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Abstract— In our previous work, we developed a multi-rate
sampled-data observer design method in nonlinear systems with
asynchronous sampling. In this article, possible measurement
delays are accounted for in the multi-rate observer design. The
proposed observer adopts an available multi-rate design in the
time interval between two consecutive delayed measurements. A
dead time compensation approach is developed to compensate
for the effect of delay and update past estimates when a delayed
measurement arrives. It is shown that stability of the multi-rate
observer is preserved under nonconstant, arbitrarily large de-
lays, in the absence of measurement errors. The proposed multi-
rate multi-delay observer is applied to a gas-phase polyethylene
reactor example and provides reliable estimates in the presence
of nonuniform sampling and nonconstant delays.

I. INTRODUCTION

Motivated by many engineering applications, state estima-
tion of a continuous-time dynamical system in the presence
of sampled and delayed measurements has received lots of
attention. In chemical processes, for example, product quality
measurements are usually sampled infrequently and require
off-line lab analysis, which inevitably introduces delay as a
consequence of sample preparation, analysis and calculation.
Process data is usually collected from multiple heterogeneous
sensors of different sampling rates and different measurement
delays and thus, continuous-time and/or single-rate sampled-
data observer design methods from the literature are not
directly applicable any more. Thus, the objective of this work
is to develop a general methodology of multi-rate multi-delay
observer for process monitoring in nonlinear systems.

Most of the observer design methods using delayed output
are based on a chain of state observation algorithms, where
various types of output delay (e.g., constant, piecewise, time-
varying) have been considered. A chain structure algorithm
was proposed for globally drift-observable systems with con-
stant measurement delay in [1]. The chain observer consisted
of a number of cascaded subsystems, where each subsystem
reconstructed the system states at different delayed times. A
similar methodology was applied to single-output systems
with constant delay in [2], where enhanced design flexibility
was achieved. To reduce the number of subsystems and avoid
a long oscillatory transient behavior, an alternative cascade
structure was developed in [3]. The assumption on constant
delay has been relaxed to piecewise constant delay and time-
varying delay in recent studies, e.g., [4], [5].
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The delayed output in all the above contributions was as-
sumed to be continuous. As most of the product quality mea-
surements in chemical processes are sampled infrequently
and are available with not necessarily small delay, sampling
and delay effects need to be simultaneously considered and
compensated for in the observer design. A chain observer
was designed in a class of triangular nonlinear systems with
sampled, delayed measurements in [6]. A robust global expo-
nential observer was proposed for certain classes of nonlinear
systems under sampled measurement with a constant delay in
[7]. In addition to these single-rate observer design methods
considering delay, multi-rate multi-delay observer design was
proposed and implemented in a polymerization reactor in [8],
[9], where process data from multiple heterogeneous sensors
were used in the observer design. Despite the fact that fairly
good results have been achieved, stability analysis of a multi-
rate multi-delay observer remained open. Other multi-rate
estimation approaches based on extended Kalman filter [10],
[11] and moving horizon estimation [12], [13] that consider
measurement delays have also been studied.

In previous work of the authors [14], the problem of multi-
rate observer design was first addressed in linear systems in
the absence of measurement delay. Motivated by the single-
rate observer design in [15], the multi-rate observer design in
[14] was based on an available continuous-time design cou-
pled with multiple, asynchronous inter-sample predictors for
the sampled measurements. To handle measurement delays,
the authors proposed a multi-rate multi-delay observer design
method in linear systems in [16], based on an available multi-
rate design combined with dead time compensation. Stability
and robustness of the delay-free multi-rate observer were
shown to be preserved under nonconstant delays.

