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We study the identity testing problem for restricted Boltzmann machines (RBMs), and more

generally, for undirected graphical models. In this problem, given sample access to the Gibbs
distribution corresponding to an unknown or hidden model M* and given an explicit model M,
the goal is to distinguish if either M = M ™ or if the models are (statistically) far apart.

We establish the computational hardness of identity testing for RBMs (i.e., mixed Ising models
on bipartite graphs), even when there are no latent variables or an external field. Specifically, we
show that unless RP = NP, there is no polynomial-time identity testing algorithm for RBMs when
Bd = w(logn), where d is the maximum degree of the visible graph and /3 is the largest edge
weight (in absolute value); when Sd = O(logn) there is an efficient identity testing algorithm
that utilizes the structure learning algorithm of Klivans and Meka (2017). We prove similar lower
bounds for purely ferromagnetic RBMs with inconsistent external fields and for the ferromagnetic
Potts model. To prove our results, we introduce a novel methodology to reduce the corresponding
approximate counting problem to testing utilizing the phase transition exhibited by these models.

Keywords: distribution testing, identity testing, graphical models, Restricted Boltzmann Ma-
chines, Potts model

1. Introduction

For graphical models, there are several fundamental computational tasks which are essential for
utilizing these models. These computational problems can be broadly labeled as follows: sampling,
counting, structure learning, and testing. Our big picture aim is to understand the relationship
between these problems. The specific focus in this paper is on the computational complexity of
the identity testing problem for undirected graphical models and its connections to the hardness of

the counting problem.
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Identity testing is a basic question in statistics for testing whether a given model fits a dataset.
Roughly speaking, given data D sampled from the posterior or likelihood distribution of an un-
known/hidden model M* and given an explicit model M, can we distinguish whether M = M*?

We study identity testing in the context of undirected graphical models (Murphy, 2012), which
correspond to (pairwise) Markov random fields in probability theory and computer vision (Geman
and Graffigne, 1986) and to spin systems in statistical physics (Georgii, 2011). We focus attention
on examples of graphical models of particular interest: the Ising model, the Potts model, and Re-
stricted Boltzmann Machines. The Ising model is the simplest example of an undirected graphical
model, and, in fact, it is one of the most well-studied models in statistical physics where it is used
to study phase transitions. The Potts model is the generalization of the Ising model from a two
state system to an integer ¢ > 3 state system. It is also well-studied in statistical physics as the
nature of the phase transition changes as ¢ increases (Duminil-Copin et al., 2016, 2017).

Restricted Boltzmann Machines (RBMs) are a simple class of undirected graphical models
corresponding to the Ising model on bipartite graphs. Originally introduced by Smolensky in
1986 (Smolensky, 1986), they have played an important role in the history of computational learn-
ing theory. They have two layers of variables: one layer corresponding to the observed variables
and another layer corresponding to the hidden/latent variables, and no intralayer connections so
that the underlying graph is bipartite. Learning was shown to be practical in these restricted mod-
els (Hinton, 2002; Hinton et al., 2006) and henceforth played a seminal role in the development of
deep learning (Salakhutdinov and Hinton, 2009; Osindero and Hinton, 2008; Salakhutdinov et al.,
2007; Hinton and Salakhutdinov, 2009).

We define first the Potts model, as both the Ising model and RBMs may be viewed as special
cases of this model. The Potts model is specified by a graph G = (V, E), a set of vertex labels
or spins [q] = {1,...,q}, a set of edge weights defined by 5 : E — R and a set of vertex
weights h : V' X [¢] — R. Configurations of the Potts model are the collection of vertex labelings
Q= {1,...,q}V. The Gibbs distribution associated with the Potts model is a distribution over all
configurations o € €2 such that:

p(0) = nean(0) = e 3 Bl o)1) = o)) + X hlv,0(w)) |

{uv}eFE veV

where Z = Zq g, is the normalizing factor or partition function given by:

z=Yep| 3 BuoPLow) = o)+ 3 hv,0(v))

oe {u,v}EE veV

When ((e) > 0 for every e € E, the model is called ferromagnetic and neighboring vertices
prefer to align to the same spin. Conversely, when (e) < 0 for every e € E the model is called
antiferromagnetic. Models where [ is allowed to be both positive or negative for distinct edges are
called mixed models.

The Ising model corresponds to the special case where there are only two spins; ie., ¢ = 2.
RBMs are mixed Ising models restricted to bipartite graphs; that is, GG is bipartite with bipartition
V = L U R. Since the focus in this paper is on lower bounds, we often consider the case of no
external field (h = 0) in order to obtain stronger hardness results.
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Given a model specification, that is, a graph G = (V, E), an edge weight function  and an
external field h, the goal in the sampling problem is to generate samples from the Gibbs distribution
i = pG,8,h (or from a distribution close to y in total variation distance). The corresponding count-
ing problem is to compute the partition function Z = Z g 5. The (exact) counting problem is #P-
hard (Valiant, 1979) even for restricted classes of graphs (Greenhill, 2000; Vadhan, 2001), and hence
the focus on the approximate counting problem of obtaining an FPRAS (fully-polynomial random-
ized approximation scheme') for Z. For a general class of models, the approximate counting and
the approximate sampling problems are equivalent, i.e., there are polynomial-time reductions be-
tween them (Jerrum et al., 1986; Stefankovi¢ et al., 2009; Kolmogorov, 2018). A seminal result of
Jerrum and Sinclair (Jerrum and Sinclair, 1993) (see also (Randall and Wilson, 1999; Collevecchio
et al., 2016; Guo and Jerrum, 2017)) presented an FPRAS for the partition function of the ferro-
magnetic Ising model.

Another two fundamental problems for undirected graphical models are structure learning and
identity testing. The structure learning problem is as follows: given oracle access to samples from
the Gibbs distribution zi/+ for an unknown (i.e., “hidden”) model M* = (G*, 5*, h*), can we learn
G* (i.e., the structure of the model) in polynomial-time with probability at least 2/3? In the case
of no latent variables (so the samples from the Gibbs distribution reveal the label of all vertices V'
of ) recent work of Klivans and Meka (Klivans and Meka, 2017) (see also (Bresler, 2015; Vuffray
et al., 2019; Hamilton et al., 2017; Vuffray et al., 2016; Wu et al., 2019)) learns n-vertex graphs with
O(logn) x exp(O(Bd)) samples and O(n?logn) x exp(O(3d)) time where d is the maximum
degree of G and 8 := max.cg |5(e)| is the maximum edge weight in absolute value; this bound
has nearly-optimal sample complexity from an information-theory perspective (Santhanam and
Wainwright, 2012).

For RBMs with latent variables (thus samples only reveal the labels for vertices on one side R),
structure learning can be done in time O(n? ') where dy, is the maximum degree of the latent
variables (Bresler et al., 2013; Klivans and Meka, 2017; Bresler et al., 2019). Recent work of Bresler,
Koehler and Moitra (Bresler et al., 2019) proves that there is no algorithm with running time nedr)
assuming k-sparse noisy parity on n bits is hard to learn in time n°®*); they also show that for the
special case of ferromagnetic RBMs with hidden variables there is a structure learning algorithm
with O(logn) x exp(O(3d?)) sample complexity and O(n?logn) x exp(O(Bd?)) running time;
see also (Bresler and Buhai, 2020; Goel, 2020).

In the identity testing problem we are given oracle access to samples from the Gibbs distribu-
tion g+ for an unknown model M* = (G*, 5%, h*) (as in structure learning) and we are also
given an explicit model M = (G, /3, h). Our goal is to determine, with probability > 2/3, if either
M = M* or if the models are (1 — ¢)-far apart; specifically, if the total variation distance between
their Gibbs distributions is at least 1 — € for a given € > 0. (We note that previous works assumed
separation > ¢ in the later case, whereas we prove hardness even when we assume separation
>1—¢)

It is known that identity testing cannot be solved in polynomial time for general graphical
models in the presence of hidden variables unless RP = NP (Bogdanov et al., 2008) . In this paper
we assume there are no hidden variables and hence the samples from g+ reveal the label of

1. A fully polynomial-time randomized approximation scheme (FPRAS) for an optimization problem with optimal
solution Z produces an approximate solution Z such that, with probability atleast 1 -6, (1—¢)Z < Z < (14¢)Z
with running time polynomial in the instance size, ¢~ and log(§ ™).
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every vertex in the graph G; this setting is more interesting for hardness results. We explore a
more refined picture of hardness of identity testing vs. polynomial-time algorithms.

It is known that identity testing can be reduced to sampling (Daskalakis et al., 2018) or structure
learning (Bezakova et al., 2020): given an efficient algorithm for the associated sampling problem
or an efficient algorithm for structure learning, then one can efficiently solve the identity testing
problem. Hence, identity testing is (computationally) easier than sampling and structure learn-
ing. (To be precise, one needs to solve both the structure learning and the parameter estimation
problems to solve identity testing; the algorithm of Klivans and Meka (Klivans and Meka, 2017)
does in fact provide this.) This raises the question of whether identity testing can be efficiently
solved in cases where sampling and structure learning are known to be hard. We prove (for the
models studied here) that when sampling and structure learning are hard, then identity testing is
also hard.

1.1 Our results

The e-identity testing problem for the Ising and Potts models is formally defined as follows. For
positive integers n and d, and positive real numbers S and h, let Mgrpm(n,d, 3, h) denote the
family of RBMs on n-vertex bipartite graphs G = (V, E) of maximum degree at most d, where
the absolute value of all edge interactions is at most 3 and the field |h(v,i)| < hforallv € V and
i € [q]; see Definition 4. We define Mporrs(n, d, 3, h) analogously for the family of Potts models,
without the restriction of G being bipartite.

Given an RBM M € Mzgpm(n,d, B, h), and sample access to a distribution gz« for
an unknown RBM M* € Mpgppm(n,d, 3, h), distinguish with probability at least 3/4
between the cases:

L pv = poare; 2. | — page |y =1 — €.

The choice of 3/4 for the probability of success is arbitrary, and it can be replaced by any constant
in the interval (%, 1) at the expense of a constant factor in the running time of the algorithm. The
e-identity testing problem for the Potts model is defined in the same manner, but assuming that
both M and M* belong to Myorrs(n, d, B, h) instead.

Our first result concerns the identity testing problem on Mggm(n, d, 3,0); that is, RBMs with
both positive and negative edge weights (i.e., mixed RBMs) without external fields (i.e., A(v, i) = 0
forallv € V, i € [g]). We show that for RBMs the approach utilizing structure learning is essen-
tially best possible. In particular we prove that when d = w(logn) there is no poly-time identity
testing algorithm, unless RP = NP. Note that when Sd = O(logn), the algorithm of Klivans
and Meka (Klivans and Meka, 2017) for structure learning and parameter estimation provides an
identity testing algorithm with poly(n) sample complexity and running time.

Theorem 1 Suppose n, d are positive integers such that 3 < d < n? for constant 6 € (0,1) and
lete € (0,1). If RP # NP, then for all real § > 0 satisfying 5d = w(logn) there is no polynomial
running time algorithm to solve the e-identity testing problem for the class Mgpm(n, d, 3, 0) of mixed
RBMs without external fields.

We note that the sample complexity of identity testing on Mggm(n, d, 3,0), and more gen-
erally for any family of Ising models, is poly(n,d, 3) (Daskalakis et al., 2018); the above result
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establishes the computational hardness of the problem on Mggpm(n,d, 3,0). Moreover, in con-
trast to Theorem 1, Daskalakis, Dikkala and Kamath (Daskalakis et al., 2018) provided a poly-time
identity testing algorithm for all ferromagnetic Ising model with consistent fields (the external field
is consistent if it only favors the same unique spin at every vertex; otherwise it is called inconsis-
tent; see Definition 21). Their algorithm crucially utilizes the known poly-time sampling methods
for the ferromagnetic Ising model (Jerrum and Sinclair, 1993; Randall and Wilson, 1999; Collevec-
chio et al.,, 2016; Guo and Jerrum, 2017). On the hardness side, super-polynomial lower bounds
were recently established for identity testing for the antiferromagnetic Ising model on general (not
necessarily bipartite) graphs when 5d = w(logn) (Bezakova et al., 2020). This previous result uti-
lizes the hardness of the maximum cut problem, since maximum cuts correspond to the “ground
states” (maximum likelihood configurations) of the antiferromagnetic model; this is not the case
for RBMs, and new insights are required (see Section 1.2 for a more detailed discussion). In par-
ticular we show a new approach to reduce from the counting problem.

Ferromagnetic and antiferromagnetic RBMs are equivalent models; that is, there is a one-to-
one correspondence between configurations with the same weight. Therefore, the results estab-
lished in (Daskalakis et al., 2018) solve the identity testing problem for both ferromagnetic and
antiferromagnetic RBMs with no latent variables, even in the presence of a consistent external
field. Moreover, Klivans and Meka’s algorithm from (Klivans and Meka, 2017) together with the
hardness results of Theorem 1 provides a fairly complete picture of the computational complexity
of identity testing for (mixed) RBMs with no external field (h = 0).

Our next result concerns the hardness of identity testing for purely ferromagnetic RBMs with an
inconsistent magnetic field; that is, a field that favors one spin for some of the vertices and the other
spin for the rest; see Definition 21. For this we utilize the complexity of #BIS, which is the problem
of counting the independent sets in a bipartite graph. #BIS is believed not to have an FPRAS,
and it has achieved considerable interest in approximate counting as a tool for proving relative
complexity hardness (Dyer et al., 2004; Goldberg and Jerrum, 2012; Dyer et al., 2010; Bulatov et al.,
2013; Chen et al,, 2015; Cai et al., 2016; Galanis et al., 2016a). Let M;{BM(n, d, 3, h) be set of all
ferromagnetic RBMs in Mggppm(n, d, 3, h).

Theorem 2 Suppose n, d are positive integers such that 3 < d < n? for constant 6 € (0, 1) and let

€ (0,1). If #BIS does not admit an FPRAS, there exists h = O(1) such that when d = w(logn)
there is no polynomial running time algorithm that solves the e-identity testing problem for the class
Mian(n, d, B, h) of ferrromagnetic RBMs with inconsistent external fields.

Given the efficient identity testing algorithm for ferromagnetic Ising models (Daskalakis et al.,
2018; Jerrum and Sinclair, 1993), we may ask whether there are other (ferromagnetic) models that
allow efficient testing algorithms. A prime candidate is the ferromagnetic Potts model. Both the
ferromagnetic Ising and Potts models have a rich structure; for instance, their random-cluster
representation (Grimmett, 2006) enables sophisticated (and widely-used) sampling algorithms such
as the Swendsen-Wang algorithm (Swendsen and Wang, 1987). However, while there are efficient
samplers for the ferromagnetic Ising model for all graphs GG and all edge interactions 3 (Jerrum
and Sinclair, 1993; Collevecchio et al., 2016; Guo and Jerrum, 2017), the case of the ferromagnetic
Potts model (i.e., ¢ > 2 spins) looks less promising. In fact, it is unlikely that there is an efficient
sampling/counting algorithm for general ferromagnetic Potts models since this is a known #BIS-
hard problem (Goldberg and Jerrum, 2012; Galanis et al., 2016b); this is due to a phenomena called
phase co-existence, which we will also exploit; see Section 2.2.1. Given the weaker hardness of
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sampling and approximate counting for the ferromagnetic Potts model, the hardness of the identity
problem was less clear.

We prove that identity testing for the ferromagnetic Potts model is in fact hard in the same
regime of parameters where sampling and structure learning are known to be hard. Specifically, we
observe that the structure learning algorithm from (Klivans and Meka, 2017) applies to the Potts
model, and hence implies a testing algorithm when fd = O(logn); we establish lower bounds
when d = w(logn) that hold even for the simpler case of models with no external field.

