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Abstract
Learning-augmented algorithms—in which, tra-
ditional algorithms are augmented with machine-
learned predictions—have emerged as a frame-
work to go beyond worst-case analysis. The
overarching goal is to design algorithms that per-
form near-optimally when the predictions are ac-
curate yet retain certain worst-case guarantees
irrespective of the accuracy of the predictions.
This framework has been successfully applied to
online problems such as caching where the pre-
dictions can be used to alleviate uncertainties.
In this paper we introduce and study the set-
ting in which the learning-augmented algorithm
can utilize the predictions parsimoniously. We
consider the caching problem—which has been
extensively studied in the learning-augmented
setting—and show that one can achieve quanti-
tatively similar results but only using a sublinear
number of predictions.

1. Introduction
Learning-augmented algorithms have recently emerged
as a framework to strengthen traditional algorithms with
machine-learned predictions. Traditional algorithm design
focuses on formal guarantees for all inputs. Hence, it is of-
ten geared towards working well on worst-case inputs and
not for typical, real-world instances. In contrast, machine
learning (ML) performs extremely well on typical instances
but can occasionally fail on rare instances. The learning-
augmented framework aims to design algorithms that can
benefit from the machine-learned predictions while retain-
ing worst-case guarantees.

This framework was initiated by Kraska et al. (2018), who
demonstrated that indexed data structures can be improved
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using learned predictions. Inspired by their work, Lykouris
& Vassilvitskii (2018) studied the classic online caching
problem and obtained an algorithm whose performance
guarantee gracefully degrades as the prediction quality
worsens but still remains robust regardless of the predic-
tion quality. The learning-augmented framework has since
found applications in streaming algorithms, data structures,
and particularly for online algorithms where predictions
can alleviate the uncertainties for unseen future inputs; see
the survey by Mitzenmacher & Vassilvitskii (2020).

In this paper we focus on an important yet largely over-
looked aspect in previous works—the cost of obtaining pre-
dictions. Predictions are typically obtained from a ma-
chine learned model, which can be computationally ex-
pensive; this makes it highly desirable to use predictions
parsimoniously. We study online caching in the learning-
augmented framework in which hints are used sparingly.

Online caching. In the online caching problem, a se-
quence of page requests arrives at a cache of size k. If
the requested page is in the cache, then it can be served
at no extra cost, but otherwise a cache miss occurs to
fetch the missing page into the cache. The goal of an on-
line algorithm is to minimize the number of cache misses.
A number of randomized algorithms are known to be
Θ(log k)-competitive (Achlioptas et al., 2000; Fiat et al.,
1991)—meaning that they incurO(log k) times more cache
misses than the offline optimal solution for all inputs—and
this is the best possible. Belady’s furthest-in-future algo-
rithm (Belady, 1966) that always evicts the page whose
next request is the furthest in the future is well-known to
be the optimal offline algorithm

To exploit predictions, Lykouris & Vassilvitskii (2018) pro-
posed an algorithm that assumes the knowledge of the next
predicted request time of all pages in the cache. For the
`1-norm prediction error with respect to the actual arrival
times, they showed that the algorithm’s competitive ra-
tio improves to O(1) as the error tends to 0 and remains
O(log k) always. These bounds have further been quanti-
tatively improved recently by Rohatgi (2020); Wei (2020).

Our contributions. We show that we can use signifi-
cantly fewer predictions for online caching to obtain re-
sults similar to the aforementioned work. More precisely,
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we allow our algorithm to query b pages in the cache to
learn their predicted next arrival time for each cache miss.
We show that we can obtain an O(logb+1 k)-competitive
ratio for good predictions while retaining the O(log k)-
competitive ratio always (Theorem 11). Thus, as long as
the cache miss rate is 1

kε for any constant ε > 0, we can
obtain a constant O(log 1

ε )-competitive ratio using a sub-
linear number of queries in the number of page requests.
We also show that our trade-off is near-optimal (Theo-
rem 12). Our experiments show that even with very few
queries, e.g., making two queries per cache miss, we can
significantly improve upon traditional caching algorithms
in practice. The experimental results also demonstrate that
we can match (and even exceed) the performance of prior
learning-augmented algorithms but querying only ≈ 11%
of the page requests.

As is typical in unweighted caching, our algorithm is based
on the randomized marking algorithm. However, instead
of evicting a randomly chosen unmarked page on a cache
miss, our algorithm queries b unmarked pages in the cache
and evicts the one with the furthest predicted request time.
At a high-level, if there are k unmarked pages, then we can
show that the evicted page is not requested before k/(b+1)
other unmarked pages in the cache in expectation, provided
all the predictions are correct. Using this we can show how
to reduce the number of cache misses. While this idea is
easy to state, the analysis is delicate as the prediction er-
ror is defined only over the pages that were queried. To re-
tain anO(log k)-competitive ratio, we adapt the techniques
of Lykouris & Vassilvitskii (2018) and switch to using the
randomized marking strategy once we detect that the algo-
rithm has made too many mistakes. The lower bound is
shown by an explicit but intricate construction.

Related work. Online caching has been extensively stud-
ied in the literature. For generalizations of caching, includ-
ing the k-server problem, see (Koutsoupias & Papadim-
itriou, 1995; Bansal et al., 2015; Bubeck et al., 2018; Lee,
2018; Bansal et al., 2012; Adamaszek et al., 2012). In order
to circumvent the pessimistic lower bounds in the worst-
case setting, a number of alternative models have been pro-
posed to capture properties of real-world instances such
as the access graph model (Borodin et al., 1991; Fiat &
Mendel, 1997; Irani et al., 1996), Markov paging (Karlin
et al., 2000), and interleaved paging (Barve et al., 2000;
Kumar et al., 2020). The reader is referred to the book
by Borodin & El-Yaniv (2005) for a general overview of
online algorithms.

Learning-augmented algorithms largely fall in the rubric
of “beyond worst-case algorithms”; see (Roughgarden,
2020) for an extensive survey of the field. They have re-
cently been extensively explored particularly for online al-
gorithms, including load balancing (Lattanzi et al., 2020; Li

& Xian, 2021), rent-or-buy (Kumar et al., 2018), schedul-
ing (Azar et al., 2021), online set cover (Bamas et al.,
2020), metrical task systems (Antoniadis et al., 2020), and
many others. For online caching, its weighted version has
been studied in (Jiang et al., 2020; Bansal et al., 2022).

The problem of learning-augmented algorithms with sub-
linear number of queries was recently studied by Bhaskara
et al. (2021), but in the regret setting for online linear op-
timization. Our paper studies an analogous question for
caching, but in the competitive ratio setting.

The online algorithms with advice model (Boyar et al.,
2017) is loosely related to learning-augmented algorithms.
Here the goal is to quantify the amount of advice neces-
sary to obtain a (near-)optimal solution; the model assumes
the advice is error-free. For online caching, Dobrev et al.
(2009) show that one bit of advice per page request suffices
to obtain an optimal solution, where the advice is whether
a page should be kept in the cache until it is requested next.
Unfortunately, such advice is derived from the optimal so-
lution itself and is arguably hard to learn; in contrast, pre-
dicting the next arrival time of each page—which is our
setting—is a much easier task to learn.