In this work, we consider the problem of observer design
in nonlinear systems where measurements become available
with different sampling rates and different delays. Motivated
by the nonlinear multi-rate observer design in [17] and the
dead time compensation method in [16], the multi-rate multi-
delay observer design is carried out in a two-step manner.
First, a delay-free multi-rate observer design [17], outlined
in Section II, is adopted as a starting point and estimates of
the current state are obtained in the time interval between
two consecutive delayed measurements. Second, we propose
a dead time compensation approach in Section III, in the
same spirit as [16] for linear systems, to handle output delays
in nonlinear observer design. It is shown that stability of the
underlying multi-rate observer will be preserved under non-
constant and arbitrarily large delays. The proposed observer
is tested through a simulation example in Section IV.
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II. PRELIMINARIES
A. Notations

• By K+, we denote the class of positive, continuous
functions defined on R+ := {x ∈ R : x > 0}. We
say that a function ρ : R+ → R+ is positive definite
if ρ(0) = 0 and ρ(s) > 0 for all s > 0. We denote by
K the set of positive definite, increasing and continuous
functions. We say that a positive definite, increasing and
continuous function ρ : R+ → R+ is of class K∞ if
lims→+∞ ρ(s) = +∞. We denote by KL the set of all
continuous functions σ = σ(s, t) : R+ × R+ → R+

with the two properties: (i) the mapping σ(·, t) is of
class K for each t > 0; (ii) the mapping σ(s, ·) is non-
increasing with limt→+∞ σ(s, t) = 0 for each s > 0.

• The set of nonnegative integers is denoted by Z+.
• Rn+ := {[x1, . . . , xn]′ ∈ Rn : x1 > 0, . . . , xn > 0}. Let
x, y ∈ Rn. We say that x 6 y if and only if (y − x) ∈
Rn+. We say that a function ρ : Rn+ → R+ is of class
Nn, if ρ is continuous with ρ(0) = 0 and such that
ρ(x) 6 ρ(y) for all x, y ∈ Rn+ with x 6 y.

• For every positive integer l and an open, non-empty
set A ⊆ Rn, Cl(A; Ω) denotes the class of continuous
functions on A with continuous derivatives of order l,
which take values in Ω ⊆ Rm. C0(A; Ω) denotes the
class of continuous functions on A, which take values
in Ω.

• We denote by ‖·‖X the norm of the normed linear
space X . By | · |, we denote the `1-norm of Rn. Let
I ⊆ R+ be an interval and D ⊆ Rl be a non-empty
set. By L∞loc(I;D), we denote the class of all Lebesgue
measurable and locally bounded functions u : I → D.
For u ∈ L∞loc(R+;Rn), we define the norm ‖u(t)‖U :=∑n
i=1 supτ∈[0,t] |ui(τ)|. Notice that supτ∈[0,t] |ui(τ)|

denotes the actual supremum of |ui(t)| on [0, t].

B. Delay-free Multi-rate Observer Design

This section outlines the main results in [17] on multi-rate
observer design for nonlinear systems under asynchronous
sampling, in the absence of measurement delays. It is based
on a continuous-time design coupled with inter-sample out-
put predictors. The stability and robustness properties of the
observer will be reviewed. The delay-free multi-rate observer
design will serve as a point of departure when measurement
delays are considered.

A reduced-order observer formulation is adopted for multi-
output systems, as lower dimensionality can ease implemen-
tation of the observer. Continuous estimates of the sampled
outputs in each sampling interval can be generated from the
inter-sample predictors. Therefore, a reduced-order observer
formulation will be the focus of this work.

Consider a nonlinear forward complete system with con-
tinuous outputs, where without loss of generality, the outputs
are assumed to be a part of the states

ẋR(t) = fR(xR(t), xM (t))

ẋM (t) = fM (xR(t), xM (t))

y(t) = xM (t) + v(t)

(1)

where xR ∈ Rn−m is the unmeasured state, xM ∈ Rm is the
remaining state that is directly measured, y is the continuous
outputs subject to measurement errors v ∈ L∞loc(R+;Rm),
and fR ∈ C1(Rn−m × Rm;Rn−m), fM ∈ C1(Rn−m ×
Rm;Rm) with fR(0, 0) = 0, fM (0, 0) = 0.