Theorem 3 Suppose n, d, ¢ > 3 are positive integers such that 3 < d < n® for constant § € (0,1)
and let ¢ € (0,1). If #BIS does not admit an FPRAS, then there is no polynomial running time
algorithm that solves the e-identity testing problem for the class My, (n, d, 3,0) of ferromagnetic
q-state Potts models without an external field. Moreover, our lower bound applies restricted to the class

of ferromagnetic Potts models on bipartite graphs in M3, . (n,d, 3,0).

1.2 Our techniques

Our proof is a general approach that allows us to obtain hardness results for several models of
interest. Specifically, we devise a methodology to reduce the problem of approximate counting
(i.e., approximating partition functions) to identity testing. For this we consider a decision version
of approximate counting and prove that this variant is as hard as the standard approximation
problem; this first step of our reduction applies to many other models of interest (see Theorem 7
and Section 6).

In the second step of our reduction, given a hard counting instance, we use insights about the
phase transition of the models to construct a testing instance whose output allows us to solve the
decision version of approximate counting. The actual reduction is generic (see Theorem 14), but
the insights about each model are needed to build a suitable testing instance; this construction is
the only part of our proof that is model specific, whereas every other step in the proof applies to
more general spin systems. Our approach is nicely illustrated in the context of the ferromagnetic
Potts model; that is, in the proof of Theorem 3 in Section 2. There, we utilize the phase transition
phenomenon in the associated mean-field Potts model which corresponds to the complete graph.
In particular, there is a phase co-existence corresponding to a first-order phase transition which
we utilize to approximate the partition function of the input graph; see Section 2.

In the third and final step of the reduction, we reduce the maximum degree of the graph in the
testing instance by using random bipartite graphs as gadgets, as has been done in seminal hardness
results for approximate counting (Sly, 2010; Sly and Sun, 2012), and more recently in (Bezakova
et al., 2020) for the hardness of testing for the antiferromagnetic Ising model. This step is also
generic and applies to a large class of models; see Section 5 and specifically Theorem 28. One
interesting implication of our approach is that our gadget and reduction yields always bipartite
graphs, and hence we immediately get hardness results for bipartite graphs for all of the models
studied in this paper.

We pause to briefly contrast the above proof approach with that in (Bezakova et al., 2020),
where it was established hardness of identity testing for the antiferromagnetic Ising model. As
mentioned earlier, in the antiferromagnetic Ising model, the configurations with the highest weight
or likelihood (i.e., the ground states) correspond to the maximum cuts of the original graph. Hence,
it is natural to prove hardness of identity testing for the antiferromagnetic Ising model using a
reduction from the maximum cut problem. The ground states of ferromagnetic systems, on the
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other hand, correspond to the monochromatic configurations, so there is no hard optimization
problem in the background to utilize in the reduction. (The similar obstacle for RBMs is that
the maximum cut problem is trivial in bipartite graphs, so we cannot hope to use it to prove
hardness.) We use the hardness of approximating the partition function instead, and consequently
our reduction is of a completely different flavor to that in (Bezakova et al., 2020); we utilize the
unique nature of the phase transition in these models in an essential way. We also mention that,
using significantly different reductions, the hardness of approximating partition functions has
also been employed for proving the hardness of the parameter estimation problem mentioned
earlier (Montanari, 2015; Bresler et al., 2014).

To reduce the degree of the graphs in our construction we do utilize insights and certain tech-
nical lemmas from (Bezakova et al., 2020). Specifically, those concerning the expansion of random
near-regular bipartite graphs. We note that the models we consider on these random graphs are
different than those in (Bezékova et al., 2020); in particular, we consider mixed models and allowed
external fields, whereas in (Bezakova et al., 2020) these gadgets are purely antiferromagnetic and
there is no external field.

We present our proof approach in the context of the ferromagnetic Potts model first, specif-
ically in Section 2 we prove Theorem 3. The proofs for RBMs, namely Theorems 1 and 2 which
follow the same approach, are provided in Sections 3 and 4, respectively.

2. Testing ferromagnetic Potts models

In this section we prove Theorem 3, our lower bound for identity testing for the ferromagnetic
Potts model. To prove this theorem, we introduce a new methodology to reduce approximate
counting (i.e., the problem of finding an FPRAS for the partition function of a model), to identity
testing. We later use this framework to establish our lower bounds for identity testing for RBMs
(i.e., Theorems 1 and 2); we believe our methods could be used to establish the hardness of identity
testing for other spin systems.

We introduce some useful notation next. Recall that in the introduction we define the families
of models Mggm, M}"{BM, Mporrs and M;‘OTTS. We formalize and extend this notation as follows.

Definition 4 For integers n,d > 3 and 3,h € R, let Mporrs(n,d, B, h,q) denote the family of
q-state Potts models on n-vertex graphs G = (Vig, Eq) of maximum degree at most d with edge
interactions and external field given by S : Eq¢ — R and hg : Vi X [q] — R, respectively, such
that:

(i) for every edge {u,v} € Eg,

Ba({u,v})| < B; and

(ii) for every vertexv € Vi and spini € [q],

he(v,4)] < h.

Remark 5 We omit q from the notation above as it is usually clear from context. For the special case
of ¢ = 2, i.e, the Ising model, we use Mignc; when ¢ = 2 and the underlying graph is bipartite we
use Mgpm. In addition, we add “+” or “—” as a superscript to the notation to denote the corresponding
ferromagnetic or antiferromagnetic subfamilies; e.g., My, ...(n,d, 3, h) denotes the subset of ferro-
magnetic Potts models in Mporrs(n, d, 3, h). Finally, we add a circumflex, e.g., Mg, .(n,d, 8, h),
for the subfamily of models where every edge weight is exactly equal to (.



BrANCA ET AL.

2.1 Step 1: Decision version of approximate counting

Our starting point is always a known hard approximate counting instance. For the ferromagnetic
Potts model, we consider the problem of approximating its partition function on a graph G. As
mentioned in the introduction, this problem is known to be #BIS-hard, even under the additional
assumptions that all edges have the same interaction parameter 0 < Sz = O(1) and that there
is no external field (i.e., h = 0) (Goldberg and Jerrum, 2012; Galanis et al., 2016b). Our goal is to
design an FPRAS for the partition function Z¢ g, := Zg g0 using a polynomial-time algorithm
for identity testing, thus establishing the #BIS-hardness of this problem.

Our first step is to reduce the problem of approximating Z¢ g, to a natural decision variant of
the problem. This decision version will be more naturally solved by the testing algorithm and is
more generally defined as follows:

Definition 6 (Decision r-approximate counting) Given a Potts model (G,Ba.ha),
an approximation ratior > 1 and an input Z € R, distinguish with probability at least
5/8 between the following two cases:

1. .
() 26 Bohe < ;Z (i) Zg go he = T2

We show that the decision version of approximate counting is as hard as the standard problem
of approximating Z¢ g, h-

Theorem 7 Let n,d > 1 be integers and let 5, h > 0 be real numbers. Suppose that there is no
FPRAS for the counting problem for a family of Potts models M, where

M € {M;OTTS(TL’ d’ B’ h)7 MI;ING(”? d’ ﬁa h)v MiZING(n’ da B, h)}

Then, for any c > 0 there is no polynomial-time algorithm for the decision version of n°-approximate

counting for M.

Our proof of this theorem is provided in Section 6.

2.2 Step 2: Testing instance construction

We first construct a hard instance for the identity testing problem for the ferromagnetic Potts
model on general graphs, with no restriction on the maximum degree and with a constant upper
bound on the edge interactions. We prove first that identity testing is #BIS-hard in this setting.

Theorem 8 Consider a ferromagnetic Potts model with no external field (h = 0) where the interac-
tion on every edge is ferromagnetic and bounded from above by a constant 3y > 0. Then, there is no
polynomial-time identity testing algorithm for the model unless there is an FPRAS for #BIS.

To establish this theorem, we construct an identity testing instance that allows us to solve the
decision variant of approximate counting (see Definition 6). We note that this theorem does not
immediately imply Theorem 3 from the introduction because we allow the degree to be unbounded;
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specifically, Theorem 8 establishes hardness for M, . (n,n, 3, 0). The next step of the proof uses

this result and a degree-reducing gadget to establish Theorem 3 (see Section 2.3). Our main gadget
in the proof of Theorem 8 will be a complete graph H on m vertices; this is known as the mean-field
case in statistical physics.

2.2.1 THE FERROMAGNETIC MEAN-FIELD ¢-STATE POTTS MODEL

Let H = K,, be a complete graph on m vertices and let Sy be the interaction strength on the
edges of H. By symmetry, the g-state Potts configurations on a complete graph can be described
by their “signature”’—by “signature” we mean the vector (o1,...,0,) € Z? where o; > 0 is the
number of vertices that have spin ¢; note that ) ¢ , 0; = m.

In the complete graph, the ferromagnetic Potts model is known to undergo an “order-disorder”
phase transition. Specifically, there exists a critical value By = 9B,/m such that when Sy <
B,/m, long-range correlations do not exist; the system is then said to be in a “disordered” state
as the typical configurations have signature ~ (m/q, ..., m/q) where each spin has roughly the
same density (up to lower order terms). In contrast, when Sy > B,/m, typical configurations
have a dominant spin and the remaining spins are uniformly distributed. These configurations
are thus referred to as “majority” configurations. More precisely there exists a constant o =
a(Brr) > 1/qand, with high probability, configurations from the Gibbs distribution have signature

~ (am, (1;_0‘%”1, e (1;_aim> up to permutations and lower order terms.
When ¢ > 3, the phase transition is known to be of first-order, which means that when 8y =
B,/m, a sample from the Potts distribution may have signature ~ (m/q, ..., m/q) with constant

(1—a)m (1—a)m
T
probability. This phenomena is referred to as phase co-existence, and it is known (or conjectured) to
be present in a variety of graphs, being the root reason for the hardness of sampling and counting
for the ferromagnetic Potts model. In contrast, in the Ising model (i.e., when ¢ = 2), there is
no phase co-existence; in this case, the majority density o(B,/m) is 1/¢q and the two phases—

disordered and majority—coincide at the critical point.

We now formalize the notion of the majority phase M, the disordered phase D, and the re-
maining configurations S with their corresponding partition functions ZM, ZB, and ZIS{. The
majority phase is defined with respect to a fixed constant & = &(8,) which is the density of the
dominant color at the phase coexistence point B,/m. Let Q1 denote the set of Potts configura-

probability, or signature ~ (am, ) (up to permutations) also with constant

tions on H and for o € Qp, let (01,...,04) € Z9 denote its signature. Consider the following
sets:
1_a
M := {U €Qu|3jelq: |oj—am| < m3/* and |o; — %m <m®*fori e [q]\ {j}},
q-—

D := {UEQH‘ Vielq]: |oi —m/q| §m3/4},

and S := Qy \ (M UD).
For a configuration o on the complete graph H = (Ey, Vi), let

wi(Bu) = exp > Bul(o(u) =o(v))

{u,v}eE(H)
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denote the weight of o in the mean-field model (H, Bf). Consider the contributions of each type
of configuration to the partition function. That is,

Zy(Bu) =Y wiBr),  ZpBu) =Y wiBu),  Z§(Bu) =Y wh(Bu).

oeM oceD oc€S

Hence, the partition function of (H, By) is given by Zy (Bn) = Z¥(Bu) + Z2(Bu) + Z5(Bu)-
We note that in our reduction later, we will choose a specific 3 > 0 depending on the instance
of the approximate counting problem and the parameters of the identity testing algorithm; hence,
to emphasize the effect of Sy, we parameterize Z}\{/I (and other functions in this section) in terms
of ﬂ H-

The following two lemmas detail the relevant behavior of the mean-field Potts model at and
around the critical point B, /m. We note that as a consequence of the first-order phase transition,
there is a critical window around B,/m where the non-dominant phase (i.e., disorder or major-
ity) is still much more likely than any other type configurations; this phenomena is known as
metastability and will also be crucial for us.

First we establish that in the critical window around B, /m the majority M and disordered D
configurations are exponentially more likely than the remaining configurations S. Several variants
of this result have been proved in some fashion before (see, e.g., Bollobas et al., 1996; Luczak and
Luczak, 2006; Goldberg and Jerrum, 2012; Cuff et al., 2012; Gheissari et al., 2018; Galanis et al., 2015;
Blanca and Sinclair, 2015). However, the precise bound we require in our proofs does not seem to
be available in the literature.

Lemma 9 There exists constants ¢, ¢’ > 0 such that for any B satisfying |Sg —Bo,/m| < dm=3/?
we have

Z3(Brr) < min{Zy (Br), Z5y (Br1) } exp(—ev/m).

In addition, we show that we can find in poly(m) time a value for the parameter Sy in the
critical window to achieve a specified ratio R of the majority partition function Z%[(ﬁ 1) to the
disordered partition function Z5 (B ).

Lemma 10 There exist constants ¢, > 0 such that for any R € [e‘c\/rn, ec\/ﬁ] and any constant
§ € (0,1), we can efficiently find By > 0 in poly(m) time such that | B — B,/m| < ¢m~3/? and

M
(1-0)r< 22 < i (1)

The proof of these two lemmas are provided in Appendix A.

2.2.2 IDENTITY TESTING REDUCTION

Visible Model Construction. Let (G, ) be the instance of the ferromagnetic Potts model with
no external field (i.e., h = 0) for which we are trying to approximate the partition function Zg g,;
we shall assume G = (Viz, E¢) is an N-vertex graph and that every edge has interaction strength
0 < Bg = ©(1). Let H = (Vy, Ey) be a complete graph on m = N!0 vertices. The graph
F = (Vp, EF) is the result of connecting the vertices of H and G with a complete bipartite graph

10
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K,, n with edges E,, y; thatis, Vi = Vg U Vg and B = Eg U Eg U E,, . We consider the
Potts model on the graph F' with edge interactions Sr : Er — R given by:

ﬁH ifee Ey
BF(G) = BG ifeGEG
15} ife € Em,N,

where S, 8 > 0 will be chosen later. We use n := N + m for the number of vertices of F’, and,
with a slight abuse of notation, we use F' for the Potts model (F, ) which will play the role of
the visible model in our reduction; i denotes the corresponding Gibbs distribution.

We study first the properties of “typical” configurations on G conditional on a configuration
o on the complete graph H. For this, we introduce some additional notation. Let Q2r, Qg and Qg
be the set of Potts configuration on the graph F', H and G respectively; note that Qr = Qp x Qg.

For o € Qy, define
Z5Bu) = Y, wi(Bw)
n€Qrm(Vh)=0

where the weight w}.(8r) of configuration 7 is given by

wiBm) =exp | Y Br({u,v})L(n(u) = n(v)) | ;

{u,v}eER

that is, Z7(8p) is the total contribution to the partition Zp(Sg) of F of the configurations that
agree with o0 on H.

If we fix a configuration o on H and look at the configuration on GG (under the Gibbs distribu-
tion on F’ conditional on o) then o will act as an external field on the vertices of G. We show that
if o is in the majority phase (i.e., in the set M), then the configuration on G will be monochro-
matic with high probability as these configurations will maximize the number of monochromatic
edges between GG and H. In contrast, when ¢ is in the disordered phase (i.e., in D), then every
configuration on GG will have (roughly) the same number of monochromatic edges between GG and
H; hence, the partition function Z% (S8 ) in this case will be proportional to Zg g,,.

To formalize this, we split the partition function of F into three parts depending on the signa-
ture on the complete graph H. Let

Z¥(Bu) = Y Z#(Br), ZP(Bu) =Y Z%(Bu), and Zp(Bu) = Y Z%(Bn);

ceM oceD oc€eS

then, Zp(Br) = Zp!(Br) + Zp (Br) + Z3(Bu).
The following lemma details the above description of the properties of configurations on the
original instance GG conditional on the configuration on the complete graph H.