2. Model
Let U denote a universe of pages and k be the number of
distinct pages that can be held in the cache at any time.
In the classical unweighted caching problem, a sequence
Γ = 〈p1, p2, . . .〉, where each pi ∈ U , of page requests
arrives online and the algorithm is required to maintain a set
of at most k pages in the cache at any time. At any time t, if
the currently requested page pt is not in the cache, then the
algorithm incurs a cache miss and must fetch the requested
page in the cache (possibly by evicting some other page).
The objective of the online algorithm is to minimize the
total number of cache misses incurred.

Note that an online algorithm has to choose the page to be
evicted without knowing Γ. We measure its performance
by comparing against the furthest-in-the-future (FiF) algo-
rithm of Belady (1966), which is the optimal offline algo-
rithm that knows Γ. Let costΓ(·) be the total number of
cache misses of an algorithm for the request sequence Γ
and let OPTΓ = costΓ(FiF) be the optimal offline cost. An
online (randomized) algorithmA is said to be c-competitive
if for all request sequences Γ, it holds that

E[costΓ(A)] ≤ c · OPTΓ + b,

where b ≥ 0 is a constant independent of the length of Γ,
and the expectation is over the randomness (if any) of A.
For brevity, from now on we will work with a given Γ and
omit it from all subsequent notation.

In the usual learning-augmented setting, at each time t,
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along with the requested page pt, the algorithm is presented
with a (possibly noisy) prediction τt ∈ N for the next time
after t that the page pt will be requested again; hence the
predicted arrival time of the next request is available for
every page in the cache. In the learning-augmented setting
with queries, at any time t and for any page p that is in the
cache, the algorithm is allowed to query a possibly noisy
(stochastic) oracle Q for the time, after t, of the next re-
quest for p. Let τp,t = Q(p, t) denote such a predicted
arrival time of the next request to page p after time t; let
ap,t ≥ t denote the actual arrival time of the next request to
page p. Let Q be the set of queries made to Q. We define
the error of the oracle to be η =

∑
(p,t)∈Q |τp,t − ap,t|.

The learning-augmented setting with queries generalizes
many well-studied caching problems. On one hand, if
the algorithm makes no queries to the oracle, then it is
the standard caching problem and we can get a O(log k)-
competitive solution, say, with a randomized marking al-
gorithm (see Section 3.1). On the other hand, if the oracle
is error-free and the algorithm queries it at every time step,
Belady’s algorithm yields the optimal solution. In a recent
work, Lykouris & Vassilvitskii (2018); Wei (2020); Rohatgi
(2020) designed a learning-augmented caching algorithm
for noisy oracles, showing a tight trade-off between the er-
ror of the oracle and the competitive ratio of the algorithm;
their algorithm, however, queries the oracle at every time
step. The question we ask in this paper is: can we get sim-
ilar trade-offs but using much fewer queries?

3. Preliminaries
A pair (p, t1) and (q, t2) of queries in Q is called an inver-
sion if τp,t1 ≥ τq,t2 but ap,t1 < aq,t2 , i.e., the next request
of page p is earlier than that of q although the predictions
indicated otherwise. Let I = |{(p, t1), (q, t2) | τp,t1 ≥
τq,t2 but ap,t1 < aq,t2}| be the number of inversions. The
following relates the number of inversions to the error.

Lemma 1 (Diaconis & Graham (1977); Rohatgi (2020)).
For any request sequence Γ and any set Q of queries,

η ≥ 1

2
I.

3.1. Marking algorithms

Marking algorithms are a class of caching algorithms that
associate a “marking” bit with each page in the cache, and
upon a cache miss only evict an unmarked page from the
cache. Formally, the algorithm first divides the request se-
quence into phases where a phase is a maximal contigu-
ous sequence of requests to only k distinct pages. At the
beginning of each phase, all pages in the cache are un-
marked. Pages that are requested during the phase get
marked one by one and upon any cache miss, the algorithm

only evicts some unmarked page. Once all the pages in
the cache have been marked, a new phase begins and the
process repeats. Algorithm 1 shows the pseudocode for
a generic marking algorithm. It is well known that any
marking algorithm is O(k)-competitive and the random-
ized marking algorithm (Fiat et al., 1991), which evicts an
unmarked page chosen uniformly at random, is O(H(k))-
competitive, where H(k) := 1 + 1

2 + · · ·+ 1
k = Θ(log k).

Algorithm 1: A generic marking algorithm.

for each requested page p do
if p in cache then

“Mark” p
else

if all pages in cache are marked then
Unmark all pages

end
Evict an unmarked page
Fetch p in cache and “mark” it

end
end

Consider any phase h and an arbitrary page p that is re-
quested in phase h. We say that page p is clean if p was
not requested in the previous phase (i.e., phase h− 1), and
we say p is stale otherwise. Note that once k is known, the
phases of the sequence—as well as clean and stale pages—
are determined, independent of the algorithm. Let `h de-
note the total number of distinct clean pages requested in
phase h. The following result bounds the number of cache
misses incurred by the optimal offline algorithm in terms
of the number of distinct clean pages.

Lemma 2 (Fiat et al. (1991)). 1
2

∑
h `h ≤ OPT ≤

∑
h `h.

4. Warm-up: Modified marking algorithm
We first show how the classic randomized marking algo-
rithm (Fiat et al., 1991) can be modified to effectively use
predictions but making fewer queries. For ease of exposi-
tion, we assume for now that the oracle is error-free; we ex-
tend the analysis to handle noisy predictions in Section 4.1.

We consider the following modification to the marking al-
gorithm: whenever a page needs to be evicted, if there are
at least εk unmarked pages in the cache, then evict an un-
marked page chosen uniformly at random; otherwise, query
Q(p, t) for all unmarked pages p and evict the page whose
next request appears furthest in the future (i.e., apply Be-
lady’s method). We remark that once we query all the re-
maining unmarked pages in a phase, we can simply reuse
these predictions for any further cache misses and hence
make at most εk queries in any phase. Algorithm 2 de-
scribes this naive eviction policy formally.
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Algorithm 2: Naive eviction.

Function: Evict():
Data: U ⊆ U : Set of unmarked pages in cache
Result: α: Page to be evicted

if |U | ≥ εk then
α← Uniformly random page from U

else
if we have not already queried pages in U

in this phase then
foreach page p in U do

Let τp ← Q(p, t)

α← argmaxp∈U τp

return α;

Theorem 3. For any ε > 0, for any request sequence Γ,
there is an O(log(1/ε))-competitive algorithm for caching
that makes at most ε|Γ| queries.