Suppose that there exists a robust observer for system (1)
with respect to measurement errors, in the sense of Definition
1 in [17]

ż(t) = F (z(t), y(t))

x̂R(t) = Ψ(z(t), y(t))
(2)

with z ∈ Rk being the observer states, x̂R ∈ Rn−m being the
state estimates, and F ∈ C1(Rk × Rm;Rk), Ψ ∈ C1(Rk ×
Rm;Rn−m) with F (0, 0) = 0, Ψ(0, 0) = 0. Hence, there
exist functions σ ∈ KL, γ, p ∈ N1, µ ∈ K+ and a ∈ K∞
such that for every (xR,0, xM,0, z0, v) ∈ Rn−m×Rm×Rk×
L∞loc(R+;Rm), the solution (xR(t), xM (t), z(t)) of systems
(1) and (2) with initial condition (xR(0), xM (0), z(0)) =
(xR,0, xM,0, z0) corresponding to v ∈ L∞loc(R+;Rm) exists
for all t > 0 and satisfies the following estimates

|x̂R(t)− xR(t)| 6 σ(|(xR,0,xM,0, z0)|, t)
+ γ(‖v(t)‖U ),∀t > 0

(3a)

|z(t)| 6 µ(t)[a(|(xR,0, xM,0, z0)|)
+ p(‖v(t)‖U )],∀t > 0

(3b)

Next we present a robust multi-rate sampled-data observer
with respect to measurement errors for multi-rate systems,
in the sense of Definition 2 in [17]. It is based on a robust
observer (2) coupled with inter-sample predictors. Consider
system (1) with asynchronous, sampled outputs

ẋR(t) = fR(xR(t), xM (t))

ẋM (t) = fM (xR(t), xM (t))

yi(tij) = xiM (tij) + vi(tij), j ∈ Z+, i = 1, 2, . . . ,m

(4)

where tij denotes the j-th sampling time for the state xiM , at
some sequence of time instants S = {tk}∞k=0 (a partition of
R+). The sampling times of each sensor are not necessarily
uniformly spaced, but satisfying 0 < tij+1 − tij 6 r for all
j ∈ Z+, where r is the maximum sampling period among
all the sensors. There is a one-to-one mapping from {tk}∞k=0

to {tij : j ∈ Z+, i = 1, 2, . . . ,m}.
Consider a multi-rate sampled-data observer design of the

following form for all t ∈ [tk, tk+1)

ż(t) = F (z(t), w(t))

ẇ(t) = fM (Ψ(z(t), w(t)), w(t))

wi(tk+1) = yi(tk+1)

tk+1 = tk + rd(tk)

x̂R(t) = Ψ(z(t), w(t))

(5)

where w ∈ Rm is the predicted outputs, d ∈ L∞loc(R+; [0, 1])
generates the actual sampling schedule allowed to be time-
varying. The multi-rate design (5) consists of a continuous-
time observer coupled with m inter-sample predictors. There-
fore, the existence of a robust continuous-time observer (2) is

1129



a prerequisite for the observer design in a multi-rate system.
The inter-sample predictors continuously generate estimates
of the sampled outputs in each sampling interval. wi(t) will
get reinitialized once a new measurement yi(tk+1) becomes
available, while the rest of the predictor states do not change
until their measurements are obtained.

This design offers two attractive features: (i) a continuous-
time observer design from the literature can be reused in the
context of a multi-rate design by coupling with predictors,
(ii) the unmeasured state is reconstructed from the observer,
while continuous estimates of the sampled measurements are
obtained from the inter-sample predictors. It was seen in [14]
that the model-based prediction can better estimate the inter-
sample behavior as opposed to a sample-and-hold strategy,
especially under large sampling period.

