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Abstract—Compared with multi-class classification, multi-
label classification that contains more than one class is more
suitable in real life scenarios. Obtaining fully labeled high-
quality datasets for multi-label classification problems, how-
ever, is extremely expensive, and sometimes even infeasible,
with respect to annotation efforts, especially when the label
spaces are too large. This motivates the research on partial-
label classification, where only a limited number of labels are
annotated and the others are missing. To address this problem,
we first propose a pseudo-label based approach to reduce the
cost of annotation without bringing additional complexity to the
existing classification networks. Then we quantitatively study
the impact of missing labels on the performance of classifier.
Furthermore, by designing a novel loss function, we are able to
relax the requirement that each instance must contain at least
one positive label, which is commonly used in most existing
approaches. Through comprehensive experiments on three large-
scale multi-label image datasets, i.e. MS-COCO, NUS-WIDE,
and Pascal VOC12, we show that our method can handle the
imbalance between positive labels and negative labels, while
still outperforming existing missing-label learning approaches
in most cases, and in some cases even approaches with fully
labeled datasets.

Index Terms—Deep learning, multi-label classification, miss-
ing label, pseudo label, label imbalance

I. INTRODUCTION

In deep learning, multi-class classification is a common
problem where the goal is to classify a set of instances, each
associated with a unique class label from a set of disjoint
class labels. A generalized version of multi-class problem
is multi-label classification [1], which allows the instances
to be associated with more than one class. It is more a
practical problem in real life because of the intrinsic multi-
label property of the physical world [2]: automatic driving
always needs to identify which objects are contained in the
current scene, such as cars, traffic lights and pedestrians; CT
scan can detect a variety of possible lesions; a movie can
simultaneously belong to different categories, for instance.
Ideally, multi-label classification is a form of supervised
learning [3], which requires lots of accurate labels. In practice,
however, annotating all labels for each training instance raises
a great challenge in multi-label classification, which is time-
consuming and even impractical especially in the presence
of a large number of categories [4], [5]. Therefore, how to
leverage the performance of multi-label classifier and the cost

TABLE I
DIFFERENT MISSING-LABEL SETTINGS. X, ×, ∅ REPRESENT THAT

CURRENT INSTANCE BELONGS TO THIS CLASS, DOES NOT BELONG TO
THIS CLASS, AND LACKS RELATED LABEL, RESPECTIVELY.

Settings Class 1 Class 2 Class 3 Class 4 Class 5
FOL X × X × X
POL X ∅ ∅ × X
PPL X ∅ X ∅ ∅
SPL X ∅ ∅ ∅ ∅

of collecting labels receives significant interests in recent
years.

The main strategies can be roughly divided into two
categories: (1) generating annotations automatically and (2)
training with missing labels. The former uses the web as
the supervisor to generate annotations [6]–[8], since there
is a large amount of imagery data with labeled information
available on the web, such as social media hashtags and
connections between web-pages and user feedback. However,
these methods may introduce additional noises to the label
space, which can degrade a classifier’s performance. For the
latter, missing labels means that only a subset of all the
labels can be observed and the rest remains unknown. It
can be further divided into several representative settings:
fully observed labels (FOL), partially observed labels (POL),
which is the most common setting. Two variations of POL
include: partially observed positive labels (PPL) and single
positive label (SPL). Table I shows the difference between
these settings. It should be pointed out that POL setting
is more common than PPL in real life. For example, in
many execution records of industrial devices [9]–[11], the
probability of each component’s failure is extremely low.
Therefore, it is almost impossible to guarantee that each
instance corresponds to one positive label, let alone in the
setting of missing labels.

This paper focuses on multi-label classification with miss-
ing labels. Although there has been a lot of work done along
this direction [5], [12], there are still some critical issues to
be addressed:

• To solve the multi-label classification with missing la-
bels, many state-of-the-art (SOTA) methods [2] [4] rely
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on additional structures, such as GNN and label estima-
tor, which further increase the complexity of networks.
A natural question is whether this problem can be
effectively solved without significantly increasing the
network complexity.

• It is still not clear how the missing ratio of the labels
affects the classification performance, which is of great
importance for us to balance the performance of classifier
and the annotation cost.

• Due to imbalance between positive and negative labels,
most methods dealing with missing labels require that
there is at least one positive label per instance, i.e., PPL,
instead of POL, which is more common in real life.

With these observations, this paper investigates new ap-
proaches for multi-label classification with missing labels.
The main contributions are summarized as follows:

• We propose a pseudo-label-based approach to predict
all possible categories with missing labels, which can
effectively balance the performance of classifiers and the
cost of annotation. The network structure in our approach
is the same as the classifier trained with full labels, which
means that our approach will not increase the network
complexity. The major difference lies in the novel design
of loss functions and training schemes.