Proof. Consider any phase h of the marking algorithm
and `h be the number of clean pages in that phase. Let
p1, . . . , pk denote the k pages in cache at the beginning of
the phase and further suppose that the pages are sorted in
order of the arrival time of the first request to a page in this
phase (breaking ties arbitrarily). In other words, pages p1,
. . . , pk−`h are the k−`h stale pages requested in this phase
and further the first request to page pi is earlier than that of
page pj for any i < j.

Consider any stale page pi where 1 ≤ i ≤ k − εk, and
let `(i) ≤ `h be the number of clean pages that have been
requested before the first request to page pi. When the first
request to page i arrives, there are exactly k − i + 1 un-
marked stale pages of which `(i) pages have been evicted
from the cache uniformly at random. Hence, the algo-
rithm incurs a cache miss for page pi with probability
`(i)

k−i+1 ≤
`h

k−i+1 .

Finally, consider the first request to page pk−εk. If the algo-
rithm incurs any cache miss after this time, then it queries
all the εk remaining unmarked pages and evicts the page
whose next request is furthest in the future, i.e., it evicts a
page from the set {pk−`h , . . . , pk} that is not requested in
this phase. Thus, for any i > k− εk, page pi incurs a cache
miss only if it has already been evicted by the time page
pk−εk is first requested. Thus, any such page pi incurs a
cache miss with probability at most min{1, `hεk}.

By the linearity of expectation, summing over all pages
pi, the expected number of cache misses incurred by
the algorithm for stale pages is at most

∑k−εk
i=1

`h
k−i+1 +∑k−`h

i=k−εk+1
`h
εk ≤ `h + `h(Hk − Hεk) ≤ O(`h(log 1

ε )).
In addition, the algorithm also incurs `h additional cache

misses for the clean pages. Hence, the total expected num-
ber of cache misses incurred in phase h is O(`h log( 1

ε )).
The desired competitive ratio now follows from Lemma 2.

To bound the total number of queries, we observe that the
algorithm makes at most εk queries in each phase. Since
each phase has at least k requests, any request sequence
Γ has at most |Γ|/k phases, and thus the total number of
queries is at most ε|Γ|.

4.1. Handling prediction errors

Let us now consider the case where the oracle can give er-
roneous predictions.

Since Algorithm 2 does not utilize predictions as long as
there are at least εk unmarked pages left in the cache, we
only need to reconsider the cache misses that occur af-
ter there are fewer than εk unmarked pages left. Con-
sider any page pi for i > k − εk and let t̃ denote the
time when the algorithm queries all the remaining un-
marked pages. Suppose the algorithm incurs a cache miss
on page pi and evicts page q = argmaxp∈U τp,t̃. Now,
if the predictions are correct, then q belongs to the set
{pk−`h , . . . , pk} of pages that are not requested in this
phase. However, suppose the predictions are incorrect and
page q is requested in this phase, then the algorithm in-
curs an additional cache miss. However, in this case the
pair (q, t̃) and (pk, t̃) of queries is an inversion and we
can charge the additional cache miss incurred to this in-
version. Since we only incur at most one cache miss for
a page, it can be easily verified that we charge at most
one cache miss to a specific inversion. Let Ih be the to-
tal number of inversions for queries made in phase h, then
from the above discussion we have that the expected num-
ber of cache misses incurred by the algorithm in phase h
is at most O(`h(log 1

ε ) + E[Ih]). Hence, the total cost in-
curred over all phases is O((

∑
h `h)(log 1

ε ) + E[I]) where
the expectation is over the randomness in the pages evicted
by the algorithm. Using Lemma 1 and Lemma 2, we con-
clude that the total cost incurred by Algorithm 2 is at most
O(2 log(1/ε)OPT + E[η]) and obtain the following:

Theorem 4. For any ε > 0, there is an O(log(1/ε) +
E[η]/OPT)-competitive algorithm for caching that makes
at most ε|Γ| queries.

While this warm-up result is a proof of concept for parsi-
monious use of predictions, to achieve a constant competi-
tive ratio, we still need to make a linear number of queries
in the request sequence length. To overcome this weakness
we propose a new algorithm in the following section that is
more adaptive in deciding which pages to query.
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5. Adaptive query algorithm
In this section we present a new algorithm that queries b un-
marked pages uniformly at random on each cache miss and
evicts the one that is predicted to be requested the furthest
in the future. We call this the adaptive query algorithm
(AdaptiveQuery-b); see Algorithm 3. Here, b is a parame-
ter that governs a trade-off between the desired competitive
ratio and the number of queries we are willing to make per
cache miss.

Algorithm 3: Adaptive query eviction.

Function: Evict():
Data: U ⊆ U : Set of unmarked pages in cache

and an integer b > 0
Result: α: Page to be evicted

S ← Sample b pages from U uniformly at
random without replacement

Let τp ← Q(p, t) for all p ∈ S
α← argmaxp∈S τp
return α

As before we first analyze the algorithm assuming the pre-
dictions are all correct. We will show the following trade-
off in Section 5.1.
Theorem 5. Under the assumption that the oracle is error-
free, for any integer b > 0, the adaptive query algo-
rithm is 2(logb+1 k + 3)-competitive and makes at most
2b(logb+1 k + 3) · OPT queries in expectation.

This bound is shown to be nearly tight in Section 6; see
Theorem 12. We extend Theorem 5 in Section 5.2 to handle
error-prone predictions.

5.1. Analysis

If we show that the adaptive query algorithm is c-
competitive, then it immediately follows that the number
of queries made is cb ·OPT. Thus, we only need to establish
the desired competitive ratio.

Consider any fixed phase h of the marking algorithm and
let f1, . . . , f`h be the clean pages requested in that phase.
We consider the following notion of eviction chains (Lyk-
ouris & Vassilvitskii, 2018) for the sake of analysis. An
eviction chain Ci = 〈qi,0 := fi, qi,1, . . . , qi,Mi

〉 is a se-
quence of pages constructed as follows: qi,1 is the stale
page that is evicted by the algorithm when it serves the
clean page fi; similarly for all j ≥ 1, qi,j+1 is the stale
page that gets evicted when the algorithm serves the request
to page qi,j . Eventually, a stale page qi,Mi

gets evicted
that is not requested in the phase and the sequence ends.
We note that each eviction chain starts with a distinct clean
page and ends with a stale page that is not requested in the

phase. Further, the `h eviction chains are disjoint and each
cache miss incurred by the algorithm is encoded in these
chains. The ith eviction chain Ci leads to Mi cache misses
where Mi is a random variable. Our goal is to bound the
expected total number of cache misses, i.e., E[

∑`h
i=1Mi].

