ in a similar
fashion and obtain

ZD
F ⇤ = 2

⇣
3e�2�2 + 1

⌘
N

2 ⇣
2e��1

⇣
e�2�1 + 1

⌘⌘
N

2

2
N
;

ZM0
F ⇤ = 2

⇣
e�3�2 + 3e��2

⌘
N

2 ⇣
e�2�1 + 1

⌘2N2

.

This gives
ZD
F ⇤

ZM0
F ⇤

=

✓
g(�2)

cosh�1

◆
N

2

2
N . (23)

Therefore, by equations (23) and (22) we obtain

ZD
F ⇤

ZM
F ⇤

 ZD
F ⇤

ZM0
F ⇤

 1p
"L+ 1

e�0.9N

Ẑ
2
N  1

r
p
"L+ 1

,

where the last inequality follows from the assumption Ẑ � r2Ne�0.9N ; thus, part (ii) follows.
Next, we derive parts (iii) and (iv). We de�ne ⌫ = µ( · |⌦M

F
) to be the distribution conditioned

on ⌦M
F
, and similarly ⌫⇤ = µ⇤

( · |⌦M
F ⇤). By the de�nition of total variation distance we have

kµ� ⌫k�� =
��µ� µ( · |⌦M

F )
��
�� =

ZD
F

ZF

= 1� ZM
F

ZF

.

For part (iii), if ZG  1
r
Ẑ , then we deduce from part (i) that

kµ� ⌫k��  ZD
F

ZM
F

 1p
"L+ 1

ZG

Ẑ
 1

r
p
"L+ 1

=
"

96("L+ 1)
 1

96L
.

Similarly, part (ii) implies

kµ⇤ � ⌫⇤k��  ZD
F ⇤

ZM
F ⇤

 1

r
p
"L+ 1

=
"

96("L+ 1)
 min

⇢
1

96L
,
"

96

�
.

Let ⇢ = ⌫( · |⌦M0
F

) denote the conditional distribution of ⌫ on ⌦M0
F

. Observe that ⇢ does not
depend on the graph G, because we condition on the event that all vertices from G receive the
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same spin, and thus the structure ofG does not a�ect the conditional distribution ⇢. In particular,
we have ⇢ = ⌫( · |⌦M0

F
) = ⌫⇤( · |⌦M0

F ⇤ ). Then, Claim 20 implies that

k⌫ � ⇢k�� = 1�
ZM0
F

ZM
F

 e�2N

and similarly k⌫⇤ � ⇢k��  e�2N . Therefore, we obtain from the triangle inequality that

k⌫ � ⌫⇤k��  k⌫ � ⇢k�� + k⌫⇤ � ⇢k��  2e�2N .

We conclude again from the triangle inequality that

kµ� µ⇤k��  kµ� ⌫k�� + kµ⇤ � ⌫⇤k�� + k⌫ � ⌫⇤k��  1

96L
+

1

96L
+ 2e�2N  1

16L
.

Finally, for part (iv), if ZG � rẐ , then by part (ii) we have

kµ� ⌫k�� � 1� ZM
F

ZD
F

� 1� 4
p
"L+ 1

Ẑ

ZG

� 1� 4

r

p
"L+ 1 = 1� "

24
.

Hence,

kµ� µ⇤k�� � kµ� ⌫k�� � kµ⇤ � ⌫⇤k�� � k⌫ � ⌫⇤k�� � 1� "

24
� "

96
� 2e�2N � 1� ",

as claimed. ⌅

Proof of Claim 20 For the �rst inequality, note that ZM0
F

 ZM
F
. A union bound implies

1�
ZM0
F

ZM
F

= Pr

⇣
9v 2 VG : �(v) 6= �(s1)

����(s1) = �(s2)
⌘


X

v2VG

Pr(�(v) 6= �(s1)|�(s1) = �(s2)).

For every � 2 ⌦
M
F

and v 2 VG, if �(v) 6= �(s1), then the total weight of edges incident to v
is at most (2e��1)

2N ; and if �(v) = �(s1), then it is at least (e�2�1 + 1)
2N

exp(�G degG(v)) �
(e�2�1 + 1)

2Ne�1.8. Thus, we get

Pr(�(v) 6= �(s1)|�(s1) = �(s2)) 
(2e��1)

2N

(2e��1)2N + (e�2�1 + 1)2Ne�1.8

 e1.8
✓

2e��1

e�2�1 + 1

◆2N

 10e�2(�1�1)N  10e�4N ,

where the last inequality follows from the assumption �1 � 3. Therefore,

ZM0
F

ZM
F

� 1� 10Ne�4N � 1� e�2N .

The bound for F ⇤ can be derived analogously. ⌅
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4. Testing ferromagnetic RBMs with inconsistent �elds

In this section, we establish our lower bound for identity testing for ferromagnetic RBMs with
inconsistent �elds; speci�cally, we prove Theorem 2 from the introduction. Let us formally de�ne
�rst the notions of consistent and inconsistent external �elds.

De�nition 21 Consider an Ising model on a graph G = (VG, EG) with external �eld hG : VG ⇥
{1, 2} ! R. We say that the external �eld hG is consistent if 8v 2 VG, hG(v, 1) � 0 and
hG(v, 2) = 0 or 8v 2 VG, hG(v, 2) � 0 and hG(v, 1) = 0.

We use once again our reduction strategy from r-approximate counting to testing. We start from
the following well-known result.

Theorem 22 (Goldberg and Jerrum, 2007) There is no FPRAS for the partition function of ferro-
magnetic Ising models with inconsistent �elds, unless #BIS admits an FPRAS.

The next step is the reduction from the decision version of approximate counting to identity
testing.

Theorem 23 Let " 2 (0, 1) be any constant. For every �̂, ĥ > 0 there exist �0, h0 > 0 such that an
"-identity testing algorithm for M+

I����(n, n,�0, h0) with poly(n) sample complexity and running
time can be used to solve the decision r-approximate counting problem for M̂+

I����(N,N, �̂, ĥ) in
poly(N) time, where N = ⇥(

p
n) and r = poly(N).

We can now provide the proof of Theorem 2.

Proof of Theorem 2 Follows from Theorems 22, 7, 23 and 28. ⌅

4.1 Reducing counting to testing for the ferromagnetic Ising model with an
inconsistent �eld: proof of Theorem 23

Testing instance construction. Consider an instance (G,�G, hG) of ferromagnetic Isingmodels
with an inconsistent �eld, whereG = (VG, EG) is the underlying graph withN = |VG|, �G(e) =
�̂ > 0 for every e 2 EG, and at every vertex the external �eld is either hG = (ĥ, 0) or hG = (0, ĥ)
for ĥ > 0; that is, 8v 2 VG, hG(v, j) = (j = 1)ĥ for j = {1, 2} or hG(v, j) = (i = 2)ĥ for
i = {1, 2}. Note that for consistency with the notation in the previous sections we use spins {1, 2}
for the Ising model, instead of the usual “+” and “�” spins. Our goal is to give a r-approximate
counting algorithm for the partition function ZG := ZG,�G,hG

for some r = poly(N) using an
identity testing algorithm.

De�ne F to be a graph with the vertex set

VF = VG [ {s1, s2}[
n
u(i)
v,j

: v 2 VG, 1  i  N, j 2 {1, 2}
o
[
n
w(i)
j

: 1  i  N2, j 2 {1, 2}
o

and the edge set

EF = EG [
n
{u(i)

v,j
, v}, {u(i)

v,j
, sj} : v 2 VG, 1  i  N, j 2 {1, 2}

o

[
n
{w(i)

j
, sj} : 1  i  N2, j 2 {1, 2}

o
;
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v

G

u(1)
v,1

u(N)
v,1

u(1)
v,2

u(N)
v,2

s1

s2

w(1)
1

w(1)
2

w(N2)
1

w(N2)
2

�

�

�

��

��

Figure 2: The graph F . For every vertex v 2 VG and j 2 {1, 2}, v and sj are connected by N
disjoint paths of length 2. Also, each of s1 and s2 is adjacent toN2 vertices with nonzero
�elds.

see Figure 2.
Given three real numbers �1,�2, h > 0, we then de�ne a ferromagnetic Ising model on the

graph F as follows:

1. Every edge {u, v} 2 EG has weight �̂ and every vertex v 2 VG has external �eld given by
hG.

2. For every v 2 VG, 1  i  N and j 2 {1, 2}, the two edges {u(i)
v,j

, v} and {u(i)
v,j

, sj} have
weight �1;

3. For every 1  i  N2 and j 2 {1, 2}, the edge {w(i)
j
, sj} has weight �2;

4. For every 1  i  N2, the vertex w(i)
1 has external �eld (h, 0) and the vertex w(i)

2 has
external �eld (0, h); that is, hF (w

(i)
1 , j) = (j = 1)h and hF (w

(i)
2 , j) = (j = 2)h.