From the main results in [17], suppose that there exists a
robust observer (2) for system (1) with respect to measure-
ment errors. Suppose that there exist constants Ci > 0 and
functions σ̄i ∈ KL for all i = 1, 2, . . . ,m, such that for every
(xR,0, xM,0, z0, v) ∈ Rn−m×Rm×Rk×L∞loc(R+;Rm), the
solution (xR(t), xM (t), z(t)) of the overall system (i.e., the
continuous-time system (1) and the robust observer (2)) with
initial condition (xR(0), xM (0), z(0)) = (xR,0, xM,0, z0)
corresponding to v ∈ L∞loc(R+;Rm) exists for all t > 0
and satisfies the following estimate

|f iM (Ψ(z(t), xM (t) + v(t)), xM (t) + v(t))

− f iM (xR(t), xM (t))|
6 σ̄i(|(xR,0, xM,0, z0)|, t) + Ci ‖v(t)‖U ,∀t > 0

(6)

In addition, suppose that (i) 3rCim < 1 for i = 1, 2, . . . ,m;
(ii) 3γ(ms) < s for all s > 0, where γ ∈ N1 is the gain
function in the estimate (3a) of the robust observer.

If the above conditions are satisfied in a continuous-time
observer design, then it was proved in [17] that (5) is a robust
multi-rate sampled-data observer for system (4) with respect
to measurement errors. In other words, there exist functions
σ̃R, σ̃M ∈ KL, γ̃R, γ̃M , p̃ ∈ N1, µ̃ ∈ K+ and ã ∈ K∞
such that for every (xR,0, xM,0, z0, w0, d, v) ∈ Rn−m ×
Rm ×Rk ×Rm ×L∞loc(R+; [0, 1])×L∞loc(R+;Rm), the so-
lution (xR(t), xM (t), z(t), w(t)) of the overall system of (4)
and (5) with initial condition (xR(0), xM (0), z(0), w(0)) =
(xR,0, xM,0, z0, w0) corresponding to d ∈ L∞loc(R+; [0, 1])
and v ∈ L∞loc(R+;Rm) satisfies the following estimates

|x̂R(t)− xR(t)| 6 σ̃R(|(xR,0, xM,0, z0, w0)|, t)
+ γ̃R(‖v(t)‖U ),∀t > 0

(7a)

|w(t)− xM (t)| 6 σ̃M (|(xR,0, xM,0, z0, w0)|, t)
+ γ̃M (‖v(t)‖U ),∀t > 0

(7b)

|(z(t), w(t))| 6 µ̃(t)[ã(|(xR,0, xM,0, z0, w0)|)
+ p̃(‖v(t)‖U )],∀t > 0

(7c)

The input-to-output stability property was established for
the observer error and predictor error with respect to mea-
surement noises. The proof was based on the Karafyllis-Jiang
vector small-gain theorem (see [18]). Furthermore, the multi-
rate design provides robustness with respect to perturbations
in the sampling schedule.

III. MAIN RESULTS
In this section, we adopt an available multi-rate observer

design (5) and propose a dead time compensation algorithm
to handle possible measurement delays, in the same spirit as
[16] for linear systems. Measurement error is not considered
(i.e., v ≡ 0). The multi-rate multi-delay observer is shown to
be asymptotically stable in the presence of nonconstant and
arbitrarily large delays, as long as the underlying delay-free
multi-rate observer is stable.

A. Proposed Multi-rate Multi-delay Observer Design

Now consider a multi-rate system (4) with possible delays
in the sampled outputs yi(tij) for all j ∈ Z+, i = 1, 2, . . . ,m,
in the absence of measurement errors

ẋR(t) = fR(xR(t), xM (t))

ẋM (t) = fM (xR(t), xM (t)), t > −∆

yi(tij) = xiM (tij − δij)
(8)

The j-th measurement of xiM becomes available at tij after
some possible delay δij ∈ [0,∆]. In other words, the output
yi(tij) is a function of the state xiM sampled at time tij − δij .
The measurement delay δij is not constant but is assumed
bounded by a positive real number ∆. The sampling times
of each measurement are not necessarily uniformly spaced,
but satisfying 0 <

∣∣(tij′ − δij′)− (tij − δij)
∣∣ 6 r for any two

consecutive sampling instants.