• We provide systematical and quantitative analysis of the
impact of labels’ missing ratio on the classifier’s per-
formance. In particular, we relax the strict requirement
that the label space of each instance must contain at
least one positive label, which is commonly seen in the
related work [4], [5]. Therefore, our method is applicable
to general POL settings, not only PPL.

• Comprehensive experiments verify that our approach
can be effectively applied to missing-label classification.
Specifically, our approach outperforms most existing
missing-label learning approaches, and in some cases
even approaches trained with fully labeled datasets. More
importantly, our approach can adopt POL settings, which
is incompatible with most existing methods.

The rest of the paper is organized as follows. Section II
discusses the related work. The problem is formulated in Sec-
tion III and our proposed method is presented in Section IV.
Section V shows the experimental results. Finally, conclusions
are drawn in Section VI.

II. RELATED WORK

A. Multi-label Learning with Missing Labels

Recently, numerous methods have been proposed for multi-
label classification with missing labels. Herein, we briefly
review the relevant studies.

Binary Relevance (BR). A straightforward approach for
multi-label learning with missing labels is BR [1], [13], which
decomposes the task into a number of binary classification
problems, each for one label. Such an approach encounters

many difficulties, mainly due to ignoring correlations be-
tween labels. To address this issue, many correlation-enabling
extensions to binary relevance have been proposed [12],
[14]–[17]. However, most of these methods require solving
an optimization problem while keeping the training set in
memory at the same time. So it is extremely hard, if not
impossible, to apply a mini-batch strategy to fine-tune the
model [2], which will limit the use of pre-trained neural
networks (NN) [18].
Positive and Unlabeled Learning (PU-learning). PU-learning
is an alternative solution [19], which studies the problem with
a small number of positive examples and a large number of
unlabeled examples for training. Most methods can be divided
into the following three categories: two-step techniques [20]–
[22], biased learning [23], [24], and class prior incorpora-
tion [25], [26]. All these methods require that the training
data consists of positive and unlabeled examples [27]. In
other words, they treat the negative labels as unlabeled, which
discard the existing negatives and does not make full use of
existing labels.
Pseudo Label. Pseudo-labeling was first proposed in [28]. The
goal of pseudo-labeling is to generate pseudo-labels for unla-
beled samples [29]. There are different methods to generate
pseudo labels: the work in [28], [30] uses the predictions of
a trained NN to assign pseudo labels. Neighborhood graphs
are used in [31]. The approach in [32] updates pseudo labels
through an optimization framework. It is worth mention-
ing that MixMatch-family semi-supervised learning methods
[33]–[36] achieve SOTA on multi-class problem by utilizing
pseudo labels and consistency regularization [37]. However,
creation of negative pseudo-labels (i.e. labels which specify
the absence of specific classes) is not supported by these
methods, which therefore affects the performance of classifier
by neglecting negative labels [30]. Instead, the work in [30]
obtains the reference values of pseudo labels directly from the
network predictions and then generates hard pseudo labels by
setting confidence thresholds for positive and negative labels,
respectively. Different from [30], we simplify this process
by studying the proportion of positive and negative labels to
generate pseudo labels.

B. Imbalance

A key characteristic of multi-label classification is the
inherent positive-negative imbalance created when the overall
number of labels is large [38]. Missing labels exacerbate the
imbalance and plague recognizing positives [5]. Therefore, the
work in [4], [5] mandates that each instance in the training
set must have at least one positive label, which means that
they focus on PPL setting instead of “real” POL. Obviously,
this assumption may not always hold in real life scenarios. To
relax this assumption, a trivial solution is to treat the instances
with only negative labels as unlabeled instances. In this case,
however, it wastes the value of negative labels.

In this work, we allow the instances in training sets
with only negative labels (that is POL setting). From this



perspective, our work is most closely related to [2]. It should
be pointed out that [2] uses a Graph Neural Network (GNN)
[39] on top of a Convolutional Neural Network (CNN) to
model the correlations between labels, and its message update
function relies on a multi-layer perception (MLP), which
brings extra additional complexity to the parameter space and
training process. Whereas our approach focuses on designing
the training schemes and the loss function without introducing
additional structures. Furthermore, although [2] can cope
with instances containing only negative labels, it does not
specifically explore this direction, which leaves the possibility
of falling into a trivial solution (always predict negative) when
these types of instances occupies the majority.