Page ranks. We first order all clean pages and stale pages
in the cache by the arrival time of the first request to that
page in this phase (the `h stale pages that are not requested
in the phase appear last in the ordering, in an arbitrary or-
der). For each stale page p evicted by the algorithm, we
define its rank r(p) as the number of stale pages after page
p in the above ordering that have not yet been evicted (at
the time p was evicted). By construction of the eviction
chains, page qi,j is evicted when page qi,j−1 is requested
and hence qi,j is after qi,j−1 in the ordering (since all pages
before qi,j−1 in the ordering have already been marked).
Hence, we always have r(qi,j) ≤ r(qi,j−1). Similarly, for
each clean page fi, we define its rank r(fi) = r(qi,0) to
be the number of stale pages after fi that have not yet been
evicted when fi was requested. Note that r(fi) ≤ k, for all
1 ≤ i ≤ `h.

We first show the following simple statement that uses the
order statistics of the uniform distribution. We defer its
proof to the Supplementary Material.

Lemma 6. If S = {s1, . . . , sb} is a set sampled uniformly
at random without replacement from {0, 1, . . . , r}, then
E[mint∈[b] st] ≤ r

b+1 .

The following two lemmas are used to bound the expected
length of an eviction chain.

Lemma 7. Consider any eviction chain Ci and suppose it
evicts page qi,j+1 to service a request to page qi,j . Then
we have E[r(qi,j+1) | r(qi,j)] ≤ r(qi,j)

b+1 .

Proof. When a cache miss occurs for page qi,j , note that all
pages that appear before qi,j (when ordered by the arrival
time of their first request in the phase) have already been
marked. Thus, all the queried stale pages must appear after
qi,j . Suppose there are r ≤ r(qi,j) unmarked stale pages
left. When the predictions are all correct, Algorithm 3 ran-
domly samples b pages from all unmarked stale pages and
evicts qi,j+1 as the one that is latest in the ordering. In
other words, r(qi,j+1) is the minimum of b uniform sam-
ples from {0, 1, . . . , r − 1}. Thus from Lemma 6, we have
E[r(qi,j+1) | r(qi,j)] ≤ r−1

b+1 ≤
r(qi,j)
b+1 .

Lemma 8. For every 1 ≤ i ≤ `h, we have E[Mi] ≤
logb+1 k + 3 where Mi is the length of the eviction chain
beginning with the clean page fi.

Proof. An eviction chain ends when it evicts one of the `h
stale pages that are not requested in the phase. Fix a par-
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ticular chain Ci and for brevity, let rj := r(qi,j). Since we
have r0 ≤ k, using Lemma 7 and the law of iterated expec-
tation, we have E[rj ] ≤ k

(b+1)j . By Markov’s inequality,
we have Pr[rj ≥ 1] ≤ k

(b+1)j . Note that if Mi > j, then
it must be the case that rj ≥ 1. Indeed, if rj = 0, then qi,j
will not be evicted and the chain Ci must have length j.

Let c := dlogb+1(k)e. We can now bound the expected
length of the chain as follows.

E[Mi] =
c−1∑
j=0

Pr[Mi ≥ j] +
∑
j≥c

Pr[Mi ≥ j]

= c+
∑
j≥0

Pr[Mi > c+ j] = c+
∑
j≥0

Pr[rc+j ≥ 1]

≤ c+
∑
j≥0

k

(b+ 1)c+j
= c+

∑
j≥0

1

(b+ 1)j

≤ logb+1(k) + 3.

Proof of Theorem 5. Fix a phase h of the marking algo-
rithm. Since every cache miss incurred by the algorithm
is recorded in exactly one eviction chain, the expected to-
tal number of cache misses incurred by the algorithm in
this phase is E[

∑`h
i=1Mi]. Using Lemma 8, this is at most

`h(logb+1 k + 3). The desired competitive ratio now fol-
lows from Lemma 2. Further, the algorithm makes at most
b queries for each cache miss it incurs and thus we have
Theorem 5.

5.2. Handling prediction errors

In this section we extend the analysis to allow for oracles
that make erroneous predictions. In this scenario, since
we evict a page that is only predicted to arrive furthest in
the future (and not actually be the one to arrive the latest),
Lemma 7 fails. However, as we show below, in this case
the oracle has a large error and we can bound the expected
cost of the algorithm in terms of the prediction error.

We first show the following technical statement that re-
lates the rank of the page evicted by the algorithm and the
rank of the page that actually arrives the furthest in the fu-
ture from among the sampled pages (while processing any
cache miss).

Lemma 9. Let S be any set of b pages and let a1 < · · · <
ab denote their actual next arrival times and let 〈τ1, . . . , τb〉
be the sequence of their predicted arrival times. Let ηS =∑b
i=1 |ai − τi| be `1-error of the predictions for the set S.

If b̂ = argmaxα τα is the page with the furthest predicted
arrival time, then we have

r(b̂) ≤ r(b) + ηS .

Proof. We assume that b̂ 6= b since otherwise the lemma

is trivial. By definition of b̂ we have τb̂ ≥ τb and ab̂ <
ab. For convenience let p̂ and p denote the corresponding
pages. Since the number of unmarked pages between p̂ and
p, when ordered by the request time of their first request, is
at most ab − ab̂, by definition of rank we have

r(b̂) ≤ r(b) + ab − ab̂.

We now show ηS ≥ ab−ab̂, which will complete the proof.
To show this, we observe that ηS ≥ |ab̂ − τb̂| + |ab − τb|.
We consider three cases.

Case 1: τb̂ ≤ ab̂. In this case we have ηS ≥ |ab − τb| =
(ab − ab̂) + (ab̂ − τb) ≥ ab − ab̂.

Case 2: ab ≥ τb̂ > ab̂. Since τb ≤ τb̂, we have ηS ≥
|ab̂ − τb̂|+ |ab − τb| = τb̂ − ab̂ + ab − τb ≥ ab − ab̂.

Case 3: τb̂ > ab. Here we have |ab̂ − τb̂| = τb̂ − ab̂ ≥
ab − ab̂.

Lemma 9 lets us prove the following analog of Lemma 8.

Lemma 10. For every 1 ≤ i ≤ `h, we have E[Mi] ≤
logb+1 k+3+2E[ηSi ] whereMi is the length of the eviction
chain beginning with the clean page fi and Si is the set of
pages queried when pages on path Pi are evicted.

Proof. Fix a particular chain Ci. Let r(qi,j) be the num-
ber of stale unmarked pages left in the cache when the al-
gorithm incurs a cache miss for page qi,j at some time t.
In this case, we sample a set S of b of those pages uni-
formly at random, and set qi,j+1 = argmaxp∈S Q(p, t).
Let q∗i,j+1 = argmaxp∈S ap,t be the sampled page that
actually arrives furthest in the future. Then by Lemma
7, we have E[r(q∗i,j+1) | r(qi,j)] ≤ r(qi,j)

b+1 . Further,
for any queried set S of pages, by Lemma 9 we have,
r(qi,j+1) ≤ r(q∗i,j+1) + ηS where ηS is the `1-error of
the predictions for the set S. Thus we obtain the follow-
ing where ηi,j+1 is defined to be the prediction error of the
oracle for pages queried while evicting page qi,j+1.