Sampling

Measurement

Time

1

ii

jt
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of the slow measurement with larger delay

inter-sample output prediction

dead time compensation
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i ii i

j jt 2 2
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j jt 

Fig. 1. An illustration of the proposed two-step estimation process of a
multi-rate multi-delay observer in the presence of two sampled and delayed
measurements starting from t0.

The proposed observer for the multi-rate system (8) with
multiple measurement delays is based on a multi-rate design
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(5) combined with dead time compensation. As depicted in
Fig. 1, the estimation process contains two steps. First, dead
time compensation will be triggered once a sampled, delayed
measurement is obtained at tij . Past estimates are recalculated
by integrating the observer and compensator equations from
tij − δij to tij , where any available measurement can be used
as an undelayed output and reinitializes the corresponding
compensator at its sampling time. The state estimates at tij
are consequently updated at the end of the compensation.
This step ensures that these available measurements are used
in the observer without delay, in the same order as they
are sampled. Second, the updated estimates at tij are used
as the initial condition of the observer and the inter-sample
predictors. The multi-rate multi-delay observer operates as a
delay-free multi-rate observer between consecutive sampled
measurements.

When a sampled, delayed measurement becomes available
at tij , dead time compensation is executed to update the past
estimates. For all t ∈ [tij − δij , tij) where δij 6= 0, we propose
the following design of a multi-rate observer with dead time
compensation

ż(t) = F (z(t), w(t)) (9a)
ẇ(t) = fM (Ψ(z(t), w(t)), w(t)) (9b)

wi(tij − δij) = yi(tij) (9c)

wi
′
(ti

′

j′ − δi
′

j′) = yi
′
(ti

′

j′), ∀ti
′

j′ , (t
i′

j′ − δi
′

j′) ∈ [tij − δij , tij)
(9d)

x̂R(t) = Ψ(z(t), w(t)) (9e)

where w ∈ Rm is the compensator state representing the past
estimates for xM (t), t ∈ [tij − δij , tij). Equation (9c) shows
the reinitialization step of the i-th dead time compensator by
using the delayed measurement yi(tij) at its sampling time
tij−δij . The available outputs that are sampled and measured
between tij−δij and tij can be used to reset the compensators
at their respective sampling times, as seen in (9d).

Remark 1: The observer state z, compensator state w,
state estimates x̂R and sampled outputs yi

′
in (9) all represent

the past information in the system throughout the dead time
compensation, which should be stored in a buffer. The past
estimates are recalculated for the purpose of correcting the
state estimates at current time tij and consequently, improving
the estimation accuracy afterwards. The buffer memory will
be finite as long as the upper bound of the delay ∆ is finite,
as will be discussed later.

Once the estimates at tij are obtained after the dead time
compensation, inter-sample prediction comes into play in the
interval between two consecutive measurements at tij and ti

′

j′ .
For all t ∈ [tij , t

i′

j′), the multi-rate multi-delay observer is of
the following form

ż(t) = F (z(t), w(t))

ẇ(t) = fM (Ψ(z(t), w(t)), w(t))

x̂R(t) = Ψ(z(t), w(t))

(10)

where w ∈ Rm denotes the predicted outputs. The predictors
estimate the evolution of the sampled outputs, in the same

spirit as in a delay-free multi-rate observer. If an undelayed
measurement becomes available at tij , inter-sample prediction
will run immediately after reinitialization, and no dead time
compensation will be needed. Algorithm 1 summarizes the
estimation process of the proposed observer.

Algorithm 1 Algorithm for Multi-rate Multi-delay Observer
STEP 0: Initialize z(t0), w(t0), and solve (10) for [t0, t

i
j)

STEP 1: Calculate z(t) and w(t) when a sampled mea-
surement becomes available at tij
if δij > 0 then . Dead time compensation

Solve (9) for [tij − δij , tij) and update z(tij), w(tij)
end if
Reinitialize (10) with z(tij), w(tij), and solve it for [tij , t

i′

j′)

STEP 2: Set tij = ti
′

j′ and go to Step 1

Remark 2: Unlike the aforementioned chain observers
where a high dimensionality may be required to reconstruct
the state in the case of large measurement delays [1]–[3], the
proposed multi-rate multi-delay observer does not require a
chain-like structure and the dimension of the observer (9)
and (10) is greatly reduced to n. Furthermore, it can handle
multiple nonconstant measurement delays.

