
Constraint Enforcement to Guarantee Strictly Feasible Solutions in a
Surrogate Based Optimizer

Ahmed Abouhussein1,4, Nusrat Islam2,4 and Yulia T. Peet3,4

Abstract— Surrogate based optimization (SBO) methods have
gained popularity in the field of constrained optimization of
expensive black-box functions. However, constraint handling
methods do not usually guarantee strictly feasible candidates
during optimization. This can become an issue in applied engi-
neering problems where design variables must remain feasible
for simulations to not fail. We propose a simple constraint-
handling method for computationally inexpensive constraint
functions which guarantees strictly feasible candidates when
using a surrogate-based optimizer. We compare our method
to other SBO algorithms and an EA on five analytical test
functions, and an applied fully-resolved Computational Fluid
Dynamics (CFD) problem concerned with optimization of an
undulatory swimming of a fish-like body, and show that the
proposed algorithm shows favorable results while guaranteeing
feasible candidates.

I. INTRODUCTION

The goal of this study is to propose a constraint handling
technique (CHT) for a surrogate based optimization (SBO)
algorithm with inexpensive constraint functions to ensure
strictly feasible candidates while keeping the number of
function evaluations low. The purpose behind having such an
algorithm would be to solve practical engineering problems
with computationally-intensive black-box objective functions
such as finding the optimum modes of locomotion for a soft-
robot fish for efficient underwater propulsion.

There exists a wide spectrum of algorithms under the
umbrella of SBO with varying performance depending on
the choices made in developing the surrogate optimization
framework [1], [2]. The choices can vary in regards of the
model used to construct the surrogate, the infill strategy used
to refine the surrogate over the optimization cycle and the
CHT used to deal with available constraints. As the focus of
this paper is feasible candidates, we restrict our discussion
to the infill strategies and the CHTs associated with SBO
algorithms.

A popular class of methods involves casting the con-
strained optimization problem as a multi-objective opti-
mization problem where the objectives minimize the fitness
function and constraint violations. One way to solve the
multi-objective optimization is to use a "filter" approach [3].
The objective function and the constraints form a Pareto
front, where candidates that are non-dominated, those which
lay outside the Pareto front, are accepted through the filter

*This work was supported by NSF CMMI Award No. 1762827
1Ph.D. student, email: aabouhus@asu.edu
2Research Assistant, email: nislam4@asu.edu
3Assistant Professor, email: ypeet@asu.edu
4School of Engineering, Matter, Transport and Energy, Arizona State

University

and dominated candidates, those which lay within the Pareto
front, remain unfiltered. The filter approach, along with
other multi-objective optimization techniques [4], [5], relax
constraint requirements during the optimization procedure,
and therefor may not be easily adapted to practical problems
where the constraints must be strictly enforced. The require-
ment for strictly feasible candidates can arise, for example, in
optimization problems where constraint failures result in non
physically realizable parameters in a CFD simulation. An
alternative approach is to cast the constrained optimization
problem into a single unconstrained objective with an added
term which penalizes constraint violations. An example is
the “extreme barrier” treatment, where the objective function
is set to infinity in the infeasible domain [6]. Convergence
and accuracy of these methods is highly dependent on the
threshold of the penalty parameter [7]. A high threshold can
dominate the objective function and deteriorate convergence
speed, while a low threshold could produce infeasible can-
didates. Other CHTs have been developed around different
infill strategies. For example, it has been suggested that for
the Expected Improvement (EI) infill criteria, used in the
Efficient Global Optimization (EGO) algorithm by Jones,
Scholnau and Welch [8], the EI could be set to zero when
any constraint is violated [9], [10]. When the search is solely
guided by the EI criteria, there will be no exploration of
the infeasible regime. Another possible solution arises when
considering optimization problems where simulation failure
can not be determined a priori [11]. The suggested treatment
[11] is to impute a value that is proportional to the sum of the
surrogate response prediction and the prediction uncertainty
where the simulation fails. Although other CHTs, aimed
at problems with expensive constraints, rely on creating
surrogate predictions of the constraint functions [12], they
are generally inadvisable when constraint functions are in-
expensive [13]. We propose a simple rejection based CHT for
inexpensive constraints, capable of insuring strictly feasible
candidates, for the globally convergent Metric Stochastic
Response Surface (MSRS) infill sampling criteria [14]. We
choose an Ordinary Kriging (OK) surface [15] as the sur-
rogate model to exploit with the constrained MSRS infill
strategy and the resulting SBO algorithm variant is referred
to as OK-CMSRS.

