


Convolutional Neural Networks (CNNs), Eigen et al. [20] first

prove that the scale information can be learned by properly

designing the network structure [20]. After this, there has been

a lot of work along this direction [21], [22]. Despite their

success, there are still some critical issues to be addressed:

• Many methods do not consider the contextual informa-

tion and treat all pixels equally. It may result in the grid

artifacts problem [23] and the edges in depth maps may

be distorted or blurry [24], as shown in Figure 1.

• Depth estimation is often deeply integrated with in-

dustrial applications, which require real-time operation

with limited computational resources. In order to achieve

higher accuracy, however, deeper networks and complex

mechanisms are developed with more parameters [5].

The conflict between real-time requirements and ex-

pensive computational overhead should be mitigated

urgently.

• For traditional CNN architecture, such as fully connected

network (FCN), after multiple layers of information

processing, the depth features could be severely lost,

which may lead to low accuracy and cannot meet the

requirements in practice [5].

To alleviate these issues, this paper presents an new ap-

proach for depth monocular estimation from a single image.

The main contributions are summarized as follows:

• We propose an encoder-decoder attention based network

to effectively generate corresponding depth map from a

single image and avoid grid artifacts with least possible

overhead. To leverage the contextual information and

find focuses of images, we design a convolutional atten-

tion mechanism block (CAMB) by combining channel

attention and spatial attention sequentially and insert

these CBAMs into the skip connections. Different from

many of the previous methods, our attention module is

light-weight and therefore more suitable for resource-

constrained applications.

• We design a novel loss function by combining the depth

value, the gradients of three dimensions (i.e. X-axis,

Y-axis and diagonal direction) and structural similarity

index measure (SSIM). In addition, we introduce pixel

blocks, instead of single pixel, to save computational

resources when calculating the loss.

• We conduct comprehensive experiments on two large-

scale datasets, i.e. KITTI and NYU-V2. It is shown that

our approach outperforms several representative baseline

methods, which verify the effectiveness of our approach.

The remainder of this paper is organized as follows. After

a brief review of related work in Section II, we present the

monocular depth estimation problem in Section III. Section IV

proposes our new approach. We evaluate the qualitative and

quantitative performance on KITTI and NYU-v2 in Section V.

Finally, conclusions are drawn in Section VI.

II. RELATED WORK

Recently, numerous methods have been proposed for

image-based depth estimation. We can roughly divide these

methods into two categories: geometry-based and monocular.

A. Geometry-based methods

Recovering 3D structures based on geometric constraints is

an optional method to estimate depth information. This kind

of methods relies on consecutive frames taken by one camera

or stereo matching based on binocular camera. For the former,

structure from motion (SfM) [25] is a representative method

by matching features of different frames and estimating the

camera motion, but the performance heavily relies on the

quality of image sequences [9]. To alleviate this problem, a

variety of sfM strategies has been proposed to deal with uncal-

ibrated or unordered images [12]. For example, incremental

sfM approaches [26], [27] add on one image at a time to grow

the reconstruction, global methods [28] consider the entire

view graph at the same time, and hierarchical methods [29]

divides the images into multiple clusters, reconstructs each

cluster separately and merges partial models into a complete

model. However, they still suffer from monocular scale am-

biguity and high computational complexity [9]. As for the

latter, it calculates the disparity maps [30] of images through

a cost function, and its bottleneck is the accuracy of matching

the pixels of different images [31]. Different from sfM, the

scale information is included in depth estimation since the

cameras is calibrated in advance in this case [32]. However, in

addition to the high consumption of computing and memory,

calibration drift is also an issue [8].

B. Monocular methods from Single Image

Since there is only one single image need to be calculated,

depth estimation from one image can effectively reduce the

computational complexity and memory overhead [8]. Nu-

merous methods have been proposed for estimating depth

information from one image in recent years. Herein, we

briefly review the relevant studies.

