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Abstract  
The projected growth of plug-in electric vehicles on roads has the potential to produce challenges to the operational 

stability of power systems, particularly when a significant number of these vehicles charge and discharge concurrently. 

However, if plug-in electric vehicles in a vehicle-to-grid system are properly managed, they can be transformed from 
potential problems for the electrical grid to benefits. Some benefits from smart management of plug-in electric vehicles 

integration into the power grid include cost reduction and load leveling. This study describes a preliminary unit 

commitment framework for a vehicle-to-grid system. The methodology incorporates controlled charging and 

discharging as well as battery degradation into the unit commitment problem. The framework described in this study 

is useful to engineering managers because it enables smart control of plug-in electric vehicle integration into the power 

grid which can lead to reduction in generation cost and leveling of the load profile. 
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Introduction 
Due to the alarming rise of global temperatures and the devastating effects of climate change on many communities 

around the world, the International energy Agency (IEA) has set a goal to reach net-zero emissions by 2050 (IEA, 
2021b). According to IEA, the global population of plug-in electric vehicles (PEVs) including battery electric vehicles 

(BEVs) and plug-in hybrid electric vehicles (PHEVs) is expected to grow from 10 million in 2020 to over 115 million 

in 2030 (IEA, 2021a). Although increasing the number of electric vehicles is a viable option for reducing carbon 

emissions, mass adoption of PEVs, which are charged by plugging the vehicles into electrical power sources, would 

introduce many challenges to existing power systems. The uncontrolled charging and discharging activities of large 

number of PEVs can significantly stress the power system causing major voltage fluctuations and higher cost of 

operation (Rahmani, Hossein Hosseinian, & Abedi, 2021). However, through smart management, PEVs can provide 

ancillary services to support the power system as distributed storage units. PEVs can be integrated into the power 

systems as load and supply via vehicle-to-grid (V2G). PEVs have the potential to operate as mobile storage units to 

store the excess generated power or to support the grid through discharging at the given times, resulting in lower cost 

of generation and higher load-leveling (Y. Wang et al., 2019).  
There are many studies on the possible impact of high penetration levels of PEVs on the electricity markets. 

Shamshirband, Salehi, and Samadi Gazijahani (2019) studied the possible benefits of increasing the profits of PEVs 

owners to promote consumers to switch to PEVs. The authors proposed a multi-objective model to maximize the 

owners’ profits and minimize the operation cost. The results indicate that mass adoption of PEVs has high potential 

of reducing greenhouse emissions and voltage instability while achieving significant profitability for owners. In a 

study by Uko, Egbue, and Naidu (2020), the authors incorporated V2G into the economic dispatch (ED) problem to 

coordinate charging and discharging activities of 20,000 PEVs. PEVs were found to be effective in addressing 

demand-side problems and responding to frequency balancing. In addition, controlled V2G has been used to smooth 

load fluctuations (Kiviluoma & Meibom, 2011), improve voltage stability in urban power grids (Lyu et al., 2020) or 

offset the power uncertainty in renewable energy resources (M. Wang et al., 2017).   Incorporating PEVs in future 

power system planning is therefore inevitable and can lead to the abovementioned benefits. However, discharging 

conditions in V2G mode can cause significant degradation to PEV batteries. Therefore, including battery degradation 
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for PEVs involved in V2G is important to analyze the operation of V2G systems from the perspective of consumers 

(Sufyan et al., 2020). The challenge to this problem is how to evaluate the impact of battery degradation cost on the 

decision-making process while considering PEVs behavior in a power system with high penetration level PEVs. This 

research builds on the work by Uko et al. (2020) and proposes a framework to incorporate PEVs’ driving patterns and 

battery degradation into a unit commitment problem through a controlled V2G approach.  

Background 
A unit commitment (UC) problem refers to a mathematical procedure of scheduling power generation units to meet 

the forecasted load. UC is often solved along with ED to minimize the total cost of generation (Nemati, Braun, & 

Tenbohlen, 2018). UC is used to determine the optimal on/off schedule of the generation units, subject to economic 

and technical constraints. Although, most UC problems are deterministic in nature, many articles on UC are based on 

stochastic formulations (Håberg, 2019). In addition to the traditional UC problem, studies have considered the 

uncertainty of incorporating renewable energy (Li, Zhou, Xu, Zhu, & Ye, 2021), and integrating an emission function 

into the UC problem to minimize the emission cost and the generation cost simultaneously (Nicolosi, Alberizzi, 

Caligiuri, & Renzi, 2021).  