Thus, F is a graph on n = 4N2
+N + 2 vertices and the Ising model on F is ferromagnetic with

an inconsistent external �eld. Let µ := µF denote the corresponding Gibbs distribution.
For the hidden model F ⇤, we consider the same construction above but replacing G with a

complete graph K = KN on N vertices where every edge has weight �K = �̂ + 4 log 2 > 0 and
every vertex has the same �eld hG as the Ising model on G. Let µ⇤

:= µF ⇤ be the corresponding
the Gibbs distribution. We note �rst that we can e�ciently sample from µ⇤.

Lemma 24 There is an exact sampling algorithm for the distribution µ⇤ with running time poly(n).
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ProofCon�gurations in⌦F ⇤ are classi�ed by their type, which is given by the spins of the vertices
s1 and s2 and the number of vertices with spin 1 in the complete graph KN . There are 4(N + 1)

types in total. Observe that con�gurations of each type have the same weight by symmetry, and
this weight can be computed e�ciently since given the spins of s1, s2 andKN the remaining graph
has only isolated vertices and edges. It is also straightforward to get the number of con�gurations
of each type. Thus, to sample from µ⇤, we �rst sample a type from the induced distribution on the
types, and then sample a con�guration of the given type uniformly at random.

Denote the sum of weights of two monochromatic con�gurations on G by

Zmo
G :=

X

i2{1,2}

exp

0

@�̂|EG|+
X

v2VG

hG(v, i)

1

A .

The hidden and visible models F and F ⇤ are related as follows.

Lemma 25 Let " 2 (0, 1) be a constant, L = L(n) = poly(n) and r = 96"�1
p
"L+ 1. Suppose

Ẑ 2 R is such that rZmo
G

 Ẑ  1
r
exp(

1
2(�̂ + ĥ + 1)N2

). Then, for any �1 � 1
2(�̂ + ĥ + 5), we

can �nd �2 2 (0,�1) in poly(n) time such that by setting h = �2 al of the following holds:

(i) 1
4
p
"L+1

ZG

Ẑ
 Z

D
F

Z
M
F

 1p
"L+1

ZG

Ẑ
;

(ii) Z
D
F⇤

Z
M
F⇤

 2
r
p
"L+1

;

(iii) If ZG  1
r
Ẑ , then kµ� µ⇤k��  1

16L ;

(iv) If ZG � rẐ , then kµ� µ⇤k�� � 1� ".

The proof of Lemma 25 is provided in Section 4.2. We provide next the proof of Theorem 23.

Proof of Theorem23 Consider the ferromagnetic Isingmodel (G,�G, hG), whereG = (VG, EG)

is an N -vertex graph, �G(e) = �̂ for all e 2 EG and hG(v, j) = (j = 1)ĥ for j = {1, 2}
or hG(v, j) = (j = 2)ĥ for i = {1, 2} for all v 2 VG; note that this model belongs to
M̂+

I����(N,N, �̂, ĥ). Let Ẑ > 0 be a real number, let n = 4N2
+ N + 2 and suppose there is an

"-identity testing algorithm forM+
I����(n, n,�0, h0)with sample complexityL = L(n) = poly(n)

and running time poly(n), where �0, h0 > 0 are a suitable constants. Let r = 96"�1
p
"L+ 1; we

want to check whether ZG  1
r
Ẑ or ZG � rẐ where ZG := ZG,�G,hG

.
We construct the Ising models F and F ⇤ with Gibbs distribution µ and µ⇤, respectively as

described above, setting �1 = 1
2(�̂+ĥ+5), using the �2 supplied by Lemma 25, and taking h = �2;

hence themodelsF andF ⇤ belong toM+
I����(n, n,�0, h0), provided �0 � max{�̂,�K ,�1,�2} and

h0 � max{ĥ, h}.
By Lemma 25 when rZmo

G
 Ẑ  1

r
exp(

1
2(�̂+ĥ+1)N2

), conditions (i) and (ii) of Theorem 14
are satis�ed; condition (iii) is given by Lemma 24. Therefore, we have an algorithm for the decision
version of r-approximate counting for the Ising model onG for Ẑ in this range. When Ẑ is not in
this range, note that we have the following crude bounds on ZG:

Zmo
G  ZG  2

N · exp
✓
�̂
N2

2
+ ĥN

◆
 exp

✓
1

2
(�̂ + ĥ+ 1)N2

◆
.
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Thus, if Ẑ < rZmo
G

 rZG we can output Ẑ  1
r
ZG. Similarly, Ẑ > 1

r
exp(

1
2(�̂ + ĥ + 1)N2

) �
1
r
ZG we output Ẑ � rZG.
Thus, we have a poly(N) running time algorithm for the decision version of r-approximate

counting for M̂+
I����(N,N, �̂, ĥ) where N = ⇥(n1/2

) and r = poly(N), as desired. ⌅

4.2 Proof of Lemma 25

We reuse the notation introduce in Section 3.2. Recall that ⌦M
F

= {� 2 ⌦F : �(s1) = �(s2)} and
⌦
D
F
= {� 2 ⌦F : �(s1) 6= �(s2)}. Also the partition function for the majority phase is given by

ZM
F =

X

�2⌦M
F

exp

0

@
X

{u,v}2EF

�F ({u, v}) {�(u) = �(v)}+
X

v2VF

hF (v,�(v))

1

A

and ZD
F
is de�ned similarly. The corresponding partition functions for the hidden model are de-

noted by ZM
F ⇤ and ZD

F ⇤ .
Proof Let⌦M0

F
=
�
� 2 ⌦M

F
: 8v 2 VG,�(v) = �(s1)

 
and consider restrictions of partition func-

tions ZM0
F

and ZM0
F ⇤ , as in the proof of Lemma 19. The following claim, whose proof is provided at

the end of the section, has the same �avor as Claim 20.

Claim 26 If �1 � 1
2(�̂+ ĥ+5), then (1�e�2N

)ZM
F

 ZM0
F

 ZM
F

and (1�e�2N
)ZM

F ⇤  ZM0
F ⇤ 

ZM
F ⇤ .

We then derive explicit formulae for the two partition functions ZD
F
and ZM0

F
. For con�gura-

tions � 2 ⌦D
F
with �(s1) = 1 and �(s2) = 2 (resp., �(s1) = 2 and �(s2) = 1), the weight of the

con�guration on G is multiply by a factor of 2e�1(e2�1 + 1) for each edge {u(i)
v,j

, v}, {u(i)
v,j

, sj},
j 2 {1, 2} for every v 2 VG and every 1  i  N ; it is also multiply by a (e�2+h

+ 1)
2 (resp.,

(e�2 + eh)2) factor for each edge {w(i)
j
, sj} and the vertex w(i)

j
, j = {1, 2} and 1  i  N2.

For con�gurations in ⌦M0
F

, both monochromatic con�gurations on G receive additional weight
(e2�1 + 1)

2 for the edges {u(i)
v,j

, v}, {u(i)
v,j

, sj}, j = {1, 2} for every vertex v 2 VG and every
1  i  N , and a (e�2+h

+ 1)(e�2 + eh) factor for each edge {w(i)
j
, sj} and the vertex w(i)

j
,

j = {1, 2} for every 1  i  N2. Thus, we obtain that

ZD
F =

⇣
e�2+h

+ 1

⌘2N2

+

⇣
e�2 + eh

⌘2N2
�⇣

2e�1

⇣
e2�1 + 1

⌘⌘
N

2

ZG;

ZM0
F

=

⇣
e�2+h

+ 1

⌘
N

2 ⇣
e�2 + eh

⌘
N

2 ⇣
e2�1 + 1

⌘2N2

Zmo
G .

Recall that coshx =
1
2(e

x
+ e�x

). We then deduce that

ZD
F

ZM0
F

=

2

4
 
cosh(

�2+h

2 )

cosh(
�2�h

2 )

!
N

2

+

 
cosh(

�2�h

2 )

cosh(
�2+h

2 )

!
N

2
3

5
✓

1

cosh�1

◆
N

2

ZG

Zmo
G

.
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Since coshx � 1 for all x 2 R, let h = �2 > 0 and then we get

✓
cosh�2
cosh�1

◆
N

2

ZG

Zmo
G

 ZD
F

ZM0
F

 2

✓
cosh�2
cosh�1

◆
N

2

ZG

Zmo
G

. (24)

Now for �1 � 1
2(�̂ + ĥ+ 5), we pick �2 > 0 such that

1

3
p
"L+ 1

Zmo
G

Ẑ

✓
cosh�2
cosh�1

◆
N

2

 1

2
p
"L+ 1

Zmo
G

Ẑ
, (25)

Such �2 > 0 always exists and satis�es �2 < �1. To see this, we note that since Ẑ  1
r
exp(

1
2(�̂+

ĥ+ 1)N2
) and Zmo

G
� 2, we have

1

N2
log

✓
1

3
p
"L+ 1

Zmo
G

Ẑ

◆
+ log(cosh�1) �

1

N2
log

✓
1

3
p
"L+ 1

2re�
1
2 (�̂+ĥ+1)N2

◆
+ �1 � 1

� �1

2
(�̂ + ĥ+ 1) +

1

2
(�̂ + ĥ+ 5)� 1 = 1 > 0,

where the second inequality follows from 2r/(3
p
"L+ 1) = 64/" � 1. This is equivalent to

✓
1

3
p
"L+ 1

Zmo
G

Ẑ

◆ 1
N2

cosh�1 � 1,

and hence �2 > 0 satisfying (25) always exists and can be computed in poly(n) time. Note also
that since Ẑ � rZmo

G
we have

1

2
p
"L+ 1

Zmo
G

Ẑ
 1

2r
p
"L+ 1

=
"

192("L+ 1)
< 1.