III. FORMULATION

A. Multi-label Classification

Given a multi-label classifier with full labels, let X = RM
be the input attribute space of M -dimensional feature vec-
tors and Y = {1, 2, . . . , L} denote the set of L possible
labels. An instance x ∈ X is associated with a subset
of labels y ∈ 2Y , which can be represented as an L-
vector y = [y1, y2, . . . , yL] = {0, 1}L where yj = 1 iff
the jth label is relevant (otherwise yj = 0). Let D =
{(x1, y1), . . . , (xN , yN )} is the training set of N samples.
Given D, a multi-label classifier h : X → Y learns to map the
attribute input space to the label output space. We use ŷ to
present the prediction of classifier h, that is, ŷ = f(h(x)),
where f(·) stands for a function (commonly the sigmoid
function as σ(s) = 1

1+e−s ) that turns confidence outputs into
a prediction. In this case, most of the existing work [1], [40]–
[42] adopts the binary cross entropy (BCE) function as the
loss function, which is formulated by

L(ŷ, y) = − 1

L

L∑
i=1

[(yi log(ŷi) + (1− yi) log(1− ŷi)]. (1)

For multi-label classification with missing-label, we use
z = [z1, z2, . . . , zL] = {0, 1,∅}L to present the observed
labels, where zj = ∅ means the corresponding label is
missing. It is worth mentioning that the training set is
D = {(x1, z1), . . . , (xN , zN )}, while validation and test set
is Dv = Dt = {(x1, y1), . . . , (xN , yN )} in this case. In other
words, we still use full labels for validation and testing.

B. Different Missing-label Settings

According to the number and positive/negative properties
of the observable labels, we divide multi-label classification
problem into several settings: partially observed labels (POL),
partially positive labels (PPL), and an extreme case, i.e., single
positive label (SPL) [4]. Specially, we formulate these settings
as the following:

zPOL = {0, 1,∅}L and
L∑
j=1

(1[zPOLj
=1] + 1[zPOLj

=0]) < L,
(2)

zPPL = {1,∅}L and
L∑
j=1

1[zPPLj
=1] < L, (3)

zSPL = {1,∅}L and
L∑
j=1

1[zPPLj
=1] = 1, (4)

where 1[·] stands for the indicator function, that is, 1[True] =
1 and 1[False] = 0. Considering the large number of unknown
labels and the imbalance problem in these settings, we design
a new loss function to handle them, instead of directly using
BCE (1).

IV. PROPOSED METHOD

Without changing the basic structure of the classification
network, we address multi-label classification with missing
labels by introducing pseudo-label, designing new loss func-
tions, and adjusting training schemes. The pipeline of our
method is shown as Fig. 1.

A. Pseudo-labels

For all missing-label settings, the label of any instance in
the training set can be divided into two categories: observed
and unobserved labels. [43]–[45] directly set the unobserved
labels as negative. However, performance drops because a lot
of ground-truth positive labels are initialized as negatives [46].
Therefore, we decide to introduce soft pseudo labels for the
unobserved part and take pseudo labels as the target value of
unobserved labels in calculation of the loss. Another benefit
of introducing pseudo labels is that by properly designing
updating methods, it will not add complexity to the existing
classifier network. In contrast, ROLE [4] adds another NN as
the label estimator and takes the predictions of this NN as the
target. [2] adds a GNN on top of a CNN. Obviously, these
methods bring additional complexity to the network.

In our approach, the classifier actually has two goals in the
training process:
• For observed labels, we expect the predicted value to be

pushed to its ground-true value.
• For unobserved labels, we expect the predicted value to

be as close as possible to the value of its corresponding
pseudo label.

All the design steps in our method revolve these two points.
For (1), we just need to do as traditional supervised learning
does. For (2), there are two issues in front of us, that is, how
to generate pseudo-labels and how to update them. In the
following discussion, we denote pseudo labels as ỹ and the
pseudo-labeling value corresponding to the ith instance’s jth
class as ỹij , which can be any real number between [0, 1].
Creation of Pseudo-labels. There are several approaches to
create pseudo-labels for unobserved labels, as described in
Section II. In this work, we simplify this step by leveraging
the prior knowledge of the datasets. We first calculate the
average number of observed positive labels per instance and
denote it as Pp, and then count the missing ratio m of the
current training set, m = To/T , where To and T stand for the
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Fig. 1. Pipeline of our method. We feed an image to the classifier network and obtain the predictions. Then different strategies are utilized to deal with
observed and unobserved labels. For the unobserved part, we introduce pseudo labels by leveraging the prior knowledge of the dataset and design a novel
loss function LUnobserved. For the observed part, we treat it as a full-label classification problem. The total loss is defined by adding the losses of these two
parts with designed weights. The network used in our method is the most common classification network, which means that there is no additional complexity
in the network structure.

number of observed and total labels, respectively. We expect
that Pp/m can, to some extent, approximate or recover the
average number of positive labels per instance over the entire
dataset. With these statistics about the missing-label dataset,
we can set the initial value for pseudo labels of the ith instance
ỹij as

ỹij =

min

(
max(

Pp
m ,1)−Pi

Tui
, 1

)
, max(

Pp

m , 1) > Pi

0, otherwise
(5)

for unobserved label j, where Pi and Tui
stand for the number

of the observed positive labels and unobserved labels in the
ith instance, respectively. By using the max function in (5), it
means we have an initial guess that each instance has at least
one positive label in average, either observed or unobserved
(of course, such an initial guess is not necessarily true).