E[r(qi,j+1) | r(qi,j)] ≤
r(qi,j)

b+ 1
+ E[ηi,j+1].

Now, since we have r(qi,0) ≤ k, using the law of iterated
expectation we have

E[r(qi,j)] ≤
k

(b+ 1)j
+

j∑
j′=1

E[ηi,j′ ]

(b+ 1)j−j′
.

Finally, using Markov’s inequality, we have

Pr[Mi > j] ≤ Pr[r(qi,j) ≥ 1] ≤ k

(b+ 1)j
+

j∑
j′=1

E[ηi,j′ ]

(b+ 1)j−j′
.
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As earlier, let c = dlogb+1(k)e. We can now bound the
expected length of the chain.

E[Mi] = c+
∑
j≥0

Pr[Mi > c+ j]

≤ c+
∑
j≥0

 k

(b+ 1)c+j
+

c+j∑
j′=1

E[ηi,j′ ]

(b+ 1)c+j−j′


≤ c+

∑
j≥0

1

(b+ 1)j
+
∑
j′≥1

E[ηi,j′ ]
∑
j≥j′

1

(b+ 1)j−j′

≤ logb+1(k) + 3 + 2
∑
j′≥1

E[ηi,j′ ].

Finally, since the algorithm makes a distinct set of queries
when evicting any page, we have

∑
j′≥1 E[ηi,j′ ] = E[ηSi ]

and the lemma follows.

5.3. Adding worst-case guarantees

In this section we show how a simple modification to the
algorithm allows us to obtain an O(log k)-competitive ra-
tio even when the prediction error is arbitrarily large. In
order to obtain this worst-case guarantee, we make the fol-
lowing modification: when processing a cache miss for the
jth page (qi,j) on chain Ci, if j > log k, then the algorithm
switches to evict an unmarked stale page uniformly at ran-
dom (as opposed to querying b pages and evicting the one
with the furthest predicted arrival).

Theorem 11. For any integer b > 0, there is an
O(min{logb+1 k + E[η]/OPT, log k})-competitive algo-
rithm for caching that makes at most b queries per cache
miss.

Proof. When pages are evicted according to Algorithm 3,
Lemma 10 shows that the expected length of any eviction
chain is at most O(logb+1 k + E[ηSi ]). We consider the
modified algorithm that switches to evicting a uniformly
random unmarked page once the chain length exceeds
log k. Following the traditional analysis of the randomized
marking algorithm (Fiat et al., 1991; Lykouris & Vassilvit-
skii, 2018), we observe that once the algorithm switches
to random evictions, the length of the chain increases by
at most O(log k) in expectation. Consequently, the modi-
fied algorithm incurs at most O(1) · min{logb+1 k + 3 +
2E[ηSi ], 2 log k} cache misses in expectation on each evic-
tion chain.

Summing over all clean pages seen in the phase, the ex-
pected number of cache misses incurred in any phase h is at
mostO(min{logb+1 k+E[ηh], log k}), where ηh is defined
to be the `1-error of all the queries made in this phase. The
desired competitive ratio now follows from Lemma 2.

5.4. Comparison to existing algorithms

There are three main learning-augmented algorithms for
(unweighted) caching with access to full predictions: the
works of (i) Lykouris & Vassilvitskii (2018), (ii) Rohatgi
(2020), and (iii) Wei (2020). Both (i) and (ii) are very sim-
ilar: they consider a marking algorithm that evicts a page
with the furthest predicted next arrival time until the evic-
tion chain becomes long enough. The only difference is
that (ii) caps each eviction chain’s length at O(1) whereas
(i) caps it at O(log k); the algorithmic difference and the
resulting improvement in the competitive ratio is relatively
minor, particularly for parsimonious predictions. On the
other hand, (iii) shows that the competitive ratio of the al-
gorithm that follows predictions blindly (called BlindOra-
cle; see Section 7) can be bound in terms of the prediction
error. In our work, we cap the chain length at O(log k) for
simplicity. Unfortunately, we cannot directly use (iii) as we
do not have predictions for all pages and hence have to use
marking-based algorithms (i.e., akin to (i) and (ii)). Fur-
ther, we observe experimentally that bounding the length
of an eviction chain in a marking algorithm provides bet-
ter practical performance while also providing worst-case
guarantees as opposed to using the black-box combination
with a robust algorithm as suggested by (iii).

6. Lower bound
The lower bound instance is fairly simple. Each phase
starts with a request for a clean page that has never been
requested before. Then, it is followed by requests for k− 1
stale pages that are chosen uniformly at random among the
k stale pages. We provide a formal description below.

Lower bound instance. The page requests proceed in
phases. Let Ph denote the pages that are requested in phase
h for h ∈ [H], where H is a sufficiently large integer. We
will have |Ph| = k for all h ∈ [H], and |Ph+1 \ Ph| =
|Ph \ Ph+1| = 1 for all h ∈ [H − 1]. First, P1 is an arbi-
trary set of k pages and there is one request for each page in
P1. We now iteratively construct Ph+1 from Ph as follows:
Let fh+1 be a clean page that has never been requested
before. Let p1, . . . , pk be a uniformly random permuta-
tion of the set of pages in Ph. Then the request sequence
for phase h + 1 is fh+1, 〈fh+1〉kpk, 〈fh+1pk〉kpk−1, . . . ,
〈fh+1pk . . . p3〉kp2 in this order. Here, 〈S〉k implies k rep-
etitions of the sequence S. Focusing on the page arriving
after the repeated sequence, we will say that pages are re-
quested in the order of fh+1, pk, . . . , p2.

The proof of Theorem 12 requires care to impose con-
straints on the structure of candidate algorithms, and for-
mally demonstrate that a learning-augmented algorithm for
caching can do no better than querying unmarked stale
pages and always evict the one that arrives furthest in the
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future. Unlike in the analysis of the upper bound, the al-
gorithm can make varying numbers of queries per cache
miss, even stochastically, which renders the analysis con-
siderably more challenging. We defer the full proof to the
Supplementary Material.

Theorem 12. For any integer c ≤ ln k, any (c + 4)-
competitive algorithm must make at least 1

12 ln(k+1)ck
1/c ·

OPT queries (with no error).

7. Experiments
We experimentally evaluate our algorithm on a real-world
dataset and demonstrate the empirical dependence of the
competitive ratio on the number of queries made as well as
on the prediction errors.

Input dataset. We use the CitiBike dataset as in Lykouris
& Vassilvitskii (2018). The dataset comes from a publicly-
available1 bike sharing platform in New York City. For
each month of 2018, we construct one instance where each
page request corresponds to the starting point of a bike trip.
We truncate each month’s data to the first 25,000 events,
and thus each input sequence length is 25,000. Finally we
set the cache size k = 500 and obtain seven non-trivial
instances2. We use a bigger cache than (Lykouris & Vassil-
vitskii, 2018) to illustrate our algorithm’s trade-off between
number of queries and the competitive ratio.

