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Abstract

Stochastic gradient descent ascent (SGDA) and its
variants have been the workhorse for solving min-
imax problems. However, in contrast to the well-
studied stochastic gradient descent (SGD) with
differential privacy (DP) constraints, there is lit-
tle work on understanding the generalization (util-
ity) of SGDA with DP constraints. In this paper,
we use the algorithmic stability approach to es-
tablish the generalization (utility) of DP-SGDA
in different settings. In particular, for the convex-
concave setting, we prove that the DP-SGDA can
achieve an optimal utility rate in terms of the weak
primal-dual population risk in both smooth and
non-smooth cases. To our best knowledge, this is
the first-ever-known result for DP-SGDA in the
non-smooth case. We further provide its utility
analysis in the nonconvex-strongly-concave set-
ting which is the first-ever-known result in terms
of the primal population risk. The convergence and
generalization results for this nonconvex setting
are new even in the non-private setting. Finally, nu-
merical experiments are conducted to demonstrate
the effectiveness of DP-SGDA for both convex and
nonconvex cases.

1 INTRODUCTION

In recent years, there is a growing interest on studying the
minimax problems which involve both minimization over
the primal variable w and maximization over the dual vari-
able v. Notable examples include generative adversarial
networks (GANs) [Goodfellow et al., 2014, Arjovsky et al.,
2017], AUC maximization [Gao et al., 2013, Ying et al.,
2016, Natole et al., 2018, Liu et al., 2020, Zhao et al., 2011],
robust learning [Audibert and Catoni, 2011, Xu et al., 2009],
adversarial training [Sinha et al., 2017], algorithmic fairness

[Mohri et al., 2019, Li et al., 2019, Wang et al., 2020b, Mar-
tinez et al., 2020, Diana et al., 2021], and Markov Decision
Process (MDP) [Puterman, 2014, Wang, 2017]. Details of
these motivating examples are given in Appendix A.

The minimax problem can be formulated as

min
w∈W

max
v∈V

{
F (w,v) := Ez∼D[f(w,v; z)]

}
, (1)

where W ⊆ Rd1 and V ⊆ Rd2 are two nonempty closed
and convex domains and z is a random variable from some
distribution D taking values in Z . Since the distribution
D is usually unknown and one has access only to an i.i.d.
training dataset S = {z1, · · · , zn}, one resorts to solving
its empirical minimax problem

min
w∈W

max
v∈V

{
FS(w,v) :=

1

n

n∑
i=1

f(w,v; zi)
}
.

One popular optimization algorithm for solving this prob-
lem is SGDA. Specifically, at iteration t, upon receiving a
random data point or mini-batch from S, it performs gra-
dient descent over w with the stepsize ηw,t and gradient
ascent over v with the stepsize ηv,t.

As SGDA is conceptually simple and easy to implement,
it is widely deployed in solving minimax problems, e.g.,
GANs [Goodfellow et al., 2014], adversarial learning [Sinha
et al., 2017], and AUC maximization [Ying et al., 2016].
Its local convergence analysis for nonconvex-(strongly)-
concave problems was established in Lin et al. [2020]. Other
variants of SGDA were proposed and studied in Luo et al.
[2020], Nouiehed et al. [2019], Rafique et al. [2021], Yan
et al. [2020].

On another front, collected data often contain sensitive in-
formation such as individual records from hospitals, online
behavior from social media, and genomic data from can-
cer diagnosis. Differential privacy [Dwork et al., 2014] has
emerged as a well-accepted mathematical definition of pri-
vacy which ensures that an attacker gets roughly the same
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information from the dataset regardless of whether an indi-
vidual is present or not. Its related technologies have been
adopted by Google [Erlingsson et al., 2014], Apple [Ding
et al., 2017], and the US Census Bureau [Abowd, 2016].
While SGD and SGDA have become the workhorse behind
the remarkable progress of machine learning and AI, it is of
pivotal importance for developing their counterparts with
DP constraints.

Many studies analyze the privacy and utility of DP-SGD for
the ERM problem that only involves the minimization over
w [Bassily et al., 2019, 2020, Feldman et al., 2020, Song
et al., 2013, Wang et al., 2021a, 2020a, 2019b, Wu et al.,
2017, Zhou et al., 2020]. In contrast, there is little work on
analysing the utility of minimax optimization algorithms
with DP constraints except the recent work of Boob and
Guzmán [2021]. However, Boob and Guzmán [2021] focus
on the noisy stochastic extragradient method on convex-
concave and smooth settings.

Studying the computational and statistical behavior of DP-
SGDA is fundamental towards the understanding of stochas-
tic optimization algorithm for minimax problem under the
differential privacy constraint. In this paper, we propose
novel convergence and stability analysis to establish the util-
ity of DP-SGDA in empirical saddle point and population
forms such as the weak primal-dual population risk and
the primal population risk. We collect in Table 1 the nota-
tions and results of performance measures in this paper. In
particular, our contributions can be summarized as follows.

• We analyze the privacy and utility of DP-SGDA under
the convex-concave setting in terms of the weak primal-
dual population risk, i.e., maxv∈V E

[
F (Aw(S),v)

]
−

minw∈W E
[
F (w, Av(S))

]
, where (Aw(S),Av(S)) is the

output of DP-SGDA. Specifically, we show that it can
guarantee (ϵ, δ)-DP and achieve the optimal rate O

(
1√
n
+

√
d log(1/δ)

nϵ

)
for smooth and nonsmooth cases where d =

max{d1, d2}. To our best knowledge, this is the first-ever
known result for DP-SGDA in the nonsmooth case.