B. Stability Analysis

Past estimates for all t ∈ [tij − δij , tij) are recalculated in
the dead time compensation, once a delayed measurement
becomes available at tij . Estimates at certain times may be
calculated more than once, if the measurement order differs
from the sampling order, e.g., the estimates from (ti1j1 − δ

i1
j1

)

to ti1j1 are calculated three times as seen in Fig. 1 (once from
inter-sample prediction and twice from dead time compensa-
tion). We name the last updated estimates obtained from the
multi-rate multi-delay observer “final estimates”. We denote
t̃ the most-recent sampling time where the measurements of
all the samples taken before t̃ (including t̃) are available. It
indicates that the final estimates are obtained for all t 6 t̃. As
the measurements are used in the same order as the way they
are sampled in the calculation of the final estimates, the final
estimates z(t), w(t) and x̂R(t) for all t 6 t̃ in the multi-rate
multi-delay observer are identical to those in a delay-free
multi-rate observer, under the same design parameters. Once
the final estimates at t̃ are obtained, the stored measurements
that are sampled before t̃ can be cleared from the buffer.

Despite the fact that the estimation process in Fig. 1 has
two steps, stability of the multi-rate multi-delay observer will
be presented in a unified manner, because the essence of both
compensation and prediction is to predict the dynamic model
forward.

It is straightforward to show that the estimates and pre-
dicted outputs are bounded for all t > 0. The fact that system
(1) is forward complete implies the existence of functions
µ ∈ K+ and a ∈ K∞ such that for every (xR,0, xM,0) ∈
Rn−m ×Rm, the solution (xR(t), xM (t)) of (1) with initial
condition (xR(0), xM (0)) = (xR,0, xM,0) exists and satisfies
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the following condition for all t > 0

|(xR(t), xM (t))| 6 µ(t)a(|(xR,0, xM,0)|) (11)

Obviously, |(x̂R(t), w(t))| will be bounded before the first
measurement becomes available, because the initial condition
of the observer is finite. After the first measurement, the es-
timates in the compensation (or prediction) will be generated
by forward predicting the model from t̃ with reinitialization
at some sampling instants. The estimates at t̃ are identical to
those in a delay-free multi-rate observer, which are bounded
from (7a) and (7b). Therefore, |(x̂R(t), w(t))| is bounded for
all t > t̃.

Because of the previous assumption that the measurement
delay in system (8) has a finite upper bound, t̃ will approach
infinity as t goes to infinity. From (7a) and (7b), we derive

lim
t̃→+∞

x̂R(t̃) = xR(t̃) (12a)

lim
t̃→+∞

w(t̃) = xM (t̃) (12b)

Thus, the observer can accurately estimate the actual state
in the compensation and prediction as t approaches infinity,
in the absence of measurement errors. The reinitialization in
the compensation does not affect the convergence property.
An attractive feature of the approach is that it can handle the
situation where the delayed measurement sequence is not in
the same order as the sampling sequence, as seen in Fig. 1.

IV. NUMERICAL EXAMPLE

In this section, the application of a multi-rate multi-delay
observer is explored in an industrial gas-phase polyethylene
reactor, where nonuniform sampling and measurement delay
of on-line gas chromatography (GC) and off-line lab analysis
will be considered. Nonlinear observer design methods will
be adopted as the basis of the multi-rate multi-delay observer
to deal with process nonlinearities, whereas a linear multi-
rate multi-delay observer, derived from a linearized process
model, was developed in [16].