This shows that cosh�2/ cosh�1 < 1 and thus �2 < �1.
Combining Claim 26 and inequalities (24) and (25), we deduce that

1

4
p
"L+ 1

ZG

Ẑ
 (1� e�2N

)
ZD
F

ZM0
F

 ZD
F

ZM
F

 ZD
F

ZM0
F

 1p
"L+ 1

ZG

Ẑ
.

This shows part (i). For part (ii), we can compute ZD
F ⇤/Z

M0
F ⇤ in a similar fashion and obtain

✓
cosh�2
cosh�1

◆
N

2

ZK

Zmo
K

 ZD
F ⇤

ZM0
F ⇤

 2

✓
cosh�2
cosh�1

◆
N

2

ZK

Zmo
K

. (26)

Therefore, by inequalities (26) and (25) we obtain

ZD
F ⇤

ZM
F ⇤

 ZD
F ⇤

ZM0
F ⇤

 1p
"L+ 1

Zmo
G

Ẑ

ZK

Zmo
K

 2

r
p
"L+ 1

,

where the last inequality follows from the assumption Ẑ � rZmo
G

and the fact thatZmo
K

/ZK � 1/2
when �K � 4 log 2. Thus, part (ii) is established.
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To establish part (iii), let us de�ne ⌫ = µ( · |⌦M
F
) to be the distribution conditioned on ⌦M

F
,

and similarly ⌫⇤ = µ⇤
( · |⌦M

F ⇤). By the de�nition of total variation distance we have

kµ� ⌫k�� =
��µ� µ( · |⌦M

F )
��
�� =

ZD
F

ZF

= 1� ZM
F

ZF

.

For part (iii), if ZG  1
r
Ẑ , we deduce from part (i) that

kµ� ⌫k��  ZD
F

ZM
F

 1p
"L+ 1

ZG

Ẑ
 1

r
p
"L+ 1

=
"

96("L+ 1)
 1

96L
.

Similarly, by part (ii) we have

kµ⇤ � ⌫⇤k��  ZD
F ⇤

ZM
F ⇤

 2

r
p
"L+ 1

=
"

48("L+ 1)
 min

⇢
1

48L
,
"

48

�
.

Let ⇢ = ⌫( · |⌦M0
F

) denote the conditional distribution of ⌫ on ⌦M0
F

. Observe that ⇢ does not
depend on the graph G, because we condition on the event that all vertices from G receive the
same spin, and thus the structure ofG does not a�ect the conditional distribution ⇢. In particular,
we have ⇢ = ⌫( · |⌦M0

F
) = ⌫⇤( · |⌦M0

F ⇤ ). Then, Claim 26 implies that

k⌫ � ⇢k�� = 1�
ZM0
F

ZM
F

 e�2N

and similarly k⌫⇤ � ⇢k��  e�2N . Therefore, we obtain from the triangle inequality that

k⌫ � ⌫⇤k��  k⌫ � ⇢k�� + k⌫⇤ � ⇢k��  2e�2N .

We conclude again from the triangle inequality that

kµ� µ⇤k��  kµ� ⌫k�� + kµ⇤ � ⌫⇤k�� + k⌫ � ⌫⇤k��  1

96L
+

1

48L
+ 2e�2N  1

16L
.

For part (iv), if ZG � rẐ , then by part (i)

kµ� ⌫k�� � 1� ZM
F

ZD
F

� 1� 4
p
"L+ 1

Ẑ

ZG

� 1� 4

r

p
"L+ 1 = 1� "

24
.

Hence,

kµ� µ⇤k�� � kµ� ⌫k�� � kµ⇤ � ⌫⇤k�� � k⌫ � ⌫⇤k�� � 1� "

24
� "

48
� 2e�2N � 1� ",

as claimed.
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Proof of Claim 26 Note �rst that ZM0
F

 ZM
F

and from a union bound we get

1�
ZM0
F

ZM
F

= Pr

⇣
9v 2 VG : �(v) 6= �(s1)

����(s1) = �(s2)
⌘


X

v2VG

Pr(�(v) 6= �(s1)|�(s1) = �(s2)).

For every � 2 ⌦M
F

and v 2 VG, if �(v) 6= �(s1), then the total weight of edges incident to v is at
most (2e�1)

2N
exp(�̂(N � 1) + ĥ); and if �(v) = �(s1), then it is at least (e2�1 + 1)

2N . Thus, we
get

Pr(�(v) 6= �(s1)|�(s1) = �(s2)) 
(2e�1)

2N
exp(�̂(N � 1) + ĥ)

(2e�1)2N exp(�̂(N � 1) + ĥ) + (e2�1 + 1)2N


✓

2e�1

e2�1 + 1

◆2N

exp

⇣
�̂(N � 1) + ĥ

⌘

 exp (�2(�1 � 1)N) · exp
⇣
(�̂ + ĥ)N

⌘

 e�3N .

where the last inequality follows from the assumption �1 � 1
2(�̂ + ĥ + 5). Therefore, Z

M0
F

Z
M
F

�
1�Ne�3N � 1� e�2N . The bound for F ⇤ is proved analogously. ⌅

5. Hardness of testing in bounded degree graphs

In this section, we provide a reduction from identity testing in bounded degree graphs to iden-
tity testing in general graphs. We introduce some convenient notation �rst. Recall that we use
MP����(n, d,�, h) for the family of Potts models on n-vertex graphs with maximum degree at
most d with the absolute value of the edge and vertex weights bounded by � and h, respectively;
see De�nition 4. We add “�B��” to the subscript of this notation to denote the restriction to bipar-
tite graphs; that is, MP�����B��(n, d,�, h) denotes the set of models in MP����(n, d,�, h), where
the underlying graphs is bipartite; note thatMI�����B�� = MRBM. Our reduction will also apply to
Ising and Potts models with certain kinds of external �elds, and so it is useful then to introduce
the notion of h-vertex-monochromatic external �elds.

De�nition 27 Consider a Potts model on a graphG = (VG, EG)with external �eld hG : VG⇥[q] !
R. For h 2 R, we call hG h-vertex-monochromatic if |hG(v, i)|  h for all v 2 VG, i 2 [q] and
|{i 2 [q] : hG(v, i) 6= 0}|  1 for all v 2 VG.

In words, an h-vertex-monochromatic �eld is one that allows hG to be non-zero (and at most
h) for at most one spin at each vertex. We add “�M���” to the subscript of MP���� to denote
the subfamily of models where the external �eld is h-vertex-monochromatic; namely, the mod-
els MP�����M���(n, d,�, h) and MP�����B���M���(n, d,�, h) respectively denote the subfamilies of
models fromMP����(n, d,�, h) andMP�����B��(n, d,�, h) with h-vertex-monochromatic �elds.
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Theorem 28 Let n̂, d 2 N+ be such that 3  d  n̂1�⇢ for some constant ⇢ 2 (0, 1). Suppose
that for some constants �, h � 0 there is no poly(n) running time "-identity testing algorithm for
MP�����M���(n, n,�, h). Then there exists a constant c 2 (0, 1) such that, for any constant "̂ > "
there is no poly(n̂) running time "̂-identity testing algorithm forMP�����B���M���(n̂, d, �̂, ĥ) provided
�̂d = !(log n̂) and ĥ  hn̂�c.

Moreover, our reduction preserves ferromagnetism; that is, the statement remains true if we replace
the familyMP�����M��� byM+

P�����M��� andMP�����B���M��� byM+
P�����B���M���.

The proof of this theorem is �eshed out in the following sections. First in Section 5.1, we
introduce our degree reducing gadget, which consists of a random bipartite graph of maximum
degree d. In Section 5.2, we describe the construction of the testing instance (i.e., the reduction)
and the actual proof of Theorem 28 is then �nalized in Section 5.3.