Due to the flexibility of the UC problem, numerous formulations have been proposed in the literature (Abujarad, 

Mustafa, & Jamian, 2017). An important UC approach is security constrained UC, where transmission constraints are 
considered. In practice, UC produces a generation schedule in day-ahead market on an hourly basis in real time. In 

comparison to traditional UC models, security constrained UC problem guarantees feasible power flow by taking in 

account the network technical characteristics (Hosseini Imani, Jabbari Ghadi, Shamshirband, & Balas, 2018). This is 

very important for independent system operators to ensure that short-term schedules are economically and technically 

feasible.  However, this introduces more complexity to existing UC problems. Several approaches have been proposed 

to solve the security constrained UC as a mixed-integer nonlinear problem such as benders decomposition (Yong, 

Shahidehpour, & Zuyi, 2005), Lagrangian relaxation (Fu, Li, & Wu, 2013) and DC approximation (Isuru, Hotz, Gooi, 

& Utschick, 2020). 

Current research on the impact of a high penetration level of PEVs in power systems is generally focused on 

regulating power supply and demand balance within the UC problem (Y. Wang et al., 2019) or mitigating the impact 

of renewable energy variability (Ahmadi, Nezhad, Siano, Hredzak, & Saha, 2019).  An accurate model of the charging 
and discharging activities is critical to the management of the power system. Furthermore, the cost of battery 

degradation is often neglected in studies (AlHajri, Ahmadian, & Elkamel, 2021; Talebizadeh, Rashidinejad, & 

Abdollahi, 2014; Vasiyullah & Bharathidasan, 2021). Few studies in the literature have investigated the security 

constrained UC problem with large numbers of PEVs while considering these factors. Therefore, it is necessary to 

consider smart charging and discharging of PEVs as well as driving patterns and the impact of battery degradation  

from V2G activities when studying a high penetration of PEVs in a UC problem (Uko, 2020).  

 

Methodology  
This research incorporates V2G into a security constrained UC model with DC approximation to evaluate the impact 

of PEVs activities on power generation. The DC approximation simplifies the voltage equation which allows the 

optimization problem to be solved as a mixed integer linear program (MILP). The general model of this problem can 

be written in the form: 

 

Minimize generation cost = ∑ 𝐹𝑢𝑒𝑙𝑐𝑜𝑠𝑡 + 𝑠𝑡𝑎𝑟𝑡𝑢𝑝𝑐𝑜𝑠𝑡 + 𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑐𝑜𝑠𝑡 +  𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡  (1) 

 

Subject to 

• Generator limit constraints 

• Ramping constraints 

• Uptime and downtime constraints 

• Flow constraints 

• Transmission constraints 

• V2G constraints 

Battery degradation and travel patterns are considered to achieve more realistic integration of V2G into the 

security constrained UC problem. Driving schedules are utilized as input to determine the distribution of PEVs during 
the study period. These driving behaviors are then used to generate possible charging schedules of different PEV 

types. The cost of degradation in equation 2 is a function of charging/discharging cycles, accumulated energy 𝑥, 
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battery capacity 𝐵𝑐𝑎𝑝 and battery cost 𝐵𝑐𝑜𝑠𝑡 . A linear approximation by Ortega-Vazquez (2014)  is used to model the 

battery life as a function of cycles with slope 𝑘. 

                                 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = |
𝑘

100
| ∗  

𝐵𝑐𝑜𝑠𝑡

𝐵𝑐𝑎𝑝  
∗  𝑥                               (2) 

 

Optimization Framework for Vehicle-to-Grid and Unit Commitment 
Consider a power system with m dispatchable generators with non-PEV and PEV load demand. Here, the charging 

stations are randomly assigned to selected buses and it is assumed that all charging stations are managed by one 

aggregator and that departure times and target SOCs are known in advance. This allows the model to obtain the 

dynamic SOC of PEVs over the planning horizon. Arrival, dwell and departure times can be simulated or generated 

using historical travel data sources such as the National Household Travel Survey (NHTS) (McGuckin, 2018). Other 

information, such as load demand profile, battery’s physical properties and types of vehicles are also considered. The 

goal of the framework described in this paper is to develop a UC model for a smart power grid with V2G services. 
This UC model incorporates battery degradation and travel behavior of individual vehicles to address the challenges 

posed by high penetration of PEVs. The flowchart in Exhibit 1 summarizes the steps involved in the optimization 

model. 