Lemma 11 For any constantsd € (0,1) and ¢ > 0, and any By such that | Sy —B,/m| < em=3/2,

c1 N [

there exists constants c1, co > 0 such that forany 3 € | <=, N7 |

1. When the configuration on H is in the majority phase, the configuration on G is likely to be
monochromatic; more precisely,

e ZM . exp (ABNm + Ba|Eg|) < Z¥(By) < € - ZM - exp (aBNm + Ba|Eg)) . (2)

11
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2. When the configuration on H is in the disordered phase, the configuration on G will have very
limited influence from the configuration on H; more precisely,

e Zp - Za-exp(BNm/q) < ZR(Bu) <€ - Zjy - Za - exp (BNm/q).  (3)

3. The remaining configurations on H have a small contribution to the partition function of the
model F'; more precisely,

Zp(Bu) < Zp(Bu) exp (—Q(v/m)) . (4)

We remark that the factors exp(&BNm + S| Eq|) and exp(BNm/q) in (2) and (3), respec-
tively, account for the contribution of all the monochromatic edges in G and between G and H in
each case.

Proof of Lemma 11 We fix Sy and, for ease of notation, we drop the dependence on Sy
throughout the proof; i.e, ZM(By) becomes Z¥, w%(By) becomes wy (o) for o € Qp and
wiL(Bx) becomes wp(n) forn € Qp.

Let o € Qp and 7 € Qg. When computing weight for configuration o U 7 (i.e., the configura-
tion of F that results from combining the spins assignment of o and 7 in H and G, respectively, it
will be convenient to separate the interaction of edges in H (that captures the phase coexistence
in the mean-field model) and the interaction in G and between H and G (that captures the effect
of different phases on GG). Thus, let

wr(ocUT)
w oUrT) = ———.
Then,
ZM = Z Z wy(o)wp (o UT).
ceM 1€Qqa
For o € M, let (01,...,04) € Z9 be its signature; suppose w.l.o.g. that o; is such that |0y —
am| < m3/* and |o; — };f(fm| <m3/*foralli € {2,...,q}. Consider the configuration 77; on G

that assigns spin 1 to every vertex of G and let a = max;c(y . 4 0i- For any other configuration
T # m on G with ¢ > 1 vertices not assigned spin 1, we have that

wpna(oUT) < exp (Bl Ec| + B(o1(N —t) +at)) < exp (be|Ec| + B(o1(N = 1) +a)), (5)

since there are at most | E| monochromatic edges in G and at least one vertex in G has a vertex
assigned a spin different from 1 (thus there are at most 01(/N — 1) + a monochromatic edges
between GG and H). Hence, we get

wp\p(oUT) < &P (Bl Eg| + Blo1(N — 1) +a))

< e(a—ol),é’ < e(fo/m+2m3/4)ﬁ < e—a”mﬂ
wp\g(oUmn) ~ exp (Bg|Eg| + 01N ) - -

— )

where o/ = & — (1 — &)/(¢ — 1) > 0 and the rightmost inequality is true for some o/’ > 0 and
sufficiently large m. For ¢; = (2log q)/a” we have for § > ¢; N/m

U}F\H(O'UT> < _9N
wp\g(oUm) ~ '

12
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Hence

Z wp\g(oUT) < qinF\H(U Umni).
T#MEQG
Now,

wp\ g (o Um) = exp (Ba|Eg| + o1 N )
< exp (&:IEG! + amNB + m3/4NB>
< "2 exp (Bg| Ec| + amNB),

(7)
where in the last equality we take c; = §/2 and use the fact that 8 < cz/(Nm?3/4). Therefore

when o € M is such that |0y — am| < m3/%, we have
Y wpn(loUr) < (L+¢ Mwpu(oUm) < e exp (Ba|Ec| + amNp),
TEQG

for N sufficiently large. By symmetry, we then get that

7 <> wi(o)e’ exp (Bal Ea| + GmNB) = € Z}f exp (Ba|Ea| + amNB)

The lower bound in (2) can be derived in similar fashion and part 1 of the lemma follows

For part 2, suppose that ¢ € D and let 7 € ). Let 7; be the number of vertices of G assigned
spin i in 7 and let wg (7) denote the weight of 7 for the Potts model (G, S¢). Then

wp\ g (o UT) = we(T) exp (B Z an,)

< wg(7) exp (m3/4N5 + 5mN/Q>
< e‘swg(T) exp (BmN/q),

since recall we set co = ¢/2. Hence,

7P = Z Z wh (o)wp g(oUT) <e 070 Zgexp (BmN/q) .
ceD TeQq

The lower bound for ZFD can be derived analogously and part 2 of the lemma follows
Finally for part 3, note that

Z% = Z Z wy(o)wp (o UT) < ¢~ exp (BaN? + BNm) z%
ceS TEQG
< win{ 2, 2B} exp (~0(v).

where the last inequality follows for sufficiently large N and m from Lemma 9 and the fact that
B < ca/(Nm3/*). Then,

Z—% < Z—% < exp (—Q(vm))
Zr — Z}\T/I - ’

13
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and the result follows. |

Hidden Model Construction. We now construct our hidden model and show that we can effi-
ciently generate samples from its Gibbs distribution. Let ™ be the graph obtained by our construc-
tion above where we replace the graph G by a complete graph on N vertices. More precisely, let
K = K be a complete graph on IV vertices and let F'* be the graph that results from connecting
the vertices of K and H with a complete bipartite graph K ,.

The edges of K have parameter S = (g + 4log ¢, whereas the remaining edges have the
same interaction strength as in F’; that is, edges between K and H will have parameter 5 and
those in H parameter S . This Potts model on F'*, which again with a slight abuse of notation we
denote by F'*, will act as the hidden model. We choose S = g +4 log g, so that K is more likely
to be monochromatic than G. Let p g+ the corresponding Gibbs distribution on F'*. We show next
that we can efficiently generate samples from i p+.

Lemma 12 There is an exact sampling algorithm for the distribution p g+ with running timepoly(n).

Proof Because of symmetry there are at most n? types of configurations—described by their sig-
natures on H and K; recall that n = m + N. We can then enumerate every signature, explicitly
compute its probability and sample from the resulting distribution. This involves computing multi-
nomial coefficients, but they can each be expressed as product of ¢ binomial coefficients which can
be easily computed in poly(n) time. Once the signature is generated from the correct distribution,
we can simply take a random permutation of the vertices to assign their spins. |

Proof Overview. We provide the high-level idea of the reduction next. Recall that our goal is
to provide a polynomial-time algorithm for the decision version of the r-approximate counting
problem for the ferromagnetic Potts model (G, Sg). That is, for a real number Z we want to
determine whether Z5 < 1Z or Zg > rZ, where ZG = Za g is the partition function of the
model (G, f¢q) .

For any “reasonable” Z cR (ie., Z that is not too small or too large, in which case the
approximate counting problem becomes trivial), we can find a value of the parameter Sx for our

construction such that

ZpBu) _ 1 Zg

Z¥(Bu)  VeL Z°
where L = L(n) and € = €(n) are the sample complexity and accuracy parameter of the testing
algorithm, respectively. This is possible because of the first-order phase transition of the ferro-
magnetic mean-field g-state Potts model for ¢ > 3, and the associated phase coexistence and
metastability phenomena discusses earlier; see Section 2.2.1. (Specifically, by Lemma 10 we can
find By so that ZM(By)/Z2(Bu) ~ R for any target R, and then we can use Lemma 11 to
translate this value to a value for Zg - Z3(8u)/Z2(Bw).)

For this choice of S and setting r ~ \/L/z, note that if Zg < 12 then Z2(Br)/Z¥ (Bw)
is small (S 1/ L) Conversely, when Z¢ > rZ, the ratio is large (> 1 / €). Therefore, to distinguish
whether Zg < Z or Zg > rZ it is sufficient to determine whether the ratio ZR(8x)/ZM(8x)
is small or large For this we can use the identity testing algorithm. In particular, when the ratio
is small (< 1/L), the majority phase of H is dominant in F', and G will likely be monochromatic.

14
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Since this is also the case in F™* (i.e., K is monochromatic with high probability), then the models
F and F* will be close in total variation distance (< 1/L), and the testing algorithm using only
L samples would output YEs. Otherwise, when Z2(8y)/Z¥(Bp) is large (= 1/¢), the disorder
phase is dominant, so F' and F™* are likely to disagree on the spins of G and K; this implies that
their total variation distance is large (= 1 — €), and so the tester would output No. We proceed to
flesh out the technical details next.

Lemma 13 Let¢ € (0,1) be a constant, L = L(n) = poly(n) and r = 96e~'\/eL + 1. Sup-
pose Z € R is such that rqexp(Bg|Eq|) < Z < 1N exp(Bg|Ec|). Then, there exists constants

¢, c1,ca > 0 such that the following holds. For any 3 € {cinN, N;%/J , we can find S > 0 in the

range | By — B,/ m| < em™3/2 in poly(n) time such that all of the following holds:

(l) 1 ZG < ZD(BH) < 1 Za and ZISI‘(BH) < 6—63\/%;

4/el+1 Zz = ZM(Bm) = Vel+1 2’ ZrBu) —
.\ 22, (Bu) 2 o (Br) e—C3V/T.
() 206y < verm 24 7y < eV

(iii) If Zg < L2, then |pp — pupe |y < 1875

(iv) If Zg > rZ, then e — el

>1—c.

Proof Let oy = & — 1/q. By parts 1 and 2 of Lemma 11, for any g such that |5y — B,/m| <

c1 N c2
m > Nm3/4

em~3/2 and any 8 € [ } for suitable constants ¢, co > 0, we have

2 zp zZ2 4 zh
3 exp(—aofNm = Be|Ec|) - - Za < 3 < 5 exp (—aofNm — BelEcl) - - Ze
Zh Zp 3 Zy

where for ease of notation we dropped the dependence on Sf and set Zg = Zg g,. Moreover,
part 3 of the same lemma implies that there exists a constant c3 > 0 such that

S
ZF o e 9)
Zr —

Recall that n = m + N and m = N'°. By Lemma 10, we can find By > 0 in poly(m) time such
that |8y — B,/m| < em~3/? and

3 1 zZb 3 1
————— exp(aBNm + Ba|E =< Hgi exp (agBNm + Bg|E =
WA p (wf3 Bal|Eal) - 2 N p (awf3 BalEal) - Z

(10)

note that the assumptions rqexp(fg|Eq|) < Z < 1V exp(Bg|Ec|) and r = poly(n) ensure
that Z1 /ZM is in the desired range. Thus, for this choice of 3y we get

1 Zg _Zp 1 Zg
SATS (11)
4elL+1 7 Zp Vel +1 Z

This establishes part (i) of the lemma.



BrANCA ET AL.

For part (ii), we note that Lemma 11 holds for the hidden model F* (with F' and G replaced
by F'* and K, respectively), without any change in the proof. Hence, we get

Zp. 4 zv
i < 5 exp(—aBNm — Bi|Ek|) - —r - Zk (12)
Z g 3 Zy
and
B o
= < em BV, (13)
L+
Thus, for our choice of Sy we deduce from (10), (12) and (13) that
ZP, 1 Zk 2
ex Eq| — Fg|) — £ ———,
2 < et P VelBel = BrlEkl) - < e

where the last inequality follows from qexp(Sx|Fk|)/Zx > 1/2 when 8x > 4logq and the
assumption that Z > rqexp(Ba|Eq|).

We prove part (iii) next. Suppose that Zg < %ZA and let vr be the conditional distribution of
ur conditioned on the configuration on H being in the majority phase (i.e., in the set M). That is,
foro € Qp and 7 € Qg,

MF(UUT)ZF

vp(oUT)=1(c € M) N
F

From the definition of total variation distance we have

zZ2 4+ 73
||lu’F - VFHTV = Z MF(T]) - VF(U) = u

nEQp:pp (n)Zvr(n) 25
From (9), (11) and the assumption that Zg < %Z , we get
Since r = 966_1m, it follows that
liup = vPllay < gy F eV < oo eV (14)

™v = 96(5L 1) = 96L

Similarly, for the distribution pp+ and the conditional distribution vp« of the majority phase, we
also have

D S
|prs — vy < Zp + ZE < 2 1 e VT < min L + e~V (15)
v = Z%/I* Zpe — Tm 481" 48

Let A be the event that all vertices of G are assigned the same spin. By drawing a sample from
vr and sequentially resampling the spin of each vertex of GG, we deduce from a union bound and
the fact & > 1/q that

exp (BgN + ﬁ(%m + m3/4)>

< o~ YBM
exp (B(am — m3/4)) =€

1—vp(A) <N

16
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for a suitable constant v > 0; similarly
1—vpe(A) < e 7Pm,

Let p = vp(-|A) denote the conditional distribution of vp given A. Observe that p does not
depend on the graph G, because we condition on the event that all vertices from G receive the
same spin, and thus the structure of G does not affect the conditional distribution p. In particular,
we have p = vp (- |A) = vp«(-|A). Thus, we get

HVF - VF*HTV < HVF - pHTV+ ”VF* _pHTV =1- VF(A) +1- VF*(A) < 26_%37”- (16)

From (14), (15), (16) and the triangle inequality, we conclude that

lur — sy < Npr = Vel + e — vesll + lve — veelpy
1 1
< 4 2eBVMm 9T o~
= 39p T +e = 16L

and part (i) follows.
Finally, for part (iv), suppose that Zg > rZ. Then,

| I 1 le}4>1 Z%A>1 4\/L+1Z >1 4\/L+1 1- 5 (17)
-V =1—-— - =5 — € - — —=VeE =1—-—.
HE Flirv Zp = ZFD_ Za T 24

Thus, equations (17), (15), (16) and the triangle inequality imply that

ler = pplloy 2 lr = vElly = e = veslly = llve = veedllsy

21—16%6—6_03\/%—26_75"121—5,

and the result follows. [ |

2.2.3 A GENERIC REDUCTION FROM COUNTING TO TESTING

Theorem 8 will follow from Lemmas 12 and 13 using the following general reduction from the
decision version of r-approximate counting to testing.

Theorem 14 Let (G, g, hg) be a Potts model on an N -vertex graph G with partition function
Zg and let Z € R. Lete € (0,1) be a constant, n = poly(N) and suppose there exists an e-
identity testing algorithm for a family of Potts models M on n-vertex graphs with sample complexity
L = L(n) = poly(n) and poly(n) running time. Suppose that given (G, fc, hg), Z, € and L,
there exists 1 = poly(L,e~1) such that we can construct two models F, F'* € M in poly(n) time
satisfying:

. 1 al 1 )
(i) If Zg < ; Z, then |\pr — pir+ly < 1675
(ii) If Zg > rZ, then | — ppellpy > 1 —&; and

(iii) We can generate samples from a distribution 13;% such that H/‘F* — s

poly(n,d~).

< § in time

TV

17
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Then, there is a poly (N) running time algorithm for the decision version of r-approximate counting
for (G, Ba, ha) that succeeds with probability at least 5/8.

Proof Recall that the input to the decision version of r-approximate counting is the model defined
by (G, Ba, hg) and a real number Z > 0; the goal is to determine whether Zg < %Z orZg >rZz.
The algorithm proceeds as follows:
1. Construct the Potts models F' and F* in M.
ALG

2. Generate L = L(n) d-approximate samples S = {071, ..., 0} from p3iS, setting § = 137

3. The input to the testing algorithm, henceforth called the TESTER, is F', which plays the role
of the visible model, and the samples S.