The initial method relies on a fact that even though most of
the labels are missing, the statistics of the observed labels can
still be used as a reference for the overall distribution of this
dataset. Therefore, if the number of an instance’s observed
positive labels, Pi, is less than the average max(Pp/m, 1),
we assign the difference, divided by Tui , as the pseudo labels
of those unobserved labels on this instance. Otherwise, if the
number of the observed positive labels exceeds the average,
we set the pseudo labels to 0. Note that this setting is only
for initialization. The pseudo labels will be updated during
the training progresses.

It is worth mentioning that the previous approaches often
initialize the pseudo labels as 0.5 or 0. Compared with the

0.5 setting, they do not take full advantage of the statistic
information of the dataset. As to the 0 setting, it may
aggravate the label imbalance.
Update. We update the value of pseudo labels after each epoch
of updating the network. A common way is to simply use
the network predictions as the pseudo labels. To check the
trajectory of the pseudo labels of this method, we randomly
select 10 training instances and record the fluctuations of
their predictions and pseudo labels’ value in SPL settings.
Due to space limitation, we only show the fluctuations of one
category of one instance in Fig. 2. Obviously, the predictions
fluctuate greatly in this common update method (as shown in
the left plot in Fig. 2). Note that even in the later stage of
training, the fluctuation still exists, which makes it hard to
converge. This is clearly not what we expect in training.

Therefore, we use a stack to record the predictions of
our classifier for the past n epochs and take the average
of these historical predictions as the value for the associated
pseudo labels, where n is a hyperparameter. Following this
method, we record the trajectories of the predictions and
the pseudo labels on the same training instances under SPL
setting during training (the right plot in Fig. 2). It is easy to
find that this running-average method smooths the fluctuation
of predictions and accelerate the convergence. We formulate
this updating method as follows:

ỹij =
1

n

n−1∑
k=0

ŷm−kij
(6)

where m stands for the current epoch index and ŷmij stands



for the predicted value of the jth category in the ith instance
at the mth epoch.

Fig. 2. Fluctuations in predicted values and pseudo labels during training.
The GT value for this specific label is 1. The left and right plot shows
the trajectories of the predicted and pseudo labels under traditional updating
method (set the pseudo label equal to the predicted value) and our running-
average updating method, respectively. It is easy to see that our method
accelerates convergence and smooths updating trajectories.

Disturbance Injection. In experiments, we find that the
predictions of the classifier for some unobserved categories
remain around 0.5. As mentioned before, we believe that it
is always better for the classifier to give an answer instead
of being ambiguities. Following this concept, we devise a
detector to detect such vague decisions. By utilizing the
historical prediction stack Spse = {ŷm−kij

}n−1k=0 , we determine
whether these predictions are all in interval [0.5−d, 0.5+d],
where d is a hyperparameter. If so, we update the pseudo
labels using (7), instead of updating pseudo labels in (6),
which adds random disturbances to these kind of unobserved
categories to push the pseudo labels away from 0.5:

ỹij =

{
ŷij − random(0, ŷij ), ŷij < 0.5

ŷij + random(0, 1− ŷij ), otherwise
(7)

where random(a, b) stands for a function which generates a
random real number between a and b.

Algorithm 1 summarizes the updating process of pseudo
labels. It should be pointed that the detection will not be
performed in the first Ds epochs and the last De epochs of
training, since the predicted labels may fall into [0.5−d, 0.5+
d] simply due to non-convergence at the beginning of training
and training may stop before reaching convergence in the last
several epochs. Here Ds and De are also hyperparameters.

B. Design of Loss function

At this point, we have solutions to meet the two goals
mentioned in Subsection IV-A. Next, we relate these two
goals together by designing an appropriate loss function.
Intuitively, we can obtain the loss function by adding the
losses of the observed part and unobserved part:

L = LObserved + LUnobserved (8)

Algorithm 1 Update pseudo()
Input: predcited value ŷij for jth class of ith instance at

epoch m, stack Sij , start epoch Ds, end epoch De

1: if Ds < m < De then
2: if Sij is FULL then
3: Sij .pop()
4: end if
5: Sij .push(ŷij )
6: if detector(Sij ) is TRUE then
7: update pseudo labels ỹij based on (7)
8: else
9: ỹij ← avg(Sij ) based on (6)