• We further study the utility of DP-SGDA in the nonconvex-
strongly-concave case in terms of the primal population
risk, i.e., R(Aw(S)) = maxv∈V E

[
F (Aw(S),v)

]
. In par-

ticular, under the Polyak-Łojasiewicz (PL) condition of
FS , we prove that the excess primal population risk, i.e.,
R(Aw(S)) − minw∈W R(w), enjoys the rate O

(
1

n1/3 +
√

d log(1/δ)

n5/6ϵ

)
while guaranteeing (ϵ, δ)-DP. The key tech-

niques involve the convergence analysis of RS(Aw(S))−
minw RS(w) and the stability analysis for Aw(S) which
are of interest in their own rights. As far as we are aware,
these results are the first ones known for DP-SGDA in the
nonconvex setting.

• We perform numerical experiments on three benchmark

datasets which validate the effectiveness of DP-SGDA for
both convex and non-convex cases.

1.1 MOTIVATING EXAMPLES

We give two examples of minimax problems under the DP
constraint. See Appendix A for more examples and details.

AUC Maximization. Area Under the ROC Curve (AUC) is
a widely used measure for binary classification. It has been
shown optimizing AUC is equivalent to a minimax problem
once auxiliary variables a, b, v ∈ R are introduced [Ying
et al., 2016].

min
θ,a,b

max
v

{
F (θ, a, b, v) = Ez[f(θ, a, b, v; z)]

}
.

Differential privacy has been applied to learn private classi-
fier by optimizing AUC [Wang et al., 2021b].

Generative Adversarial Networks. Originally proposed in
Goodfellow et al. [2014], GAN in general can be written as
a minimax problem between a generator network Gv and a
discriminator network Dw

min
w

max
v

E[f(w,v; z, ξ)]=Ez[Dw(z)]−Eξ[Dw(Gv(ξ))].

DP-SGDA and its variants were employed to train differen-
tial private GANs by Xie et al. [2018]. Recently differential
privacy has successfully applied to private data generation
by GAN framework [Jordon et al., 2018, Beaulieu-Jones
et al., 2019].

1.2 RELATED WORK

Below we briefly discuss some related work.

Convergence analysis for SGDA. It is a classical result
that SGDA can achieve a convergence rate O(1/

√
T ) in

the convex and concave case [Nedić and Ozdaglar, 2009,
Nemirovski et al., 2009] where T is the number of iterations.
For the nonconvex-(strongly)-concave case, the work of Lin
et al. [2020] shows the local convergence of SGDA if the
stepsizes ηw,t and ηv,t are chosen to be appropriately differ-
ent. Other important studies consider variants of SGDA and
prove their local convergence for the nonconvex case. Such
algorithms include nested algorithms [Rafique et al., 2021]
for weakly-convex-weakly-concave problems, multi-step
GDA [Nouiehed et al., 2019] under the one-sided PL con-
dition, epoch-wise SGDA [Yan et al., 2020], and stochastic
recursive SGDA [Luo et al., 2020] for nonconvex-strongly-
concave problems, to mention but a few.

Stability and generalization of non-private SGD and
SGDA. The studies of [Hardt et al., 2016, Charles and
Papailiopoulos, 2018, Kuzborskij and Lampert, 2018] use
uniform stability Bousquet and Elisseeff [2002] to derive
the generalization of non-private SGD for the convex and
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Algorithm Assumption Measure Rate Complexity Simplicity

NSEG C-C, Lip, S △w(Aw(S), Av(S)) O
(

1√
n
+

√
d log(1/δ)

nϵ

)
O(n2) Single-loop

NISPP C-C, Lip, S △w(Aw(S), Av(S)) O
(

1√
n
+

√
d log(1/δ)

nϵ

)
O(n3/2 log(n)) Double-loop

DP-SGDA
(Ours)

C-C, Lip, S △w(Aw(S), Av(S)) O
(

1√
n
+

√
d log(1/δ)

nϵ

)
O(n3/2)

Single-loop
C-C, Lip △w(Aw(S), Av(S)) O

(
1√
n
+

√
d log(1/δ)

nϵ

)
O(n5/2)

PL-SC, Lip, S R(Aw(S))−minw R(w) O
(

1
n1/3 +

√
d log(1/δ)

n5/6ϵ

)
O(n3/2)

Table 1: Summary of Results. DP-SGDA is Algorithm 1 in this paper. NSEG and NISPP are Algorithm 1 and 2 in Boob
and Guzmán [2021], respectively. Here C-C means convexity and concavity, PL-SC means PL condition and strong
concavity, Lip means Lipschitz continuity, S means the smoothness. △w(Aw(S), Av(S)) is the weak PD population risk
and R(Aw(S))−minw R(w) is the excess primal population risk.

smooth case while the convex and nonsmooth case was es-
tablished by Bassily et al. [2020], Lei and Ying [2020]. The
nonconvex case under the PL-condition was considered by
Charles and Papailiopoulos [2018], Lei and Ying [2021].
The stability and generalization of SGDA for minimax prob-
lems were studied by Lei et al. [2021] in different forms for
convex and nonconvex, smooth, and nonsmooth cases, and
by Farnia and Ozdaglar [2021] with focus on the smooth
cases.