We compare the OK-CMSRS algorithm with several other
algorithms which include: 1) The EGO algorithm with zero
EI for infeasible candidates, referred to as EGO-Z 2) an SBO
algorithm with an OK model, a MSRS infill strategy and a
data imputation treatment [12], referred to as OK-IMSRS 3)
an SBO algorithm with an OK model, a MSRS infill strategy,

and a simple penalty outside the feasible domain, referred to
as OK-PMSRS and, finally, 4) the CMAES evoluationary
algorithm which treats infeasible solutions by resampling
[16]. The algorithms are benchmarked on the following
six test problems: 1) the analytical Rosenbrock function
[17], 2) the Shifted Rotated Rastrigin’s Function [18], 3)
the Tension/Compression Spring Design (RC17) problem
[19], 4) Gear Train Design (RC31) problem [19] and 5)
optimization of the locomotion of a thunniform bio-inspired
propulsor based on Computational Fluid Dynamics (CFD)
results. Algorithm performance metrics include a function
evaluation count and a solution error to assess accuracy and
convergence speed. A formal problem presentation is given
next in Section 2. A method description of the OK-CMSRS
algorithm as well as the constraint handling approach is
presented in Section 3. Proofs of convergence for the MSRS
infill strategy as well as the for proposed CHT variant will be
discussed in Section 4. Details regarding the computational
set-up of the problems and the results are given in Section
5. Finally, a discussion of the results follows in Section 6.

II. PROBLEM FORMULATION

The general formulation of the optimization problem con-
sidered can be expressed as follows,

minimize f(x)

subject to x ∈ Rn (1)

where f : Rn → R is the objective function, x is a vector
of design parameters. The set S ⊆ Rn contains the n-
dimensional search space, which would define a rectangle
in R2 or a rectangular cuboid in R3:

l(i) ≤ xi ≤ u(i), 1 ≤ i ≤ n (2)

where l(i) and u(i) represent lower and upper bounds,
respectively, on a design parameter in the ith dimension. The
set C ⊆ Rn contains a set of m ≥ 0 constraints:

gr(x) ≤ 0, r = 1, ..., q,

hr(x) = 0, r = q + 1, ...,m
(3)

where gr(x) and hr(x) are referred to as the inequality and
equality constraint sets, respectively, on the design parameter
vector, x.

A. Test Problem I

The Rosenbrock function is a canonical optimization test
function known for containing a global minimum within a
wide basin. The two-dimensional form of the function used
in this study is given as follows:

f(x1, x2) = (a− x1)
2 + b(x2 − x2

1)
2 (4)

with global minimum located at (x∗
1, x

∗
2) = (a, a2), where

f(x∗
1, x

∗
2) = 0. The parameters were chosen to be a = 0.35

and b = 100 to insure that the global minimum resides within
the constraint domain as shown in Fig. 1. The C constraint

set, chosen to resemble the natural constraints in the last test
problem, is given below:

g1(x) = x2 + 2.5x2
1 − 0.5 ≤ 0

g2(x) = −x2 − x1 + 0.4 ≤ 0
(5)

Fig. 1: 2-D Rosenbrock over the constrained domain

B. Test Problem II

The second analytical function considered is the shifted
rotated Rastrigin function used as one of the benchmark
functions for CEC2005 competition [18]. This variant of
the Rastrigin function provides a non-linear, non-separable,
highly multi-modal challenging test function (Figure 2). The
2-D form used in this study is given as follows:

f(x1, x2) =
2∑

i=1

(z2i − 10 cos(2πzi))− 33 (6)

where z = (x − o)M, x = [x1, x2], o = [o1, o2] is the
shifted global optimum, with f(o) = −33, M is a linear
transformation matrix with condition number = 2. The C
constraint set in this case is:

g1(x) = x2 + 0.15x2
1 − 2 ≤ 0

g2(x) = −x2 − x1 − 1 ≤ 0
(7)

C. Test Problem III & IV

The third and fourth test problem were chosen to be design
problems RC17 and RC31, respectively, from the 2020
CEC constrained optimization competition [19]. These multi-
dimensional non-linear problems with demanding constraint
requirements are of practical relevance to mechanical design
problems in fields such as spring and compound gear design.