Predictions. To demonstrate the empirical dependence of
different algorithms on the prediction error, we generate
the following synthetic predictions. For each page p in the
cache, its predicted next request time is set to its actual next
request time plus a noise, which is drawn i.i.d. from a log-
normal distribution whose underlying normal distribution
has mean 0 and standard deviation σ. If the page is never
requested in the future, we pretend its actual request time
is the sequence length plus 1, i.e., 25,001.

We also use a very simple prediction model to demonstrate
the efficacy of easy off-the-shelf predictors. For each page,
we compute the average time µp elapsed between consecu-
tive requests for that page. For any page p at time t, we set
the predicted arrival time as Q(p, t) = t̃p + µp where t̃p is
the last time before t when page p was requested. We refer
to these predictions as “Mean Predictions” in Table 1.

Algorithms. We implement the following algorithms.

• RandomMarker (Randomized Marking, Fiat et al.
(1991)). Evicts a randomly chosen unmarked page;
Θ(log k)-competitive.

1https://www.citibikenyc.com/system-data
2The other five sequences have less than 500 distinct pages

and the caching problem becomes trivial.
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Figure 1. Average competitive ratio of AdaptiveQuery for differ-
ent values of b and the error parameter σ.

Table 1. Average competitive ratio of algorithms for different er-
ror parameters. (Smaller values means better performance.)

Algorithms Mean Synthetic Predictions
Predictions σ = 0 σ = 2 σ = 4 σ = 6

RandomMarker 3.14 3.14 3.14 3.14 3.14
LRU 2.86 2.86 2.86 2.86 2.86

BlindOracle 1.92 1.00 1.02 3.92 4.15
LVMarker 2.49 1.77 1.81 2.94 3.11

RohatgiMarker 2.54 1.77 1.83 3.15 3.29
RobustOracle 4.29 1.80 1.83 4.48 4.51

AdaptiveQuery-2 2.91 2.46 2.46 2.52 2.65
AdaptiveQuery-4 2.71 2.07 2.07 2.20 2.49
AdaptiveQuery-8 2.59 1.86 1.86 2.07 2.54

• LRU (Least Recently Used). A widely used heuristic
that evicts the least recently used page.

• BlindOracle. Evicts the page with the latest predicted
next request time.

• LVMarker (Lykouris & Vassilvitskii, 2018). A
learning-augmented marking algorithm that evicts the
page with the furthest predicted arrival until the length
of the eviction chain is O(log k) and then switches to
evicting a randomly chosen unmarked page.

• RohatgiMarker (Rohatgi, 2020). Identical to LV-
Marker except the switch occurs after the chain length
exceeds one.

• RobustOracle (Wei, 2020). Uses the combiner (Fiat
et al., 1994) to combine BlindOracle and Random-
Marker.

• AdaptiveQuery-b. Our algorithm (with worst-case
guarantees) that is parameterized by b, the number of
queries made per cache miss.

Results. Table 1 shows the competitive ratios of all the
implemented algorithms averaged over the seven instances.
We observe that our AdaptiveQuery algorithm performs
significantly better that RandomMarker and LRU (that do
not use any predictions), even while using very few pre-
dictions, e.g., making b = 2 queries on each cache miss.
Since our algorithm is equivalent to RandomMarker when
b = 1, this demonstrates than even minimal predictions can
considerably help online algorithms.

https://www.citibikenyc.com/system-data
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At the same time, Table 1 also demonstrates that Adap-
tiveQuery performs as well as the three other learning-
augmented algorithms even for relatively small values of b
with both synthetic predictions as well as the simple mean
predictions. In fact, for high prediction errors, the Adap-
tiveQuery algorithm is less affected by these errors and
outperforms the other learning-augmented algorithms. For
comparison, with b = 8, the AdaptiveQuery algorithm
uses only 2839 queries for each instance on average, it uti-
lizes predictions for about 11% of requests in the sequence.

We also compare the dependence of our algorithm on the
number of queries and the prediction error. Figure 1 shows
the competitive ratio of AdaptiveQuery-b for different val-
ues of b and different error parameters. Unsurprisingly, we
observe that when predictions are (near-)perfect, the com-
petitive ratio of the algorithm improves with the number
of queries it is allowed to make. Surprisingly, however,
when the prediction error is large, using more queries actu-
ally leads to a worse competitive ratio; indeed, in this case,
more queries can lead to making poor eviction decisions.

8. Conclusions
In this paper we initiate the study of online algorithms aug-
mented with parsimonious learned predictions. Both the
theory and experimental results suggest that performance
of online algorithms can be significantly improved by ju-
diciously using just a few predictions. Such an approach
can make learning-augmented algorithms more practically
appealing since obtaining predictions is often computation-
ally expensive. An interesting future direction is to further
explore this parsimonious model for other online problems.
For example, consider problems that involve predictions of
locations, such as metric task system and online matching
(Antoniadis et al., 2020). It is conceivable that one can use
less predictions by spatial interpolation.
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H. An O(log k)-competitive algorithm for generalized
caching. In SODA, pp. 1681–1689, 2012.

Antoniadis, A., Coester, C., Elias, M., Polak, A., and Si-
mon, B. Online metric algorithms with untrusted predic-
tions. In ICML, pp. 345–355, 2020.

Azar, Y., Leonardi, S., and Touitou, N. Flow time schedul-
ing with uncertain processing time. In STOC, pp. 1070–
1080, 2021.
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Supplementary Material

A. Proof of Lemma 6
Proof. We proceed assuming that replacement is allowed since it only increases E[mint∈[b] st]. Then, the sampling process
can be simulated by sampling s′1, . . . , s

′
b ∼ Unif(0, r) from the uniform distribution and taking their floor. Thus, we have

E[mint∈[b] st] ≤ E[mint∈[b] s
′
t].

It well known that if x1, . . . , xb ∼ Unif(0, 1), then E[mint∈[b] xt] = 1
b+1 . (Indeed, this can be easily verified by observing

that Pr[mint∈[b] xt > x] = (1 − x)b and simple calculus.) Since we can set s′t = r · xt, we have, E[mint∈[b] st] ≤
E[mint∈[b] s

′
t] = r

b+1 .

B. Lower bound
We repeat the lower bound instance here for clarity.

Lower bound instance. The page requests proceed in phases. Let Ph denote the pages that are requested in phase h for
h ∈ [H], whereH is a sufficiently large integer. We will have |Ph| = k for all h ∈ [H], and |Ph+1 \Ph| = |Ph \Ph+1| = 1
for all h ∈ [H − 1]. First, P1 is an arbitrary set of k pages and there is one request for each page in P1. We now iteratively
construct Ph+1 from Ph as follows: Let fh+1 be a clean page that has never been requested before, and let π : [k] → [k]
denote a uniformly random permutation. Let 〈S〉k denote k repetitions of the sequence S. Then the request sequence for
phase h + 1 is fh+1, 〈fh+1〉kpπ(k), 〈fh+1pπ(k)〉kpπ(k−1), . . . , 〈fh+1pπ(k) . . . pπ(3)〉kpπ(2) in this order. Focusing on the
page arriving after the repeated sequence, we will say that pages are requested in the order of fh+1, pπ(k), . . . , pπ(2). For
ease of notation, we let pπ(k+1) := fh+1.