4. If the TESTER outputs YESs, then return Zg < %Z )
5. If the TESTER outputs No, then return Zg > rZ.

We show next that our output for decision version of r-approximate counting is correct with
probability at least 5/8. Consider first the case when Zg < %Z . If this is the case, then by
assumption we have || — pp+| ., < 7o7 and

1
* o < —. 18
HMF —HEely S 161 ( )
So, by the triangle inequality,
e = w3y < 8L

Let (up)®L, (up-)®L and (u4%€)®L be the product distributions corresponding to L independent

samples from pp, pp- and pf? respectively. We have

< Lpr — ppe

ALG ®LH
™V —

)™ — (1) I < 5

Hence, if 7 is the optimal coupling of the distributions (u4L¢)®F and (ur)®L, and (S, 8’) is sam-
pled from , then S ~ (u32°)®L, &' ~ (up)®F and 7(S # S’) < 1. Therefore,

Pr[TESTER outputs No when given samples S where S ~ (u4:¢)®%]

= Pr[TesTER outputs No when given samples S where (S,S’) ~ 7]
< Pr[TesTER outputs No when given samples S’ where (S,8’) ~ 7| + 7(S # ')

— Pr[TESTER outputs No when given samples S’ where S’ ~ (up)®] + (S # S')

<1 .3 (19)
4 878

Hence, the TESTER returns YEs (and our output is correct) with probability at least 5/8.
Now, if Zg > rZ, then by assumption || — pup+||,, > 1 — €. Moreover, by (18)

O = () |y < Lllare —

1) WS

18
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Thus, analogously to (19) (i.e., using the optimal coupling for (u4%)®% and (pup+)®%), we get

Pr [TESTER outputs YEs when given samples S where S ~ (p3:°)¥1] <

col w

Hence, the TESTER returns No with probability at least 5/8. Therefore, we can conclude that our
algorithm for decision r-approximate counting succeeds with probability at least 5/8. The result
then follows from the fact that the running time of the algorithm is poly(/NV), as each step of the
algorithm takes at most poly (V) time by our assumptions. |

2.2.4 PROOF oF THEOREM 8

We can now prove Theorem 8 which states hardness of identity testing for the ferromagnetic Potts
model on general graphs.

Proof of Theorem 8 Consider the ferromagnetic Potts model on an N-vertex graph G =
(Vi, E¢) with constant edge weight ¢ in every edge and no external field. Let Z > 0 be a real
number andletn = N'°4N. Suppose there is an c-identity testing algorithm for ./\/lf,rOTTS (n,n, Ba,0)
with sample complexity L = L(n) = poly(n) and running time poly(n). Let r = 96c~*v/eL + 1;
our goal is to determine whether Zg < %ZA or Zg > rZ where Z¢ = 2G,Be-

We construct the Potts models F' and F'* as describe in Section 2.2.2 with corresponding Gibbs
distributions p 5 and pp+ using the values of 3 and B supplied by Lemma 13; hence the models
F and F* belong to My .. (n,n, Bg,0), since B¢ > max{3, By}

Lemmas 13 ensures that when
A qN
rqePclfel < 7 < 1 cPalbal (20)
T

conditions (i) and (ii) in Theorem 14 are satisfied. Moreover, Lemma 12 gives condition (iii). Thus,

Theorem 14 implies that we have an algorithm for the decision version of r-approximate counting

for the Potts model on G when Z satisfies (20). Meanwhile, we can bound Zg crudely by
gePelPel < 7. < gNefalEal

Thus, if Z < rqexp(Bg|Eg|) < rZa, we can output Z < 1 7. Similarly, when
.1y 1
Z > —q" exp(fclEcl) 2 ~Za

we can output Z > rZg. Therefore, we have a poly(N) algorithm for the decision version
of r-approximate counting for My (N, N, fg,0) where N = ©(n'/1%), » = poly(N) and
Ba = ©(1). The result then follows from Theorem 7 and the fact that there is no FPRAS for
M;;TTS (N, N, B, 0) unless there is one for #BIS (Goldberg and Jerrum, 2012; Galanis et al., 2016b).
[ |
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2.3 Step 3: Degree reduction

The following result provides a reduction from identity testing in the family Mporrs(72, d, ,5’ , B)
to identity testing in Mporrs(n,m, 3, h), under some mild assumptions on the model parameters;
this allows us to deduce the hardness of identity problem on graphs of bounded degree as stated
in Theorem 3 using the main result Theorem 8 from the previous section.

Theorem 15 Let 7i,d € NT be such that 3 < d < #'~" for some constant p € (0,1). Suppose
that for some constants 3, h > 0 there is no poly(n) running time e-identity testing algorithm for
Meporrs(n, n, B, h). Then there exists a constant ¢ € (0, 1) such that, for any constant € > ¢ there is
no poly () running time é-identity testing algorithm for Mporrs (72, d, 3, h) provided Bd = w(log )
and h < hn~C.

This theorem is a special case of our more general result in Theorem 28, which we prove in
Section 5. We conclude with the proof of Theorem 3.

Proof of Theorem 3 Follows from Theorems 8 and 15. [ |

3. Testing mixed RBMs with no external fields

In this section, we show that identity testing for RBMs with arbitrary edges interactions is com-
putationally hard, even in the absence of an external field (ie., h = 0); specifically, we prove
Theorem 1 from the introduction. For this, we establish first the hardness of the identity testing
problem for antiferromagnetic Ising models with bounded edge interactions. We then reduce this
problem to identity testing for mixed RBMs using our degree reduction machinery (see Sections
and 2.3 and 5) which conveniently also turns our instance into a bipartite graph.

We start by reducing the problem of approximating the partition function of the antiferro-
magnetic Ising models to identity testing. Hence, the following well-known result concerning the
hardness of approximate counting in the antiferromagnetic setting plays an important role for us.

Theorem 16 (Sly and Sun, 2012; Galanis et al., 2016c)) Let d > 3 be an integer and let fy >
Be(d) := arctanh(1/(d — 1)) be a real number. Then, for a sufficiently large integer N, there is no
FPRAS for the partition function of the antiferromagnetic Ising model on d-regular N -vertex graphs
with interaction [3y on every edge, unless RP = NP.

The next step in our proof is a reduction from the decision version of approximate counting
(see Definition 6) to identity testing.

Theorem 17 Lete € (0,1) be any constant. There exists 0 < o = O(1) such that an c-identity
testing algorithm for Mg..(n,n, Bo,0) with poly(n) sample complexity and running time can be
used to solve the decision r-approximate counting problem for ./\;II_SING(N, 3,—0.6,0) in poly(NV)
time, where N = ©(y/n) and r = poly(N).

We can now provide the proof of Theorem 1.
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Proof of Theorem 1 From Theorems 16 and 7, it follows that for any ¢ > 0 there is no
poly(NN) running time algorithm for the decision version of N¢-approximate counting for the
family My, .(N,3,—0.6,0) unless RP = NP. Theorem 17 then implies that, under the same
assumption that RP = NP, there is no e-identity testing algorithm for Mg .(n,n, By, 0) with
poly(n) sample complexity and running time for constant ¢ € (0,1), N = O(y/n) and a suitable
constant B9 > 0. The result then follows from Theorem 28. [

We provide in the next section the missing proof of Theorem 17
3.1 Reducing counting to testing for the antiferromagnetic Ising model: proof of
Theorem 17

Testing instance construction. Consider an antiferromagnetic Ising model on an N-vertex 3-
regular graph G = (V, E¢) with the same inverse temperature parameter 3 = —0.6 on every
edge an no external field. We provide an algorithm for the decision version of r-approximate
counting for Zg := Zg g, 0, using the presumed identity testing algorithm.

Define F' to be a graph with the vertex set

VF:VGU{Sl,SQ}U{U(i) -UEVG,lgz‘§N,je{1,2}}u{w§i):1§i§N2,je{l,2}}

v,j

and the edge set
Er =FEqgU {{ug)ﬂ,v},{ug)ﬁs]} veVg,1<i<N,je {1,2}}

U {{wj(»i)jsj} 1<i<N%je {1,2}}

U {{wgi),wéi)} 1< < NQ} :
see Figure 1. Observe that " has n = 4N2 + N + 2 vertices. Given two real numbers 31, 32 > 0,
we then define an antiferromagnetic Ising model on the graph F' as follows:

1. Every edge {u,v} € E¢g has weight —0.6.

2. Foreveryv € Vg, 1 < i < N and j = 1,2, the two edges {ufj)],v} and {ugi)]-,sj} have
weight —f1;

3. For every 1 < i < N2, the edges {wg), s1}, {wg), s9} and {wgi),wéi)} have weight — (5.

We slight abuse of notation, we use F' for the resulting Ising model on F' and p := pp for the
corresponding Gibbs distribution. I will be the visible model of our testing instance.

For the hidden model F'*, we consider the same construction above but replacing G with an
independent set Iy on V. Let ¥ := pp+ be the corresponding the Gibbs distribution. We note
first that we can efficiently sample from p*.

Lemma 18 There is an exact sampling algorithm for the distribution p* with running time poly(n).

Proof Configurations in {2+ can be classified by their type, which is given by the spins of 51, s2
and the number of spin 1’s in the independent set Iy. There are 4(N + 1) types in total. Ob-
serve that configurations of each type have the same weight by symmetry, and this weight can be
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Figure 1: The graph F. For every vertex v € Vi and j € {1,2}, v and s; are connected by N
disjoint paths of length 2. Also, 51 and s are connected by N2 disjoint paths of length
3.

computed efficiently since given the spins of s, s2 and Iy the remaining graph has only isolated
vertices and edges. Also it is easy to get the number of configurations of each type. Thus, to sam-
ple from p*, we can first sample a type from the induced distribution on types, and then sample a
configuration of the given type uniformly at random. |

Our hidden and visible models F' and F'* are related as follows.

Lemma 19 Lete € (0,1) be a constant, L = L(n) = poly(n) andr = 96e~1\/eL + 1. Suppose
7 € R is such that r2Ne 09N < 7 < %ZN. Then, for any 1 > 3, we can find 0 < B3 < 1+ 2 in
poly(n) time such that all of the following holds:

D
(l) 1 Zg < Zp < 1 Zg,
Wel+l 7z — ZM — elL+1 7~

. DR 1.

(i) Z8 < 7

(iii)) If Zg < 2, then || — p*||5y < 675
(iv) If Zg > rZ, then || — Py =1 —e

The proof of Lemma 19 is provided in Section 3.2. We proceed first with the proof of Theo-
rem 17 which follows along the lines of the proof of Theorem 8.
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Proof of Theorem 17 Consider an antiferromagnetic Ising model on an N-vertex 3-regular
graph G = (Vg, E¢) with edge weight Sg = —0.6 on every edge and no external field; note
that this model belongs to the family MISING(N 3,—0.6,0). Let Z > 0 be a real number, let
n = 4N? + N + 2 and suppose there is an c-identity testing algorithm for M. (n, n, Bo,0)
with sample complexity L = L(n) = poly(n) and running time poly(n), where 8y > 0 1s a
suitable constant we choose later. Let r = 96e~'v/eL + 1; we want to check whether Zg < Z
or Zg > rZ where Zq = Zqpg,-

We construct the Ising models F' and F* with Gibbs distribution ;1 and p*, respectively as
described above. We set 31 = 3 and use the 32 supplied by Lemma 19; hence the models F' and
F* belong to M,.(n,n, Bo,0), prov1ded Bo > max{S, B2}

By Lemma 19 when 72N 09V < Z < 12N , conditions (i) and (ii) from Theorem 14 are
satisfied; condition (iii) is given by Lemma 18 Hence, we have an algorithm for the decision
version of r-approximate counting for the Ising model on G for Z in this range. Otherwise, observe
that the weight of every configuration is at least e %%V, which corresponds to the weight of the
monochromatic configuration, and at most 1. Thus, 2Ve ~0.0N < Zg <2V U Z < r2Ne 09N <
rZg, then we can output 7 < ZG Similarly, 7> 12N >1 -2 and we output 7 >rZg.

Thus, we have a poly (V) running time algorlthm for the decision version of r-approximate
counting for My, (N, 3, —0.6,0) where N = ©(n'/?) and r = poly(NN), as desired. [ |

3.2 Proof of Lemma 19

Our construction of the visible and hidden models is inspired by our construction in Section 2.2
for the ferromagnetic Potts model. In particular, the two vertices {s1, s2} play the role of the
complete graph H in our construction in Section 2.2.2. We partition Qp = {+, —}'¥ into two
disjoint subsets Qp = QM U QP depending on whether o(s1) = o(s2) (the majority phase) or
o(s1) # o(s2) (the disordered phase); more precisely, the set of majority configurations is given
by

M={oecQr:o(s1)=0(s2)}

and the set of disordered configurations is
QR = {0 € Qp:o(s1) #0(s2)}.
The partition function for the majority phase is defined naturally as
= > exp| > Br({uo}i{o(uw) =c()} ],
O’EQI}\;I {U’U}GEF

and similarly for ZP . Therefore, we have Zp = ZM r+Z IIT? In the same way, we also define the
partltlon functions Z¥. and ZP. for the hidden model on the graph F** (notice that O}, = OM
and QP e = QD).

Proof of Lemma 19 Consider the following subset of configurations in Qll\;/[ given by

QI\F/IO = {UE oM v € Vg, o(v) 20(31)}-
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We also define the corresponding partition function Z}\;/IO and Z}}/I*O in the same way as above. We

claim that Z}\;/[ (resp., ZMoyis a good approximation (with only exponentially small error) of the
partition function Z M (resp., Z *) that we are interested in.

Claim 20 If3; > 3, then (1 — e 2N)ZM < ZMo < ZM and (1 — e 2N)ZM. < 70 < 7).

