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Abstract. An organ segmentation method that can generalize to unseen
contrasts and scanner settings can significantly reduce the need for
retraining of deep learning models. Domain Generalization (DG) aims to
achieve this goal. However, most DG methods for segmentation require
training data from multiple domains during training. We propose a
novel adversarial domain generalization method for organ segmentation
trained on data from a single domain. We synthesize the new domains via
learning an adversarial domain synthesizer (ADS) and presume that the
synthetic domains cover a large enough area of plausible distributions
so that unseen domains can be interpolated from synthetic domains.
We propose a mutual information regularizer to enforce the semantic
consistency between images from the synthetic domains, which can be
estimated by patch-level contrastive learning. We evaluate our method
for various organ segmentation for unseen modalities, scanning protocols,
and scanner sites.

Keywords: Medical image segmentation - Single domain
generalization + Adversarial training + Mutual information

1 Introduction

Deep Learning-based methods for the segmentation of medical images hold state-
of-the-art performance across various organs and anatomies [13,18,24]. The
independent and identically distributed (i.i.d.) is the underlying assumption of
most of those methods.However, the difference in the image acquisition, such
as scanning protocol and image modality, introduces domain shifts, rendering
the assumption impractical. Domain Adaptation [2,6,7,20] (DA) and Multi-
source Domain generalization [11] (MDG) aim to alleviate the domain shift
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issue.However, those approaches are not data-efficient as they either require
access to test distribution (i.e., DA) or need multiple labeled source domains
during training (i.e., MDG). In this paper, we focus on single-source domain
generalization (SDG), aiming to train a generalizable deep model on only one
source domain.

The SDG does not require access to the test distribution or labeled data
from multiple sources during the training. As a result, it reduces annotation costs
and avoids repetitive adaptation for each new domain. In the literature, various
SDG methods have been proposed that are based on augmentation of input
image [15,22] and meta learning [17]. The meta-learning techniques tend to be
extremely slow during inference time. The augmentation methods synthesize new
images using random initialization of convolution filter [15,22]. However, those
methods cannot avoid over-fitting to a regular pattern of synthetic data. Thus,
we propose synthesizing the new domains via learning an adversarial framework.

We propose synthesizing the new domains via learning an adversarial domain
synthesizer (ADS). The intuition is that the synthetic domains cover a large
enough area of plausible distributions so that unseen domains can be inter-
polated from synthetic domains. Specifically, we design the synthesizer with a
random style module, enabling ADS to synthesize random textures during adver-
sarial training. Without a constraint, adversarial training may change the image
semantics, making the synthetic domains irrelevant. To remedy this problem, we
propose to keep the underlying semantic information between the source image
and the synthetic image via a mutual information regularizer. As estimating
mutual information is hard for high dimensional data, we utilize the patch-level
contrastive loss [14] as a surrogate to maximize the mutual information between
the original and synthesized images.

The main contributions of this work can be summarized as follows: 1) We
propose an adversarial framework for single domain generalization of medical
image segmentation. 2) We redesign the network structure of synthesizing new
domains. 3) To constrain the adversarial training, we propose a regularization
method for synthetic images. To evaluate our model, we conduct experiments of
single domain generalization of medical image segmentation on cross-modality
image segmentation (CT — MRI), -imaging protocol, and -organizations.

2 Related Works

Unsupervised Domain Adaptation and Domain Generalization. Unsupervised
Domain Adaptation (UDA) is a proposed strategy for addressing domain shift
between the training data and testing data of deployed applications. In the
UDA framework, the model has access to labelled data from a source domain
and unlabelled data from a target domain during training. Prior work on UDA
can be classified as distribution alignment [2,6] or self-supervised learning [4].
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Multi-domain generalization (MDQG) is an alternative framework where the
goal is to learn domain-invariant features from multiple labelled source domains.
Recent works [11,12] give a theoretical proof that domain-invariant features
can be learned using MDG. The common goal of UDA and MDG is to learn
domain-invariant features for downstream tasks (i.e. classification, segmenta-
tion and object detection) by training a model on data from multiple domains.
Therefore, UDA and MDG both require access to data from multiple domains
during training. For single domain generalization, M-ADA [17] and L2D [21]
propose an adversarial training framework for SDG learning. M-ADA proposes
a meta-scheme method to find the adversarial perturbation, which calculates the
gradient direction for each specific input and is extremely slow for real-life appli-
cations. While similar to RandConv [22] and GIN [15], M-ADA also proposes
to synthesize new domain but with an adversarial training. However, M-ADA
constrains the perturbation in latent space and cannot guarantee the seman-
tic consistency for segmentation task, i.e. object boundary and shape, which is
especially crucial for medical image segmentation.