This problem was firstly studied by Eigen et al. [20]. They

regard this problem as a regression problem and propose

a CNNs architecture which is composed of global coarse-

scale network and local fine-scale network to generate depth

maps. By taking advantage of the 3D geometric constraints,

Yin et al. [21] implement ’virtual norm’ constraints [17]

and proposed a supervised framework to obtain a high-

quality depth estimation. Praful et al. [33] utilize UW-GAN

to estimate depth information, their network includes two

modules: the generator predicts depth maps, and the dis-

criminator determines the quality of the maps. Fu et al. [34]

introduce a spacing-increasing discretization (SID) strategy

to discretize depth and recast depth network learning as an

ordinal regression problem to generate depth maps. Xu et

al. [22] propose a conditional random field (CRF) based

model for the multi-scale features to estiamte the fine-grained

depth maps. Although these fully connected network (FCN)
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Fig. 2. The architecture of our model. CAMB and L stands for our attention module and loss function as Equation 2 respectively. It can be seen that after
inserting CAMB to skip connection (dotted lines), our model, our model captures both normal (red blocks) and attention features (green blocks). The yellow
line on the top stands for the backpropagation. Due to the lightweight property of CAMB, our approach is able to add attention information with least possible
overhead, while the skip connections ensure that scale information is preserved even in later stage of learning.

based methods have achieved great success, there still exists

some critical limitations, such as inconsistent labeling, losing

or smoothing object details and requiring extra memory for

holding a large part of parameters [35], [36].

Encoder-Decoder. To alleviate these problems, encoder-

decoder architecture with skip connections was proposed [37]

and has made significant contributions in many vision related

problems, which including estimating depth information. In

recent years, the use of such architecture have shown great

success in improving overall performance of estimating depth

maps. The encoder network usually consists of convolution

and pooling layers to capture features, the decoder includes

deconvolution layers to generate desired information, and the

corresponding layers of encoder and decoder are concate-

nated with skip connections. Alhashim et al. [38] employ a

straightforward encoder-decoder architecture with no addition

modifications and a Structural Similarity-based (SSIM) loss

function to generate depth maps. Lee et al. [39] propose

a monocular depth estimation method that uses new Local

Planar Guidance Layers (LPGL) inserted into the decoding

phase of the network. Fangchang et al. [40] use UpProj

module [41] as upsampling layer in decoding layers and the

encoder consist of a ResNet followed by a convolution layer.

However, despite the above approaches make full use of

the computational power of CNNs, they ignore the contextual

information, in other words, they process all pixels equally

which easily results in the grid artifacts problem [23].

Attention Mechanisms. To address this problem, we

add attention mechanisms (AM) into our network. AM was

first applied to NLP problem, and then it has achieved

great success in CNNs recently, which can help networks

to focus on key objects and take advantage of contextual

information [42]. From this perspective, our work is most

closely related to [23], which propose an Attention-Based

Context Aggregation Network (ACAN) which utilizes the

deep residual architecture, dilated layer and self-attention

to estimate depth. It should be pointed that we keep the

traditional encoder-decoder architecture with skip connections

and attention module, and our AM is lightweight. Therefore,

our model is more applicable to resource-constrained appli-

cations. In addition, [23] adopt the sum of attention loss and

ordinal loss added in a certain proportion as loss function,

but we utilize Structural Similarity Index Measure (SSIM)

and gradients between adjacent pixel blocks to propose a new

loss function.

III. PROBLEM REPRESENTATION

For an image I ∈ R
H×W×C with height H , width W

and channel C, the goal of depth estimation is to estimate

the depth map [43] D ∈ R
H×W , which has the same size

with the original image but only one channel.However, due

to the lack of global scale information, this task is inherently

ambiguous and technically ill-posed [20]. As the development

of deep neural network and the improvement of publicly

datasets’ quality, we are able to address this issue by learning

the scale information from training sets {(Ii, Di)} [36],

[38]. Mathematically, we regard this problem as a regression

problem which usually uses a standard loss function such as

MSE [44].







Lastly, we add a coefficient λ = 1 − SSIM(y, ŷ) to our

overall loss function. The SSIM is a well-known quality

metric used to measure the similarity between two images

and is considered to be correlated with the quality perception

of the human visual system [36]. SSIM(x, y) is a real number

in the unit interval, and the larger its value is, the more

similar the two images are. Therefore, we use λ, instead of

SSIM(x, y), in our loss function.

D. Data Augmentation

For better generalization in computer vision related tasks,

data augmentation is necessary, which is an effective strategy

to reduce over-fitting of CNNs [51]. Vertical flip and hori-

zontal flip are most common strategies of data augmentation.