5.1 A degree reducing gadget for the Potts model

Suppose b, p, d, d��, d��� are positive integers such that b � p, d � 3 and d�� + d��� = d. Let
B = (VB, EB) be the random bipartite graph de�ned as follows:

1. Set VB = L [R, where |L| = |R| = b and L \R = ;;

2. Let P be subset of VB chosen uniformly at random among all the subsets such that |P \L| =
|P \R| = p;

3. LetM1, . . . ,Md�� be d�� random perfect matchings between L and R;

4. LetM 0
1, . . . ,M

0
d���

be d��� random perfect matchings between L\P and R\P ;

5. Set EB =

⇣S
d��
i=1Mi

⌘
[
⇣S

d���
i=1 M

0
i

⌘
;

6. Make the graph B simple by replacing multiple edges with single edges.

We use G(b, p, d��, d���) to denote the resulting distribution; that is, B ⇠ G(b, p, d��, d���). Ver-
tices in P are called ports. Every port has degree at most d�� while every non-port vertex has
degree at most d. The set of ports P is chosen uniformly at random following (Bezáková et al.,
2020), in order to use the expansion properties of B ⇠ G(b, p, d��, d���) proved there.

To capture the notion of an external con�guration for the bipartite graph B, we assume that
B is an induced subgraph of a larger graph B = (VB, EB); i.e., VB ⇢ VB and EB ⇢ EB. Let
@P = VB \ VB . We assume that every vertex in P ✓ VB is connected to up to d��� vertices in
@P and that there are no edges between VB \ P and @P in B. Given a real number �B > 0, we
consider the Potts model on the graph B with:

1. edge interactions given by �B : EB ! R, wheremaxe2EB\EB
|�B(e)|  �B and �B(e) = �B

for every e 2 EB ;

2. an external �eld given by hB : VB ⇥ [q] ! R, where there exists  2 [q] and h 2 R such
that hB(v, i) = h · (i = ) · (v 2 VB).
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We remark that the �eld hB is h-vertex-monochromatic, but we also require that the spin for which
the �eld is allowed to be not zero to be the same for all vertices.

Let �i
(B) be the con�guration of B = (VB, EB) where every vertex in VB is assigned color

i 2 [q]. Let {@P = ⌧} denote the event that the con�guration on @P is ⌧ 2 [q]@P . For certain
choices of the random graph parameters we can show that for any ⌧ , with high probability overB,
the Potts con�guration of VB on B conditioned on {@P = ⌧}will likely be �i

(B) for some i 2 [q].

Theorem 29 Suppose 3  d = Ob(1), d�� = d � 1, d��� = 1 and p = bb↵c, where ↵ 2 (0, 14 ] is
a constant independent of b. Then, there exists a constant � > 0 such that with probability 1� o(1)
over the choice of the random graph B the following holds for every con�guration ⌧ on @P :

µB

0

@
[

i2[q]

{�i
(B)}

������
@P = ⌧

1

A �
✓
1� q2e2h

e��Bd

◆2b

.

Theorem 30 Suppose p = b and 4 + 1200
⇢

 d  b1�⇢ for some constant ⇢ 2 (0, 1) independent of
b. Then, there exist constants � = �(⇢) > 0 and ✓ = ✓(⇢) 2 (0, 1) such that when d�� = b✓dc and
d��� = d� b✓dc the following holds for every con�guration ⌧ on @P with probability 1� o(1) over
the choice of the random graph B:

µB

0

@
[

i2[q]

{�i
(B)}

������
@P = ⌧

1

A �
✓
1� q2e2h

e��Bd

◆2b

.

These theorems are extensions of Theorems 4.1 and 4.2 in (Bezáková et al., 2020), where similar
bounds are established for the case when every edge of B has the same weight � < 0; i.e., the
antiferromagnetic setting. In this new setting, there is an external �eld, every edge in EB has
weight �B > 0, and edges between P and @P are allowed to have either negative or positive
weights bounded in absolute value by �B .

To prove Theorems 29 and 30, we shall use the following facts about the expansion of the
random graph B ⇠ G(b, p, d��, d���) proved in (Bezáková et al., 2020). For S, T ⇢ VB de�ne

EB(S, T ) = {{u, v} 2 EB : u 2 S, v 2 T} .

Theorem 31 (Theorem 17 (Bezáková et al., 2020)) Suppose p = b and 3  d��  d  b1�⇢

where ⇢ 2 (0, 1) is a constant independent of b. Then, with probability 1� o(1) over the choice of the
random graph B:

min
S⇢VB :
0<|S|b

|EB(S, VB\S)|
|S| � ⇢d��

300
.

Theorem 32 (Theorem 18 (Bezáková et al., 2020)) Suppose 3  d = O(1), p = bb↵c with
↵ 2 (0, 14 ], d�� = d� 1 and d��� = 1. Then, there exists a constant � > 0 independent of b such that
with probability 1� o(1) over the choice of the random graph B:

min
S⇢VB :
0<|S|b

|EB(S, VB\S)|
|S| � �d.
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Theorem 33 (Theorem 19 (Bezáková et al., 2020)) Suppose 3  d = O(1), p = bb↵c with
↵ 2 (0, 14 ], d�� = d� 1 and d��� = 1. Then, there exists a constant � > 0 independent of b such that
with probability 1� o(1) over the choice of the random graph B:

min
S⇢VB :

0<|P\S||S|b

|EB(S, VB\S)|
|P \ S| > 1 + �.

Proof of Theorems 29 and 30 Let E(S, T ) denote the set of edges between S and T in EB.
For ease of notation, we set � = �B . Let Pi ✓ @P be the set of vertices of @P that are assigned
color i 2 [q] in ⌧ . The weight of �i

(B) in B conditional on ⌧ is then given by

wi
:= w⌧

B(�
i
(B)) = exp

2

4�db+ 2bh (i = ) +
X

e2E(P,Pi)

�B(e)

3

5 . (27)

Let⌦B be the set of Potts con�gurations of the graphB. For � 2 ⌦B , let S�(i) ✓ VB be the set
of vertices that are assigned color i 2 [q] in �. We let S� denote the set of maximum cardinality
among S�(1), . . . , S�(q). Let ⌦i

B
✓ ⌦B be the set of con�gurations � such that S� = S�(i).

For � 2 ⌦B , we use w⌧
(�) for the weight of the con�guration on B that agrees with � on VB

and with ⌧ on VB \ VB . By de�nition, the partition function Z⌧

B for the conditional distribution
µB(· | @P = ⌧) satis�es

Z⌧

B =

X

�2⌦B

w⌧
(�) =

X

�2⌦B :|S� |>b

w⌧
(�) +

X

�2⌦B :|S� |b

w⌧
(�). (28)

We bound each term in the right-hand side of (28) separately. For � 2 ⌦B , let r(�, i) =

|S�()|h� 2bh (i = ). We will show that in the regimes of parameters in Theorems 29 and 30,
with probability 1� o(1) over the choice of the random graph B ⇠ G(b, p, d��, d���), there exists
a constant � > 0 such that for every � 2 ⌦B :

w⌧
(�)  wi · e���d|VB\S�(i)|+r(�,i) when � 2 ⌦i

B, |S�| > b; and (29)

w⌧
(�)  wi · e���db+r(�,i) when � 2 ⌦i

B, |S�|  b. (30)

Before proving these two bounds, we showhow to use them to complete the proofs of the theorems.
From (29), we get

X

�2⌦B :|S� |>b

w⌧
(�) =

qX

i=1

X

�2⌦i

B
:|S� |>b

w⌧
(�) 

qX

i=1

X

�2⌦i

B
:|S� |>b

wi ·e���d|VB\S�(i)|+r(�,i).

If i = ,
X

�2⌦

B
:|S� |>b

e���d|VB\S�()|+r(�,)
=

X

�2⌦

B
:|S� |>b

e���d|VB\S�()|�h|VB\S�()|

=

bX

x=0

✓
2b

x

◆
(q � 1)

xe�(��d+h)x 
✓
1 +

q � 1

e��d+h

◆2b

.
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If i 6= ,
X

�2⌦i

B
:|S� |>b

e���d|VB\S�(i)|+r(�,i)
=

X

�2⌦i

B
:|S� |>b

e���d|VB\S�(i)|+h|S�()|

=

bX

x=0

xX

y=0

✓
2b

x

◆✓
x

y

◆
(q � 2)

x�ye���dx+hy


bX

x=0

✓
2b

x

◆
(q � 2)

xe���dx

✓
1 +

eh

q � 2

◆x


✓
1 +

q � 2 + eh

e��d

◆2b

.

Hence, lettingW =
P

q

i=1w
i, we obtain

X

�2⌦B :|S� |>b

w⌧
(�)  w

✓
1 +

q � 1

e��d+h

◆2b

+ (W � w
)

✓
1 +

q � 2 + eh

e��d

◆2b

.

To bound the second summand from (28), note that from (30) we get

X

�:|S� |b

w⌧
(�) =

qX

i=1

X

�2⌦i

B
:|S� |b

w⌧
(�) 

qX

i=1

X

�2⌦i

B
:|S� |b

wi ·e���db+r(�,i)


qX

i=1

wi ·e���db
X

�2⌦i

B
:|S� |b

e|S�()|h

 W ·e���db

2bX

x=0

✓
2b

x

◆
exh(q � 1)

2b�x

 W ·
✓
(q � 1 + eh)2

e��d

◆b

.