The proof of the following claim is postponed to the end of the section. We then derive explicit
formula for Z2 and Z}XIO. For configurations in OB, every spin assignment to the vertices of G,
s1 and s9 is multiplied by a 2e771(e72%1 4 1) factor, corresponding to the weight of the edges

{u UJ,U} {uw,sj} je{1,2} foreveryvertexv € VG and every 1 < i < N,andbya3e~2%2 41

factor for the edges {w1 ,S1} {w2 , S92} and {w1 ,w2 }for every 1 < i < N?. For configurations
in O 2, each monochromatic configuration on G' is multiplied by a (e —261 1 1)? factor for the

edges {uff)],v} {uq(}i)j,s]} RS {1 2} for every vertex v € Vg and every 1 < ¢ < N, and by

e3%2 4 3e752 for the edges {w1 .51} {w2 ,s2} and {w1 , Wy )} for every 1 < i < N2. Thus,
we obtain

N2 N2
ZR =237 1) (2e7 (20 41)) " Zg
2 2
ZMo =2 <6—352 + 36—B2)N (6—261 + 1>2N o~ 09N
Let g(z) = (3¢72® +1)/(e73* + 3e~") and recall that coshz = £(e® + 7). We then deduce

that v2
Zg — g(BQ) 80.9NZG (21)
Z}XIO cosh 31 '

Now for 51 > 3, we show that we can pick G2 > 0 such that
L e ( 9(82) )W N I
2veL+1 7z ~ \coshp “ Vel +1 Z

Such By > 0 always exists and satisfies S < 1 + 2. To see this, we note that the function g(x)
is a continuous increasing function for 2 > 0 with g(0) = 1 and g(c0) = cc. Since Z < 12V, we
get

1 1 09N 1 1
3 1o - + log(cosh > —log [ ———— r2_Ne_0'9N> +8;—1
e g<4m Z ) sleosh i) = g(wm o

2
> —— -1
Z N +3 > 0,
where the second inequality follows from r/(4v/eL + 1) = 6/¢ > 1. This shows that

1 ¢—09N\ 72
(2\/5L+1 Z ) cosh fy 2 1

and thus implies the existence of $2 > 0. Meanwhile, since Z > r2Ne

(22)

—0.9N e have

71 1 ( ! 0‘9N>—|-1 ( h5)<71 1 (1 712 N)—i—,@ <p
(0] = 0g(CcoSs 0} s
N2 g /7[ 1 7 g 1) > N2 g /—[ 1 1 1
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where the second inequality follows from rv/eL + 1 = 96e~!(¢L + 1) > 1. This shows that

3e72%2 41 1
B _ B2—2
et > g(ﬁQ) = 3B 1 3¢P2 = 4eP2 > e

and thus 2 < 1 + 2. Finally, we can compute a (35 satisfying (22) in poly(n) time by, for example,

the binary search algorithm.
Combining Claim 20 and equations (21) and (22), we deduce that

! ZG<(1—e‘2N) Zp 2P _Zp 1 Za
= Mo = M = M = ol
i RN s

el +1 7 Mo = ZM

This shows the first part of the lemma. For part (ii), we can compute Z2. and Zg/[*o in a similar

fashion and obtain

N2 N2
ZD. =2 (36—252 n 1) (2e—51 (6—251 n 1)) 9N
N? 2N?2

Zyo =2 (e g 3e) T (ehg)

This gives
N2
Z%/I*O cosh B3 '
Therefore, by equations (23) and (22) we obtain
e 0N 1

zR, 7P 1

< ~ e i)
Z}\,/[* - Zg,/[*o T Vel+1 7 T rvel +1

where the last inequality follows from the assumption Z > r2Ne 09N thys, part (ii) follows.
Next, we derive parts (iii) and (iv). We define v = p( - |2}) to be the distribution conditioned
on OY, and similarly v* = p*(-|Q).). By the definition of total variation distance we have

A ZM
_ M _4F _ F
o=Vl = Hﬂ — (- ’QF)HTV T Ze 1- Zn
For part (iii), if Zg < %Z , then we deduce from part (i) that
P 1 Zg I € 1

Z
— v <—F<77A< :
= vy < ZN = VeL+1 2 ~rveL+1  96(cL+1) — 96L

Similarly, part (ii) implies

D
it =y s e - e L
Vo ZM T oryeL+ 1 96(eL+1) 96L" 96

Let p = v(-|Q}°) denote the conditional distribution of v on Q}°. Observe that p does not
depend on the graph G, because we condition on the event that all vertices from G receive the
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same spin, and thus the structure of GG does not affect the conditional distribution p. In particular,
we have p = v(- ]Ql}fo) =v*(- ]Ql}/[?). Then, Claim 20 implies that

Zp" 2N
lv—pl., =1 <e
TV Z\/

and similarly ||v* — pl|,, < e 2. Therefore, we obtain from the triangle inequality that

—2N
I = ey < Mlv = pllay + 127 = pllyy < 2672

TV —

We conclude again from the triangle inequality that

1= Ny < 1= g+ 5 = gy + 0 = ¥y € i+ i 42672 <
- —v —v V—v — 4 — e —
A L v ™ = 96L T 96L = 161
Finally, for part (iv), if Zg > rZ, then by part (ii) we have
vl >1- 28 51 WaTT L s dymTTo- S
e Z - == — 44/ — — —Ve =1-—.
po Pl =27 70 = Zo = 24
Hence,
* * * * € € —2N
H/"L_MHTVZHI"L_VHTV_H/"L _VHTV_HV_VHTVZl_ﬂ_%_2€ >1-—e¢,
as claimed. [ |

Proof of Claim 20  For the first inequality, note that lefﬂ/lo < ZM. A union bound implies

Mo
1- ZZ% = Pr (3 € Vg : 0(v) # ols1)|o(s1) = or(s2))

F
< ) Pr(o(v) # o(s1)|o(s1) = o(s2)).

veVG

For every o € Q¥ and v € Vg, if o(v) # o(s1), then the total weight of edges incident to v
is at most (2¢771)2V; and if o(v) = o(s1), then it is at least (e=251 4+ 1)2N exp(Bg degq (v)) >
(e7201 +1)2Ne=18 Thus, we get

(2e=F1)2N
(23—51)21\7 + (6—2,31 + 1)2Ne—1.8

1.8 2e=h \* 2(81—1)N AN
e m < 10e™ (Br-1) < 10e™ s

Pr(o(v) # o(s1)lo(s1) = a(s2)) <

IA

where the last inequality follows from the assumption 3; > 3. Therefore,

Mo
L >1-10Ne N >1—e 2N,
F
The bound for F'* can be derived analogously. |
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4. Testing ferromagnetic RBMs with inconsistent fields

In this section, we establish our lower bound for identity testing for ferromagnetic RBMs with
inconsistent fields; specifically, we prove Theorem 2 from the introduction. Let us formally define
first the notions of consistent and inconsistent external fields.

Definition 21 Consider an Ising model on a graph G = (Vq, E¢) with external field hg : Vg %
{1,2} — R. We say that the external field h¢g is consistent if Yv € Vg, hg(v,1) > 0 and
ha(v,2) =0 orVv € Vg, hg(v,2) > 0 and hg(v, 1) = 0.

We use once again our reduction strategy from r-approximate counting to testing. We start from
the following well-known result.

Theorem 22 (Goldberg and Jerrum, 2007) There is no FPRAS for the partition function of ferro-
magnetic Ising models with inconsistent fields, unless #BIS admits an FPRAS.

The next step is the reduction from the decision version of approximate counting to identity
testing.

Theorem 23 Lete € (0,1) be any constant. For every B, h > 0 there exist Bo, hg > 0 such that an
e-identity testing algorithm for ML .(n,n, Bo, ho) with poly(n) sample complexity and running

time can be used to solve the decision r-approximate counting problem for MISING(N, N, B, ﬁ) in
poly(N) time, where N = ©(y/n) and r = poly(N).

We can now provide the proof of Theorem 2.
Proof of Theorem 2 Follows from Theorems 22, 7, 23 and 28. [ |

4.1 Reducing counting to testing for the ferromagnetic Ising model with an
inconsistent field: proof of Theorem 23

Testing instance construction. Consider an instance (G, ¢, h¢q) of ferromagnetic Ising models
with an inconsistent field, where G = (V, E¢) is the underlying graph with V = (e) =

3 > 0 forevery e € E, and at every vertex the external field is either hg = (h, 0) or hG = (0, h)
for h > 0; that is, Vo € Vi, hg(v,j) = 1(j = 1)h for j = {1,2} or hg(v,j) = 1(i = 2)h for
i = {1, 2}. Note that for consistency with the notation in the previous sections we use spins {1, 2}
for the Ising model, instead of the usual “+” and “—” spins. Our goal is to give a r-approximate
counting algorithm for the partition function Zg := Zg g, ., for some r = poly(N) using an
identity testing algorithm.

Define F' to be a graph with the vertex set

VF—VgLJ{slsQ}U{ D veVG1<z<Nge{12}} {w](.i):lgigNQ,je{lﬂ}}
and the edge set
EF:Egu{{uﬁ)j,v},{uﬁ)j,sj}:vevg,lgigzv,jeu@}}

U {{w]@,sj} L 1<i<N2je {1,2}} :
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Figure 2: The graph F. For every vertex v € Vg and j € {1,2}, v and s; are connected by N
disjoint paths of length 2. Also, each of s1 and s is adjacent to N2 vertices with nonzero
fields.

see Figure 2.
Given three real numbers 31, 82, h > 0, we then define a ferromagnetic Ising model on the
graph F' as follows:

1. Every edge {u,v} € E¢g has weight /3 and every vertex v € V has external field given by
ha.

2. Foreveryv € Vg, 1 <i < N and j € {1,2}, the two edges {ug)],v} and {uz(fz, s;} have
weight [y;

3. Forevery 1 <i < N2?and j € {1,2}, the edge {w](-i), s;} has weight (a;

4. Forevery 1 <17 < N 2 the vertex wgi) has external field (h,0) and the vertex wgi) has
external field (0, h); that is, hp(wgz),j) =1(j =1)h and hp(wéz),j) = 1(j = 2)h.

Thus, F is a graph on n = 4N2 + N + 2 vertices and the Ising model on F is ferromagnetic with
an inconsistent external field. Let 11 := pr denote the corresponding Gibbs distribution.

For the hidden model F™*, we consider the same construction above but replacing G with a
complete graph K = K on N vertices where every edge has weight S = B +4log2 > 0and
every vertex has the same field hg as the Ising model on G. Let u* := pp+ be the corresponding
the Gibbs distribution. We note first that we can efficiently sample from p*.

Lemma 24 There is an exact sampling algorithm for the distribution p* with running time poly(n).
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Proof Configurations in 2z~ are classified by their type, which is given by the spins of the vertices
s1 and s9 and the number of vertices with spin 1 in the complete graph K. There are 4(N + 1)
types in total. Observe that configurations of each type have the same weight by symmetry, and
this weight can be computed efficiently since given the spins of 51, s and Ky the remaining graph
has only isolated vertices and edges. It is also straightforward to get the number of configurations
of each type. Thus, to sample from p*, we first sample a type from the induced distribution on the
types, and then sample a configuration of the given type uniformly at random. |

Denote the sum of weights of two monochromatic configurations on G by

780 = Y exp | BlEal+ Y ha(v,i)

’iE{l,Q} veVg
The hidden and visible models F' and F* are related as follows.
Lemma 25 Lete € (0,1) bea constant L = L(n) = poly(n) andr = 96e~1v/eL + 1. Suppose

Z € R is such thatrZ%° < 7 < 1 Lexp(3 (B + h + 1)N?). Then, for any 81 > %(B +h+5), we
can find By € (0, B1) in poly(n) time such that by setting h = (33 al of the following holds:

() ——Za < Z8 <« _1_Zg.
/el z = zZM = Vel+1 2°

Zpx 2 .
ZM* — rvelL+1’

(”l) IfZG < 1Z then ||/.L H ||TV - 16L’

() If Zg > 7, then || — p*|,, > 1 —e.
The proof of Lemma 25 is provided in Section 4.2. We provide next the proof of Theorem 23.

Proof of Theorem 23  Consider the ferromagnetic Ising model (G, 8¢, h¢), where G = (Viz, Eg)
is an N-vertex graph, g (e) = Bforalle € Egand hg(v,j) = 1(j = 1)h for j = {1,2}
or hg(v,j) = 1(j = )h for i = {1,2} for all v € V{; note that this model belongs to
MISING(N N, h h). Let Z > 0 be a real number, let n = 4N? + N + 2 and suppose there is an
e-identity testing algorithm for M. . (n, n, By, ho) with sample complexity L = L( ) = poly(n)
and running time poly(n), where 3y, hy > 0 are a suitable constants. Let r = 96 ~1v/cL + 1; we
want to check whether Zg < 1Z or Zg > rZ where Z¢ := 26 Baha-

We construct the Ising models F' and F* with Gibbs distribution p and p*, respectively as
described above, setting 31 = 1 (B +ﬁ+5) using the (55 supplied by Lemma 25, and taking h = Sa;
hence the models F and F* belong to M. (n, n, By, ho), provided By > max{,@’, Br, b1, B2} and
ho > max{h, h}.

By Lemma 25 when r Z3° < z<1 eXp( (B +h+ 1)N?), conditions (i) and (ii) of Theorem 14
are satisfied; condition (iii) is given by Lemma 24. Therefore, we have an algorithm for the decision
version of r-approximate counting for the Ising model on G for Z in this range. When Z is not in
this range, note that we have the following crude bounds on Z5:

N2 . 1 - .
Z3° < Zg < 2N . exp (52 + hN> < exp (2(5 +h+ 1)N2> .
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Thus, if Z < rZ%° < rZg we can output Z < 17¢. Similarly, Z > %exp(%(ﬁ +h+1)N?) >
%ZG we output 7 >ra.

Thus, we have a poly (V) running time algorithm for the decision version of r-approximate
counting for Mt (N, N, B, ﬁ) where N = ©(n!/?) and r = poly(N), as desired. |

IsinG

4.2 Proof of Lemma 25

We reuse the notation introduce in Section 3.2. Recall that Q) = {0 € Qp : 0(s1) = 0(s2)} and
QR = {0 € Qp : 0(s1) # 0(s2)}. Also the partition function for the majority phase is given by

Zit= Y ew| > Brl{uoh)low)=o@)}+ Y hr(v,o)

oeQt {u,v}€ER vEVE

and Z2 is defined similarly. The corresponding partition functions for the hidden model are de-
noted by ZM, and Z2..
Proof Let QI}/IO = {0 € Q) : Vv € Vi, 0(v) = o(s1) } and consider restrictions of partition func-

tions Z}\;/IO and Z}\;/[*O, as in the proof of Lemma 19. The following claim, whose proof is provided at
the end of the section, has the same flavor as Claim 20.

Claim 26 If3; > %(B—l—ﬁ—i—B), then (1—e 2V)ZM < Z}\T/ID < ZMand(1—-e2V)ZM < Zg,/[*o <
M.

We then derive explicit formulae for the two partition functions Z2 and Z}XIO. For configura-
tions o € QP with o(s1) = 1 and 0(s2) = 2 (resp., 0(s1) = 2 and o(s2) = 1), the weight of the
configuration on G' is multiply by a factor of 2¢1 (2”1 4 1) for each edge {uf}i)], v}, {ufj’)], s},
j € {1,2} for every v € Vg and every 1 < i < N; it is also multiply by a (e®*" 4 1)2 (resp.,
(e®2 + eM)?) factor for each edge {wj(-i), s;} and the vertex w](-i), j=1{1,2}and 1 < i < N2
For configurations in QI}AO, both monochromatic configurations on G receive additional weight
(e2P1 + 1)2 for the edges {uq(f;)j,v}, {uﬁ)j,sj}, Jj = {1,2} for every vertex v € Vg and every
1 <i < N,anda (%" + 1)(e”2 + €") factor for each edge {’wj(-i), s;} and the vertex w](.i),
j ={1,2} for every 1 < i < N2. Thus, we obtain that

2N? 2N? N?
() s )] 0 ()
N2 N2 2N?
Zyo = (€ﬁ2+h + 1) (e/g? + eh> (ewl + 1) Z5°.

Recall that coshx = %(e’” + e~ 7). We then deduce that

N? N?
zp cosh(BQQJr ) N cosh(ﬂQQ_h) < 1 >N2 Zg
Zyo cosh(221) cosh( 22 cosh zge
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Since coshx > 1forall x € R, let h = 3 > 0 and then we get

2 2
<cosh/32>N Ze _ Zp <2<cosh52>N Za o)

cosh 31 Vo Z}/IO — "\ cosh B3 zZgme

Now for 31 > %(B +h+ 5), we pick f2 > 0 such that

1ozEe <cosh 52>N 1y 5)

3VeL +1 Z cosh 31 0elL+1 7

Such By > 0 always exists and satisfies §3 < (7. To see this, we note that since Z < % exp(%(ﬁ +

h+1)N?) and Z&° > 2, we have

11 < = Zglo>+1 ( h5)>11 ( !
—F5 10 og(Ccos —F 10, ———
208 s V=N \3eL 11

1A, 1 2
. 4G 2re 2 PHAHDN )+ -1
N 3WelL+1 Z .