Therefore, we execute vertical and horizontal flipping on

images at a probability of ζ and η respectively, where ζ and

η are hyperparameters. As described in [38], despite image

rotations and distortions are also common data augmentation

methods, they introduce useless information for the ground-

truth depth, such as unnecessary geometric interpretations and

invalid data. Therefore, we do not include these two methods

in our approach.

V. EXPERIMENTS

We test the effectiveness of our approach separately on

different datasets, and compare it with several representative

baseline methods, which can represent the STOA. Then we

provide the ablation study that evaluates the contribution of

each component described in Section IV.

A. Datasets

We evaluate our method on KITTI [52] and NYU-v2 [53]

datasets, which are the most commonly used datasets for

monocular depth estimation in computer vision.

KITTI is an outdoor dataset for monocular deep estimation

and object detection and tracking based on deep learning,

which is captured through a car equipped with 2 high-

resolution color cameras, 2 gray-scale cameras, laser scanner

and global positioning system (GPS) and contains 93,000

training samples. The original image size is around 1,242 ×
375, and its ground-truth depth maps are sparse with a lot of

missing data. Therefore, we execute inpainting method to fill

the missing parts [52]. We use the training/ testing sets split

of Eigen et al. [20], which is the most standard method for

KITTI splitting.

NYU-v2 focuses on the indoor scenes, which contains

about 120K frames of RGB-D image pairs captured by a

RGB camera and the Microsoft Kinect depth camera to

simultaneously collect the RGB and depth information. the

original image size is 640 × 480. Similar with KITTI, we

also execute inpainting method to fill missing depth values.

We follow the official training/ testing split, which uses 249

scenes for training and 215 scenes (654 images) for testing.

From the total 120K image-depth pairs, we train our model

on a 50K subset as [38].

B. Metrics

KITTI. Following [20] [5], we adopt both error and accu-

racy metrics to evaluate the performance of depth estimation

methods. The error metrics (the smaller the better) include

root mean square error (RMSE), the logarithm root relative

error (log.rel), absolute relative error (abs.rel) and square

relative error (sq.rel). And the accuracy metrics (acc, bigger

is better) include δ1 < 1.25, δ2 < 1.252 and δ3 < 1.253.

These metrics are formulated as:
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,
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)

= δ < δt

where di and d∗i stand for the predicted depth value and the

ground truth value of pixel i, respectively, N denotes the

total number of pixels with real-depth values, and δt means

the threshold for t ∈ {1, 2, 3}.

NYU-v2. Following standard practice [34], [38], we use

the same metrics with KITTI except sq.rel.

C. Hyperparameters

In our experiments, we set ζ = 0.3 and η = 0.3 for

the probabilities of vertical and horizontal flipping in data

augmentation. We use the ADAM optimizer with learning rate

0.0001 and the batch size is set to 8. For effectively combining

Ldepth with Lgrad as Equation 2, we experimentally set α = 1
and β = 0.8. We set θ = 0.5 for the logarithmic function F (·)
used in Equation 4. As for the block size b, we set it to 2

according to comprehensive experiments. We set p = 3 for

power average pooling.

D. Analysis

Quantitative comparison. In Table I and Table II, we com-

pare the proposed algorithm with the recent SOTA algorithms

[18], [22], [34], [38], [41], [54] and pioneering work [20] in

monocular depth estimation on NYU-V2 and KITTI dataset

quantitatively, which is able to fully demonstrate the effec-

tiveness of our method.

Specifically, compared with [20], our approach achieves

significant improvement in all metrics on both KITTI and

NYU-V2 datasets. Especially for KITTI, the error metrics

is almost halved and RMSE is even reduced by 4.508. As

compared with other methods, the overall performance of our

approach is still superior. For NYU-V2 dataset, our approach

is first place except δ1 and abs.rel are second place. As for

KITTI, our approach shows the best performance in δ1, δ3,



TABLE I
COMPARISONS OF DIFFERENT METHODS ON NYU. IN EACH COLUMN WE BOLD THE BEST PERFORMING METHOD AND UNDERLINE THE SECOND-BEST.