Thus,

Z⌧

B  w

✓
1 +

q � 1

e��d+h

◆2b

+ (W � w
)

✓
1 +

q � 2 + eh

e��d

◆2b

+

✓
(q � 1 + eh)2

e��d

◆b

W

 W

"✓
1 +

q � 2 + eh

e��d

◆2b

+

✓
(q � 1 + eh)2

e��d

◆b
#
.

Setting x =
q�2+e

h

e��d
, y =

(q�1+e
h)2

e��d
and z =

q
2
e
2h

e��d

µB

0

@
[

i2[q]

{�i
(B)} | @P = ⌧

1

A =
W

Z⌧

B
� 1

(1 + x)2b + yb
� 1

(1 + 2z)2b
� (1� 2z)2b

as claimed.
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It remains for us to establish (29) and (30); we start with (29). For S, T ✓ VB [ @P , let [S, T ]
denote the number of edges between S and T in the graph B. Then,

w⌧
(�) = exp

2

4�
qX

j=1

[S�(j), S�(j)] +
qX

j=1

X

e2E(Pj ,S�(j)\P )

�B(e) + h|S�()|

3

5 . (31)

Now,
P

q

j=1[S�(j), S�(j)]  db� [S�, VB \ S�] and for any i 2 [q]

qX

j=1

X

e2E(Pj ,S�(j)\P )

�B(e)�
X

e2E(P,Pi)

�B(e) =
X

j 6=i

X

e2E(Pj ,S�(j)\P )

�B(e)�
X

e2E(P\S�(i),Pi)

�B(e)

 �
X

j 6=i

[S�(j) \ P, Pj [ Pi].

Plugging these two bounds into (31) and using (27), we get for � 2 ⌦i

B

w⌧
(�)  exp

2

4�(db� [S�, VB \ S�]) + �
X

j 6=i

[S�(j) \ P, Pj [ Pi] +

X

e2E(P,Pi)

�B(e) + h|S�()|

3

5

= wi · exp

2

4��[S�, VB \ S�] + �
X

j 6=i

[S�(j) \ P, Pj [ Pi] + r(�, i)

3

5

 wi · exp [�� ([S�, VB \ S�]� [(VB \ S�) \ P, @P ]) + r(�, i)] . (32)

When 3  d = Ob(1), p = bb↵c with ↵ 2 (0, 14 ], d�� = d � 1 and d��� = 1. Hence,
[VB \S� \P, @P ] = |(VB \S�)\P |. Theorems 32 and 33 imply that there exists a constant � > 0

such that with probability 1� o(1) over the choice of the random graph B we have

[S�, VB \ S�]

|VB \ S�|
� �d, and

[S�, VB \ S�]

|(VB \ S�) \ P | � 1 + �.

Combining these two inequalities we get for � =
�
2

1+�
that

[S�, VB \ S�] � |(VB \ S�) \ P |+ �d|VB \ S�|.

Plugging this bound into (32),

w⌧
(�)  wi · exp [���d|VB \ S�|+ r(�, i)] , (33)

and we get (29), since � 2 ⌦i

B
and so S� = S�(i).

Under the assumptions in Theorem 30, we can also establish (33) as follows. When b1�⇢ �
d � d�� = b✓dc � 3, Theorem 31 implies that

[S�, VB \ S�] �
⇢d��
300

|VB \ S�| =
⇢ b✓dc
300

|VB \ S�|.
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Moreover,
[VB \ S�, @P ]  d���|VB \ S�| = (d� b✓dc)|VB \ S�|.

Hence, taking ✓ =
300+0.75⇢
300+⇢

we get that when d � 4 +
1200
⇢

:

⇢ b✓dc
300

� (d� b✓dc) � ⇢d

600
. (34)

Together with (32) this implies

w⌧
(�)  wi · exp


�⇢�d|VB \ S�|

600
+ r(�, i)

�
,

which gives (33) for �  ⇢/600, and thus we again obtain (29). (Observe that our choice of ✓
guarantees d� 1 � d�� = b✓dc � 3 for all d � 4.)

We establish (30) next. Since
qX

j=1

[S�(j), S�(j)] = bd� 1

2

qX

j=1

[S�(j), VB \ S�(j)],

and
qX

j=1

X

e2E(Pj ,S�(j)\P )

�B(e)�
X

e2E(P,Pi)

�B(e)  �d���|P |,

we get from (27) and (31) that for � 2 ⌦i

B

w⌧
(�)  wi · exp

2

4��

2

qX

j=1

[S�(j), VB \ S�(j)] + �d���|P |+ r(�, i)

3

5

 wi · exp

2

4��

0

@1

2

qX

j=1

[S�(j), VB \ S�(j)]� d���|P |

1

A+ r(�, i)

3

5 . (35)

Since |S�(j)|  b for j 2 [q], our assumptions in Theorem 29 combined with Theorem 32 imply
that there exists a constant � > 0 such that with probability 1�o(1) over the choice of the random
graph B we have for all j 2 [q]

[S�(j), VB \ S�(j)]

|S�(j)|
� �d.

Plugging this bound into (35), and since d��� = 1 by assumption, we get

w⌧
(�)  wi · exp

2

4��

0

@1

2

qX

j=1

�d|S�(j)|� |P |

1

A+ r(�, i)

3

5

= wi · exp [�� (�db� |P |) + r(�, i)]  wi · exp [���db+ r(�, i)] ,

where the last inequality holds for a suitable constant � > 0 and b su�ciently large since |P | 
bb1/4c.
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Finally, the assumptions in Theorem 30 and Theorem 31 imply that

[S�(j), VB \ S�(j)] �
⇢d��
300

|S�(j)| =
⇢ b✓dc
300

|S�(j)|.

Hence, since |P | = b

w⌧
(�)  wi · exp

2

4��

0

@1

2

qX

j=1

⇢ b✓dc
300

|S�(j)|� (d� b✓dc)|P |

1

A+ r(�, i)

3

5

 wi · exp

��b

✓
⇢ b✓dc
300

� (d� b✓dc)
◆
+ r(�, i)

�

 wi · exp [���db+ r(�, i)] ,

where the last inequality holds for a suitable constant � > 0 for ✓ satisfying (34). This completes
the proofs of the theorem. ⌅

5.2 Testing instance construction

Consider a Potts model on an n-vertex graphG = (VG, EG), with edge interactions �G : EG ! R
and an h-vertex-monochromatic external �eld hG : VG⇥[q] ! R; see De�nition 27. We show how
to construct a Potts model on a larger graph of maximum degree at most d, with edge interactions
bounded by �̂ and an ĥ-vertex-monochromatic external �eld whose distribution captures that of
the model (G,�G, hG). We can think of d, �̂ and ĥ as the parameters for our construction.

We use an instance of the random bipartite graph G(b, p, d��, d���) from Section 5.1 as a gadget
to de�ne a simple graph G� = (VG� , EG�), where � denotes the set parameters {b, p, d��, d���}.
The graph G� is constructed as follows:

1. Generate an instance B = (VB, EB) of the random graph model G(b, p, d��, d���);

2. Replace every vertex v of G by a copy Bv = (Lv [Rv, EBv
) of the generated instance B;

3. For every edge e = {v, u} 2 EG, let `(e) = d|�G(e)|/�̂e and choose d��� · d`(e)/d2���e
unused ports inLv , d��� ·d`(e)/d2���e unused ports inRu and connect themwith any simple
bipartite graph of maximum degree at most d��� and exactly `(e) edges;

4. Similarly, for every edge e = {v, u} 2 EG, choose d��� · d`(e)/d2���e unused ports in Rv

and d��� ·d`(e)/d2���e unused ports in Lu and connect them with any simple bipartite graph
of maximum degree at most d��� and exactly `(e) edges;

Let dG be the maximum degree of the graph G. Our construction requires:

d�� + d��� = d  b, (36)

dG ·
✓
d��� · max

e2EG

⇠
`(e)

d2���

⇡◆
 p. (37)

Observe also that there is always a simple bipartite graph of maximum degree at most d��� and
exactly `(e) edges for steps 3 and 4; take, for example, b`(e)/d2���c disjoint copies of the complete

40



H������� �� T������ ��� RBM� ��� P���� ������

bipartite graph with d��� vertices on each side, and add one additional bipartite graph with d���
vertices on each side for the remaining edges when `(e)/d2��� is not an integer.

We consider the Potts model on the graph (VG� , EG�)with edge weights �G� : EG� ! R and
external �eld hG� : VG� ⇥ [q] ! R de�ned as follows:

1. each edge with both of its endpoints in the same gadget is assigned weight �B := �̂;

2. if the edge connects the gadgets corresponding to u 6= v 2 VG, then it is assigned weight
�G({u,v})
2`({u,v}) .

3. for each vertex v 2 VG, every vertex u in the gadget Bv is assigned the �eld hG�(u, i) :=
hG(v, i)/2b for i 2 [q].