We first observe that the optimum offline solution for such an instance always incurs a cache miss on the first, clean page
of each phase (except the first phase) and evicts the unique page in Ph−1 \ Ph. By construction, the optimum algorithm
incurs no more cache misses in each phase. Finally, any algorithm must incur k cache misses for the first phase and we
have the following claim.

Claim 13. There is an offline solution that incurs exactly k +H − 1 cache misses in total.

We would like to lower bound the number of cache misses incurred by any c-competitive algorithm. Consider a fixed
optimum online algorithm A.3

Claim 14. At the beginning of each phase h ≥ 2, we can assume without loss of generality that A has all pages in Ph−1

in its cache.

Proof. Assume that the universe of pages is infinite. Then, knowing that we cannot guess the clean page that will be
requested in phase h and all the other requests are for the stale pages, the claim follows.

Thanks to Claim 14 and the repeated identical structure of the lower bound instance in every phase, we can assume without
loss of generality that we use the same optimum online algorithm that we call A in all phases except the first. If c′ is
the expected number of cache misses A incurs in each phase h ≥ 2, for A to be c-competitive, it must be the case that
k+c′(H−1)
k+H−1 ≤ c from Claim 13. Here, k in the numerator is the number of cache misses incurred by A in the first phase.

Thus, we must have c′ = c as H →∞.

Therefore, we can focus on one phase and lower bound the expected number of queries made by A assuming that it incurs
at most c cache misses in expectation. Henceforth we drop indices referring to phases from the notation. We will say that
a page is marked in the phase if it has been requested in the phase. For simplicity, we will assume that A makes at least
one query before each page eviction; this would have no effect on the asymptotic lower bound we aim to prove.

Lemma 15. In a phase that is not the first, with a given limit c > 0 on the expected number of cache misses, there is an
algorithm that makes the minimum number of queries in expectation and simultaneously satisfies the following:

(i) evicts a page only when it is forced to do so;
(ii) never evicts marked pages and therefore it only needs to query unmarked pages;

3In this context, an optimal online algorithm is one that obtains a competitive ratio of c by making the fewest number of queries.
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(iii) only queries pages just before a page eviction;
(iv) evicts the queried page with furthest arrive time, if it makes any queries.

We first prove (i)–(iii). After setting up additional notation that will be used throughout the analysis, we will prove (iv).

Proof of Lemma 15 (i)–(iii). As argued in Fiat et al. (1991), we can assume without loss of generality that the algorithm is
lazy, i.e., it only evicts a page when it incurs a cache miss; this implies (i).

We now show (ii). Suppose algorithm A evicts a page pπ(i) for some i > j to service pπ(j) in the request sub-
sequence, 〈pπ(k+1)pπ(k) . . . pπ(j+1)〉kpπ(j). Then, for every repetition of 〈pπ(k+1)pπ(k) . . . pπ(j)〉 in the subsequence of
〈pπ(k+1)pπ(k) . . . pπ(j)〉kpπ(j−1), until A fetches pπ(i) and evicts an unmarked page, it incurs another cache miss. If it
makes a cache miss for every repetition, we can makeA better or no worse by instead evicting an arbitrary unmarked page
(such an algorithm incurs at most k cache misses even without using randomization). Otherwise, ifA ever replaces with an
unmarked page before pπ(j−1) is requested, A could have instead done so earlier to reduce cache misses. This will incur
no cache misses for the repetition 〈pk+1pk . . . pj〉k. We have thus shown that we can assume without loss of generality
that A never evicts marked pages; thus, we have (ii).

Now (iii) follows as once a page gets marked it stays marked in the phase. Thus, by deferring the queries until being forced
to evict a page, A can only potentially avoid querying about pages that will be marked soon.

For the remaining analysis, we take the eviction chain view we used in the analysis of the adaptive query algorithm. As our
analysis will require careful conditioning and deconditioning, we slightly override the notation. From the above reasoning,
particularly from Lemma 15 (i)–(iii), we now have the following problem: We will see a request sequence for a clean page
pπ(k+1) = fh+1, and k − 1 stale pages, pπ(k), pπ(k−1), . . . , pπ(2). Note that pπ(1) is the stale page that is not requested.
Then, we consider the eviction chain C that starts with pπ(k+1) and ends with pπ(1). Recall that an edge from q to q′ means
that we evict page q′ to service page q. Our goal is to lower bound the number of queries made under the requirement that
the expected length (number of cache misses) M of C is at most c. Page pπ(j) is defined to have rank j; this definition is
slightly simpler than the one in Section 5.1 as we have only one clean page, thus only one chain.

With this notation set up, we are now ready to prove Lemma 15(iv).

Proof of Lemma 15(iv). Our goal is to consider any algorithm A satisfying (i)–(iii), and to construct another algorithm A′
satisfying (iv) as well, without increasing the number of cache misses but making no more queries.

In the execution ofA, suppose ith evicted page byA has rank Ri andA makes qi queries just before the eviction. NowA′
makes the same number qi of queries just before evicting ith page, but it instead evicts the one with smallest rank among
the queried pages, i.e., satisfies property (iv). By a simple induction on i, we can show that A′ generates a sequence that
stochastically dominates what A generates. More precisely, suppose A has made q queries, and the queried pages have
ranks S1 < · · · < Sq . Then, by definition, A′ has also made q queries (if there are not enough pages to query, then it
is only better for A′), and let S′1 < · · · < S′q be the rank of pages queried by A′. Then, we say that the sequence S′

stochastically dominates sequence S if S′j ≤ Sj for all j ∈ [q]. Because the chain C ends once the last page of rank 1 is
evicted (we can assume we evict only a queried page under the assumption we query at least one page before each page
eviction), A′ make no more cache misses than A in expectation. Further, by construction, A′ can only make less queries
than A in expectation.

Henceforth, we consider an algorithmA that satisfies Lemma 15(i)–(iv). LetR0 := k+1, be the rank of the clean page. Let
Ri denote the rank of the ith evicted page. As mentioned before, C eventually ends with pπ(1). For notational convenience,
once Ri becomes 1, we define all the subsequent Ri+1, Ri+2, . . . , to be 1. Let Qi denote the number of queries A makes
when we witness the ith cache miss. For analysis, we will assume that we do not make too many queries for each page
eviction. This is because we can find the page pπ(1) without making many more queries.
Lemma 16. Suppose we show that any algorithm that incurs at most c cache misses in expectation makes at least d queries
under the assumption that Ri > Q2

i+1 for all i. Then, it implies the following lower bound: any algorithm that incurs at
most c+ 4 cache misses in expectation makes at least d/5 queries.