TABLE I: Optimization Algorithms

Software Language Solver Comments

MATLAB EGO-Z EGO available through DACE [21]
MATLAB OK-IMSRS MSRS available through MATSuMoTo [22]
MATLAB OK-PMSRS MSRS available through MATSuMoTo [22]
MATLAB CMAEES See Hansen [16]
MATLAB OK-CMSRS See Section 3

Fig. 2: 2-D Shifted Rotated Rastrigin over the constrained
domain

D. Test Problem V

The last optimization problem is based on a black-box
simulation which computationally models the swimming be-
haviour a 2D single thunniform fish presented by Xu and Peet
[20]. The optimization process aims to locate an optimum
fishing mode related to a kinematic gait that maximizes
the start-up propulsive force with minimal energy expended,
referred to as the propulsive efficiency. The fish undulation
is described in terms of its center-line position:

yc(p, t) = [x1
p

L
+ x2(

p

L
)2] sin

(
2π(

p

λL
− ft)

)
(8)

where x1 and x2 are dimensional undetermined linear and
quadratic wave amplitude coefficients, p is the streamwise
fish position, y is the spanwise fish position, λ is the body
wave length which is 1.1, f is the body wave tail-beat
frequency taken to be 1 Hz, L is the dimensional length
of the fish taken to be 0.3 m and t is time. Consequently,
the coefficients {x1, x2} span a range of swimming modes.
In order to allow for only physically realizable modes, the
following constraint set was imposed [23]–[25]:

g1(x) = 0.4x2L+ x2
1 ≤ 0

g2(x) = |x2 + x1| − 0.1L ≤ 0

g3(x) = x2 ≤ 0

(9)

The propulsive efficiency, η, is defined as follows:

η(x1, x2, t) =

∫ t

0

∮
body

−σ · np · Udpdt∫ t

0

∮
body

−σ · ny · νdpdt
(10)

where σ is he total Cauchy stress tensor which includes
viscous and pressure forces, n = {np, ny} is the outer unit
normal vector on the body surface, ν(p, t) = ∂ym(p, t)/∂t is
the surface transverse velocity due to undulation, and U(t)
is the propulsive forward velocity. During optimization, the
negative value of the propulsive efficiency is taken as the
objective function and the {x1, x2} coefficients are taken as
design parameters subject to the feasible parameter space.

III. METHOD DESCRIPTION

SBO algorithms rely on approximating solutions based on
a surrogate model of the objective function. First an initial
surrogate model of the objective function is created using a
data set of true function evaluations sampled with a space
filling strategy. Then, with each iteration an infill criteria,
which attempts to balance global and local exploration, is
used to refine the surrogate with multiple surrogate function
evaluations and one true function evaluation. In this work,
we choose a sampling technique and a surrogate model from
the DACE [21] Matlab tool box. We define an infill strategy
according to the Metric Stochastic Response Surface (MSRS)
method proposed by Regis and Shoemaker [14]. Finally,
we extend the MSRS method to produce strictly feasible
candidates at each iteration step.

We present below the SBO algorithm, OK-CMSRS, used
in this study. Let the feasible domain, D, be defined as D =
S ∩ C. Let Mk and sk(x) be defined as the set of candidates
used for “true” function evaluations and the surrogate model,
respectively, at iteration k. Define maximum number of
iterations, kmax, and a tolerance, tol.
Step 1: Sample a finite set of evaluation points T ⊂ D using

Latin Hypercube Sampling [26], where card(T) =
20. Evaluate f(T), where f(x) is the true objective
function. Identify the current best point x0. Set
M0 = T .

Step 2: Fit a Kriging model surrogate, s0(x), with a Gaus-
sian correlation function and 0-th order regression
polynomial. In other words, the surrogate model is
assumed to have a constant mean and a stochastic
error term that is modeled by a Gaussian process.
This is referred to as ordinary kriging and allows
for a flexible and reliable prediction method [15].

Step 3: While (k < kmax)

a) Create a set of strictly feasible candidate points,
Xk, according to the proposed algorithm (section
3.A.) and evaluate sk(Xk).

b) Use the MSRS method which assigns a weighted
score to each point in set Xk based on two criteria:
1) the distance of points in Xk to Mk, and 2) the
surrogate response values, sk(Xk). The weighted
score insures that the next candidate point has a
low objective value that is far away from already
sampled points. The point with the best weighted
score is identified as the next evaluation point, xk.

c) Evaluate f(xk). If tol is met: break.
d) Set Mk+1 = Mk + xk. Re-fit sk+1 with Mk+1.