Note that if hG is h-vertex-monochromatic, then hG� is (h/2b)-vertex-monochromatic, and that
in the gadget of every vertex only one spin may receive a non-zero weight; in particular, if hG is
h-vertex-monochromatic, then the �eld in every gadget would satisfy the conditions Section 5.1.

For a con�guration � on G�, we say that the gadget Bv = (VBv
, EBv

) is in the i-th phase if
all the vertices in VBv

are assigned spin i 2 {1, . . . , q}. Let ⌦good be the set of con�gurations
of G� where the gadget of every vertex is in a phase (not necessarily the same). The set of all
Potts con�gurations of G� is denoted by ⌦. We use ZG� for the partition function of the Potts
model on G� and ZG�(⇤) for its restriction to a subset of con�gurations ⇤ ✓ ⌦. That is, ZG� =P

�2⌦wG�(�) and ZG�(⇤) =
P

�2⇤wG�(�) where

wG�(�) := exp

2

4
X

{u,v}2EG�

�G�({u, v}) · (�(u) = �(v)) +
X

v2VG�

hG�(v,�(v))

3

5

is the weight of the con�guration �.
For a con�guration � 2 ⌦good, let �G be the corresponding con�guration on G where �G(v)

is set to the phase of gadget Bv in �. Let µG and µG� denote the Gibbs distribution for the Potts
models we just de�ned on G and G�. From our construction, we can deduce the following fact.

Lemma 34 For any graph G, we have µG�(� | � 2 ⌦good) = µG(�G).

Proof LetQ ✓ EG� be the edges ofG� that connect vertices between di�erent gadgets. Then, for
� 2 ⌦good,

X

{u,v}2Q

�G�({u, v}) (�(u) = �(v)) =
X

{u0,v0}2EG

�G({u0, v0}) (�G(u
0
) = �G(v

0
)),

X

{u,v}2EG�
\Q

�G�({u, v}) (�(u) = �(v)) = exp (�Bd��bn) , and

X

v2VG�

hG�(v,�(v)) =
X

v02VG

hG(v
0,�G(v

0
)).

Thus, wG�(�) = wG(�G) exp (�Bd��bn), and

µG�(� | � 2 ⌦good) =
wG�(�)

ZG�(⌦good)
=

wG(�G) exp (�Bd��bn)

ZG exp (�Bd��bn)
= µG(�G).
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Lemma 35 Let (G,�G, hG) and (G⇤,�G⇤ , hG⇤) be two Potts on the n-vertex graphs G and G⇤,
respectively. Let � = (b, p, d��, d���) be such that conditions (36) and (37) are satis�ed. Suppose that
µG�(⌦good) � 1� � and µG

⇤
�
(⌦good) � 1� � for some � 2 (0, 1). Then,

kµG � µG⇤k�� � 2� 
���µG� � µG

⇤
�

���
��

 kµG � µG⇤k�� + 2�.

Proof From the assumptions that µG�(⌦good) � 1� � and µG
⇤
�
(⌦good) � 1� � we get

kµG� � µG�(· |⌦good)k�� = 1� µG�(⌦good)  �, and
���µG

⇤
�
� µG

⇤
�
(· |⌦good)

���
��

= 1� µG
⇤
�
(⌦good)  �.

Also, from Lemma 34 we have
���µG�(· |⌦good)� µG

⇤
�
(· |⌦good)

���
��

= kµG � µG⇤k�� . Therefore,
it follows from the triangle inequality that
���µG� � µG

⇤
�

���
��

 kµG� � µG�(· |⌦good)k�� + kµG � µG⇤k�� +
���µG

⇤
�
� µG

⇤
�
(· |⌦good)

���
��

 kµG � µG⇤k�� + 2�.

The lower bound is derived in similar fashion:
���µG� � µG

⇤
�

���
��

� kµG � µG⇤k�� � kµG� � µG�(· |⌦good)k�� �
���µG

⇤
�
� µG

⇤
�
(· |⌦good)

���
��

� kµG � µG⇤k�� � 2�,

as claimed.

We show next that if we have a sampling oracle for µG, then we can generate approximate
samples from µG� e�ciently.

Lemma 36 Consider the Potts model on an n-vertex graph G and let � = (b, p, d��, d���) be such
that conditions (36) and (37) are satis�ed. Suppose that µG�(⌦good) � 1 � � for some � 2 (0, 1).
Then, given a sampling oracle for the distribution µG, there exists a sampling algorithm with running
time poly(n, b) such that the distribution µ���

G�
of its output satis�es:

��µG� � µ���
G�

��
��  �.

Proof The algorithm �rst draws a sample �G fromµG using the sampling oracle. It then constructs
� 2 ⌦G� by assigning the spin �G(v) to every vertex in the gadget corresponding to v for each
vertex v ofG. This can be done inO(bn) time. From Lemma 34 we see that the sampling algorithm
in fact generates a sample from the distribution µG�(· |⌦good), and so

��µG� � µ���
G�

��
�� = kµG� � µG�(· |⌦good)k�� = 1� µG�(⌦good)  �.
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5.3 Proof of Theorem 28

We are now ready to prove Theorem 28.

Proof of Theorem 28 We show that if there is an identity testing algorithm for the family
MP�����B���M���(n̂, d, �̂, ĥ) with running time T (n̂) = poly(n̂) and sample complexity L(n̂) =

poly(n̂), henceforth called the T�����, then it can be used to solve the the identity testing problem
for MP�����M���(n, n,�, h) in poly(n) time; the parameters n, � and h depend on n̂, d, �̂ and ĥ
and will be speci�ed next.

Let us consider �rst the case when 3  d = O(1). In this case, we choose n such that n̂ = 2n6,
� = �̂ and h = 2bĥ. Our identity testing algorithm for the family MP�����M���(n, n,�, h) con-
structs the graphG� and the Potts model onG� from Section 5.2 using � = (n5, bn5/4c, d� 1, 1)
as the parameters for the random bipartite graph. This choice of parameters ensures that condi-
tions (36) and (37) are satis�ed. Note also G� is bipartite by construction and that |hG�(u, i)| 
h/2b = O(log n) for all u 2 VG� and i 2 [q].

Let (G,�G, hG) be a Potts model from MP�����M���(n, n,�, h), and suppose that there is a
hidden model (G⇤,�G⇤ , hG⇤) fromMP�����M���(n, n,�, h) from which we are given samples. We
want to use the T����� to distinguish with probability at least 3/4 between the cases µG = µG⇤

and kµG � µG⇤k�� > 1� ".
Suppose that � is sampled from µG� . Since the �eld hG is h-vertex-monochromatic by as-

sumption, it follows from our construction that for each gadget there exists  2 [q] such that for
each vertex v in the gadget hG(v, j) = ĥ · (j = ). Hence, Theorem 29 implies that with proba-
bility 1 � o(1) over the choice of the random gadget B, if the con�guration in the gadget Bv for
a vertex v 2 VG is re-sampled, conditional on the con�guration of � outside of Bv , then the new
con�guration in Bv will be in a phase with probability at least

 
1� q2e2ĥ

e�0�Bd

!2b

� 1� 2q2b

e��Bd

for suitable constants �, �0 > 0, since ĥ = O(log n) and �Bd = !(log n). A union bound then
implies that after re-sampling the con�guration in every gadget one by one, the resulting con�g-
uration �0 is in the set ⌦good with probability 1� 2q2bn

e
��Bd

. Thus,

µG�(⌦good) � 1� q2n̂

e��Bd
. (38)

We also consider the Potts model onG⇤
�, obtained fromG⇤ using the same random bipartite graph

B. Note thatwe can not actually constructG⇤
�, sincewe only have sample access to (G⇤,�G⇤ , hG⇤),

but we can similarly deduce that

µG
⇤
�
(⌦good) � 1� q2n̂

e��Bd
. (39)

Sincewe are given samples fromµG⇤ , (39) and Lemma 36 imply that we can generateL samples
S = {�1, . . . ,�L} from a distribution µ���

G
⇤
�
in poly(n) time such that

���µG
⇤
�
� µ���

G
⇤
�

���
��

 q2n̂

e��Bd
. (40)

43



B����� �� ��.

Our testing algorithm inputs the Potts model on G� and the L samples S to the T����� and
outputs the T�����’s output. Recall that the T����� returns Y�� if it regards the samples in S as
samples from µG� ; it returns N� if it regards them to be from some other distribution ⌫ such that
kµG� � ⌫k�� > 1� ".

If µG = µG⇤ , then µG� = µG
⇤
�
. Hence, (40) implies that:

���µG� � µ���
G

⇤
�

���
��

=

���µG
⇤
�
� µ���

G
⇤
�

���
��

 q2n̂

e��Bd
.