Proof. If the fixed algorithm considered to show the lower bound makes Qi+1 queries such that Ri ≤ Q2
i+1 for the first

time, then instead we let it make
√
Ri queries per cache miss until the phase ends. This is equivalent to a problem where
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the cache size is Ri and we make
√
Ri queries per cache miss. Thus, by Lemma 8, we know that the number of cache

misses is at most 5 in expectation, and we make at most 5
√
Ri ≤ 5Qi+1 queries in expectation. In summary, this change

makes at most 4 extra cache misses in expectation and increases the number of queries by a factor of 5.

Let us fix i and let Ri = r and Qi = q. If we choose q points uniformly at random from [0, r], the expected minimum of
the samples is well known to be r

q+1 . But, we want to know the expected value of r
Ri+1

, where the only randomness comes
from π(1), . . . , π(r − 1), which we denote as π([r − 1]) for short. Bounding this quantity needs more care.

Now, our concern is to upper bound Eπ([r−1])
r
S , where S1, . . . , Sq are sampled uniformly from [r−1] without replacement

and S := minj∈[q] Sj . This corresponds to making queries about q pages among r − 1 unmarked ones and evicting the
one with the minimum rank, i.e., the furthest request time in the future. For ease of analysis, we pretend that samples
S′1, . . . , S

′
q are made from [1/r, 1] independently and uniformly at random and we want to upper bound E[ 1

S′ ], where
S′ := minj∈[q] S

′
j . Here, we relax the random selection by making the sampling domain continuous.

We first show this relaxation does not change the expectation by much.

Lemma 17. If 1 ≤ q2 < r, we have Eπ(r−1)

[
r
S

]
≤ 6E

[
1
S′

]
.

Proof. We first scale down S1, . . . , Sq by a factor of r, so we can pretend that they are sampled from D = { 1
r , . . . ,

r−1
r }

without replacement. Now, we want to upper bound E[ 1
S ]. Let D :=

(
D
q

)
.

We observe that

E
[

1

S

]
= E

[
1

S̄′
| S̄ ′ ∈ D

]
,

where S̄ ′ := {brS′ic/r | i ∈ [q]} and S̄′ = min S̄ ′. In other words, after “rounding” down each S′i to the nearest multiple
of 1/r, if they are all distinct, we keep them. This is an equivalent way of getting samples S1, . . . , Sq .

Further, the rounding changes the expectation by a factor of at most 2. Therefore, we have,

E
[

1

S̄′
| S̄ ′ ∈ D

]
≤ 2E

[
1

S′
| S̄ ′ ∈ D

]
.

We would like to decondition on S̄′ ∈ D.

E
[

1

S′
| S̄ ′ ∈ D

]
· Pr[S̄ ′ ∈ D] ≤ E

[
1

S′

]
.

As S̄ ′ is a uniform sample with replacement, we have, Pr[S̄ ′ ∈ D] = r(r−1)···(r−q+1)
rq ≥ (1−q/r)q ≥ (1−q/(q2 +1))q ≥

1/3, where the last inequality follows from a simple calculation. Combining the above equations yields the lemma.

Lemma 18. If 1 ≤ q2 < r, we have E[ 1
S′ ] ≤ 2q ln(k + 1).

Proof. Observe that Pr[S′ ≥ x] =
(

1−x
1−1/r

)q
. Thus, the pdf of S′ is q(1−x)q−1

(1−1/r)q where x ∈ [1/r, 1]. For brevity, we omit
the denominator in the following calculations and bring it back at the end.

E
[

1

S′

]
=

∫ 1

x=1/r

1

x
q(1− x)q−1dx

=

∫ 1/q

x=1/r

1

x
q(1− x)q−1dx+

∫ 1

x=1/q

1

x
q(1− x)q−1dx

≤ q

∫ 1/q

x=1/r

1

x
dx+

∫ 1

x=1/q

q · q(1− x)q−1dx

≤ q ln r/q + q ≤ q ln r

≤ q ln(k + 1).

Thus, by factoring in the denominator 1
(1−1/r)q ≤

1
(1−1/(q2+1))q ≤ 2, we obtain the lemma.
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Corollary 19. E[ Ri
Ri+1

] ≤ 12q ln(k + 1)E[Qi+1].

Proof. From Lemmas 17 and 18, we know Eπ([r−1])[
r

S(r,q,π) ] ≤ 12q ln(k + 1). Here, the parameters r, q, π are used to
make the dependency of S clear. As this holds for any Ri = r and Qi+1 = q, by deconditioning, we have the desired
result.

Lemma 20. If C has length M and for any integer c > 0, we have E[
∑c
i=1Qi |M = c] ≥ 1

12 ln(k+1)ck
1/c.

Proof. Using the linearity of expectation and Corollary 19,

12 ln(k + 1)
c∑
i=1

E[Qi | t = c] ≥ E

[
c∑
i=1

Ri−1

Ri
| Rc = 1, Rc−1 > 1

]

≥ E

[
c(

c∏
i=1

Ri−1

Ri
)1/c | Rc = 1, Rc−1 > 1

]
= (k + 1)1/c,

where the middle step follows from the AM–GM inequality and the last step follows from a telescoping product, R0 =
k + 1, and Rc = 1.

By Lemma 20, if algorithm A makes at most c cache misses in expectation, then the number of queries it makes is lower
bounded by the optimum objective of the following LP:

1

12 ln(k + 1)
·min

∑
i≥1

ik1/ixi∑
i≥1

ixi ≤ c (1)

∑
i≥1

xi = 1

xi ≥ 0 ∀i ≥ 1.

Here, xi := Pr[M = i], i.e., the probability that the chain C has length i, or equivalentlyAmakes i cache misses. The last
two constraints define a probability distribution over the values M can have and constraint (1) means that we can afford to
make at most c cache misses in expectation.

Lemma 21. If c ≤ ln k, then the above LP’s optimum objective is at least 1
12 ln(k+1)ck

1/c.

Proof. Let f(y) := yk1/y . By simple calculus, we have f ′(y) = k1/y
(

1− ln k
y

)
and f ′′(y) = ln2 k

y2 k1/y . Thus, f

decreases in y for y ∈ [1, ln k] and is convex. Then, the LP objective is 1
12 ln(k+1)

∑
i≥1 f(i)xi. By convexity, we have∑

i≥1 f(i)xi ≥ f
(∑

i≥1 ixi

)
. Then, by constraint (1) and f being decreasing in y, we have f

(∑
i≥1 ixi

)
≥ f(c).

To summarize, we have shown that any c-competitive algorithm must make at least 1
12 ln(k+1)ck

1/c cache misses, but under
the assumption stated in Lemma 16, i.e., Ri > Q2

i+1 for all i. Thus, by the lemma, we have the following.

Theorem 22. For any integer c ≤ ln k, any c+ 4-competitive algorithm must make at least 1
12 ln(k+1)ck

1/c · OPT queries.


