Depth Monocular Estimation with Attention-based
Encoder-Decoder Network from Single Image
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Abstract—Depth information is the foundation of perception,
essential for autonomous driving, robotics, and other applica-
tions. Promptly obtaining accurate and efficient depth infor-
mation allows for a rapid response in dynamic environments.
Sensor-based methods using LIDAR and RADAR obtain high
precision at the cost of high power consumption, price, and
volume. While due to advances in deep learning, vision-based
approaches have recently received much attention and can
overcome these drawbacks. In this work, we explore an extreme
scenario in vision-based settings: estimate a depth map from one
monocular image severely plagued by grid artifacts and blurry
edges. To address this scenario, We first design a convolutional
attention mechanism block (CAMB) which consists of channel
attention and spatial attention sequentially and insert these
CAMBs into skip connections. As a result, our novel approach
can find the focus of current image with minimal overhead and
avoid losses of depth features. Next, by combining the depth
value, the gradients of X axis, Y axis and diagonal directions, and
the structural similarity index measure (SSIM), we propose our
novel loss function. Moreover, we utilize pixel blocks to accelerate
the computation of the loss function. Finally, we show, through
comprehensive experiments on two large-scale image datasets,
i.e. KITTI and NYU-V2, that our method outperforms several
representative baselines.

Index Terms—computer vision, deep learning, monocular
depth estimation, encoder-decoder, attention-based

I. INTRODUCTION

Perception is one of the key technologies in many areas,
such as autonomous driving, virtual reality, and robotics [1],
which helps to detect, understand, and interpret the surround-
ing environments, including dynamic and static obstacles. The
performance of perception usually relies on the accuracy of
depth information estimation [2]. For example, autonomous
driving requires to estimate the inter-vehicle distance and
warn potential rear-end collisions [3], robotic arms cannot
grasp the target without accurate depth information [4], and
SO on.

There exist many strategies to infer depth information.
In general, these strategies can be classified into two cate-
gories: sensor-based methods and image-based methods [3],
[5]. Sensor-based strategies, such as utilizing like LIDAR,
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Fig. 1. Generated depth map of different methods. Upper left is an image
in the KITTI dataset. The upper right and lower left images are generated
by [18] and [19] respectively. It can be seen that the objects in these two
images (cars, poles, framed by black boxes) are obviously incomplete and
blurred. Lower right is ours.

RGB-D camera, and other active sensors [6], are able to
collect depth information accurately. However, this type of
methods usually places heavy burdens on manpower and
computation [7]. In addition, there could be strict conditions
when applying these methods. For instance, LIDAR estimates
depth accurately only at sparse locations [8] and RGB-
D camera suffers from its limited measurement range and
outdoor sunlight sensitivity [9]. Alternatively, image-based
methods can overcome these issues and be applied in a wide
range of applications [10], [11]. The conventional image-
based depth estimation methods heavily rely on multi-view
geometry [12]-[14], such as stereo images [15], [16] and
consecutive frames. Nevertheless, it introduces issues such as
calibration drift over time [2], [8] as well as high demands on
computational resources and memory [17]. Therefore, using
a monocular camera becomes an alternative low-cost, effi-
cient, and attractive solution with light maintenance require-
ments for autonomous driving, robotics, and other resource-
constrained applications [10].

This paper studies the extreme case in monocular depth
estimation, which is to estimate the depth map from one
image. This could be an ill-posed problem as there is an
ambiguity in the scale of the depth [17]. Owing to the
release of publicly available datasets and the advancement of



Convolutional Neural Networks (CNNs), Eigen et al. [20] first
prove that the scale information can be learned by properly
designing the network structure [20]. After this, there has been
a lot of work along this direction [21], [22]. Despite their
success, there are still some critical issues to be addressed:

e Many methods do not consider the contextual informa-
tion and treat all pixels equally. It may result in the grid
artifacts problem [23] and the edges in depth maps may
be distorted or blurry [24], as shown in Figure 1.

o Depth estimation is often deeply integrated with in-
dustrial applications, which require real-time operation
with limited computational resources. In order to achieve
higher accuracy, however, deeper networks and complex
mechanisms are developed with more parameters [5].
The conflict between real-time requirements and ex-
pensive computational overhead should be mitigated
urgently.