Set k = k + 1.
Step 4: Return xk

A. Constrained Candidate Sampling

The candidate points are split into two categories [14]:
1) Uniformly sampled global points: The first set, Uk, is

generated by a uniform random sampling of points from
the box-constrained domain such that Uk ⊂ S. We set
card(U) = 2000.

2) Normally sampled local points: The second set Nk is
generated by adding perturbations to xk drawn from
a random normal distribution with zero mean and unit
variance. The are three perturbation rates chosen: one-
tenth, one-hundredth and one-thousandth of the smallest
variable range. The smallest variable range is defined as
min(u− l). We set card(N) = 2000.

We define the possibly unfeasible candidate set as X ′
k =

Uk + Nk. It follows that card(X ′
k) = 4000. We note that

X ′
k ⊂ S, however it may be that X ′

k ̸⊂ S ∩ C. We then
enforce all constraints, linear and/or nonlinear, through the
following algorithm:
Step 1: Evaluate gr(X

′
k) for r = 1, ..., q.

Step 2: Define ‘penalty’ vector, J , for each candidate point:

ji =
m∑
r=1

max(0, gr(xi)), i = 1, ..., card(X ′
k)

(11)
where ji are the entries of set J .

Step 3: The candidate points set, Xk, is simply defined as:
Xk = X ′

k(J = 0). In other words, the Xk candidates
are the candidates in X ′

k with a zero penalty.
This method does not guarantee that the candidate set will
always be the of expected card(X ′

k) but the final candidate
set Xk is always feasible for all possible candidate solutions.
If it happens that Xk ⊂ Mk, then the candidates are
resampled.

IV. CONVERGENCE PROOFS

Let Ek = {T,X ′
1, ..., X

′
k}. In the work of [14], two

conditions are introduced for use in a latter theorem which
proves global convergence:

[C1] For all k, elements of X ′
k are conditionally indepen-

dent given the random vectors in Ek−1.

[C2] For any xi ∈ S ∩ C, i = 1, ..., card(X ′
k) and δ > 0,

there exists νi(x, δ) > 0 such that

P [X ′
k ∈ S ∩ C ∩B(x, δ)|σ(Ek−1)] ≥ νi(x, δ)

where B(x, δ) is the open ball of radius δ and center x and
σ(Ek−1) is the σ-algebra generated by the random vectors in
Ek−1. C2 insures that no region of S ∩C is left unexplored.
The theorem then states:

Theorem 1: Let f be a function defined on S ∩ C ⊆ Rd

and suppose that x∗ is the unique global minimizer of f on
S ∩C in the sense that f(x∗) = infx∈S∩C f(x) > −∞ and
infx∈S∩C,||x−x∗||≥η f(x) > f(x∗) for all η > 0. Suppose
further that the SRS method generates X ′

k which satisfies
both [C1] and [C2] conditions. Define the sequence of
random vectors {x∗

k} := x∗
k = xk if f(xk) < f(x∗

x−1) while
x∗
k = x∗

k−1 otherwise. Then x∗
k → x∗ almost surely.

Proof: For ϵ > 0 and k ≥ 1, the event [xk ∈ S ∩ C :
f(xk) < f(x∗) + ϵ] = [xk ∈ S ∩ C : |f(xk)− f(x∗)| < ϵ].
Since f is continuous on x∗, there exists δ(ϵ) > 0 such
that |f(x)− f(x∗)| < ϵ whenever ||x− x∗|| < δ(ϵ). Hence,
[xk ∈ S ∩C : ||xk − x∗|| < δ(ϵ)] ⊆ [xk ∈ S ∩C : |f(xk)−
f(x∗)| < ϵ] and so,

P [xk ∈ S ∩ C : |f(xk)− f(x∗)| < ϵ|σ(Ek−2)]

≥ P [xk ∈ S ∩ C : ||xk − x∗|| < δ(ϵ)|σ(Ek−2)]

= P [xk ∈ S ∩ C ∩B(x∗, δ(ϵ))|σ(Ek−2)]

(12)