DP-SGD and DP-SGDA. DP-SGD was shown to attain the
optimal excess population risk O(1/

√
n+

√
d log(1/δ)/nϵ)

in Bassily et al. [2019, 2020], Wang et al. [2021a, 2020a]
for the convex case. For nonconvex objectives, Wang et al.
[2019a] studied the DP Gradient Langevin Dynamics, and
Zhang et al. [2021b] studied a multi-stage type of DP-SGD
assuming the weakly-quasi-convexity and PL condition. In
Xie et al. [2018], Zhang et al. [2018], DP-SGDA and its
variants together with clipping techniques were employed
to train differentially private GANs which showed promis-
ing results in applications. However, no utility analysis was
given there. Boob and Guzmán [2021] focused on the noisy
stochastic extragradient method with DP constraints for min-
imax problems in the convex-concave and smooth settings
and provided its utility analysis using variational inequality
(VI) and stability approaches.

2 PROBLEM FORMULATION

In this section, we introduce necessary assumptions, nota-
tions and the DP-SGDA algorithm.

2.1 ASSUMPTIONS AND NOTATIONS

Firstly, we introduce necessary assumptions and notations.
A function h : W → R is said to be convex if, for all
w,w′ ∈ W , there holds h(w) ≥ h(w′) + ⟨∇h(w′),w −
w′⟩ where ∇ is the gradient operator and ⟨·, ·⟩ is the inner
product. Let ∥ · ∥2 denote the Euclidean norm. We say h is

ρ-strongly-convex if h− ρ
2∥w∥22 is convex, h is concave if

−h is convex, and ρ-strongly-concave if −h − ρ
2∥w∥22 is

convex. Let [n] := {1, 2, . . . , n}.

Definition 1. Given a function h : W×V → R. We say h is
convex-concave if for any v ∈ V , the function w 7→ h(w,v)
is convex and for any w ∈ W , the function v 7→ h(w,v) is
concave.

Assumption 1 (A1). The function f is said to be Lip-
schitz continuous if there exist Gw, Gv > 0 such
that, for any w,w′ ∈ W ,v,v′ ∈ V and z ∈ Z ,
∥f(w,v; z) − f(w′,v; z)∥2 ≤ Gw∥w − w′∥2, and
∥f(w,v; z)− f(w,v′; z)∥2 ≤ Gv∥v − v′∥2. And denote
G = max{Gw, Gv}.

Assumption 2 (A2). For randomly drawn j ∈ [n],
the gradients ∇wf(w,v; zj) and ∇vf(w,v; zj) have
bounded variances Bw and Bv respectively. And let B =
max{Bw, Bv}.

Assumption 3 (A3). The function f is said to be smooth if
it is continuously differentiable and there exists a constant
L > 0 such that for any w,w′ ∈ W , v,v′ ∈ V and z ∈ Z ,∥∥∥∥(∇wf(w,v; z)−∇wf(w′,v′; z)

∇vf(w,v; z)−∇vf(w
′,v′; z)

)∥∥∥∥
2

≤L

∥∥∥∥(w−w′

v−v′

)∥∥∥∥
2

We also require the Polyak-Łojasiewicz (PL) condition.

Definition 2 ([Polyak, 1964]). A function h : W → R
satisfies the PL condition if there exist a constant µ > 0
such that, for any w ∈ W , 1

2∥∇h(w)∥22 ≥ µ(h(w) −
minw′∈W h(w′)).

We refer to Karimi et al. [2016] for a nice discussion of this
condition and other general conditions that allow the global
convergence of gradient descent.

2.2 DP-SGDA ALGORITHM

We now move on to the definition of differential privacy
and the description of DP-SGDA. Differential privacy was
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introduced by Dwork et al. [2006, 2014]. We say that two
datasets S, S′ are neighboring datasets if they differ by at
most one example.

Algorithm 1 Differentially Private Stochastic Gradient De-
scent Ascent (DP-SGDA) Method

1: Inputs: data S = {zi : i ∈ [n]}, privacy budget ϵ, δ,
number of iterations T , learning rates {ηw,t, ηv,t}Tt=1,
and initialize (w0,v0)

2: Compute noise parameters σw and σv based on Eq. (3)
3: for t = 1 to T do
4: Sample a mini-batch It = {i1t , · · · , imt ∈ [n]} uni-

formly with replacement
5: Sample independent noises ξt ∼ N (0, σ2

wId1
) and

ζt ∼ N (0, σ2
vId2

)

6: wt+1=ΠW

(
wt−ηw,t

(
1
m

∑m
j=1∇wf(wt,vt; zijt

)+ξt

))
7: vt+1=ΠV

(
vt+ηv,t

(
1
m

∑m
j=1∇vf(wt,vt; zijt

)+ζt

))
8: end for

9: Outputs:(w̄T , v̄T )=
1
T

T∑
t=1

(wt,vt) or (wT ,vT )

Definition 3 (Differential Privacy). A (randomized) algo-
rithm A is called (ϵ, δ)-differentially private (DP) if, for all
neighboring datasets S, S′ and for all events O in the output
space of A, the following holds

P[A(S) ∈ O] ≤ eϵP[A(S′) ∈ O] + δ.