« For traditional CNN architecture, such as fully connected
network (FCN), after multiple layers of information
processing, the depth features could be severely lost,
which may lead to low accuracy and cannot meet the
requirements in practice [5].

To alleviate these issues, this paper presents an new ap-
proach for depth monocular estimation from a single image.
The main contributions are summarized as follows:

« We propose an encoder-decoder attention based network
to effectively generate corresponding depth map from a
single image and avoid grid artifacts with least possible
overhead. To leverage the contextual information and
find focuses of images, we design a convolutional atten-
tion mechanism block (CAMB) by combining channel
attention and spatial attention sequentially and insert
these CBAMs into the skip connections. Different from
many of the previous methods, our attention module is
light-weight and therefore more suitable for resource-
constrained applications.

« We design a novel loss function by combining the depth
value, the gradients of three dimensions (i.e. X-axis,
Y-axis and diagonal direction) and structural similarity
index measure (SSIM). In addition, we introduce pixel
blocks, instead of single pixel, to save computational
resources when calculating the loss.

o We conduct comprehensive experiments on two large-
scale datasets, i.e. KITTI and NYU-V2. It is shown that
our approach outperforms several representative baseline
methods, which verify the effectiveness of our approach.

The remainder of this paper is organized as follows. After
a brief review of related work in Section II, we present the
monocular depth estimation problem in Section III. Section IV
proposes our new approach. We evaluate the qualitative and
quantitative performance on KITTI and NYU-v2 in Section V.
Finally, conclusions are drawn in Section VI

II. RELATED WORK

Recently, numerous methods have been proposed for
image-based depth estimation. We can roughly divide these
methods into two categories: geometry-based and monocular.

A. Geometry-based methods

Recovering 3D structures based on geometric constraints is
an optional method to estimate depth information. This kind
of methods relies on consecutive frames taken by one camera
or stereo matching based on binocular camera. For the former,
structure from motion (SfM) [25] is a representative method
by matching features of different frames and estimating the
camera motion, but the performance heavily relies on the
quality of image sequences [9]. To alleviate this problem, a
variety of sfM strategies has been proposed to deal with uncal-
ibrated or unordered images [12]. For example, incremental
sfM approaches [26], [27] add on one image at a time to grow
the reconstruction, global methods [28] consider the entire
view graph at the same time, and hierarchical methods [29]
divides the images into multiple clusters, reconstructs each
cluster separately and merges partial models into a complete
model. However, they still suffer from monocular scale am-
biguity and high computational complexity [9]. As for the
latter, it calculates the disparity maps [30] of images through
a cost function, and its bottleneck is the accuracy of matching
the pixels of different images [31]. Different from sfM, the
scale information is included in depth estimation since the
cameras is calibrated in advance in this case [32]. However, in
addition to the high consumption of computing and memory,
calibration drift is also an issue [8].

B. Monocular methods from Single Image

Since there is only one single image need to be calculated,
depth estimation from one image can effectively reduce the
computational complexity and memory overhead [8]. Nu-
merous methods have been proposed for estimating depth
information from one image in recent years. Herein, we
briefly review the relevant studies.