If X ′
k ∈ S ∩ C ∩ B(x∗, δ(ϵ)), then it must be that xk ∈

S ∩ C ∩B(x∗, δ(ϵ)). Hence,

P [xk ∈ S ∩ C ∩B(x∗, δ(ϵ))|σ(Ek−2)]

≥ P [X ′
k ∈ S ∩ C ∩B(x∗, δ(ϵ))|σ(Ek−2)]

=

card(X′
k)∏

i=1

P [X ′
ik ∈ S ∩ C ∩B(x∗, δ(ϵ))|σ(Ek−2)] [C1]

≥
card(X′

k)∏
i=1

νi(x
∗, δ(ϵ)) =: L(ϵ) > 0 [C2],

(13)

Combining 12 and 13 leads to: P [xk ∈ S ∩ C : f(xk) <
f(x∗)+ϵ|σ(Ek−2)] ≥ L(ϵ). Following the same argument in
the proof of the theorem in p. 40 of [27], x∗

k → x∗ almost
surely.

Therefor any candidate generation method, which satisfies
[C1] and [C2] in the SRS framework of [14], converges to the
global optima in a probabilistic sense. The authors show that
the uniformly sampled global (see III A. 1) and the normally
sampled local (see III A. 2) points satisfy conditions [C1] and
[C2] and we propose no changes to the candidate generation
scheme here.

After candidate generation, we argue that rejecting infeasi-
ble candidates, as was done in Section III A, does not affect

TABLE II: Optimization results for test problems I - IV. FE: Function Evaluations Count, FE MOE: Function Evaluations
Margin of Error and BF: Best Function Value. 1 Due to a high function evaluation count, the EGO surrogate for the Rosenbrock
and Spring problems could not be efficiently constructed on the desktop computer.

Algorithm Rosenbrock Rastrigin Spring Gear
FE FE

MOE
BF FE FE

MOE
BF FE FE

MOE
BF FE FE

MOE
BF

EGO-Z NA1 NA NA 191 22 -30.9 NA1 NA NA 32 4 2.74 ×
10−4

OK-
IMSRS

69 13 4.88 ×
10−4

290 43 -30.8 889 84 1.66 ×
10−3

16 1 3.32 ×
10−4

OK-
PMSRS

460 84 5.11 ×
10−4

317 60 -30.7 968 45 1.97 ×
10−2

16 1 2.92 ×
10−4

CMA-
ES

60 6 4.40 ×
10−4

130 51 -30.6 243 90 1.36 ×
10−2

25 3 1.95 ×
10−4

OK-
CMSRS

33 2 5.54 ×
10−4

127 15 -30.9 105 45 1.35 ×
10−2

14 1 2.98 ×
10−4

convergence, since:

P [xk ∈ S ∩ C ∩B(x∗, δ(ϵ))|σ(Ek−2)]

≥ P [Xk ∈ S ∩ C ∩B(x∗, δ(ϵ))|σ(Ek−2)]

≥ P [X ′
k ∈ S ∩ C ∩B(x∗, δ(ϵ))|σ(Ek−2)]

=

card(X′
k)∏

i=1

P [X ′
ik ∈ S ∩ C ∩B(x∗, δ(ϵ))|σ(Ek−2)] [C1]

≥
card(X′

k)∏
i=1

νi(x
∗, δ(ϵ)) =: L(ϵ) > 0 [C2],

(14)

In fact, the authors of [14] use the same argument to treat
simple box constraints, where Xk = X ′

k if X ′
k ∈ S while

Xk = min(max(l(i),Xk),u(i)) for i = 1, ..., card(X ′
k) if X ′

k

not in S.

V. COMPUTATIONAL SET-UP & RESULTS

A. Test Problems I - IV

Numerical simulations were performed on a desktop with
a CPU featuring six 3.20GHz Intel processors on a Linux en-
vironment. The optimization algorithms were run on Matlab
2020a. The convergence criteria, tol, was set to 0.9f∗(x),
with f∗(x) being the a priori identified global function min-
imum. Exceptions include Test Problem I and Test Problem
IV where tol is set to 1×10−3 since f∗(x) in those cases is
0. All algorithms were set to terminate at 1000 iterations,
regardless of tol. The function evaluations count as well
as the best function value, achieved after convergence, are
reported in Table 2. Additionally, a margin of error (MOE)
on the function evaluation count is calculated with 95%
confidence for all solvers. as follows:

SD =

√∑m
i=1(zi − µz)2

N − 1

MOE =
SD√
N

∗ 1.96
(15)

where zi is a random variable at iteration i, µz is the sample
mean, N is the number of realizations taken to be 50, SD
is the standard deviation and MOE is the margin of error.