10: end if
11: end if
Output: ỹij , Sij

where LObserved is obtained by modifying the number of
classes L in (1) to the number of observed labels Oi in the
ith instance:

LObserved = − 1

Oi

Oi∑
j=1

[yj log(ŷj) + (1− yj) log(1− ŷj)]. (9)

Before passing the pseudo labels into the loss function, we de-
fine a threshold function on the pseudo labels, f(ỹi, t), where
t is a hyperparameter. In order to simplify the description, this
threshold is ignored below. For LUnobserved, since the pseudo
labels may contain errors, we can generally regard them as
the GT values with noises. Therefore, we follow the idea
in [47] to design LSBCE as follows, which has been proven to
be robust to noises:

LUnobserved = LSBCE = αL(ŷ, ỹ) + βL(ỹ, ŷ). (10)

where α and β stand for two decoupled hyperparameters.
Imbalance between Positives and Negatives. Label imbalance
significantly affects the generalization performance of the
multi-label predictive model. The classifier can be easily
reduced to the trivial “always predict positive/negative” so-
lution. To alleviate imbalance, we add confidence scores
into LUnobserved to balance the contributions of positive and
negatives during training:

LCFS(x, y, C1, C2, L) =−
1

L

L∑
i=1

[C1xi log(yi)

+ C2(1− xi) log(1− yi)],
(11)

where C1 = N
T and C2 = P

T are the weights, N and P stand
for the total number of the observed negative and positive
labels, respectively, and T = N + P stands for the total
number of observed labels in the training set. Obviously,
C1 + C2 = 1. Accordingly, the loss function for unobserved
part can be defined as follows:

LUnobserved =αLCFS(ŷ, ỹ, C1, C2, U)

+ βLCFS(ỹ, ŷ, C1, C2, U),
(12)



where U stands for the number of the unobserved labels on
the current instance. It should be pointed out that the focal loss
in [48] also designs scores for positive and negative labels,
which are fine-tuned hyperparameters. Compared with [48],
our method is more intuitive by using the scale information
of observed labels in the training set.

The Weighted Loss Function. To improve the loss, we follow
the concept from curriculum learning [49]: start learning from
the axioms that have been carefully tested, and then apply the
axioms to real problems in life. Consequently, we expect our
model to follow the same pattern during the training process,
i.e., it should first focus on the observed part, which takes the
GT labels as target, and then gradually shifts its attention to
the unobserved part. Therefore, we design the time-varying
confidence scores for LObserved and LUnobserved to reflect this
dynamic by utilizing the index of the current epoch e:

L =
Te − e

2

Te
LObserved +

e
2

Te
LUnobserved. (13)

where Te is the total number of epochs. We will use this loss
function in (13) in our experiments.

Algorithm 2 summarizes the entire training process of our
approach for each instance.

Algorithm 2 Training Process
Input: instance xi, classifier M(·|θ), ground-truth labels Gi,

epoch index m, stack of ith instance Si, pseudo labels of
ith instance ỹi

1: if ỹi not exists then
2: ỹi ← init() based on (5)
3: end if
4: ŷi ←M(xi|θ)
5: calculate Lobserved(ŷi, Gi) based on (9)
6: calculate Lunobserved(ŷi, ỹi) based on (12)
7: calculate L based on (13)
8: L.backpropagation()
9: update parameter θ

10: repeat
11: ŷij , Sij ← Update pseudo(ŷij , Sij )
12: until perform the above for all unobserved classes in xi
13: m← m+ 1
Output: M(·|θ), m

V. EXPERIMENTS

We test the effectiveness of our approach separately on
different labeling settings (POL, PPL, and SPL) and various
datasets, and compare it with several representative baseline
methods. Then we provide the ablation study that evaluates
the contribution of each component described in Section IV.

A. Datasets

We conduct comprehensive experiments on three large-
scale multi-label image datasets: COCO [50], NUS-
WIDE [51], and Pascal VOC [52]. Each instance in these

three datasets is fully annotated with clean labels that can be
used as the GT in performance evaluation.

To test our approach on various missing-label settings, we
need to corrupt label spaces of these three datasets by discard-
ing a part of labels. The processing method we use is similar
to [4] which generate labels for SPL setting. The difference
in our case is that besides SPL setting, we also generate
other settings by randomly selecting positive/negative labels
at specified proportions. If a label (0 or 1) is discarded, we
use ∅ to denote it. Note that we only do this operation once
so that the labels on each instance of the training set can keep
consistent during multiple training processes.