This problem was firstly studied by Eigen et al. [20]. They
regard this problem as a regression problem and propose
a CNNs architecture which is composed of global coarse-
scale network and local fine-scale network to generate depth
maps. By taking advantage of the 3D geometric constraints,
Yin et al. [21] implement ’virtual norm’ constraints [17]
and proposed a supervised framework to obtain a high-
quality depth estimation. Praful et al. [33] utilize UW-GAN
to estimate depth information, their network includes two
modules: the generator predicts depth maps, and the dis-
criminator determines the quality of the maps. Fu et al. [34]
introduce a spacing-increasing discretization (SID) strategy
to discretize depth and recast depth network learning as an
ordinal regression problem to generate depth maps. Xu et
al. [22] propose a conditional random field (CRF) based
model for the multi-scale features to estiamte the fine-grained
depth maps. Although these fully connected network (FCN)
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Fig. 2. The architecture of our model. CAMB and L stands for our attention module and loss function as Equation 2 respectively. It can be seen that after
inserting CAMB to skip connection (dotted lines), our model, our model captures both normal (red blocks) and attention features (green blocks). The yellow
line on the top stands for the backpropagation. Due to the lightweight property of CAMB, our approach is able to add attention information with least possible
overhead, while the skip connections ensure that scale information is preserved even in later stage of learning.

based methods have achieved great success, there still exists
some critical limitations, such as inconsistent labeling, losing
or smoothing object details and requiring extra memory for
holding a large part of parameters [35], [36].
Encoder-Decoder. To alleviate these problems, encoder-
decoder architecture with skip connections was proposed [37]
and has made significant contributions in many vision related
problems, which including estimating depth information. In
recent years, the use of such architecture have shown great
success in improving overall performance of estimating depth
maps. The encoder network usually consists of convolution
and pooling layers to capture features, the decoder includes
deconvolution layers to generate desired information, and the
corresponding layers of encoder and decoder are concate-
nated with skip connections. Alhashim et al. [38] employ a
straightforward encoder-decoder architecture with no addition
modifications and a Structural Similarity-based (SSIM) loss
function to generate depth maps. Lee et al. [39] propose
a monocular depth estimation method that uses new Local
Planar Guidance Layers (LPGL) inserted into the decoding
phase of the network. Fangchang et al. [40] use UpProj
module [41] as upsampling layer in decoding layers and the
encoder consist of a ResNet followed by a convolution layer.
However, despite the above approaches make full use of
the computational power of CNNs, they ignore the contextual
information, in other words, they process all pixels equally
which easily results in the grid artifacts problem [23].
Attention Mechanisms. To address this problem, we
add attention mechanisms (AM) into our network. AM was
first applied to NLP problem, and then it has achieved

great success in CNNs recently, which can help networks
to focus on key objects and take advantage of contextual
information [42]. From this perspective, our work is most
closely related to [23], which propose an Attention-Based
Context Aggregation Network (ACAN) which utilizes the
deep residual architecture, dilated layer and self-attention
to estimate depth. It should be pointed that we keep the
traditional encoder-decoder architecture with skip connections
and attention module, and our AM is lightweight. Therefore,
our model is more applicable to resource-constrained appli-
cations. In addition, [23] adopt the sum of attention loss and
ordinal loss added in a certain proportion as loss function,
but we utilize Structural Similarity Index Measure (SSIM)
and gradients between adjacent pixel blocks to propose a new
loss function.

III. PROBLEM REPRESENTATION

For an image I € R¥*WXC with height H, width W
and channel C, the goal of depth estimation is to estimate
the depth map [43] D € R¥*W which has the same size
with the original image but only one channel.However, due
to the lack of global scale information, this task is inherently
ambiguous and technically ill-posed [20]. As the development
of deep neural network and the improvement of publicly
datasets’ quality, we are able to address this issue by learning
the scale information from training sets {(I;, D;)} [36],
[38]. Mathematically, we regard this problem as a regression
problem which usually uses a standard loss function such as
MSE [44].
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Fig. 3. The pipeline of CAMB attention module. For the output feature F), of nth layer of encoder, we perform channel attention operation and spatial
attention operation in sequence, and then add the calculation result F'4 s, to Fy to obtain the final feature Foyt,, that combines the normal feature with

attention feature.

IV. PROPOSED METHOD

We introduce the architecture of our attention-based
encoder-decoder network and the design of loss function for
the monocular depth estimation in this section.