Methods δ1 δ2 δ3 RMSE log. rel abs. rel

(Higher is better) (Lower is better)

Eigen at al. [20] 0.769 0.950 0.988 0.641 - 0.158

Fu et al. [34] 0.828 0.965 0.992 0.509 0.051 0.115

Alhashim et al. [38] 0.846 0.974 0.990 0.465 0.053 0.123

Laina et al. [41] 0.811 0.953 0.988 0.573 0.055 0.127

Hao et al. [54] 0.841 0.966 0.991 0.555 0.053 0.127

MS-CRF et al. [22] 0.811 0.954 0.987 0.586 0.052 0.121

Ours 0.855 0.980 0.994 0.441 0.047 0.107

TABLE II
COMPARISONS OF DIFFERENT METHODS ON KITTI. IN EACH COLUMN WE BOLD THE BEST PERFORMING METHOD AND UNDERLINE THE SECOND-BEST.

Methods δ1 δ2 δ3 RMSE log. rel abs. rel sq. rel

(Higher is better) (Lower is better)

Godard et al. [18] 0.861 0.949 0.976 4.935 0.206 0.114 0.898

Eigen at al. [20] 0.692 0.899 0.967 7.156 0.270 0.190 1.515

Kuznietsov et al. [55] 0.862 0.960 0.986 4.621 0.189 0.113 0.741

Alhashim et al. [38] 0.886 0.965 0.986 4.170 0.171 0.093 0.589

Fu et al. [34] 0.932 0.984 0.994 2.727 0.120 0.072 0.307

Ours 0.947 0.989 0.996 2.548 0.113 0.061 0.297

TABLE III
ABLATION STUDIES OF MODELS WITHOUT AND WITH DIFFERENT COMPONENTS ON KITTI. THIS SHOWS THE IMPORTANCE OF ALL COMPONENTS

DESCRIBED IN SECTION IV IN GUIDING OUR MODEL.

δ1 δ2 δ3 RMSE log. rel abs. rel sq. rel

(Higher is better) (Lower is better)

Without λ 0.932 0.977 0.991 2.831 0.121 0.071 0.346

Without diagonal gradient 0.933 0.979 0.995 2.769 0.119 0.068 0.319

Without gradient 0.917 0.972 0.988 3.457 0.179 0.097 0.466

Without CBAM 0.814 0.957 0.979 4.266 0.201 0.139 0.832

Ours 0.947 0.989 0.996 2.548 0.113 0.061 0.297

RMSE, log.rel and abs.sql. In δ2 and sql.rel, although our

method only won the second place, the difference between

the first place is tiny (0.001 in δ2 and 0.006 in sql.rel).

Qualitative comparison. Figure 5 compares depth maps

qualitatively. For better visualizations, we transfer original

depth maps to color map by calling a toolbox in matplotlib.

It is observed that our proposed approach estimates the depth

maps reliably and accurately and also reduce grid and blurry

edging artifacts in comparison with the other approaches.

E. Ablation Study

We present an ablation study to measure the contributions

of different components in our approach. We run experiments

on KITTI dataset and the results are shown in Table III.

It can be seen that the attention module significantly im-

proves the performance, which demonstrates the effectiveness

of applying the attention mechanism to the depth estimation

problem. In addition, adding gradient components to the loss

function also improves performance, where the gradient in

diagonal direction further refines the depth estimation results.

By simply removing term λ = 1− SSIM of our overall loss

function 2, we also show that SSIM plays an positive role in

this problem.

VI. CONCLUSION

This paper explores the problem of monocular depth

estimation based on single image, which is the most ex-

treme but alluring case in vision-related depth estimation.

We propose an attention-based encoder-decoder network with

a novel loss function to effectively address this problem.

Specifically, we insert lightweight attention module CAMB

into skip connections between encoder and decoder to find

focuses for reducing grid artifacts and blurry edges with least

possible overhead. In addition, our loss function is designed

by combining the difference of depth values, gradient in three

directions (x, y and diagonal) and SSIM to further improve

fine details of depth maps and penalize small structural

errors. For speeding up loss computing, we utilize flexible

pixel blocks as units of computation instead of single pixel.

Comprehensive experiments on two large-scale datasets show

that our approach outperforms several representative baseline

methods.
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