For COCO and Pascal VOC, we adopt the official train-
ing/testing splitting methods. In COCO, the official training
set consists of 82081 images, where each one is associated
with 80 possible categories, and there are 40,137 images in
the official testing set. The official training and testing sets of
Pascal VOC contain 5,717 and 5,823 images respectively, and
each image has 20 different categories. For NUS-WIDE, we
download it from Flickr, mix the official training and testing
sets together, and then follow the splitting method of [38].
Finally, we collect NUS-wide with 116445 and 50720 images
as training set and test set and each image has 81 labels.

After determining the training and testing sets, to be
consistent with [4], we choose 20% images from the training
set as the validation set. Then we train end-to-end fine-tuned
deep CNNs across these three datasets in different settings.

It should be pointed out that since we adopt the round-
up method during the process of randomly selecting labels,
PPL 08 for Pascal VOC is equivalent to using all positive
labels while none negative labels are selected. Table II shows
the statistics of positive and negative labels used in different
settings and different datasets.

As for the data augmentation and pre-processing, we first
resize the original input image of all these three datasets to
the shape of 448 × 448. And then, horizontal flip is applied
with a probability of 0.5. In the end, by using the standard
Imagenet statistics, we normalize the input image.

B. Metrics

There are different standard metrics to evaluate the per-
formance of multi-label classifiers [1], [42], such as mean
average precision(mAP), precision-at-k, and recall-at-k, to
name a few. In our case, we adopt mAP as the primary
evaluation metric.

C. Baselines

In order to demonstrate the effectiveness of our method and
evaluate the impact of the missing ratio, we first choose BCE
and BCE-LS with full labels as strong baselines. These two
methods are the most commonly used methods in multi-label
problem. The former takes BCE (1) as the loss function and
the latter uses label smoothing BCE [53], which is proposed
to reduce overfitting and has been shown to be effective in
mitigating the negative impacts of label noises.



TABLE II
STATISTICS OF THE OBSERVED LABELS IN DIFFERENT SETTINGS
MENTIONED IN THIS WORK, INCLUDING THE TOTAL NUMBER OF

POSITIVE/NEGATIVE LABELS AND THE AVERAGE NUMBER OF POSITIVE/
NEGATIVES LABELS PER INSTANCE. WE BOLD THE NUMBER OF POSITIVE
LABELS PER INSTANCE LESS THEN 1, WHICH PROVES THAT THERE EXISTS
SOME INSTANCES WITH NO POSITIVE LABELS IN THESE SETTINGS. THIS

ALSO DEMONSTRATE THAT OUR METHOD RELAX THE REQUIREMENT
THAT EACH INSTANCE MUST CONTAIN AT LEAST ONE POSITIVE LABEL.

total pos per. pos total neg per. neg
Dataset Pascal VOC
FOL 6665 1.5 84815 18.5
PPL 08 6665 1.5 0 0
PPL 06 6244 1.4 0 0
PPL 04 5009 1.1 0 0
SPL 4574 1.0 0 0
POL 005 340 0.1 4234 0.9
POL 01 649 0.1 8499 1.9
POL 02 1302 0.3 16994 3.7
POL 04 2662 0.6 33930 7.4
POL 06 3974 0.9 50914 11.1
POL 08 5315 1.2 67869 14.8
Dataset COCO
FOL 190378 2.9 5060122 77.1
PPL 08 186723 2.8 0 0
PPL 06 152609 2.3 0 0
PPL 04 111160 1.7 0 0
SPL 65665 1.0 0 0
Dataset NUS-WIDE
FOL 176998 1.9 7368638 79.1
PPL 08 166818 1.8 0 0
PPL 06 142734 1.5 0 0
PPL 04 114581 1.2 0 0
SPL 93156 1.0 0 0

Besides taking BCE and BCE-LS under FOL setting as
strong baselines, we select some representative approaches
for comparison.

In PPL setting, we choose AN [54], WAN [44], and
ROLE [4] and directly use the official experimental settings
and code. AN assumes that unobserved labels are always
negative, which is perhaps the most common method for
PPL settings. WAN down-weights terms in the loss related
to negative labels by introducing a weight parameter. ROLE
considers regularized online estimation of unobserved labels.

For POL, as stated before, most existing methods can not
be applied in this setting directly. Therefore, we have to make
some modifications to the original methods. Specifically, be-
sides AN, WAN and ROLE, the approaches for comparison in
this setting include Focal [48], and ASL [38]. For AN, WAN
and ROLE, due to the severe imbalance in missing-label
settings, Cole et al. [4] reuqire that each instance must have
one positive labels in the code implementation. We directly
remove the restriction in the official code for comparison.
Focal addresses the problem of positive-negative imbalance
and hard-mining. We can formulate it as follows:

−
L∑
i=1

(yiα+(1−p)γ log(p)+(1−yi)α−pγ log(1−p)) (14)

where p stands for the predict value, γ is a focus parameter

TABLE III
THE MAP RESULTS IN POL SETTINGS ON PASCAL VOC. IN EACH

COLUMN WE BOLD THE BEST PERFORMING METHOD AND UNDERLINE
THE SECOND-BEST EXCEPT BCE UNDER FOL SETTING.