A. Network Architecture

For an input RGB image I;, our method is able to
generate the corresponding depth map D; in an end-to-
end fashion. As shown in Figure 2, our network mainly
consists of encoder and decoder. The corresponding layers
of encoder and decoder are connected by skip connections
with CAMBs. We use DesNet-169 [45] without the last
classification layer as encoder, which extracts high-resolution
features and downsamples the input image. Our encoder is
pretrained on ImageNet dataset [46]. The decoder in our
network contains a straightforward up-scaling scheme, which
simply upsamples the output of the previous layer to the same
size as the output of the corresponding encoder layer after
CAMB, then concatenate these two output feature together
and performs a convolution operation.

B. Attention Module

As mentioned before, the grid artifacts and blurry edges
limit the performance of depth estimation. To alleviate this
problem, we design an attention module, which can help our
network to pay different attention to different pixels, that is,
our network is able to focus on the objects worthy of attention,
and appropriately reduce the attention to the background,
thereby reducing grids and fining edges. Considering practical
application scenarios, we hope that our attention module can
be light-weight so that it will not put extra burden on strained
computing resources.

Therefore, based on CBAM [47] whose lightweight prop-
erty has been well proved, we design a more lightweight and
effective convolution attention mechanism block (CAMB) by
and insert CAMBs into our model. Different from CBAM, our
attention module utilize global power average pooling [48],
which is formulated as (1) where R stands for the current
feature map and p is the hyperparameter, and more simplified

operations
> al. (1)
i€R

Y
I

It should be pointed out that when we set p = 1 or oo,
equation (1) actually represents sum pooling, which is pro-
portional to average pooling, and max pooling. Specifically,
we do not directly pass the output feature F,, of the encoder’s
nth layer to the corresponding layer of the decoder through
skip connections. Instead, we first feed F,, to CAMB, which
has channel attention and spatial attention two sequential sub-
modules. The former performs global power average pooling
operations on F,,, and passes the pooling results to a global
shared three-layer fully connected DNN. Then execute the
sigmoid function s(-) to get the channel feature map Fca,,.
The latter uses the product of Fca, and F,, as input and
performs power average pooling along the channel axis. Then
we execute a convolution operation c¢(-) with kernel size of
7 x 7, which is experimentally determined, to generate a
feature map and pass it to the sigmoid function s(-) to get
the final spatial attention map Fga . In the end, we multiply
Fca, and Fgu,, to get the final attention feature Fawm,, -

In order to add attention features on the basis of retaining
the original features, we merge the final attention feature
Fam, of CAMB with F,, using element-wise summation.



Mathematically, we summarize the process of passing feature
as follows:

Fca, = s(DNN(pap(F,,)) € R1*1x¢
FSA,inputn =Fca, XF, € RIXWxC

Fsa, = s(c(pap(Fsanpu,)) € RV

HxWxC
Fawm, = Fsa, X Fsainpu, € R

Foutn = (FAM" +Fn) S RHXWXC

where H, W and C stands for height, weight and channel of
images respectively, and pap(-) stands for the power average
pooling operation. The detail of this process is shown in
Figure 3.

C. Loss Function

As illustrated in Figure, we design a novel loss function £,
which consists of two main components

L = MaLgepth + BLeraa) @

where Lgepm is a variation of L; norm of the difference
between ground truth and depth estimation, Ly stands for
the gradient of adjacent pixel blocks, A is a function of SSIM,
« and S are the hyperparameters.