B. Test Problem V

The simulations were performed on three nodes of a super
computing cluster with each compute node containing two
Intel Xeon E5-2680 v4 CPUs running at 2.40GHz. Simula-
tions of the swimming fish were performed using Nek5000, a
high-fidelity open source CFD solver [28]. The optimization
was set to be terminated at a relative convergence tolerance of
1×10−6. The relative convergence tolerance is defined by the
relative change of the objective function between successive
iterations. MATLAB and Linux bash scripts were used to
automate the optimization procedure to allow for no user
interference. The final Kriging surrogate was used to create
an objective function landscape contour found in Fig. 3. The
results for this problem are shown in Table 3.

Fig. 3: 2-D start-up efficiency function over the constrained
domain

VI. DISCUSSION

OK-CMSRS reported lower function evaluations when
compared to all other solvers on all four benchmark prob-
lems, while also maintaining error levels within specified

TABLE III: Black-box optimization

Algorithm Function
Evaluation

Start-up
Efficiency

Optimized
Parameter Set

{x1, x2}

OK-CMSRS 58 13.1% {0.68,−0.39}

tolerance. The EGO algorithm, with a zero EI CHT, typi-
cally demands high function evaluations and for some test
problems could become inefficient to run on a desktop
computer. Algorithms with an OK surrogate function require
less memory footprint but displayed varying performance
based on the selected CHT. For example, the OK-CMSRS
required less than half the function evaluations for the
Rosenbrock function when compared to OK-IMSRS. The
OK-PMSRS required more than 12 times the amount of
function evaluations for the same problem, which could be
due to the “cliff" effect associated with penalty functions,
as discussed in [10]. The CMAES algorithms is shown to
be more efficient at arriving to a solution within tolerance
when compared to other algorithms, with the only exception
being OK-CMSRS. Moreover, the CMAES results in a
higher MOE on function evaluation counts, especially for
the Rastrigin function, when compared to the OK-CMSRS.
Since, the OK-CMSRS showed the least variation in the
best solution reported (lowest MOE) as well as the lowest
function evaluations across the 50 optimization runs, it was
chosen solver for the black-box optimization problem. The
OK-CMSRS algorithm converged to a solution within 58
iterations and a resulting swimmer efficiency of 13.1%. The
results show indicate that the OK-CMSRS is a promising
tool for expensive simulations-based black-box optimization
problems with inexpensive constraints.

VII. ACKNOWLEDGEMENTS

This research is supported by NSF CMMI grant #
1762827.

REFERENCES

[1] S. Razavi, B. A. Tolson, and D. H. Burn, “Review of surrogate
modeling in water resources,’ Water Resources Research, vol. 48, no.
7, 2012.

[2] C. Wang, Q. Duan, W. Gong, A. Ye, Z. Di, and C. Miao, “An
evaluation of adaptive surrogate modeling based optimization with two
benchmark problems,” Environmental Modelling & Software, vol. 60,
pp. 167-179, 2014.

[3] C. Audet, J. Denni, D. Moore, A. Booker, and P. Frank, “A surrogate-
model-based method for constrained optimization,” 8th Symposium on
Multidisciplinary Analysis and Optimization, 2000.

[4] J. Müller and J. D. Woodbury, “GOSAC: global optimization with sur-
rogate approximation of constraints,” Journal of Global Optimization,
vol. 69, no. 1, pp. 117–136, 2017.

[5] R. G. Regis, “Constrained optimization by radial basis function
interpolation for high-dimensional expensive black-box problems with
infeasible initial points,” Engineering Optimization, vol. 46, no. 2, pp.
218–243, 2013.

[6] C. Audet and J. E. Dennis, “Mesh Adaptive Direct Search Algorithms
for Constrained Optimization,” SIAM Journal on Optimization, vol.
17, no. 1, pp. 188–217, 2006.

[7] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P.
Kevin Tucker, “Surrogate-based analysis and optimization,” Progress
in Aerospace Sciences, vol. 41, no. 1, pp. 1–28, Jan. 2005.

[8] D. R. Jones, M. Schonlau, and W. J. Welch, Journal of Global
Optimization, vol. 13, no. 4, pp. 455–492, 1998.