POL 02 POL 04 POL 06 POL 08
BCE (FOL) 89.1
Ours 81.5 86.5 88.0 89.2
ASL [38] 78.2 84.6 86.7 88.0
Focal [48] 77.7 82.1 85.9 87.3
AN [54] 63.1 69.4 72.8 76.5
WAN [44] 70.6 78.9 80.0 83.4
ROLE [4] 69.2 79.0 81.1 82.9

and α+, α− are used to balance positive and negative labels.
In our experiment, we set α+ = 0.9, α− = 0.1 and γ = 2,
which is determined experimentally. ASL relieves imbalance
by operating differently on positives and negatives as follows,

−
L∑
i=1

(yi(1−pm)γ+ log(pm)+(1−yi)pγ−m log(1−pm)) (15)

where γ+, γ− are the focus parameters, pm = max(p−m, 0),
and m is a hyperparameter. We set γ+ = 8, γ− = 1
and m = 0.05 for our experiments through fine tuning.
Note that although Focal and ASL are designed to solve the
imbalance issue, the authors did not consider them in missing-
label settings. Therefore, in order to make a comparison with
our method, we follow [43]–[45] and regard the labels for
unobserved part as negative when implementing these two
approaches.

D. Implement Details

Network Structure. We use an end-to-end network for all
experiments: a ResNet-50 [55], pre-trained on ImageNet [56],
as the backbone and a fully connected layer, which is the same
as the multi-label classifier under FOL setting. Our approach
does not add any extra structure to the network.

Hyperparameters. We train our classifier for 10 epochs, that
is, Te = 10. For the learning rate and batch size, we use a
hyperparameter search method and select the hyperparameters
with the bast mAP on the validation set, where the learning
rate is in [1e − 3, 1e − 4, 1e − 5, 1e − 6] and batch size is
in [8, 16]. We assign the threshold t to be 0.7 and d to be
0.2. Recall that d is used to decide whether to introduce
disturbances in pseudo labels. The historical stack size n is 3,
considering the memory consumption. Ds and De are set to
be 3 and 7, respectively, which are determined after several
trials. Finally, we set α = 0.95 and β = 0.05.

E. Analysis

POL. Alleviating the imbalance between positives and neg-
atives is one highlight of our approach. In POL, the impact of
the imbalance may be exacerbated since the observable labels
are randomly selected. There is equal chance for positive and
negative labels to be selected, which means that it is even
possible that an instance has multiple positive labels, while



TABLE IV
THE MAP RESULTS IN PPL SETTINGS ON COCO, PASCAL VOC, AND NUSWIDE DATASETS. PPL 04, PPL 06, AND PPL 08 REPRESENT RANDOMLY

RETAINING 40%, 60% AND 80% OF POSITIVE LABELS FOR EACH INSTANCE, RESPECTIVELY, AND DISCARDING ALL NEGATIVE LABELS. SPL IS
EQUIVALENT TO PPL SINGLE, WHICH IS AN EXTREME VARIATION OF PPL. IN EACH COLUMN WE BOLD THE BEST PERFORMING METHOD AND

UNDERLINE THE SECOND-BEST EXCEPT BCE AND BCE-LS THAT IS PERFORMED UNDER FOL SETTING.

COCO Pascal VOC NUSWIDE
SPL PPL 04 PPL 06 PPL 08 SPL PPL 04 PPL 06 PPL 08 SPL PPL 04 PPL 06 PPL 08

BCE (FOL) 75.8 88.9 52.6
BCE-LS (FOL) 76.8 90.0 53.5

AN [54] 63.9 66.4 67.0 69.2 84.7 86.8 87.3 88.0 40.0 45.1 48.3 50.3
WAN [44] 64.8 69.1 70.8 71.2 85.9 87.5 87.9 88.3 43.7 46.9 48.5 50.6
ROLE [4] 65.9 73.1 75.4 77.1 87.0 88.9 90.0 90.3 43.2 48.0 50.4 52.0

Ours 67.8 74.4 75.9 77.8 86.6 88.9 90.8 91.1 46.0 49.6 51.9 53.3

Fig. 3. The performance of our approach in POL settings of Pascal VOC. The
x-axis represents the percentage of observed labels used in our experiments.
For instance, 5 stands for POL 005. The y-axis represents the mAP scores.
The score of BCE under FOL setting is shown in red for comparison. Notice
that in POL 08, our approach eventually exceeds the performance of BCE
with full labels.

another one has no positive labels. This is the reason why
most related methods are incompatible with this setting. We
opt to use the modified version of AN, WAN, ROLE, Focal
and ASL as baseline methods for comparison, and the detailed
modification process is described in Sec. V-C.