L; norm of the difference between ground truth depth map
y and the prediction ¢ is the most standard loss function for
depth regression problems

N

1 N
»Cl - N;‘yz yz|‘ (3)
where N stands for the total number of pixel. However, an
issue of directly using L; norm is that the difference of each
pixel, that is, |y; — ;| for each i, has an equal contribution
to L1 between distant and nearby pixel [49]. For example,
the error of 10cm should mean differently for objects at a
distance of 1 meter and 10 meters. Follow [24], [50], we use
a logarithmic variation of £; to alleviate this issue

N
Laepth = % 21 F(lyi — 9il) “
where F(z) = In(z + @), 0 is a hyperparameter. There are
other methods to deal with this issue, such as using reciprocal
of depth [38] and depth-balanced Euclidean loss [49].
In addition, in order to track the depth changing between
adjacent pixels, we design Lgrad

N
Lo =5 DI (Guls) = 6(3)) + (8, (0) = 8, (3)

+F (Odiag (Yi) — Odiag(94))]-
(5)

where d;, 0, and dgiae stands for the mean of the adjacent
pixel’ gradient of one image in z, y and diagonal directions,
respectively. Specifically, for each direction, the gradient is
calculated in the same way, that is, for each pixel ¢, calculate

Block
nxn

(b) (c)

Fig. 4. The strategy of calculating £,.44. (a) stands for the overall process
of gradient calculation for one image: pixel block b X b slides from left to
right, then from top to bottom and the step size is 1. The blue block and red
block stands for the starting position and end position respectively. For each
step, the calculation of each step is shown as (b). After computing all §,,
0y and 444, We calculate the mean of these three sets of gradient values.
(c) is the traditional gradient calculation algorithm, that is, only considering
the gradients in x and y directions and unit is fixed to one single pixel.

the difference between the value of the next pixel in the
current direction and ¢’s value and then the gradient of this
direction is the mean of all the differences. Different from
previous work [38], [50], we originally incorporate the di-
agonal components into the gradient calculation. Considering
the complexity of the shape of real-world objects, our novel
Lgrad is able to further penalize small structural errors and
improve fine details of depth maps. Apparently, this kind
of loss is able to effectively reduce grid artifacts and blurry
edges. However, one more dimension of computing increases
the requirements for computing resources, which has a huge
impact on resource-constrained areas. Therefore, we propose
a trade-off by computing the gradient between adjacent pixel
blocks, rather than a single pixel, for each pixel blocks b x b,
we use the mean of each channel of all pixels in it to represent,
where size b is a hyperparameter. Figure. 4 shows the detail
of this strategy. It should be pointed out that [24], [50] also
consider to further improve details, however, their methods
rely on the expensive inner product of vectors, which is
unaffordable for resource-constrained areas.



Lastly, we add a coefficient A\ = 1 — SSIM(y, ¢) to our
overall loss function. The SSIM is a well-known quality
metric used to measure the similarity between two images
and is considered to be correlated with the quality perception
of the human visual system [36]. SSIM(x, y) is a real number
in the unit interval, and the larger its value is, the more
similar the two images are. Therefore, we use ), instead of
SSIM(z, y), in our loss function.

D. Data Augmentation

For better generalization in computer vision related tasks,
data augmentation is necessary, which is an effective strategy
to reduce over-fitting of CNNs [51]. Vertical flip and hori-
zontal flip are most common strategies of data augmentation.
Therefore, we execute vertical and horizontal flipping on
images at a probability of ( and 7 respectively, where ( and
n are hyperparameters. As described in [38], despite image
rotations and distortions are also common data augmentation
methods, they introduce useless information for the ground-
truth depth, such as unnecessary geometric interpretations and
invalid data. Therefore, we do not include these two methods
in our approach.

V. EXPERIMENTS

We test the effectiveness of our approach separately on
different datasets, and compare it with several representative
baseline methods, which can represent the STOA. Then we
provide the ablation study that evaluates the contribution of
each component described in Section IV.

A. Datasets

We evaluate our method on KITTI [52] and NYU-v2 [53]
datasets, which are the most commonly used datasets for
monocular depth estimation in computer vision.

KITTI is an outdoor dataset for monocular deep estimation
and object detection and tracking based on deep learning,
which is captured through a car equipped with 2 high-
resolution color cameras, 2 gray-scale cameras, laser scanner
and global positioning system (GPS) and contains 93,000
training samples. The original image size is around 1,242 x
375, and its ground-truth depth maps are sparse with a lot of
missing data. Therefore, we execute inpainting method to fill
the missing parts [52]. We use the training/ testing sets split
of Eigen et al. [20], which is the most standard method for
KITTT splitting.