Our aim is to design a randomized algorithm satisfying
(ϵ, δ)-DP which solves the empirical minimax problem:

min
w∈W

max
v∈V

{
FS(w,v) =

1

n

n∑
i=1

f(w,v; zi)
}
. (2)

Notice that in the standard ERM problem, which involves
the minimization only with respect to w, DP-SGD [Wu
et al., 2017, Song et al., 2013, Bassily et al., 2019, Wang
et al., 2020a] uses the gradient perturbation at each iteration.
Specifically, at each iteration of this algorithm, a randomized
gradient estimated from a random subset (mini-batch) of
S is perturbed by a Gaussian noise and then the model
parameter is updated based on this noisy gradient.

Following the same spirit, DP-SGDA [Xie et al., 2018,
Zhang et al., 2018] adds Gaussian noises per iteration
to the randomized gradient mapping (gw,t, gv,t) =
( 1
m

∑m
j=1 ∇wf(wt,vt; zijt

), 1
m

∑m
j=1 ∇vf(wt,vt; zijt

))

where the index of example zijt
is from the mini-batch

It. Then, the primal variable w is updated by gradient
descent based on the noisy gradient gw,t + ξt and the
dual variable v is updated by gradient ascent based on the
noisy gradient gv,t + ζt. The pseudo-code for DP-SGDA
is given in Algorithm 1. The noise levels σw, σv are given

by (3) which will be specified soon in Section 3 in order
to guarantee (ϵ, δ)-DP. The notations ΠW(·) and ΠV(·)
denote the projections to W and V , respectively. From now
on, the notation A denotes the DP-SGDA algorithm and its
output is denoted by A(S) = (Aw(S), Av(S)).

2.3 MEASURES OF UTILITY

Since the model A(S) is only trained based on the train-
ing data S, its empirical behavior as measured by FS may
not generalize well on test data. Our goal is to investigate
the statistical behavior of A(S) on the test data in terms
of some population risk. However, unlike the standard sta-
tistical learning theory (SLT) setting where there is only a
minimization of w, we have different measures of popula-
tion risk due to the minimax structure [Zhang et al., 2021a,
Lei et al., 2021]. Let E[·] denote the expectation with re-
spect to the randomness of algorithm A and data S. We are
particularly interested in the following metrics.

Definition 4 (Weak Primal-Dual (PD) Risk). The
weak primal-dual population risk of A(S), denoted by
△w(Aw(S), Av(S)), is defined as

max
v∈V

E
[
F (Aw(S),v)

]
− min

w∈W
E
[
F (w, Av(S))

]
.

The corresponding weak PD empirical risk, denoted by
△w

S (Aw(S), Av(S)), is defined as

max
v∈V

E
[
FS(Aw(S),v)

]
− min

w∈W
E
[
FS(w, Av(S))

]
.

Definition 5 (Primal Risk). The primal population risk
of A(S) is given by R(Aw(S)) = maxv∈V F (Aw(S),v)
and empirical risk is defined by RS(Aw(S)) =
maxv∈V FS(Aw(S),v), respectively. The excess primal
population risk is defined as

E
[
R(Aw(S))− min

w∈W
R(w)

]
.

The corresponding excess primal empirical risk is then

E
[
RS(Aw(S))− min

w∈W
RS(w)

]
.

Meanwhile, the strong PD risk defined as △s(w,v) =
E
[
supv′∈V F (w,v′) − infw′∈W F (w′,v)

]
. We have

△w(Aw(S), Av(S)) ≤ △s(Aw(S), Av(S)) by apply-
ing Jensen’s inequality. However, when F is strongly-
convex-strongly-concave, the point distance from the model
(Aw(S), Av(S)) to the true saddle point (w∗,v∗) ∈
argminw∈W maxv∈V F (w,v) can be bounded by the
weak PD population risk, i.e. E[∥Aw(S) − w∗∥22 +
∥Av(S) − v∗∥22] ≤ O(△w(Aw(S), Av(S))). For certain
problems, it is suffices to bound the weak PD risk, such as
the learning problem for Markov decision process in Ap-
pendix A. The primal risk is more meaningful when one is
concerned about the risk with respect to the primal variable,
such as the AUC maximization problem.
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3 MAIN RESULTS

In this section, we present our main theoretical results for
DP-SGDA. For the privacy guarantee, we leverage the mo-
ments accountant method [Abadi et al., 2016], which im-
plies tight privacy loss for adaptive Gaussian mechanisms
with amplification by subsampling. Below we summarize a
specific version of this method that suffices for our purpose.

Theorem 1. Let (A1) hold true. Then, there exist constants
c1, c2 and c3 so that given the mini-batch size m and total
iterations T , for any ϵ < c1m

2T/n2, Algorithm 1 is (ϵ, δ)-
differentially private for any δ > 0 if we choose

σw=
c2Gw

√
T log(1/δ)

nϵ
, σv=

c3Gv

√
T log(1/δ)

nϵ
. (3)

The proof of Theorem 1 is given in Appendix B.

Remark 1. In practice, given privacy budget ϵ, δ and pa-
rameters m,T , the constant c2 and hence σ can be found by
grid search [Abadi et al., 2016]. Here we provide a set of pa-
rameters that satisfies the condition in that reference and our
Theorem 1. That is, by choosing ϵ ≤ 1, δ ≤ 1/n2 and m =
max(1, n

√
ϵ/(4T )), then we have explicit values for the

variances as σw =
8Gw

√
T log(1/δ)

nϵ , σv =
8Gv

√
T log(1/δ)

nϵ .