1,4 - 1.~
2_5(5+h+1)+5(5+h+5)—1:1>0,

where the second inequality follows from 27/(3v/eL + 1) = 64/¢ > 1. This is equivalent to

1
1 ZmO N2
( G >N cosh 81 > 1,

3veL+1 7

and hence 3, > 0 satisfying (25) always exists and can be computed in poly(n) time. Note also
that since Z > rZ7° we have
1 Z5° < 1 B € <1
WeL+1 Z ~ 2rveL+1 192(eL+1)
This shows that cosh 2/ cosh 81 < 1 and thus 2 < ;.
Combining Claim 26 and inequalities (24) and (25), we deduce that

D D D
- N e P S ]
Zy Tz T el +1 Z

AVeL+1 27 Zpo

This shows part (i). For part (ii), we can compute Z 1]3* / Z}}{O in a similar fashion and obtain

N2 D N2
cosh (3o Zi < L <9 cosh (9 Zk (26)
cosh 31 zZme — Z}\T/I*O ~ " \cosh 3 Zme’
Therefore, by inequalities (26) and (25) we obtain
ZR. _ Zp. 1 ZE Zg 2

< ~ )
V4 Z}\,/I*O T Vel +1 Z ZE° T ryeL+1

where the last inequality follows from the assumption 7> rZ{&° and the fact that Z32°/Zx > 1/2
when i > 4log 2. Thus, part (ii) is established.
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To establish part (iii), let us define v = pu(-|2}) to be the distribution conditioned on (2},
and similarly v* = p*( - |Q}L). By the definition of total variation distance we have

YA zM
=¥l = [l = 019y = 55 =1- 55

For part (iii), if Zg < %Z , we deduce from part (i) that

A 1 ZG< 1 £ 1

=iy < 2hf £ =—=—=—="%"< = <.
Z¥ T NeL+1Z ~ rJeL+1 96(eL+1) ~ 96L

Similarly, by part (ii) we have

0" = vy < Z. < 2 = ° < min L,i .
VSN = L1 A8(eL+1) 481 48

Let p = v(- ]Q%O) denote the conditional distribution of v on Q%O. Observe that p does not
depend on the graph G, because we condition on the event that all vertices from G receive the
same spin, and thus the structure of G does not affect the conditional distribution p. In particular,
we have p = v(- ]QIZ\T/IO) =v*(- ]Ql}/{f). Then, Claim 26 implies that

Z}-\?/IO 2N
v —ply = 1= <e”
F

and similarly ||v* — pl|, < e"2. Therefore, we obtain from the triangle inequality that
HV - V*HTV < HV - pHTV + HV* - p”TV < 2672N'

We conclude again from the triangle inequality that

* * * 1 1 —2N
= 1 |y <M= vl + " = vl + v = vl < o6 Tasr T S

For part (iv), if Z¢ > rZ, then by part (i)
zM Z

- >1—"E >1 _4VeL+1-—
I =vlley 21 = 75 214Vl +1 -

4
21—*\/&‘[/—1—1:1—26*4.
T

Hence,
HM - /’L*HTV > H/’L - VHTV - HM* - V*”TV - ||V - V*HTV > 1- ﬂ - @ - 2672N > 1- €,

as claimed. [ |
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Proof of Claim 26  Note first that Z}\T/IO < ZM and from a union bound we get

Mp
1— ZZE/I =Pr (Elv eVg:o) #o(s1)|o(s1) = 0(52)>
< Z Pr(o(v) # o(s1)|o(s1) = o(s2)).

For every o € Q¥ and v € Vg, if 0(v) # o(s1), then the total weight of edges incident to v is at
most (2e71)2N exp(B(N — 1) + h); and if 0(v) = o(s1), then it is at least (251 + 1)2N . Thus, we
get

(2¢"1)*N exp(B(N — 1) + h)
(2¢51)2N exp(B(N — 1) 4 h) + (€201 4 1)2N

2eP1 2N « A
< <e% . 1) exp (BN = 1)+ h)

< exp (=2(81 ~ DN) - exp (B + )N

< ¢ 3N,

Pr(a(v) # a(s1)lo(s1) = o(s2)) <

M
F

> Z}\;{I Z

1 — Ne 3N >1— e 2N The bound for F* is proved analogously. |

where the last inequality follows from the assumption 5, > %(B + h+ 5). Therefore

5. Hardness of testing in bounded degree graphs

In this section, we provide a reduction from identity testing in bounded degree graphs to iden-
tity testing in general graphs. We introduce some convenient notation first. Recall that we use
Mporrs(n, d, 5, h) for the family of Potts models on n-vertex graphs with maximum degree at
most d with the absolute value of the edge and vertex weights bounded by 5 and h, respectively;
see Definition 4. We add “-B1p” to the subscript of this notation to denote the restriction to bipar-
tite graphs; that is, Mporrs-Be (1, d, 3, h) denotes the set of models in Mporrs(n, d, 3, h), where
the underlying graphs is bipartite; note that Mygne-prr = Mpem. Our reduction will also apply to
Ising and Potts models with certain kinds of external fields, and so it is useful then to introduce
the notion of h-vertex-monochromatic external fields.

Definition 27 Consider a Potts model on a graph G = (Vq, E) with external field hg = Vg x[q] —
R. For h € R, we call hg h-vertex-monochromatic if |hg(v,4)| < h forallv € Vg, i € [q] and
{i € lq] : ha(v,i) # 0} <1 forallv e V.

In words, an h-vertex-monochromatic field is one that allows hg to be non-zero (and at most
h) for at most one spin at each vertex. We add “-Mono0” to the subscript of Mporrs to denote
the subfamily of models where the external field is h-vertex-monochromatic; namely, the mod-
els Mporrs-Mono (7, d, B, h) and Mporrs-Bre-Mono (72, d, B, h) respectively denote the subfamilies of
models from Mporrs(n, d, B, h) and Mporrse (1, d, 5, h) with h-vertex-monochromatic fields.
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Theorem 28 Let i,d € NT be such that 3 < d < A'~" for some constant p € (0,1). Suppose
that for some constants 3, h > 0 there is no poly(n) running time c-identity testing algorithm for
Mporrs-Mono (T, 1, B, h). Then there exists a constant ¢ € (0, 1) such that, for any constant ¢ > ¢
there is no poly (1) running time é-identity testing algorithm for Mporrs-Bre-Mono (72, d, B, il) provided
Bd = w(logn) and h < hi~C.

Moreover, our reduction preserves ferromagnetism; that is, the statement remains true if we replace
the family Mporrs-Mono by M;_OTTS—MONO and Mporrs-Br-Mono by M;—OTTS-BIP—MONO'

The proof of this theorem is fleshed out in the following sections. First in Section 5.1, we
introduce our degree reducing gadget, which consists of a random bipartite graph of maximum
degree d. In Section 5.2, we describe the construction of the testing instance (i.e., the reduction)
and the actual proof of Theorem 28 is then finalized in Section 5.3.

5.1 A degree reducing gadget for the Potts model

Suppose b, p, d, diy, dour are positive integers such that b > p, d > 3 and diy + dour = d. Let
B = (Vp, Ep) be the random bipartite graph defined as follows:

1. Set Vg = LU R, where |L| = |R| =band LN R = {);

2. Let P be subset of Vp chosen uniformly at random among all the subsets such that |[PNL| =
[P N R| = p;

3. Let My, ..., Mgy, be diy random perfect matchings between L and R;

4. Let My, ..., Mj be doyr random perfect matchings between L\ P and R\P;

5. Set Ep = (Ufgl M,-) U (Uf;”f M{);
6. Make the graph B simple by replacing multiple edges with single edges.

We use G (b, p, diy, dour) to denote the resulting distribution; that is, B ~ G(b, p, di, doyr). Ver-
tices in P are called ports. Every port has degree at most d;y while every non-port vertex has
degree at most d. The set of ports P is chosen uniformly at random following (Bezakova et al.,
2020), in order to use the expansion properties of B ~ G (b, p, diy, dour) proved there.

To capture the notion of an external configuration for the bipartite graph B, we assume that
B is an induced subgraph of a larger graph B = (Vj, Ep); i.e, Vg C Vg and Ep C Ep. Let
OP = Vg \ Vp. We assume that every vertex in P C Vg is connected to up to doyr vertices in
OP and that there are no edges between Vi \ P and OP in B. Given a real number S > 0, we
consider the Potts model on the graph B with:

1. edge interactions given by g : Ep — R, where max.c g\ g, |88(e)| < Bp and B(e) = BB
for every e € Ep;

2. an external field given by hp : Vg x [g] — R, where there exists k € [g] and h € R such
that hg(v,i) = h-1(i = k) - L(v € Vp).
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We remark that the field hp is h-vertex-monochromatic, but we also require that the spin for which
the field is allowed to be not zero to be the same for all vertices.

Let 0*(B) be the configuration of B = (Vg, Eg) where every vertex in V3 is assigned color
i € [q]. Let {OP = 7} denote the event that the configuration on dP is 7 € [¢]?F. For certain
choices of the random graph parameters we can show that for any 7, with high probability over B,
the Potts configuration of V3 on B conditioned on {OP = 7} will likely be o*(B) for some i € [q].
Theorem 29 Suppose 3 < d = Oy(1),dy = d — 1, doyr = 1 and p = [b*], where a € (0, %] is
a constant independent of b. Then, there exists a constant 6 > 0 such that with probability 1 — o(1)
over the choice of the random graph B the following holds for every configuration T on OP:

‘ ¢2e2h 2b
I E{J}{J(B)} oP =1 z<1_6663d) .
i€lg

Theorem 30 Suppose p = b and 4 + 1290 < d < b'=° for some constant p € (0,1) independent of
b. Then, there exist constants § = §(p) > 0 and 6 = 0(p) € (0,1) such that when d,y = |0d] and
doyr = d — |0d] the following holds for every configuration T on P with probability 1 — o(1) over
the choice of the random graph B:

) g2e2h 2b
0 g]{a(B)} oP =T ><1_6563d> .
i€lg

These theorems are extensions of Theorems 4.1 and 4.2 in (Bezakova et al., 2020), where similar
bounds are established for the case when every edge of B has the same weight 8 < 0; i.e., the
antiferromagnetic setting. In this new setting, there is an external field, every edge in Ep has
weight Sp > 0, and edges between P and OP are allowed to have either negative or positive
weights bounded in absolute value by 8p.

To prove Theorems 29 and 30, we shall use the following facts about the expansion of the
random graph B ~ G (b, p, diy, dour) proved in (Bezakova et al., 2020). For S,T C Vp define

Ep(S,T) ={{u,v} € Ep:ue S,veT}.

Theorem 31 (Theorem 17 (Bezakova et al., 2020)) Suppose p = b and3 < dypy < d < b'™P
where p € (0, 1) is a constant independent of b. Then, with probability 1 — o(1) over the choice of the
random graph B:

min |EB(S, VB\S)| > deN.
SCVg: 1S 300
0<|S|<b
Theorem 32 (Theorem 18 (Bezakova et al., 2020)) Suppose 3 < d = O(1), p = |b*| with
a € (0, i] diy = d—1 and doyr = 1. Then, there exists a constant vy > 0 independent of b such that
with probability 1 — o(1) over the choice of the random graph B:

|[EB(S,VB\S)|

SCVg: |S|
0<]S[<b

> d.
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Theorem 33 (Theorem 19 (Bezakova et al., 2020)) Suppose 3 < d = O(1), p = |b*| with
a € (0, i], dix = d—1 and doyr = 1. Then, there exists a constant v > O independent of b such that
with probability 1 — o(1) over the choice of the random graph B:
E
min 1B (S, Ve\5)] >147~

SCVB: |PﬂS‘
0<|PNS|<|S|<b

Proof of Theorems 29 and 30 Let F(S,T) denote the set of edges between S and T in Ejp.
For ease of notation, we set 5 = Sp. Let P; C 9P be the set of vertices of JP that are assigned
color i € [q] in 7. The weight of o?(B) in B conditional on 7 is then given by

w' == wf(c'(B)) = exp | Bdb + 2bh1(i = k) + Z Bele)]| . (27)
c€E(P,P;)

Let Qg be the set of Potts configurations of the graph B. For o € {2p, let S,(i) C Vp be the set
of vertices that are assigned color i € [g] in 0. We let S, denote the set of maximum cardinality
among S,(1),...,S5,(q). Let Q% C Qp be the set of configurations o such that S, = S,(i).
For o € Qp, we use w” (o) for the weight of the configuration on B that agrees with o on Vg
and with 7 on Vi \ V. By definition, the partition function Z for the conditional distribution
up(- | OP = 7) satisfies

Zg = Z w (o) = Z w’ (o) + z w’ (o). (28)

o€Qp o€Qp:|Se|>b o€Qp:|Ss|<b

We bound each term in the right-hand side of (28) separately. For 0 € Qp, let r(0,i) =
|So(k)|h — 2bh1(i = k). We will show that in the regimes of parameters in Theorems 29 and 30,
with probability 1 — o(1) over the choice of the random graph B ~ G(b, p, dy, dour ), there exists
a constant d > 0 such that for every o € Qp:

e~ 0BdVENSe (DF7(0) when o € QY. |S,| > b; and (29)

w’ w' -
w’ w' - e T(0) when o € QY. |S,| < b. (30)
Before proving these two bounds, we show how to use them to complete the proofs of the theorems.
From (29), we get

> wT(J)ZXq: > wT(a)gzq: S whe AR\ (),
i=1 ge

cE€Qp:|Sy|>b i=1 oeQi:|Sy|>b 0[S, [ >b
Ifi = &,
Z e~ 0BdIVB\So (k)| +r(o.k) — Z e~ 9BdIVB\So (k)| —=h|VB\Ss (r)]|
o€Q:[Se|>b o€Q:So|>b
b 2
2b —(58d-+h) q—1
:Z<x>(q—1)xe oo < (14 T )
=0

36



HARDNESS OF TESTING FOR RBMs AND POTTS MODELS

If i # &,
Z e~ 0BdIVB\So ()| +7(0,)) — Z e~ 9BdIVB\So (i)|+h|Ss (r)|
o€N:S,|>b o€N:|S,|>b
b =z
=33 () () - prve e
=0 y=0 r Y

b x
Z 2b v —58dx el

: <x>(q_2)ewd <1+q—2>
=0

2b
qg—2+eh
<|({l+-—F— .
< (1+ 255

Hence, letting W = "%, w’, we obtain

1\ 2 q—2+ ol 2b
0€Np:|Sy|>b

To bound the second summand from (28), note that from (30) we get

Z w‘r(0.> _ Z Z w (o) < Z Z wt.e—0Bdb+r (o))

0:|Sx|<b i=1 6eQt:|S|<b =1 6eQt:|So|<b
q
< § :wz'eféﬁdb § e\Sg(n)\h
i=1 0€NL:S,|<b

2b 9%
<W- —6ﬁdb§: ah(, _ 1)2b—2
B ‘ =0 z ’ (q )

SW<<q—1+>>

20Bd
Thus,
2b R 2b hy2Y b
Zﬁgw“<1+e55d+h) +(W—w”)<1+655d> +<665d W
2b Ry2Y\ b
g—2+eh (g—1+e")
<w(1+55) (o
Setting x = ngﬁeh, Y= (q‘;ﬁih)g and z = 7[1@26%2;
, w 1 1
i(B OP = - > > > (1—22)%
UB lg}{a( )}‘ T Zﬁ = (1+w)2b+yb = (1+22)2b —( Z)
as claimed.
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It remains for us to establish (29) and (30); we start with (29). For S, T C Vg U 0P, let [S, T]
denote the number of edges between S and 7" in the graph B. Then,

w(@)=exp [BY 150 SD+Y. Y B@+nSwIl|. 6

7=1 7=1 GEE(P]‘,Sa(j)mP)

Now, E;]-:l[SU(j), Sy(j)] < db—[S,, VB \ Sy] and for any i € [q]

> > Be(e)— D Bale) =) > Be(e) — > Bale)

Jj=1e€E(P;,S+(§)NP) e€E(P,P;) Jj#i e€E(P}j,S+(j)NP) e€EE(P\Ss(4),F;)
< B> [S:(j)NP,P;UP).
JFi

Plugging these two bounds into (31) and using (27), we get for o € Q%

w’ (o) < exp {B(db [So, VB \ S| +,BZ )N P,P; U P+ Z B (e +hSU(m)]

j#i e€E(P,P;)