Let (µG�)
⌦L, (µG

⇤
�
)
⌦L and (µ���

G
⇤
�
)
⌦L be the product distributions corresponding toL independent

samples from µG� , µG
⇤
�
and µ���

G
⇤
�
respectively. We have

���(µG�)
⌦L � (µ���

G
⇤
�
)
⌦L

���
��

 L
���µG� � µ���

G
⇤
�

���
��

 q2n̂L

e��Bd
= on̂(1),

since L = poly(n̂) and �Bd = �̂d = !(log n̂). Hence, using the optimal coupling of the distribu-
tions (µ���

G
⇤
�
)
⌦L and (µG�)

⌦L as in (19), we obtain

Pr[T����� outputs N� given samples S where S ⇠ (µ���
G

⇤
�
)
⌦L

]  1

4
+ on̂(1) <

1

3
.

Hence, the T����� returns Y�� with probability at least 2/3 in this case.
If kµG � µG⇤k�� � 1� ", (38), (39) and Lemma 35 imply

���µG� � µG
⇤
�

���
��

� 1� "� 2q2n̂

e��Bd
= 1� "� on̂(1), (41)

because �Bd = �̂d = !(log n̂). Moreover, from (40) we get

���(µG
⇤
�
)
⌦L � (µ���

G
⇤
�
)
⌦L

���
��

 L
���µG

⇤
�
� µ���

G
⇤
�

���
��

 q2n̂L

e��Bd
= on̂(1).

Thus, analogously to (19) (i.e., using the optimal coupling between (µ���
G

⇤
�
)
⌦L and (µG

⇤
�
)
⌦L), we

get

Pr

h
T����� outputs Y�� given samples S where S ⇠ (µ���

G
⇤
�
)
⌦L

i
 1

3
.

Hence, the T����� returns N� with probability at least 2/3.
The case when d is such that d  n̂1�⇢ but d = d(n̂) ! 1 follows in similar fashion.

In particular, we can take b =
⌅
n4/⇢�1

⇧
and � = {b, b, b✓dc , d � b✓dc}, where ✓ = ✓(⇢) is a

suitable constant. That is, p = b, d�� = b✓dc, d��� = d � b✓dc and n̂ = ⇥(n4/⇢
). This choice

parameters also satis�es conditions (36) and (37). Hence, (38) and (39) can be deduced similarly
using Theorem 30 instead. The rest of the proof remains unchanged for this case. ⌅
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6. Hardness of the decision version of approximate counting

In this section we give a general reduction from the approximate counting problem to the decision
version of the problem. In particular, we prove Theorem 7 from Section 2.1. We state our results
for the models of interest in this paper, but they extend straightforwardly to other spin systems.

We restate �rst the de�nition of the decision version of r-approximate counting.

De�nition 37 (Decision r-approximate counting) Given a Potts model (G,�G,hG),
an approximation ratio r > 1 and an input Ẑ 2 R, distinguish with probability at least
5/8 between the following two cases:

(i) ZG,�G,hG
 1

r
Ẑ (ii) ZG,�G,hG

� rẐ

Recall also that a fully polynomial-time randomized approximation scheme (FPRAS) for an op-
timization problem with solutions OPT is a randomized algorithm that for any ⇢ > 0 outputs a
solution Ẑ satisfying e�⇢

OPT  Ẑ  e⇢OPTwith probability at least 3/4 and has running time
poly(n, 1/⇢) where n is the size of the input. To prove Theorem 7, we introduce an intermediate
problem referred as r-approximate counting.

De�nition 38 (r-approximate counting) Given a Potts model (G,�G,h) and an ap-
proximation ratio r > 1, output a real number Ẑ satisfying the following with probability
at least 3/4:

1

r
ZG,�G,h < Ẑ < r ZG,�G,h.

Notice that an FPRAS for the counting problem is equivalent to an algorithm for the e⇢-
approximate counting problem with running time poly(n, 1/⇢) for all ⇢ > 0. We �rst show the
equivalence of r-approximate counting and its decision version.

Lemma 39 Let n, d � 1 be integers and let �, h � 0 be real numbers. Assume that r = r(n) > 1

is the approximation ratio. Then, given a polynomial-time algorithm for the decision version of r-
approximate counting for a family of Potts modelsM, where

M 2 {M̂+
P����(n, d,�, h),M̂

�
I����(n, d,�, h),M̂

+
I����(n, d,�, h)},

there is also a polynomial-time algorithm for 2r-approximate counting forM.

Proof Consider a Potts model from M with the underlying graph G. We note �rst that using a
standard argument we can boost the success probability of the algorithm for the decision version
of r-approximate counting in polynomial time. More precisely, for a given Ẑ > 0 we run the
algorithm for

k = 80
⌃
log(8 log(4c1n

2
+ 4 log r))

⌥
+ 1
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times and output the majority answer. Let Xi be the indicator random variable of the event that
the i-th answer is correct and let X =

P
k

i=1Xi. Then by our assumption we have E[X] � 5
8k.

The Cherno� bound then implies that the majority answer is incorrect with probability at most

Pr

✓
X  k

2

◆
Pr

✓
X  4

5
E[X]

◆
 exp

✓
�E[X]

50

◆
 exp

✓
� k

80

◆
 1

8 log(4c1n2 + 4 log r)
.

Using the boosted version of the decision r-approximate counting algorithm, henceforth call
B������D������, we use binary search procedure to give an r-approximate counting algorithm.
First note that there exists a constant c1 := c1(q,�, h) > 0 such that

exp
�
�c1n

2
�
 ZG  exp

�
c1n

2
�
.

Then, let `0 =
1
r
exp(�c1n2

) and u0 = r exp(c1n2
). For i � 1, let ci =

p
`i�1ui�1 and run

the testing algorithm with Ẑ = ci. If B������D������ outputs ZG  1
r
Ẑ then we let (`i, ui) =

(`i�1, ci), and if B������D������ outputs ZG � rẐ then we let (`i, ui) = (ci, ui�1). We repeat
this process until ui/`i  2, and then output Ẑ = `i. Observe that log ui � log `i decreases by a
factor 2 in each iteration. Thus, the number of times that outputs is called is at most

log2

✓
log u0 � log `0

log 2

◆
= log2

✓
2c1n2

+ 2 log r

log 2

◆
 2 log(4c1n

2
+ 4 log r).

Assume that B������D������ never makes a mistake in all these calls; this happens with prob-
ability at least 3/4 by a union bound. Then, for each j � 0, the algorithm outputs ZG  1

r
Ẑ for

Ẑ = uj and ZG � rẐ for Ẑ = `j . This implies that

1

r
`j < ZG < ruj

for all j � 0. Hence, the �nal output satis�es

1

r
`i < ZG < rui  2r`i

with probability at least 3/4. The running time of the algorithm is polynomial in n, assuming that
r  exp(c1n2

). If we have r > exp(c1n2
) instead, then the algorithm can just output 1, which is

already a r-approximation of ZG.

We show next that a polynomial-time nc-approximate counting algorithm for a family of Potts
models on n-vertex graphs can be turned into an FPRAS.

Lemma 40 Let n, d � 1 be integers and let �, h � 0 be real numbers. For any c > 0, given a
polynomial-time nc-approximate counting algorithm for a family of Potts modelsM, where

M 2 {M̂+
P����(n, d,�, h),M̂

�
I����(n, d,�, h),M̂

+
I����(n, d,�, h)},

there is an FPRAS for the counting problem for M.
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Proof Suppose that there is a polynomial-time nc-approximate counting algorithm forM where
c > 0 is a constant. Consider a Potts model from M de�ned on a graph G of n vertices. We will
give an FPRAS for its partition function. For an arbitrary ⇢ > 0, let k be the smallest integer such
that k � (c log(kn))/⇢. Notice that k  poly(log n, 1/⇢). De�ne a Potts model that is a disjoint
union of k copies of the Potts model onG. That is, the underlying graphG0 consists of k copies of
G, and the weights for each copy are the same as the original model. It follows immediately that
ZG0 = (ZG)

k. We run the (kn)c-approximate counting algorithm for the Potts model on G0 and
assume the output is Ẑ . Then with probability at least 3/4 we have

(kn)�cZG0 < Ẑ < (kn)cZG0 .

Assuming this holds, then we get

e�⇢ZG  (kn)�c/kZG < Ẑ1/k < (kn)c/kZG  e⇢ZG

Thus, Ẑ1/k is a e⇢-approximation of ZG with probability at least 3/4 and can be computed in
poly(kn) = poly(n, 1/⇢) time.

Proof of Theorem 7 Follows immediately from Lemmas 39 and 40. ⌅

7. Concluding remarks

We have presented a fairly general method to establish the hardness of identity testing from the
hardness of approximate counting. Our technology, however, currently requires insights about
each speci�c model. We conjecture that this is not necessary, and that in fact when approximate
counting and structure learning are both hard, the identity testing problem is also hard.
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Appendix A. The ferromagnetic mean-�eld Potts model: proofs

In this appendix we prove our detailed results concerning the phase transitions of the ferromag-
netic mean-�eld Potts models (i.e., Lemmas 9 and 10). As mentioned, several variants of these
results have appeared before, e.g., (Bollobás et al., 1996; Luczak and Łuczak, 2006; Goldberg and
Jerrum, 2012; Cu� et al., 2012; Gheissari et al., 2018; Galanis et al., 2015; Blanca and Sinclair, 2015),
but we need slightly more precise results.