Remark 2. Our Algorithm 1 allows the application of in-
dependent noises ξt, ζt with different σw, σv, respectively.
In Boob and Guzmán [2021], a uniform σ is used (The-
orem 5.4 or 7.4 there) for both primal and dual vari-
ables. In many examples, the primal and dual gradients
∇wf(wt,vt, zijt

),∇vf(wt,vt, zijt
) enjoy different Lips-

chitz constants (ℓ2-sensitivity). Therefore, our treatment
leads to a more delicate way of calibrating the variances
of the Gaussian noises. As we shall see in the experiments
in Section 4, this treatment enables Algorithm 1 to achieve
better performance.

In the subsequent subsections, we present our main contri-
bution of this paper, i.e., the utility bounds of DP-SGDA for
the convex-concave and nonconvex-strongly-concave cases,
respectively.

3.1 CONVEX-CONCAVE CASE

In this subsection, we present the utility bound of DP-SGDA
for the convex-concave case in terms of the weak PD risk
of the output (w̄T , v̄T ) of Algorithm 1.

Theorem 2. Assume the function f is convex-concave. As-
sume W and V are bounded so that maxw∈W ∥w∥2 ≤ Dw,
maxv∈V ∥v∥2 ≤ Dv. And let D = max{Dw, Dv}. Let the
stepsizes ηw,t = ηv,t = η for all t ∈ [T ] with some η > 0.
Under one of the condition

a) Assumption (A1) and (A3) hold true and we choose
T ≍ n and η ≍ 1/

(
max{

√
n,

√
d log(1/δ)/ϵ}

)
,

b) or Assumption (A1) holds true and we choose T ≍ n2

and η ≍ 1/
(
nmax{

√
n,

√
d log(1/δ)/ϵ}

)
,

then Algorithm 1 satisfies

△w(w̄T , v̄T ) = O
(
max

{ 1√
n
,

√
d log(1/δ)

nϵ

})
.

Its detailed proof can be found in Appendix C. The proof
mainly relies on the concept of stability [Bousquet and
Elisseeff, 2002, Charles and Papailiopoulos, 2018, Hardt
et al., 2016, Kuzborskij and Lampert, 2018]. Specifically,
the weak PD population risk can be decomposed as follows:

△w(w̄T , v̄T ) =△w(w̄T , v̄T )−△w
S (w̄T , v̄T )

+△w
S (w̄T , v̄T ), (4)

where the term △w(w̄T , v̄T )−△w
S (w̄T , v̄T ) is the gener-

alization error and △w
S (w̄T , v̄T ) is the optimization error.

The estimation for the optimization error can be conducted
by standard techniques [Nemirovski et al., 2009]. We give a
self-contained proof in Appendix C.1. The generalization
error is estimated using a concept of weak stability [Lei et al.,
2021]. Specifically, we say the randomized algorithm A is
ε-weakly-stable if, for any neighboring sets S, S′ differing
at one single datum, there holds

sup
z

(
sup
v∈V

EA[f(Aw(S),v; z)− f(Aw(S′),v; z)]

+ sup
w∈W

EA[f(w, Av(S); z)−f(w, Av(S
′); z)]

)
≤ ε.

We know from Lei et al. [2021] that ε-weak-stability implies
△w(Aw(S), Av(S))−△w

S (Aw(S), Av(S)) ≤ ε.

In Appendix C.2, we prove the weak stability of DP-SGDA
(i.e. Algorithm 1) for both smooth and nonsmooth cases.
Putting the estimations for the optimization error and gen-
eralization error into (4) can yield the bound in Theorem 2.
We end this subsection with some remarks.

Remark 3. The utility bound O
(
max

{
1√
n
,

√
d log(1/δ)

nϵ

})
is optimal for convex-concave minimax problem. A lower
bound with the same order has been established in the
convex ERM setting [Bassily et al., 2014, 2019, Feld-
man et al., 2020] and the measure of utility is given by
E[F (Aw(S)) − minw∈WF (w)]. Here we slightly abuse
the notation to indicate F as the population risk and Aw(S)
as the algorithm for the ERM problem. Since the convex-
concave minimax problem is a special case of convex ERM
problems when the dual variable is constant, this lower
bound also applies to our setting.

Remark 4. The same optimal utility was claimed in Boob
and Guzmán [2021]. Yet our results also possess two theoret-
ical gains compared to theirs. Firstly, when the smoothness
assumption holds, Part a) in our Theorem 2 shows the opti-
mal utility with T = O(n) iterations and O(n3/2) gradient
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computations by Remark 1, while their single-looped algo-
rithm (Algorithm 1 there) requires O(n2) gradient compu-
tations in their Theorem 5.4. They further improved the gra-
dient complexity to O(n3/2 log(n)) in Theorem 7.4, which,
however, requires an extra subroutine algorithm (inner-loop)
(Algorithm 2 there). Secondly, we also derive the same opti-
mal bound with only Lipschitz continuous assumption for
the nonsmooth case which was not addressed in Boob and
Guzmán [2021].

3.2 NONCONVEX-STRONGLY-CONCAVE CASE

We proceed to the case when f is non-convex-strongly-
concave. In this case, we can present utility bounds of DP-
SGDA in terms of the primal excess risk, i.e., R(wT ) −
minw∈W R(w), where wT is the last iterate of Algorithm
1. Generally speaking, a saddle point may not always exist
without the convexity assumption. Since our goal in this
paper is to find global optima, we assume that the saddle
point of the empirical minimax problem exists, i.e., there
exists (ŵS , v̂S) such that, for any w ∈ W and v ∈ V ,

FS(ŵS ,v) ≤ FS(ŵS , v̂S) ≤ FS(w, v̂S).