Historical travel data of various activities such as work, school and shopping are fit to a non-parametric 

distribution. This distribution is then used to generate 𝑁 number of arrival, dwell, and departure times for each vehicle 

over the planning horizon. In addition to arrival, departure, and dwell times, each PEV is assigned vehicle and battery 

properties. Random initial, target and minimum required SOC for each vehicle is generated based on battery capacity. 

Similarly, historical hourly load demand and electricity prices are used to generate hourly non-PEV load profile and 

charging/discharging costs. Finally, fuel cost, ramp up/down costs and start-up/shutdown costs for each thermal unit 

are assigned. To start the model, PEVs are assigned randomly to the selected buses at each discrete time step i. This 

is important to evaluate the feasibility of the solution under security constraints. The objective function of the model 
is to minimize the total operation cost taking in account the generation cost and the cost of battery degradation. 

Therefore, total PEV demand (charging) and supply (discharging) during each period is computed while meeting the 

following constraints: 

 
a) Maximum SOC is less than the maximum battery capacity.   

b) The battery cannot be discharged beyond the minimum required SOC. 
 

The model checks the start-up and shutdown costs of all units to ensure that the highest priority is given to units 

with the lowest start-up or shutdown cost. If generating units are operating within the minimum and maximum capacity 

range, the model will check if ramping up or down is sufficient to meet the load demand without starting-up or shutting 

down any unit. In addition, generating units are subjected to minimum uptime and downtime. The model then 

schedules the generation units that meet the above constraints while ensuring that the total power flow 𝑃𝑛𝑏 between 

the buses and nodes are balanced according to the following equation: 
 

∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 − nonPEV Demand −  PEV Demand + PEV Supply = ∑ 𝑃𝑛𝑏𝑛𝑏  (3) 

 

At the end of the planning horizon, the model obtains the optimal unit commitment schedule and computes the 
total cost of generation and degradation.  For high-penetration cases where the PEV demand is higher than the non-

PEV demand, the model will ensure higher discharging amount or delay charging activities during the peak load to 

avoid the higher cost of starting-up more expensive generating units. On the other hand, during low demand periods 

the model will limit the discharging activities to avoid the shutdown costs as well. This flow balance is essential to 

load leveling and can explain the behavior of the generating units at different penetration levels. In contrast, if V2G 

is not implemented PEVs will start charging to their target SOC on arrival and can put the system under higher stress 

during the peak hours. In addition to higher cost of generation, generating units can be subjected to instability due to 

high load fluctuations. The flexibility of this model gives it the ability to study different scenarios and evaluate the 

impact of PEVs on the system.  
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Exhibit 1.  Flowchart of the V2G Unit Commitment Model 

 

 
 

 

 



Egbue & Aldubaisi 

5 
Copyright, American Society for Engineering Management, 2021 

 

Conclusion 
Unit commitment is a very important problem in power system management. As electrical power systems evolve, new 

models are needed to address new changes. In this paper, a framework for a security constrained unit commitment is 

introduced to address the impact of plug-in electric vehicles on the power system. This work proposes a controlled 

V2G approach to support the power generation in a system with high penetration level of PEVs. Two main 

considerations in this work are battery degradation cost and driving patterns.  

 

Future Work 
The proposed optimization model is deterministic and uses offline information. In practice, PEV arrival times, load 

and generation forecast data are stochastic. The work can be extended to be solved as an online model by removing 

some of the assumptions with respect to arrival times, SOC and load demand. The impact of V2G on the reliability of 

PEV batteries is not investigated in this research. Reliability analysis is needed to determine any lifetime impact from 

cycling that could cause unexpected failures. The impact could be translated to a higher degradation cost, which could 
then be used to improve the proposed model. Furthermore, a future study can incorporate renewable energy sources 

which represent an increasing share of power generation mix. 
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