J#i
<w'-exp[~B([Ss, VB \ Ss] — (VB \ S5) N P,OP]) +7(0,7)] . (32)

= e ! B[S, VB \ So] + 8D [S-(j) N P, P;U P + (U,i)]

When 3 < d = Oy(1), p = [b*] with o € (0,3], dw = d — 1 and doyr = 1. Hence,
[VB\Ss;NP,0P] = |(Vi\ Ss)N P|. Theorems 32 and 33 imply that there exists a constant y > 0
such that with probability 1 — o(1) over the choice of the random graph B we have

[Saa VB \ SU]
|VB\50’
[Saa VB \ SU]

|(VB\ S5) N P|

> ~d, and
>147.
Combining these two inequalities we get for § = 1— that

1+'y

[Se, VB \ S5 > [(VB\ So) N P| +6d|VE \ Ssl.
Plugging this bound into (32),
w'(0) < w'-exp [~68d|Vp \ S| +1(0,1)] (33)

and we get (29), since o € Q% and so S, = S, (4).
Under the assumptions in Theorem 30, we can also establish (33) as follows. When pl=r >
d > diy = |0d] > 3, Theorem 31 implies that

pdin L J

(90, Vs \ 5] 2 300
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Moreover,

(VB \ So, OP] < dour|VB \ So| = (d — [6d])|VE \ S|

Hence, taking ¢ = 303?(%&;5’) we get that when d > 4 + —12[?0;
p 6d] pd
——— —(d—16d|) > —. 34
300 (d—10d]) = 600 (34)
Together with (32) this implies
T i pBd|Vp \ Sy !
< . L B e §
w' (o) <w exp[ 600 +7r(o,1)],

which gives (33) for § < p/600, and thus we again obtain (29). (Observe that our choice of
guaranteesd — 1 > dyy = |0d] > 3 foralld > 4.
We establish (30) next. Since

S 18, S ()] = b — 5 3 [84(7), Vi \ S ),

J=1 J=1

and

Z Z /BB(G) - Z < BdOUT|P|
7=1 E(P,P,

=1 ecE(P;},5,(j)NP)

we get from (27) and (31) that for o € ng

BD\TI

w’ (o) <w'-exp |— Z 7), VB \ S5(4)] + Bdour| P| + (o, 1)

q

<w'exp | =B | 5D [9:(1), VE\ Sa ()] = dove|P| | +7(ei)| . (35)

J=1

N —

Since |S,(j)| < bfor j € [g], our assumptions in Theorem 29 combined with Theorem 32 imply
that there exists a constant v > 0 such that with probability 1 —o(1) over the choice of the random
graph B we have for all j € [¢]

[Sa(j)a VB \ Sa(])]
1S5(7)]

Plugging this bound into (35), and since doyr = 1 by assumption, we get

> vd.

w” (o) < w'-exp |— nyd]S )| —|P| | +1(0,1)

= w' - exp [~ (ydb [ P]) + 1(0.9)] < w' - exp[~B3db + r(e,1)].

where the last inequality holds for a suitable constant § > 0 and b sufficiently large since |P| <
Lbl/4J-
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Finally, the assumptions in Theorem 30 and Theorem 31 imply that

1500,V \ S,)] = 2, ) = 200 s ()
Hence, since |P| = b
vy suon |- (53 P )1 (d— 10aD) P | + 700,
< w'-exp [—Bb <P3LO(C)1J —(d— L@dJ)) + r(a,i)}

< w'-exp [—B0db + r(0,1)],

where the last inequality holds for a suitable constant § > 0 for § satisfying (34). This completes
the proofs of the theorem. |

5.2 Testing instance construction

Consider a Potts model on an n-vertex graph G = (V, E¢), with edge interactions 3¢ : Eg — R
and an h-vertex-monochromatic external field h¢ : Vo X [¢] — R; see Definition 27. We show how
to construct a Potts model on a larger graph of maximum degree at most d, with edge interactions
bounded by /3 and an h-vertex-monochromatic external field whose distribution captures that of
the model (G, B, he). We can think of d, B and h as the parameters for our construction.

We use an instance of the random bipartite graph G (b, p, dix, doyr) from Section 5.1 as a gadget
to define a simple graph Gt = (Vi5,., Eg,. ), where I' denotes the set parameters {b, p, diy, doyr }-
The graph G is constructed as follows:

1. Generate an instance B = (Vp, Eg) of the random graph model G (b, p, diy, dour);
2. Replace every vertex v of G by a copy B, = (L, U Ry, Ep,) of the generated instance B;
3. For every edge ¢ = {v,u} € Eg, let {(e) = [|Ba(e)|/B] and choose dour - [£(e)/d2,.]

ouT
unused ports in Ly, doyr - [£(€) /d%,,] unused ports in R, and connect them with any simple

bipartite graph of maximum degree at most doyr and exactly £(e) edges;

4. Similarly, for every edge e = {v,u} € Eg, choose doyr - [£(€)/d?,,] unused ports in R,

and doyy - [£(e) /d%,,] unused ports in L,, and connect them with any simple bipartite graph
of maximum degree at most doyr and exactly £(e) edges;

Let dg be the maximum degree of the graph GG. Our construction requires:

dIN + dOUT =d < b7 (36)
t(e)
de - (dOUT : gel%}é ’VngT-‘) <p. 37)

Observe also that there is always a simple bipartite graph of maximum degree at most doyr and
exactly /(e) edges for steps 3 and 4; take, for example, |/(e)/d>,. | disjoint copies of the complete
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bipartite graph with dqyr vertices on each side, and add one additional bipartite graph with dgyr
vertices on each side for the remaining edges when £(e)/d? . is not an integer.

We consider the Potts model on the graph (V,., Eq,.) with edge weights ¢ : Eg. — Rand
external field h¢y. : Vo X [q] — R defined as follows:

1. each edge with both of its endpoints in the same gadget is assigned weight Sp := B;

2. if the edge connects the gadgets corresponding to u # v € Vg, then it is assigned weight
Bc({uv})

20({u,v}) -

3. for each vertex v € Vi, every vertex u in the gadget B, is assigned the field hq (u, ) =
he(v,i)/2b fori € [q].

Note that if hg is h-vertex-monochromatic, then hq,. is (h/2b)-vertex-monochromatic, and that
in the gadget of every vertex only one spin may receive a non-zero weight; in particular, if h¢ is
h-vertex-monochromatic, then the field in every gadget would satisfy the conditions Section 5.1.
For a configuration o on Gr, we say that the gadget B, = (V,, Ep,) is in the i-th phase if
all the vertices in Vp, are assigned spin ¢ € {1,...,q}. Let Qg00d be the set of configurations
of Gr where the gadget of every vertex is in a phase (not necessarily the same). The set of all
Potts configurations of GT is denoted by 2. We use Z¢,. for the partition function of the Potts
model on Gt and Zg,. (A) for its restriction to a subset of configurations A C ). That is, Zg, =

Y e War (o) and Zg. (A) = > oA war (o) where

war(o) =exp | Y Bor({u,0}) L(o(u) =0(v) + Y hep(v,0(v))

{uv}eEqy veVGL

is the weight of the configuration o.

For a configuration o € €004, let 0 be the corresponding configuration on G' where o¢(v)
is set to the phase of gadget B, in 0. Let g and . denote the Gibbs distribution for the Potts
models we just defined on G and Gr. From our construction, we can deduce the following fact.

Lemma 34 For any graph G, we have i, (0 | 0 € Qgo0d) = pa(0q)-

Proof Let () C Eg,. be the edges of G that connect vertices between different gadgets. Then, for
oS ngod,

Y. Ber({wvhil(o(w) =o(@) = Y Bl v'Hi(oc() = oa(v)),

{u,v}eqQ {u'W'}€Eqg
> Bar({u,v})1(o(u) = o(v)) = exp (Bpdibn) , and

{uv}eEq\Q

> hap(w,0w) = > haWo6(v)).

veVar v'eVg
Thus, wa, (0) = wa (o) exp (Bpdibn), and

weyp (0) wg(og) exp (Bpdindn)
0 = L = = .
/’LGF (U ‘ g e good) ZGF (ngod) ZG eXp (,BBdIan) MG(O—G)
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Lemma 35 Let (G, B¢, hg) and (G*, Bg+, hg+) be two Potts on the n-vertex graphs G and G*,
respectively. Let ' = (b, p, dix, dour) be such that conditions (36) and (37) are satisfied. Suppose that
16 (Qgood) > 1 — 6 and pigx (Qgood) > 1 — 6 for some 6 € (0,1). Then,

lue — perllpy — 26 < HMGF — ey, < llhe = nee llry +20.

Proof From the assumptions that yig. (go0d) > 1 — 6 and e (Qgood) > 1 — 0 we get
[cr — e ([ Qgood) |y = 1 — e (Qgood) < 6, and
HMG; e ngod)HTV =1 — picz. (Qgood) < 6.

Also, from Lemma 34 we have HMGF(- | Qgood) — paz (| Rgood) H = ||jue — pe+ ||y - Therefore,
TV

it follows from the triangle inequality that

HMGF — ey, S luer = per (1 Q00d) 1y + llue = Hee llre + HMG; — paa(-| ngod)H

TV

S H/’LG — HG* ||TV + 25

The lower bound is derived in similar fashion:

i = naz | = e = 6y = e = e -1 Quoo)ly = ||z = 16 1 Ru000)|

> ||lpa — e |y — 20,

as claimed. [ |

We show next that if we have a sampling oracle for yg, then we can generate approximate
samples from pi,. efficiently.

Lemma 36 Consider the Potts model on an n-vertex graph G and letT' = (b, p, dix, dour) be such
that conditions (36) and (37) are satisfied. Suppose that pg.(Qgo0d) > 1 — 0 for some § € (0,1).
Then, given a sampling oracle for the distribution ug, there exists a sampling algorithm with running
time poly(n, b) such that the distribution ug;¢ of its output satisfies:

e = ity < 4.
Proof The algorithm first draws a sample o from pig using the sampling oracle. It then constructs
o € Qg by assigning the spin o (v) to every vertex in the gadget corresponding to v for each
vertex v of G. This can be done in O(bn) time. From Lemma 34 we see that the sampling algorithm
in fact generates a sample from the distribution . (- | Qgo0d), and so

ALG

H/‘LGF e HTV = ||/‘LGF - :UGF(' | ngod)HTV =1- MGF(ngod) <.
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5.3 Proof of Theorem 28
We are now ready to prove Theorem 28.

Proof of Theorem 28 We show that if there is an identity testing algorithm for the family
Mporrs-Bre-Mono (7, d, B, ib) with running time 7'(n) = poly(n) and sample complexity L(n) =
poly(n), henceforth called the TESTER, then it can be used to solve the the identity testing problem
for Mporrs-Mono (7, 1, 3, h) in poly(n) time; the parameters n, 8 and h depend on 7, d, B and h
and will be specified next.

Let us consider first the case when 3 < d = O(1). In this case, we choose n such that . = on,
B = Band h = 2bh. Our identity testing algorithm for the family Mporrs-Mono (72, 72, 3, h) con-
structs the graph G and the Potts model on G from Section 5.2 using I' = (n°, [n®/*],d —1,1)
as the parameters for the random bipartite graph. This choice of parameters ensures that condi-
tions (36) and (37) are satisfied. Note also GT is bipartite by construction and that |hg (u, )| <
h/2b = O(logn) for all u € Vg, and i € [¢].

Let (G, Bg, hg) be a Potts model from Mporrs-Mono(72, 1, B, h), and suppose that there is a
hidden model (G*, B+, hg+) from Mporrs-Mono (72, 7, B, ) from which we are given samples. We
want to use the TESTER to distinguish with probability at least 3/4 between the cases ug = pg=
and [|pGg — po+lly > 1 — ¢

Suppose that o is sampled from p,.. Since the field hg is h-vertex-monochromatic by as-
sumption, it follows from our construction that for each gadget there exists x € [¢] such that for
each vertex v in the gadget h (v, j) = h- 1(j = x). Hence, Theorem 29 implies that with proba-
bility 1 — o(1) over the choice of the random gadget B, if the configuration in the gadget B, for
a vertex v € Vg is re-sampled, conditional on the configuration of ¢ outside of B,,, then the new
configuration in B,, will be in a phase with probability at least

o\ 2b
) q2€2h -1 2q2b
~ ¢0'Brd = ¢oBpd

for suitable constants 8,8 > 0, since h = O(logn) and 8d = w(logn). A union bound then

implies that after re-sampling the configuration in every gadget one by one, the resulting config-

2
uration o’ is in the set 4,0q With probability 1 — séqﬁ ZZ. Thus,

¢*n
par (Qgood) > 1 — S0Bpd” (38)

We also consider the Potts model on G}, obtained from G* using the same random bipartite graph
B. Note that we can not actually construct G}, since we only have sample access to (G*, Bg+, hg+),
but we can similarly deduce that

¢
HGr (ngod) >1- 20B5d” (39)
Since we are given samples from pg+, (39) and Lemma 36 imply that we can generate L samples
S ={o01,...,0L} from a distribution /‘?}Lf in poly(n) time such that
2 A
_ALG an

43



BrANCA ET AL.

Our testing algorithm inputs the Potts model on Gt and the L samples S to the TESTER and
outputs the TESTER’s output. Recall that the TESTER returns YEs if it regards the samples in S as
samples from pq.; it returns No if it regards them to be from some other distribution v such that
e = Vllpy > 1—c.

If pe = pe-, then pg. = pey. Hence, (40) implies that:

¢*n
v~ edbBd’

ALG
pr— G* - *
TV H,U, r MGF

|uce - wtis

Let (uar)®Y, (pax)®" and ( ey Y@L be the product distributions corresponding to L independent

samples from p., piy and ,uAGLFG respectively. We have

¢*nlL

ALG — A
v S et = On(L);

)&* AL*G>®LH <L HMGF — HG
TV

- (MGF

H (IU’GF

since L = poly(#) and Spd = 3d = w(log ). Hence, using the optimal coupling of the distribu-
tions (ugf)@m and (ugy )®F as in (19), we obtain

1
Pr[TesTER outputs No given samples S where S ~ (u¢< )®H < it 0i(1) <

W=

Hence, the TESTER returns YEs with probability at least 2/3 in this case.
If |

pa — pa |l > 1 —¢€,(38), (39) and Lemma 35 imply

2¢°1
w L TET o =

H,UGF e 1 —e—oa(1), (41)

because Bpd = Bd = w(logn). Moreover, from (40) we get

@*nL

ALG —
v~ edfrd oa(1)-

<LH .
I e ek

)®L _ ALE)@LH

(HGF

H en

Thus, analogously to (19) (i.e., using the optimal coupling between (,ufgf)(@L and (uc:)®), we
get

W =

Pr [TESTER outputs YEs given samples S where S ~ (u‘é}f)®L <

Hence, the TESTER returns No with probability at least 2/3.

The case when d is such that d < 7'~ but d = d(n) — oo follows in similar fashion.
In particular, we can take b = [n*/?~!| and T = {b,b, |0d] ,d — |0d]}, where § = 0(p) is a
suitable constant. That is, p = b, diy = |0d], doyr = d — |0d]| and 1 = @(n4/ P). This choice
parameters also satisfies conditions (36) and (37). Hence, (38) and (39) can be deduced similarly
using Theorem 30 instead. The rest of the proof remains unchanged for this case. |
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6. Hardness of the decision version of approximate counting

In this section we give a general reduction from the approximate counting problem to the decision

version of the problem. In particular, we prove Theorem 7 from Section 2.1. We state our results

for the models of interest in this paper, but they extend straightforwardly to other spin systems.
We restate first the definition of the decision version of r-approximate counting.