To estimate the primal excess risk, we define R∗
S =

minw∈W RS(w), and R∗ = minw∈W R(w). Then, for
any w∗ ∈ argminw R(w) we have the error decompo-
sition:

E[R(wT )−R∗]=E[R(wT )−RS(wT )]+E[RS(wT )−R∗
S ]

+ E[R∗
S−RS(w

∗)]+E[RS(w
∗)−R(w∗)]

≤E[R(wT )−RS(wT )]+E[RS(w
∗)−R(w∗)]

+ E[RS(wT )−R∗
S ], (5)

where the last inequality follows from the fact that R∗
S −

RS(w
∗) ≤ 0 since R∗

S = minw∈W RS(w). The term
E[RS(wT )−R∗

S ] is the optimization error which character-
izes the discrepancy between the primal empirical risk of an
output of Algorithm 1 and the least possible one. The term
E[R(wT )−RS(wT )]+E[RS(w

∗)−R(w∗)] is called the
generalization error which measures the discrepancy be-
tween the primal population risk and the empirical one. The
estimations for these two errors are described as follows.

Optimization Error. The next theorem characterizes the
primal empirical risk of DP-SGDA under the PL-SC as-
sumption.

Theorem 3. Assume Assumptions (A1) and (A2) hold
true, and the function FS(w, ·) is ρ-strongly concave and
FS(·,v) satisfies µ-PL condition. Assume V is bounded. Let
κ = L/ρ. If we choose ηw,t ≍ 1

µt and ηv,t ≍ κ2.5

µ1.5t2/3
, then

E[RS(wT+1)−R∗
S ] = O

(κ3.5

µ2.5

(1/m+ d(σ2
w + σ2

v)

T 2/3

))
.

We provide the proof of Theorem 3 in Appendix D.1. In the
non-private setting, i.e. σw = σv = 0, Theorem 3 implies
that the convergence rate in terms of the primal empirical
risk is of the order O( κ3.5

µ2.5T 2/3 ), which is a new result even
in the non-private case as far as we are aware of.

In Lin et al. [2020], the local convergence of SGDA in
the non-private case was proved in terms of the metric
Eτ [∥∇RS(wτ )∥22] where τ is chosen uniformly at random
from the set {1, 2, . . . , T}. Our analysis is much more in-
volved since it proves the global convergence of the last
iterate wT . Our main idea is to prove the coupled recursive
inequalities for two terms, i.e., at = RS(wt)−R∗

S and bt =
∥vt− v̂S(wt)∥22 where v̂S(wt) = argmaxv∈V FS(wt,v),
and then carefully derive the the convergence rate for
at + λtbt by choosing λt appropriately. The convergence
rate and its proof can be of interest in their own right. One
can find more detailed arguments in Appendix D.1.

Generalization Error. We present the bound for the gen-
eralization error which is proved again using the stability
approach.

We begin with a discussion of the saddle points. While
the saddle point (ŵS , v̂S) may not be unique, v̂S must be
unique if FS(w,v) is strongly-concave in v (see Propo-
sition 1 in Appendix D). Therefore, we can define πS(w)
the projection of w to the set of saddle points, as ΩS ={
ŵS : (ŵS , v̂S) ∈ argminw∈W maxv∈V FS(w,v)

}
={

ŵS : ŵS ∈ argminw∈W FS(w, v̂S)
}

.

Recall that wT is the iterate of DP-SGDA at time T based on
the training data S. Likewise, we denote by w′

T based on the
training set S′ which differs from S at one single datum. Due
to the possibly multiple saddle points, we need the following
critical assumption for estimating the generalization error.

Assumption 4 (A4). For the (randomized) algorithm DP-
SGDA, assume that πS′(πS(wT )) = πS′(w′

T ) for any
neighboring sets S and S′.

Assumption (A4) was introduced in Charles and Papail-
iopoulos [2018] for studying the stability of SGD in the
non-convex case which only involves the minimization over
w. In our case, (A4) holds true whether the saddle point is
unique (e.g., FS is strongly-convex and strongly-concave)
or the two sets of saddle points based on S and S′, i.e. ΩS

and ΩS′ do not change too much. Since our algorithm satis-
fies (ϵ, δ)-DP it means that the distributions of wT and w′

T

generated from two neighboring sets S and S′ are “close”,
which indicates supS,S′ ∥πS′(πS(wT )) − πS′(w′

T )∥2 can
be small. Proving such statement serves as an interesting
open problem.

Now we can state the results on the generalization error.

Theorem 4 (Generalization Error). Assume Assumptions
(A1), (A3) and (A4) hold true, and assume the function
f(w, ·; z) is ρ-strongly concave and FS(·,v) satisfies µ-PL
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condition. Let κ = L/ρ. If E[RS(wT )−R∗
S ] ≤ εT , then

E[R(wT )−RS(wT )]≤(1+κ)Gw

(√εT
2µ

+
1

n

√
G2

w

4µ2
+
G2

v

ρµ

)
,

and

E[RS(w
∗)−R(w∗)] ≤ 4G2

v

ρn
.

The proof of Theorem 4 is provided in Appendix D.2.