NYU-v2 focuses on the indoor scenes, which contains
about 120K frames of RGB-D image pairs captured by a
RGB camera and the Microsoft Kinect depth camera to
simultaneously collect the RGB and depth information. the
original image size is 640 x 480. Similar with KITTI, we
also execute inpainting method to fill missing depth values.
We follow the official training/ testing split, which uses 249
scenes for training and 215 scenes (654 images) for testing.
From the total 120K image-depth pairs, we train our model
on a 50K subset as [38].

B. Metrics

KITTI. Following [20] [5], we adopt both error and accu-
racy metrics to evaluate the performance of depth estimation
methods. The error metrics (the smaller the better) include
root mean square error (RMSE), the logarithm root relative
error (log.rel), absolute relative error (abs.rel) and square
relative error (sq.rel). And the accuracy metrics (acc, bigger
is better) include §; < 1.25, 6o < 1.252 and 63 < 1.25%.
These metrics are formulated as:

1
RMSE=\/|NZ||di—d:||2,

i€EN

1 *
log.rel = W Z [logyo(d;) —logyo(d;)l,

ieN | I
L d; —dj
abs.rel = W lez;v 77
sq.rel = \Tiﬂ Z HdZ;;lj”Q7
ieN
acc: % of d; s.t. max (;Z;, fZ) —5 <,

where d; and d stand for the predicted depth value and the
ground truth value of pixel ¢, respectively, N denotes the
total number of pixels with real-depth values, and J; means
the threshold for ¢ € {1,2,3}.

NYU-v2. Following standard practice [34], [38], we use
the same metrics with KITTI except sq.rel.

C. Hyperparameters

In our experiments, we set ¢ = 0.3 and n = 0.3 for
the probabilities of vertical and horizontal flipping in data
augmentation. We use the ADAM optimizer with learning rate
0.0001 and the batch size is set to 8. For effectively combining
Lgeptn With Lg,.qq as Equation 2, we experimentally set o = 1
and 8 = 0.8. We set § = 0.5 for the logarithmic function F'(-)
used in Equation 4. As for the block size b, we set it to 2
according to comprehensive experiments. We set p = 3 for
power average pooling.

D. Analysis

Quantitative comparison. In Table I and Table II, we com-
pare the proposed algorithm with the recent SOTA algorithms
[18], [22], [34], [38], [41], [54] and pioneering work [20] in
monocular depth estimation on NYU-V2 and KITTI dataset
quantitatively, which is able to fully demonstrate the effec-
tiveness of our method.

Specifically, compared with [20], our approach achieves
significant improvement in all metrics on both KITTI and
NYU-V2 datasets. Especially for KITTI, the error metrics
is almost halved and RMSE is even reduced by 4.508. As
compared with other methods, the overall performance of our
approach is still superior. For NYU-V2 dataset, our approach
is first place except d; and abs.rel are second place. As for
KITTI, our approach shows the best performance in 01, d3,



TABLE 1
COMPARISONS OF DIFFERENT METHODS ON NYU. IN EACH COLUMN WE BOLD THE BEST PERFORMING METHOD AND UNDERLINE THE SECOND-BEST.

Methods o1 0o 03 RMSE | log. rel | abs. rel
(Higher is better) (Lower is better)
Eigen at al. [20] 0.769 | 0.950 | 0.988 | 0.641 - 0.158
Fu et al. [34] 0.828 | 0.965 | 0.992 | 0.509 0.051 0.115
Alhashim et al. [38] | 0.846 | 0.974 | 0.990 | 0.465 0.053 0.123
Laina et al. [41] 0.811 | 0.953 | 0.988 | 0.573 0.055 0.127
Hao et al. [54] 0.841 | 0.966 | 0.991 0.555 0.053 0.127
MS-CRF et al. [22] | 0.811 | 0.954 | 0.987 | 0.586 0.052 0.121
Ours 0.855 | 0.980 | 0.994 | 0.441 0.047 0.107
TABLE 1T

COMPARISONS OF DIFFERENT METHODS ON KITTI. IN EACH COLUMN WE BOLD THE BEST PERFORMING METHOD AND UNDERLINE THE SECOND-BEST.