Proof of Lemma 9 Let us introduce some convenient notation �rst. For an integerm � 1, let

Â =

(
(↵1, . . . ,↵q) 2 Rq

: ↵i � 0,
qX

i=1

↵i = 1, ↵im 2 N
)
,

D̂ = Ball1(u,m�1/4
) =

n
↵ 2 Â : k↵� uk1  m�1/4

o
,

M̂ =

q[

i=1

Ball1(↵⇤,i,m�1/4
) =

q[

i=1

n
↵ 2 Â :

��↵� ↵⇤,i��
1  m�1/4

o
,
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and Ŝ = Â\(D̂ [ M̂). Setting �̂H = �H ·m, we have

ZD
H(�H) =

X

↵2D̂

✓
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↵1m · · · ↵qm

◆
exp

 
�̂H
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i=1
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, (42)

and similarly for ZM
H
(�H) and ZS

H
(�H) with the summation over M̂ and Ŝ respectively.

Using standard bounds for the multinomial coe�cient (see, e.g., Lemma 2.2 in Csiszár and
Shields, 2004), we have for every ↵ 2 Â

1

|Â|
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↵1m · · · ↵qm
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where H(↵) =
P

q

i=1�↵i ln↵i. Hence, for � 2 R and ↵ 2 Rq , we introduce:

��(↵) = H(↵) +
�

2
k↵k22 .

The function�� have the following properties, which we prove later and will be useful throughout
the proof.

Fact 41 (i) For ↵ 2 Â and �1,�2 > 0, we have |��1(↵)� ��2(↵)|  1
2 |�1 � �2|.

(ii) When �̂H = Bo, the function �Bo
has exactly q + 1 global maxima in Â consisting of one

disordered phase u = (1/q, . . . , 1/q) and q majority phases ↵⇤,i with i 2 [q], where the i-th
coordinate of ↵⇤,i is strictly larger than 1/q.

(iii) There exist constants ", c > 0 such that �Bo
(↵) is c-strongly concave in the balls Ball1(u, ")

and Ball1(↵⇤,i, ") for i 2 [q]. That is, 8↵ 2 Â such that k↵� uk1  " or
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for some i 2 [q], we have r2
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(↵) � �c · I , where I is the q ⇥ q identity matrix.

Hence, (43) and part (ii) of this fact imply
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Similarly, we deduce that
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and

ZS
H(�H)  e��̂H/2

exp

✓
1

2
|�̂H �Bo|m

◆X

↵2Ŝ
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Let Ŝ = Ŝ1 [ Ŝ2 where

Ŝ1 = Â\
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!
\(D̂ [ M̂).

Since the function�Bo
is continuous, and u,↵⇤,1, . . . ,↵⇤,q are its only global maxima, for constant

" > 0 there exists constant � = �(") > 0 such that for all ↵ 2 Ŝ1 we have

�Bo
(↵)  �Bo

(u)� �.

By part (iii) of Fact 41, �Bo
(↵) is c-strongly concave in Ŝ2; thus, for all ↵ 2 Ball1(u, ")\D̂ we

have
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Therefore,
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Plugging this bound into (46) and combining it with (44), we get
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Combining with (45) instead we obtain
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q
exp
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p
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�
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The results then follows by picking c0 = c/2. ⌅

We wrap up the proof of Lemma 9 by establishing the facts used of the function in �Bo
.
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Proof of Fact 41 Part (i) follows from the de�nition of the function �� , since when ↵ 2 Â,
k↵k1 = 1, and so k↵k2  1.

For part (ii), suppose ↵ = (↵1, . . . ,↵q) is a local maxima for �Bo
(↵). Using the method of

Lagrange multipliers, we obtain that ↵ must satisfy:

Bo↵i � log(↵i) = 1� �, i 2 [q].

The functionBox� log x is decreasing for x < 1/Bo and increasing for x > 1/Bo. This implies
that for any � there are at most 2 solutions to Box � log x = 1 � � and hence there are at most
two di�erent values of ↵i. If there is only one value of ↵i then ↵i = 1/q for i 2 [q]. If there are
two values of ↵i then one of them is in (0, 1/Bo) and one of them is in (1/Bo, 1).

Now the Hessian of �Bo
is

r2
�Bo

(↵) = �diag(↵�1
1 , . . . ,↵�1

q ) +BoI, (47)

and since ↵ is a maxima for �Bo
, then r2

�Bo
(↵) must be negative de�nite in the subspace of

vectors perpendicular to 1 (since the sum of ↵i is constrained to be 1 the perturbations must
maintain this constraint). If there were at least two indexes (w.l.o.g., make the indexes 1 and 2)
such that ↵1 = ↵2 > 1/Bo then the Hessian is not negative de�nite in the subspace of vectors
perpendicular to 1 (e.g., take the vector x = (1,�1, 0, . . . , 0); then xTr2

�Bo
(↵)x = 2(Bo �

1/↵1) > 0). Thus a (constrained) maxima ↵ of �Bo
will either have all ↵i equal to 1/q, or exactly

q � 1 of the ↵i’s will be the same.
Hence, the maxima of�Bo

will coincide with those of a one-dimensional version of it , denoted
by  1, previously studied in (Galanis et al., 2015). The function  1 : [0, 1] ! R is de�ne as
 1(x) = �Bo

(x, y, . . . , y), where y =
1�x

q�1 . The function  1 has 2 global maxima (see Lemma 2
in (Galanis et al., 2015)) and hence �Bo

has exactly q + 1 global maxima (one of the maxima of
 1 corresponds to q maxima of �Bo

). Finally, observe that Bo < q, and so the coordinate of the
maxima of �Bo

in (1/Bo, 1) is greater than 1/q.
For part (iii), note that the Hessian in equation (47) is continuous around (↵1, . . . ,↵q) and

hence it is negative de�nite in a su�ciently small ball around u and ↵⇤,i. ⌅

We will provide next the proof of Lemma 10, in which we will use the following bound on the
ratio Z

M
H
(Bo)

Z
D
H
(Bo)

, which is derived similarly to Lemma 9.
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Proof From (42) and (43), we obtain
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Similarly we have
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qX

i=1

exp
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�Bo
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Combining our upper and lower bounds on ZD
H
(Bo/m) and ZD

H
(Bo/m) we obtain the result.

We are now ready to proof Lemma 10.

Proof of Lemma 10 For ease of notation let f(�) = Z
M
H
(�)

Z
D
H
(�)

. We show that for suitable constants

c, c0 > 0, for �L = Bo/m� c0m�3/2 we have

f(�L)  exp(�c
p
m), (48)

and for �U = Bo/m+ c0m�3/2 we have

f(�U ) � exp(c
p
m). (49)

Since |M̂ | = O(mq
) and |D̂| = O(mq

), we can compute ZM
H
(�) and ZD

H
(�) for any � 2

[�L,�U ] in poly(m) time by enumerating over elements of M̂ and D̂, respectively. (Note that
this involves computing multinomial coe�cients, which can be done for example by express-
ing them as product of q binomial coe�cients; see (42).) Then, given (48) and (49), for any
R 2 [exp(�c

p
m), exp(c

p
m)] and small enough ⇠ > 0, we can use the bisection method with

[�L,�U ] as the starting interval to �nd a � 2 [�L,�U ] such that

f(�)  R  f(� + ⇠)  f(x) + ⇠ · max
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f 0
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in time polynomial inm and log ⇠�1. Since f 0
(�0) = exp(O(m)) for �0 2 [�L,�U ], we can choose

⇠ = exp(�⇥(m)) so that f(�)  R  f(�) + �R as desired.
To establish (48) and (49) we consider the function

g(�) = logZM
H (�)� logZD
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Note that
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By a direct (and standard) calculation, we can check that the �rst term in the right-hand-side
expression in (50) corresponds to the expected number of monochromatic edges in a random con-
�guration � of the model conditioned on � being in the setM . Therefore,

@
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H
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where ↵̂ is the constant in the de�nition of the set M . Similarly, the second term in the right-
hand-side of (50) is the expected number of monochromatic edges in a random con�guration � of
the model conditioned on � being in the set D and so

@

@�
ZD
H
(�)

ZD
H
(�)

 q

✓
m/q +m3/4

2

◆
. (52)

Combining (51) and (52) and using the fact that ↵̂ > 1/q, we obtain for a suitable constant ⇢ > 0

and su�ciently largem that for any � 2 [�L,�U ]

@

@�
g(�) � ⇢m2. (53)

Since |Â| = ⇥(mq
), Fact 42 implies that |g(Bo/m)| = ⇥(logm). Hence, by the mean value

theorem
g(�L)  g(Bo/m)� ⇢m2|Bo/m� �L|  �c

p
m

and similarly g(�U ) � c
p
m for a suitable constant c > 0. Since g = log f , (48) and (49) follow

and the proof is complete. ⌅
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