Remark 5. The generalization error bounds given in Theo-
rem 4 indicate that if the optimization error E[RS(wT )−
R∗

S ] is small then the generalization error will be small.
This is consistent with the observation in the stability and
generalization analysis of SGD [Charles and Papailiopou-
los, 2018, Hardt et al., 2016, Lei and Ying, 2021] for the
minimization problems in the sense of “optimization can
help generalization".

We can derive the following utility bound for DP-SGDA by
combining the results in Theorems 4 and 3.

Theorem 5. Under the same assumptions of Theorem 4, if
we choose T ≍ n, ηw,t ≍ 1

µt and ηv,t ≍ κ2.5

µ1.5t2/3
, then

E[R(wT+1)−R∗] = O
(κ2.75

µ1.75

( 1

n1/3
+

√
d log(1/δ)

n5/6ϵ

))
.

The proof can be found in Appendix D.3.

4 EXPERIMENTS

In this section, we evaluate the performance of DP-SGDA
by taking AUC maximization as an example. Due to space
limitation, we present the most significant information and
results of our experiments while more detailed information
and additional results are given in Appendix E and F.

4.1 EXPERIMENTAL SETTINGS

Baseline Model. We perform experiments on the problem
of AUC maximization with the least square loss to evaluate
the DP-SGDA algorithm in linear and non-linear settings
(two-layer multilayer perceptron (MLP)). In this case, AUC
maximization can be formulated as

min
θ∈Θ

Ez,z′ [(1− h(θ;x) + h(θ;x′))2|y = 1, y′ = −1],

where h : Θ× Rd → R is the scoring function. As shown
in Ying et al. [2016], it is equivalent to a minimax problem:

min
w=(θ,a,b)

max
v

Ez[f(θ, a, b,v; z)],

where f = (1 − p)(h(θ;x) − a)2I[y = 1] + p(h(θ;x) −
b)2I[y = −1] + 2(1 + v)(ph(θ;x)I[y = −1] − (1 −
p)h(θ;x)I[y = 1])]− p(1− p)v2 and p = P[y = 1].

When h is a linear function, the AUC learning objective
above is convex-strongly-concave. On the other hand, when
h is a MLP function, it becomes a nonconvex-strongly-
concave minimax problem. In addition, following Liu et al.
[2020], we use Leaky ReLU as an activation function for
MLP. It was shown in their paper the empirical AUC objec-
tive satisfies the PL condition with this choice of h. Without
a special statement, we set 256 as the number of hidden units
in MLP and 64 as the mini-batch size during the training.

Datasets and Evaluation Metrics. Our experiments are
based on three popular datasets, namely ijcnn1 [Chang
and Lin, 2011], MNIST [LeCun et al., 1998], and Fashion-
MNIST [Xiao et al., 2017] that have been used in previ-
ous studies. For MNIST and Fashion-MNIST, following
Gao et al. [2013], Ying et al. [2016], we transform their
classes into binary classes by randomly partitioning the
data into two groups, each with an equal number of classes.
For ijcnn1, we randomly split its original training set into
new training (80%) and testing (20%) sets. For MNIST
and Fashion-MNIST, we use their original training set and
testing set. For each method, the reported performance is
obtained by averaging the AUC scores on the test set accord-
ing to 5 random seeds (for initial w and v, sampling and
noise generation).

Privacy Budget Settings. In the experiments, we set
up five privacy levels from small to large: ϵ ∈
{0.1, 0.5, 1, 5, 10}. We also consider three different δ from
{1e−4, 1e−5, 1e−6}. Due to space limitation, we only re-
port the performance when δ = 1e−6. More results can be
found in Appendix F. To estimate the Lipschitz constants
Gw and Gv (in Theorem 1), we first run the algorithms with-
out adding noise. Then we calculate the maximum gradient
norms of AUC loss w.r.t w and v and assign them as Gw

and Gv, respectively. According to these parameters, we
calculate the noise parameter σ by applying autodp1, which
is widely used in the existing works [Wang et al., 2019b].

Compared Algorithms. Boob and Guzmán [2021] is the
only existing paper that considers differential privacy in the
convex-concave minimax problem. Therefore, we use their
single-loop NSEG algorithm as our baseline method on the
AUC optimization under the linear setting.

4.2 RESULTS

We report our evaluation and results on the utility and pri-
vacy trade-off of the DP-SGDA. Then we follow the exper-
iment design by [Abadi et al., 2016] to study the effect of
the parameters - hidden units and batch sizes.

1https://github.com/yuxiangw/autodp
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Dataset ijcnn1 MNIST Fashion-MNIST

Algorithm Linear MLP Linear MLP Linear MLP
NSEG DP-SGDA DP-SGDA NSEG DP-SGDA DP-SGDA NSEG DP-SGDA DP-SGDA

Original 92.191 92.448 96.609 93.306 93.349 99.546 96.552 96.523 98.020
ϵ=0.1 90.106 91.110 92.763 91.247 91.858 97.878 95.446 95.468 95.692
ϵ=0.5 90.346 91.357 95.840 91.324 92.058 98.656 95.530 95.816 96.988
ϵ=1 90.355 91.371 96.167 91.330 92.070 98.705 95.534 95.834 97.102
ϵ=5 90.363 91.383 96.294 91.334 92.078 98.742 95.538 95.848 97.198
ϵ=10 90.363 91.386 96.297 91.334 92.080 98.747 95.539 95.850 97.213

Table 2: Comparison of AUC performance in NSEG and DP-SGDA (Linear and MLP settings) on three datasets with
different ϵ and δ=1e-6. The “Original” means no noise (ϵ = ∞) is added in the algorithms.