Methods 6 [ & [ 43 RMSE | log. rel [ abs. rel | sq. rel
(Higher is better) (Lower is better)
Godard et al. [18] 0.861 0.949 | 0.976 4,935 0.206 0.114 0.898
Eigen at al. [20] 0.692 | 0.899 | 0.967 7.156 0.270 0.190 1.515
Kuznietsov et al. [55] | 0.862 | 0.960 | 0.986 4.621 0.189 0.113 0.741
Alhashim et al. [38] 0.886 | 0.965 | 0.986 4.170 0.171 0.093 0.589
Fu et al. [34] 0.932 | 0.984 | 0.994 2.727 0.120 0.072 0.307
Ours 0.947 | 0.989 | 0.996 2.548 0.113 0.061 0.297
TABLE III

DESCRIBED IN SECTION IV IN GUIDING OUR MODEL.

ABLATION STUDIES OF MODELS WITHOUT AND WITH DIFFERENT COMPONENTS ON KITTI. THIS SHOWS THE IMPORTANCE OF ALL COMPONENTS

01 02 03 RMSE [ log. rel | abs. rel [ sq. rel

(Higher is better) (Lower is better)
Without \ 0.932 | 0.977 | 0.991 | 2.831 0.121 0.071 0.346
Without diagonal gradient | 0.933 | 0.979 | 0.995 2.769 0.119 0.068 0.319
Without gradient 0917 | 0.972 | 0.988 | 3.457 0.179 0.097 0.466
Without CBAM 0.814 | 0.957 | 0.979 | 4.266 0.201 0.139 0.832
Ours 0.947 | 0.989 | 0.996 | 2.548 0.113 0.061 0.297

RMSE, log.rel and abs.sql. In d2 and sql.rel, although our
method only won the second place, the difference between
the first place is tiny (0.001 in d5 and 0.006 in sql.rel).
Qualitative comparison. Figure 5 compares depth maps
qualitatively. For better visualizations, we transfer original
depth maps to color map by calling a toolbox in matplotlib.
It is observed that our proposed approach estimates the depth
maps reliably and accurately and also reduce grid and blurry
edging artifacts in comparison with the other approaches.

E. Ablation Study

We present an ablation study to measure the contributions
of different components in our approach. We run experiments
on KITTT dataset and the results are shown in Table III.

It can be seen that the attention module significantly im-
proves the performance, which demonstrates the effectiveness
of applying the attention mechanism to the depth estimation
problem. In addition, adding gradient components to the loss
function also improves performance, where the gradient in
diagonal direction further refines the depth estimation results.
By simply removing term A = 1 — SSIM of our overall loss
function 2, we also show that SSIM plays an positive role in
this problem.

VI. CONCLUSION

This paper explores the problem of monocular depth
estimation based on single image, which is the most ex-
treme but alluring case in vision-related depth estimation.
We propose an attention-based encoder-decoder network with
a novel loss function to effectively address this problem.
Specifically, we insert lightweight attention module CAMB
into skip connections between encoder and decoder to find
focuses for reducing grid artifacts and blurry edges with least
possible overhead. In addition, our loss function is designed
by combining the difference of depth values, gradient in three
directions (x, y and diagonal) and SSIM to further improve
fine details of depth maps and penalize small structural
errors. For speeding up loss computing, we utilize flexible
pixel blocks as units of computation instead of single pixel.
Comprehensive experiments on two large-scale datasets show
that our approach outperforms several representative baseline
methods.
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