We conduct experiments on Pascal VOC in POL 02,
POL 04, POL 06, and POL 08 settings. The experimental
results are shown in Table III. As excepted, since AN does
not take imbalance into consideration, it performs the worst
among all other methods in our experiments. Moreover,
ROLE, which won the second place in PPL setting in our
experiments, can not cope with POL setting well. Relying
on the ingenious design of the loss function, our method
has a significant improvements compared with other baseline-
methods. In particular, we notice that the fewer labels are
available, the greater the performance of our approach can
be over other baselines. Obviously, the experimental results
show that our approach can effectively deal with POL settings,
which is the most common settings in real world.

To further quantify the impact of the missing ratio of labels
on the classification performance, we run our approach in
POL 005, POL 01, and the results are summarized in Fig. 3.

The performance of our algorithm improves as the number of
observed labels increases. Note that in POL 06, we use only
60% of labels and the achieved score is only 1.1% lower than
the strong baseline. In POL 08, the performance even exceeds
the strong baseline with only 80% of labels. Considering that
the cost of annotation is expensive, we can find a balance
between 60% and 80% of labels to trade off accuracy of the
classifier and the annotation cost.

PPL & SPL. In order to demonstrate the effectiveness of
our approach in PPL settings, we consider different label-
ing settings (PPL 04, PPL 06, PPL 08 and SPL) on three
datasets. For fair comparison, we directly execute the official
code of AN, WAN and ROLE without any modification as
baseline-methods. Meantime, we perform BCE and BCE-LS
on these three fully-labeled datasets, i.e., under FOL setting,
which are used as strong baselines for our approach. Table IV
summarizes the experimental results. For COCO dataset and
NUS-WIDE dataset, our algorithm achieves the highest score
in all settings. For Pascal VOC, our approach achieves the best
mAP score in PPL 04, PPL 06 and PPL 08 settings and the
second highest, but comparable, score in SPL setting. These
results fully demonstrate that our approach can be effectively
applied to PPL settings.

Compared with the strong baselines under FOL setting,
the results show that for COCO, our approach can achieve
comparable performance to BCE and BCE-LS in PPL 06
and PPL 08, respectively. For Pascal VOC, the results by our
approach in PPL 06 and PPL 08 are even able to outperform
these two FOL baselines. It is surprising to find that our
approach in PPL 04 can even achieve a score comparable
to strong baselines, which means we save 26.7% of the cost
in labeling positives and 100% cost in labeling negatives, ac-
cording to the statistics of the labels used in our experiments.
As for NUS-WIDE, our method also can reach the strong
baselines ,even outperforms BCE(FOL) in PPL 08 setting.
However, the other baseline-methods are not able to exceed
the strong baselines.

F. Ablation study

We present an ablation study to measure the contributions
of different components in our approach. We run experiments



on Pascal VOC in PPL 06 and POL 06. The results are
shown in Table V.

TABLE V
THE MAP RESULTS IN ABLATION STUDY UNDER PPL 06 AND POL 06

SETTINGS ON PASCAL VOC.

PPL 06 POL 06
Ours Approach 90.8 88.0
Without Update 90.1 86.6
Without Disturbances 88.2 86.0
Without Imbalance Design 91.1 76.9
Without Weighted Loss 90.9 79.4

For PPL 06 setting, both our proposed running-average
updating method and the introduction of disturbances improve
the performance of the approach. However, the novel loss
function, including imbalance and weighted design, reduces
the performance, because these two factors are designed for
more general settings, not specifically for PPL. This can
be found in POL 06 setting, where the effectiveness of
our design is demonstrated: the imbalance and dynamically
weighted design can significantly enhance the performance of
the classifier. The former improves the result by more than
11.1%, and the latter improves by 8.6%. In contrast, the new
updating method and disturbance have relatively limited, but
still positive, improvements in POL setting (more than 1%
increase).

VI. CONCLUSION

This paper explores the problem of multi-label classifi-
cation with missing labels. We propose a novel pseudo-
label-based approach to cope with missing-label problem
without increasing the complexity of the existing classification
networks. By leveraging prior knowledge of the dataset,
our approach relaxes the assumption that each instance in
the training set must has at least one positive label, which
is often required in existing approaches. We demonstrate
the effectiveness of our approach by performing extensive
experiments on three large-scale datasets. It is shown that
our method can effectively reduce the annotation cost without
significant degradation in classification performance. We also
evaluate the impact of the missing ratio of the labels on the
classifier’s performance, which can be used as a guideline to
achieve the balance between performance and labeling costs.
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