0.10.5 1 5 10

10 4

10 3

(a)

MNIST_NSEG
MNIST_DP-SGDA_w
MNIST_DP-SGDA_v
ijcnn1_NSEG
ijcnn1_DP-SGDA_w
ijcnn1_DP-SGDA_v
Fashion-MNIST_NSEG
Fashion-MNIST_DP-SGDA_w
Fashion-MNIST_DP-SGDA_v
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(c)

MNIST_DP-SGDA_MLP
MNIST_DP-SGDA_Linear
ijcnn1_DP-SGDA_MLP
ijcnn1_DP-SGDA_Linear
Fashion-MNIST_DP-SGDA_MLP
Fashion-MNIST_DP-SGDA_Linear

Figure 1: (a) Comparison of σ for NSEG and DP-SGDA (Linear setting) on three datasets with different ϵ and δ=1e-6.
(b)Comparison of AUC performance for SGDA and DP-SGDA in MLP settings on three datasets with different hidden units
and ϵ=1 and δ=1e-6. (c) Comparison of AUC performance for DP-SGDA (Linear and MLP settings) on three datasets with
different batch size and ϵ=1 and δ=1e-6.

General AUC Performance vs Privacy. The general per-
formance of all algorithms under linear and MLP settings of
AUC optimization is shown in Table 2. Since the standard
deviation of the AUC performance is around [0, 0.1%] and
the difference between different algortihms is very small,
we only report the average AUC performance. First, without
adding noise into gradients, we can find the NSEG method
and our DP-SGDA method have similar performance under
the linear case. Furthermore, we can find the performance
of the DP-SGDA with MLP model can outperform linear
models on all datasets. This is because non-linear models
have better expression power and therefore it can learn more
information among features than linear models. Second, by
adding noise into the gradients, we can find the AUC perfor-
mance of all models is decreased on all datasets. However,
by increasing the privacy budget ϵ, the AUC performance is
increased. The reason is that ϵ and σ have opposite trends
according to equation (3). The relation between ϵ and AUC
score also verifies our Theorem 2 and Theorem 5. Third, to
verify our statement in Remark 2, we compare the σ values
from NSEG and DP-SGDA on all datasets in Figure 1(a).
From the figure, it is clear that the σ from NSEG is larger
than ours in all ϵ settings since it is calibrated based on the
gradients’ sensitivity from both w and v. In fact, the sensi-
tivity w.r.t. v is small as it is a one-dimensional variable for
AUC maximization. Therefore, NSEG leads to overestimate

on the noise addition towards v. From Table 2 we observe
our DP-SGDA achieves better AUC score than NSEG under
the same privacy budget.

Different Hidden Units. In DP-SGDA under the MLP set-
ting, the hidden unit is one of the most important factors
affecting the model performance. Therefore, we compare
the AUC performance with respect to the different hidden
units in Figure 1(b). If we provide a small number of hidden
units, the model will suffer from poor generalization capa-
bility. Using a large number of hidden units will make the
model easier to fit the training set. For SGDA (non-private)
training, it is often helpful to apply a large number of hidden
units, as long as the model does not overfit. In agreement
with this intuition, we find the model performance improves
with increasing hidden units in Figure 1(b). However, for
DP-SGDA training, more hidden units increase the sensitiv-
ity of the gradients, which leads to more noise added at each
update. Therefore, in contrast to the non-private setting, we
find the AUC performance decreases when the number of
hidden units increases.

Different Mini-Batch Size. From Theorem 1 and Theo-
rem 3, we find mini-batch size can influence the Gaussian
noise variances σ2

w and σ2
v as well as the convergence rate.

Selecting the mini-batch size must balance two conflicting
objectives. On one hand, a small mini-batch size may lead to
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sub-optimal performance. On the other hand, for large batch
sizes, the added noise has a smaller relative effect. There-
fore, we show the AUC score for DP-SGDA with different
mini-batch sizes in Figure 1(c). The experimental results
show that the mini-batch size has a relatively large impact
on the AUC performance when the mini-batch size is small.

5 CONCLUSION

In this paper, we have used algorithmic stability to conduct
utility analysis of the DP-SGDA algorithm for minimax
problems under DP constraints. For the convex-concave set-
ting, we proved that DP-SGDA can attain an optimal rate

O( 1√
n
+

√
d log(1/δ)

nϵ ) in terms of the weak primal-dual pop-
ulation risk while providing (ϵ, δ)-DP for both smooth and
nonsmooth cases. For the nonconvex-strongly-concave case,
assuming that the empirical risk satisfies the PL condition
we proved the excess primal population risk of DP-SGDA

can achieve a utility bound O
(

1
n1/3 +

√
d log(1/δ)

n5/6ϵ

)
. Experi-

ments on three benchmark datasets illustrate the effective-
ness of DP-SGDA.

For future work, it would be interesting to improve the utility
bound for the nonconvex-strongly-convex setting. It also
remains unclear to us how to establish the utility bound for
DP-SGDA when gradient clipping techniques are enforced
at each iteration. Finally, it would also be interesting to
evaluate the performance of DP-SGDA on other motivating
examples such as GAN, MDP and robust optimization.
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