A nonlinear reactor model has the form [16]

dY

dt
= Fcac � kdY � (RM1

MW1
+RM2

MW2
)Y

Bw

dT

dt
=
Hf +Hg � Htop � Hr � Hpol

MrCpr +BwCppol

d[In]

dt
=
FIn � xInbt

Vg

d[M1]

dt
=
FM1

� xM1
bt � RM1

Vg

d[M2]

dt
=
FM2 � xM2bt � RM2

Vg

d[H]

dt
=
FH � xHbt

Vg

dMI
� 1

3.5
c

dt
=

1

τr
MI

� 1
3.5

i � 1

τr
MI

� 1
3.5

c

dD� 1
c

dt
=

1

τr
D� 1

i � 1

τr
D� 1

c

(13)

The definitions of all the variables in (13) and the values of
the process parameters are listed in Tables 1 and 2 in [14].

As for system outputs, the reactor temperature is continu-
ously measured on line without delay. The gas concentrations
of inerts, ethylene, comonomer and hydrogen are normally
sampled every 20 min and measured by using on-line GC,
which induces about 8 min delay caused by sample prepa-
ration (2.5 min), sample analysis (4 min), and calculation
(1.5 min). In addition, the off-line lab analysis of melt index
and density is normally sampled every 40 min with 60 min
measurement delay, which provides quality information of
polyethylene [19]. Because of the difficulty in measuring the
amount of active catalyst sites, it is necessary to monitor this
quantity from a reliable on-line soft sensor. In addition, it is
important to provide continuous and reliable estimates of the
inter-sample behavior of those sampled outputs from GC and
lab analysis, for quality control and monitoring purpose.

A continuous-time observer, which serves as the basis of
the multi-rate multi-delay observer, will be designed by using
the exact error linearization method [20] as follows

ż(t) = Az(t) +By(t) (14)

where B =
[
0.01 0.01 0.01 0.01 0.01 0.01 0.01

]
and A = −0.00068.

The immersion map z = T (x) satisfies a system of linear
partial differential equations, where it is possible to compute
the solution T (x) in the form of a multivariate Taylor series
around the origin with truncation order N = 4.

The initial conditions of the process and the observer are
given in Table 4 in [14]. The actual sampling schedule and
the corresponding measurement delays are given in Table I.

The performance of the multi-rate multi-delay observer is
illustrated in Fig. 2, where it is compared with a delay-free
multi-rate observer with the same design parameters. Fig.
2(a) shows that the estimate from the multi-rate multi-delay
observer has approximately the same convergence rate as that
from the multi-rate design. Fig. 2(b)-(f) show the evolution of
predicted outputs obtained from the inter-sample predictors,
which reconstructs the inter-sample dynamic behavior under
nonuniform sampling schedule.

V. CONCLUSIONS
This work proposes a design method for multi-rate multi-

delay observers in nonlinear systems. It is based on an
available multi-rate observer design combined with dead time
compensation, where asynchronous, sampled measurements,
in the presence of possible measurement delays, are ac-
counted for. Two attractive features of the proposed observer
are that it inherits stability from a delay-free multi-rate ob-
server and it can handle nonconstant, arbitrarily large delays,
in the absence of measurement errors. The proposed observer
has the same dimension as a multi-rate observer for a delay-
free system. From the case study, we see that the multi-rate
multi-delay observer can provide reliable estimation results.
The presence of delay in the measurement inevitably slows
down convergence of the observer.
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TABLE I
ACTUAL SAMPLING SCHEDULE AND MEASUREMENT DELAYS

Gas chromatography Sampling (min) 5 23 43 62.5 81.5 102 122 140 161.5 179.5 199.5 219 238
Delay (min) 8.0 8.7 8.5 7.5 8.0 8.0 8.2 7.8 8.5 8.3 8.0 8.2 7.7

Lab analysis Sampling (min) 10 48 93 134 170 210 248 288
Delay (min) 60 56 62.8 66.3 54.5 60 60.5 66.7

Fig. 2. Comparison of the multi-rate multi-delay observer (red) and the multi-rate observer in the absence of measurement delay (green) in the gas-phase
polyethylene reactor example.
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