Definition 37 (Decision r-approximate counting) Given a Potts model (G,Bg,hg),
an approximation ratior > 1 and an input Z € R, distinguish with probability at least
5/8 between the following two cases:

1 .
() ZG o he < ;Z (i) Zg go he = T2

Recall also that a fully polynomial-time randomized approximation scheme (FPRAS) for an op-
timization problem with solutions OPT is a randomized algorithm that for any p > 0 outputs a
solution Z satisfying e ” OPT < Z < e? OPT with probability at least 3/4 and has running time
poly(n, 1/p) where n is the size of the input. To prove Theorem 7, we introduce an intermediate
problem referred as r-approximate counting,.

Definition 38 (r-approximate counting) Given a Potts model (G,Bq,h) and an ap-
proximation ratior > 1, output a real number Z satisfying the following with probability
at least 3 /4:

1 X
; ZG:ﬁGJZ < Z < rZG:ﬁGJL'

Notice that an FPRAS for the counting problem is equivalent to an algorithm for the e”-
approximate counting problem with running time poly(n, 1/p) for all p > 0. We first show the
equivalence of r-approximate counting and its decision version.

Lemma 39 Letn,d > 1 be integers and let 3,h > 0 be real numbers. Assume thatr = r(n) > 1
is the approximation ratio. Then, given a polynomial-time algorithm for the decision version of r-
approximate counting for a family of Potts models M, where

M € { Mg, d, B, h), Mo (n, d, B, h), M (n,d, B, h)},

PorTs
there is also a polynomial-time algorithm for 2r-approximate counting for M.

Proof Consider a Potts model from M with the underlying graph G. We note first that using a
standard argument we can boost the success probability of the algorithm for the decision version
of r-approximate counting in polynomial time. More precisely, for a given Z > 0 we run the
algorithm for

k = 80 [log(8log(4cin® + 4logr))| + 1
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times and output the majority answer. Let X; be the indicator random variable of the event that
the i-th answer is correct and let X = Zle X;. Then by our assumption we have E[X] > 2k.
The Chernoff bound then implies that the majority answer is incorrect with probability at most

k 4 E[X] k 1
< - 1< < - < —— ] < —— | < .
br (X = 2> sbr <X =5 [X]> = eXp( 50 > = eXp( 80> = Slog(4cin? + 4logr)

Using the boosted version of the decision r-approximate counting algorithm, henceforth call
BOOSTEDDECIDER, we use binary search procedure to give an r-approximate counting algorithm.
First note that there exists a constant ¢; := ¢1(q, 5, h) > 0 such that

exp (fclnz) < Zg < exp (clnz) .

Then, let /g = %exp(—can) and ug = rexp(cin?). Fori > 1,let ¢; = \/f;_1u;_1 and run
the testing algorithm with Z = ¢;. If BOosTEDDECIDER outputs Zg < %Z then we let (¢;,u;) =
(¢i—1,¢;), and if BOOSTEDDECIDER outputs Zg >rZ then we let (¢;,u;) = (¢, ui—1). We repeat
this process until u;/¢; < 2, and then output Z = /¢;. Observe that log u; — log ¢; decreases by a
factor 2 in each iteration. Thus, the number of times that outputs is called is at most

1 —log ¢ 2c1n? + 21
gy (21 ~E0 ) —tog, (24X 2ET) < ptogacan? + 1og),

Assume that BoosTEDDECIDER never makes a mistake in all these calls; this happens with prob-
ability at least 3/4 by a union bound. Then, for each j > 0, the algorithm outputs Zg < %Z for

7 = uj and Zg > r7 for Z = ¢;. This implies that
1
;ﬁj < Zag < TUj
for all j > 0. Hence, the final output satisfies
1
—l; < Zg < ru; <24
r
with probability at least 3/4. The running time of the algorithm is polynomial in n, assuming that

r < exp(cin?). If we have r > exp(cin?) instead, then the algorithm can just output 1, which is
already a r-approximation of Zg. |

We show next that a polynomial-time n°-approximate counting algorithm for a family of Potts
models on n-vertex graphs can be turned into an FPRAS.

Lemma 40 Let n,d > 1 be integers and let 3,h > 0 be real numbers. For any ¢ > 0, given a
polynomial-time n°-approximate counting algorithm for a family of Potts models M, where

M E {M;:)TTS(TL? d? 57 h’)? MI;ING(”’ d) 67 h‘)’ M;’S_ING(TL7 d? B? h)})

there is an FPRAS for the counting problem for M.
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Proof Suppose that there is a polynomial-time n®-approximate counting algorithm for M where
¢ > 0 is a constant. Consider a Potts model from M defined on a graph G of n vertices. We will
give an FPRAS for its partition function. For an arbitrary p > 0, let k be the smallest integer such
that & > (clog(kn))/p. Notice that k& < poly(logn,1/p). Define a Potts model that is a disjoint
union of k copies of the Potts model on G. That is, the underlying graph G’ consists of k copies of
G, and the weights for each copy are the same as the original model. It follows immediately that
Ze = (Zg)F. We run the (kn)-approximate counting algorithm for the Potts model on G’ and
assume the output is Z. Then with probability at least 3/4 we have

(kn)~Zg < Z < (kn)*Ze.
Assuming this holds, then we get
e PZq < (kn)"*Zg < ZV* < (kn)/*Zg < e Zg

Thus, ZY/* is a eP-approximation of Zg with probability at least 3/4 and can be computed in
poly(kn) = poly(n, 1/p) time. [ ]

Proof of Theorem 7 Follows immediately from Lemmas 39 and 40. |

7. Concluding remarks

We have presented a fairly general method to establish the hardness of identity testing from the
hardness of approximate counting. Our technology, however, currently requires insights about
each specific model. We conjecture that this is not necessary, and that in fact when approximate
counting and structure learning are both hard, the identity testing problem is also hard.
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Appendix A. The ferromagnetic mean-field Potts model: proofs

In this appendix we prove our detailed results concerning the phase transitions of the ferromag-
netic mean-field Potts models (i.e., Lemmas 9 and 10). As mentioned, several variants of these
results have appeared before, e.g., (Bollobas et al., 1996; Luczak and Luczak, 2006; Goldberg and
Jerrum, 2012; Cuff et al., 2012; Gheissari et al., 2018; Galanis et al., 2015; Blanca and Sinclair, 2015),
but we need slightly more precise results.

Proof of Lemma 9 Let us introduce some convenient notation first. For an integer m > 1, let

q
A:{(al,...,aq)ERq:aiZO, ZO&Z'ZI, aimeN},

=1
D = Ballo(u,m ™) = {a € At a —ul, <m /4,
q q
31 = U Ballofa®,m ™) = | {a € 4 fla— ™) <m~1},
=1 i=1
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and S = A\(D U M). Setting 35 = Sz - m, we have

B < (o
ZEOEDY (i " ) o0 ( i - <a2m)) | 2
ac

=1

and similarly for ZM(8y) and Z3(8y) with the summation over M and S respectively.
Using standard bounds for the multinomial coefficient (see, e.g., Lemma 2.2 in Csiszar and
Shields, 2004), we have for every o € A

ieH(a)m < < m > < 6H(oz)m7 (43)
‘A| Qaim -+ Qgm
where H(«a) = le —a; In «;. Hence, for 8 € R and o € RY, we introduce:
B

®s(a) = H(a) + 5 [lal;.

2
The function ® 3 have the following properties, which we prove later and will be useful throughout
the proof.

Fact41 (i) Fora € A and By, 2 > 0, we have |, (a) — ®p,(a)| < 181 — Bal.

(ii) When By = B, the function ®g, has exactly g + 1 global maxima in A consisting of one
disordered phase u = (1/q,...,1/q) and q majority phases o' with i € [q], where the i-th
coordinate of o™ is strictly larger than 1/q.

(iii) There exist constants €, ¢ > 0 such that ®y_ () is c-strongly concave in the balls Ballo (u, €)
and Ballo (o™, €) fori € [q]. That is, Voo € A such that |l — ul| , < € or||a — a*’iHOO <e
for some i € [q], we have V2®y_(a) < —c - I, where I is the ¢ X q identity matrix.

Hence, (43) and part (ii) of this fact imply

eﬁé’H/?

Zij(Bu) 2 3 = exp (@5, ()m]
acD
—Br /2 .
> e (1 - ol X expfom, )
ae
e Bu /2 d
> e <—2m) exp [, (1)) (44)
Similarly, we deduce that
—Bu /2 / q )
2(0m) 2 e (=G Vi) o ewp e
qe*BH/2 c/
= e (—2m) exp (@, (u)m)] (45)
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and

Zi(6) < Pl exp (Lo — Bl ) Y exp o, ()
acs

< e—BH/2|A’ exp <C2/\/TH> exp [(mag{ Dy, (Oz)) TTL:| . (46)

acsS

Let § = Sl U 3'2 where

q
S = A\ (Balloo(u,s) ulY Ballm(a*’i,6)>
=1

and
q
Sy = (Balloo(u,e) ul Balloo(a*’i,s)> \(D U M).
i=1
Since the function @, is continuous, and u, ™!, ..., a*9 are its only global maxima, for constant

e > 0 there exists constant 6 = §(¢) > 0 such that for all @ € S} we have
Dy, () < Doy, (u) — 0.

By part (iii) of Fact 41, ®g_(cv) is c-strongly concave in Sy; thus, for all a € Bally (u,)\D we
have

Py, () < Doy, () + Vo3, (u)(@ — ) — ¢ la —u®

1/2

)
= @y, (u) — ¢l —ul?
q)%o(u) - cmi Y

and similarly for all a € Bally, (a*?, )\ M we have

Doy, () < B, (@) + Vg, (™) (v — u) — ¢ | — a*i|)?

=Py (u) —c Ha - a*’iH2
< By (u) — em ™2,

Therefore,

max $p_ (o) < Bog, (u) — e /2,

acsS
Plugging this bound into (46) and combining it with (44), we get

Ziom) < ¢ P2\ exp (i ) exp (~evin) exp s, ()

< |A]? exp (—(c—)vm) Z5(By).
Combining with (45) instead we obtain
z3 < “47'2 —(c—¢ zM
7 (Bu) < . exp (—(c—d)vm) Zy (Bu).
The results then follows by picking ¢’ = ¢/2. [ ]

We wrap up the proof of Lemma 9 by establishing the facts used of the function in ®g .
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~

Proof of Fact 41  Part (i) follows from the definition of the function ®g, since when o € A,
llol1 = 1, and so ||a]|2 < 1.

For part (ii), suppose a = (a1, ..., aq) is a local maxima for ®g_ (o). Using the method of
Lagrange multipliers, we obtain that o must satisfy:

Boa; — log(a;) =1 =X\, i € g

The function B,z — log x is decreasing for z < 1/, and increasing for x > 1/8,,. This implies
that for any A there are at most 2 solutions to ‘B,z — logz = 1 — A and hence there are at most
two different values of «;. If there is only one value of «; then o; = 1/q for i € [g]. If there are
two values of «; then one of them is in (0,1/8,) and one of them is in (1/%8,, 1).

Now the Hessian of &g, is

V20, (a) = —diag(ay ', ..., ;") + Bol, (47)

and since « is a maxima for ®g_, then V2®g_(a) must be negative definite in the subspace of
vectors perpendicular to 1 (since the sum of «; is constrained to be 1 the perturbations must
maintain this constraint). If there were at least two indexes (w.l.o.g., make the indexes 1 and 2)
such that oy = ag > 1/B, then the Hessian is not negative definite in the subspace of vectors
perpendicular to 1 (e.g., take the vector x = (1,—1,0,...,0); then 27 V2dg_(a)z = 2(B, —
1/ay) > 0). Thus a (constrained) maxima « of @y, will either have all o; equal to 1/g, or exactly
q — 1 of the «;’s will be the same.

Hence, the maxima of ®g, will coincide with those of a one-dimensional version of it, denoted
by Wy, previously studied in (Galanis et al., 2015). The function ¥; : [0,1] — R is define as
Uy (z) = Py, (z,y,...,y), where y = (ll_f”f. The function ¥; has 2 global maxima (see Lemma 2
in (Galanis et al., 2015)) and hence ®g, has exactly ¢ + 1 global maxima (one of the maxima of
¥, corresponds to ¢ maxima of ®g_ ). Finally, observe that B, < ¢, and so the coordinate of the
maxima of ®g_ in (1/%B,,1) is greater than 1/¢.

For part (iii), note that the Hessian in equation (47) is continuous around (o, ..., aq) and
hence it is negative definite in a sufficiently small ball around u and a**. |

We will provide next the proof of Lemma 10, in which we will use the following bound on the
Z3 (%Bo)
75 (%)

ratio , which is derived similarly to Lemma 9.

1 Zy(Bo/m) q2
Fact 42 A < 0@ m) < q|A|*.

Proof From (42) and (43), we obtain

2880/ = 3 (o ™ o) (i > <a;m>>

aeD

<) e B2 exp Doy, (a)m]
aeD
< |Ale™®/% exp [@os, (u)m] .
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Similarly we have

q
ZII\{/I(SBO/m) < |A|e_%"/2 Zexp [@Bo(a*”)m]
i=1
< q|Ale”P? exp [Bep, (u)m] .

Combining our upper and lower bounds on Z2(B,/m) and Z2(%B,/m) we obtain the result. B

We are now ready to proof Lemma 10.

Proof of Lemma 10  For ease of notation let f(3) = g’g Egi . We show that for suitable constants
c,d >0, for B, = B,/m — ¢m~>3/? we have

f(Br) < exp(—cv/m), (48)
and for Sy = B,/m + ¢m 3/ we have

f(Bu) = exp(ev/m). (49)

Since |[M| = O(m?) and |D| = O(m9), we can compute ZY¥(B) and Z2(B) for any 8 €
(81, Bu] in poly(m) time by enumerating over elements of M and D, respectively. (Note that
this involves computing multinomial coefficients, which can be done for example by express-
ing them as product of ¢ binomial coefficients; see (42).) Then, given (48) and (49), for any
R € [exp(—cy/m), exp(cy/m)] and small enough & > 0, we can use the bisection method with
[BL, Bu] as the starting interval to find a 8 € [51,, Sy such that

fB) SRS f(B+E) < f(x) +£-60€%§>§3U]f (Bo)

in time polynomial in m and log £ 1. Since f/(y) = exp(O(m)) for By € [BL, Bu], we can choose
¢ = exp(—0©(m)) so that f(B) < R < f(B) + IR as desired.
To establish (48) and (49) we consider the function

9(B) = log Z31 (B) — log Zg(B).

Note that

0 BAN) HZRO) 0
op Z3 (B) Zp(B)
By a direct (and standard) calculation, we can check that the first term in the right-hand-side
expression in (50) corresponds to the expected number of monochromatic edges in a random con-
figuration o of the model conditioned on o being in the set M. Therefore,

0 7M () Ao o34 A=&)m _3/4
984 H am—m -
Z%(@Z< 2 >+(“’_1)< i > o

55



BrANCA ET AL.

where & is the constant in the definition of the set M. Similarly, the second term in the right-
hand-side of (50) is the expected number of monochromatic edges in a random configuration o of
the model conditioned on ¢ being in the set D and so

55 Z0(B) _ (m/q+m?
p“H q
Z8(3) ( 2 >

Combining (51) and (52) and using the fact that & > 1/¢, we obtain for a suitable constant p > 0
and sufficiently large m that for any 5 € [0, fu]

(52)

0
%gw > pm?. (53)

Since |A| = ©(m9), Fact 42 implies that |g(B,/m)| = ©(logm). Hence, by the mean value
theorem

g(/BL) < g(%o/m) - pm2“Bo/m - BL‘ < _Cm

and similarly ¢g(87) > cy/m for a suitable constant ¢ > 0. Since g = log f, (48) and (49) follow
and the proof is complete. |
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