[9] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J.
P. Cunningham, “Bayesian Optimization with Inequality Constraints,”
ICML, vol. 2014, pp. 937–945.

[10] A. Keane, A. Forrester, and A. Sobester, “Engineering Design via
Surrogate Modelling: A Practical Guide,” 2008.

[11] A. Forrester, A. Sóbester, and A. J. Keane, “Optimization with missing
data,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 462, no. 2067, pp. 935–945, 2006.

[12] J. M. Parr, A. J. Keane, A. I. J. Forrester, and C. M. E. Holden, “Infill
sampling criteria for surrogate-based optimization with constraint
handling,” Engineering Optimization, vol. 44, no. 10, pp. 1147–1166,
2012.

[13] M. J. Sasena, P. Y. Papalambros, and P. Goovaerts, “The use of surro-
gate modeling algorithms to exploit disparities in function computation
time within simulation-based optimization,” Constraints, vol. 2, no. 5,
2001.

[14] R. G. Regis and C. A. Shoemaker, “A Stochastic Radial Basis
Function Method for the Global Optimization of Expensive Functions,”
INFORMS Journal on Computing, vol. 19, no. 4, pp. 497–509, Nov.
2007.

[15] A. A. Eldeiry and L. A. Garcia, “Comparison of Ordinary Kriging,
Regression Kriging, and Cokriging Techniques to Estimate Soil Salin-
ity Using LANDSAT Images,” Journal of Irrigation and Drainage
Engineering, vol. 136, no. 6, pp. 355–364, Jun. 2010

[16] N. Hansen, “The CMA evolution strategy: A tutorial,”
arXiv:1604.00772, 2016.

[17] H. H. Rosenbrock, “An Automatic Method for Finding the Greatest
or Least Value of a Function,” The Computer Journal 3, no. 3 (March
1, 1960): 175–84, https://doi.org/10.1093/comjnl/3.3.175.

[18] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the
CEC 2005 special session on real-parameter optimization,” Nanyang
Technol. Univ., Singapore, Tech. Rep., IIT Kanpur, Kanpur, India,
KanGAL Rep. #2005005, May 2005

[19] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan,
and S. Das, “A test-suite of non-convex constrained optimization
problems from the real-world and some baseline results,” Swarm and
Evolutionary Computation, vol. 56, p. 100693, 2020.

[20] Y. Q. Xu and Y. Peet, “Optimum gaits of 2D thunniform locomotion
for efficient swimming and performance of fish pair,” AIAA paper
2018-2915, 24th AIAA Fluid Dynamics Conference, June 2018

[21] S.N. Lophaven, H.B. Nielsen, and J. Søndergaard. DACE a Matlab
kriging toolbox. Technical report, Technical Report IMM-TR-2002-
12, 2002.

[22] J. Mueller, “MATSuMoTo: The MATLAB surrogate model toolbox for
computationally expensive black-box global optimization problems”,
arXiv preprint arXiv:1404. 4261, 2014.

[23] P. V. y Alvarado and K. Youcef-Toumi, “Soft-Robot Fish”. In Bio-
inspired Fishlike Underwater Robots, Springer, 2015, pp. 161–191

[24] I. Borazjani and F. Sotiropoulos, “On the role of form and kinematics
on the hydrodynamics of self-propelled body/caudal fin swimming,”
J. Exp. Biol., vol. 213, no. 1, pp. 89–107, 2009.

[25] M. Hultmark, M. Leftwich, and A. J. Smits, “Flowfield measurements
in the wake of a robotic lamprey,” Exp. Fluids, vol. 43, no. 5, pp.
683-690, 2007.

[26] M. D. Mckay, R. J. Beckman, and W. J. Conover, “A Comparison of
Three Methods for Selecting Values of Input Variables in the Analysis
of Output from a Computer Code,” Technometrics, vol. 21, 1979.

[27] J. C. Spall, Introduction to stochastic search and optimization: estima-
tion, simulation, and control, vol 65. John Wiley & Sons, 2005.

[28] P. Fischer, J. Lottes, S. Kerkemeier, O. Marin, K. Heisey,
A. Obabko, E. Merzari and Y. Peet, Nek5000 User’s manual,
http://nek5000.mcs.anl.gov/files/2015/09/NEK_doc.pdf, 2015