Data Augmentation. Data Augmentation is a low-level data sampling technique,
which gains a free performance improvement with use of human prior. To further
improve the generalizability of models, AdaTransform [20] proposes to augment
the data by maximizing the entropy of the data. AdvBias [3] also apply the
adversarial technique for learning the bias-field and deformation field respec-
tively. Cutout [5] randomly samples masks and crops out part of images via the
masks. Mixup [23] simply mixes the images and also forces the prediction of
mixed images to be the interpolation of ground truth labels.

3 Proposed Method

In the single domain generalization setting, we aim at training a segmentation
model S on a single source domain S = {z%,4y*}¥, such that the learned model
can generalize well to multiple target domains 73, = {:z:fg, yi}j”il, where k is the
domain indicator. The target domains are not accessible during training.

We propose an adversarial training-based method to synthesize data from
new domains 7; = {2}, 4"}, from the single source domain, where [ is the syn-
thetic domain indicator. An assumption of our method is that the space of the
collections of the unseen domains belongs to the collections of synthetic domains,
ie. UpT C UT,. Specifically, the unseen domains can be generated by interpolat-
ing the synthetic domains. Our adversarial framework can enlarge the diversity
the synthetic domains and guarantee sufficient coverage of the unseen domains.
To ensure the synthetic images adhere to the semantics of the source images, we
also apply a regularizer that promotes the mutual information between synthetic
images and source images.

Our method consists of four modules: two adversarial domain synthesizers
paramaterized as T'(-;01) and T'(-; 62), a segmentation network parameterized as
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S(;05) and the mutual information regularizer MI(-,-;6,). We train the mod-
els with a two-step min-max procedure that involves supervised, consistency,
adversarial, and regularization loss terms. A schematic illustration of our pro-
posed model is shown in Fig. 1.

Adversarial
Domain Synthesizer

X
Conv 3x3 +
Leaky Relu

v \
: \

MI(X, X,) Regularization

S(le )

Adversarial
Domain Synthesizer

‘ T(X, z;01)
IZ(Random)
X @ IZ(Randcm)
N
T(X, %60) [r1]

y
Conv 3x3 + )
Leaky Relu |

/
- - AdalN r
Adversarial &
Domain Synthesizer X S(XZ 5 ) -
l 1-a
X

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 \ 2z
: | ) (Random)
1
1
1
1
1
1
1
1
1
1
1
1
1

MI(X, X,) Regularization (a) (b)
Fig. 1. Schematic of the proposed method. (a) shows the completed model structure,
which consists of our adversarial domain synthesizer (ADS), the mutual information
regularization between input and synthetic image, the segmentation network and the
KL consistency loss between two predictions. (b) is the detailed structure of our pro-
posed ADS. (Color figure online)

3.1 Adversarial Domain Synthesizer

To maximize the effectiveness of the synthetic domains, we utilize adversarial
training to learn an Adversarial Domain Synthesizer (ADS) T'(X, z;6), which
takes as input a source image and random noise sample z and outputs a syn-
thetic image X. We assume that T only changes the texture of the source
images and not their segmentation annotation. As a result, the segmentation
network S should generate the same segmentation mask for all X from a given
X. For the adversarial training, 7' competes with S to generate the adversar-
ial domain images. We construct the adversarial consistency via two differ-
ently parameterized T, and we can obtain two randomly synthesized images
X, = T(X,z;ﬁl),f(g = T(X, z;02). The purpose of random variable z will be
explained below. The adversarial competition can be formulated as follows:

boon (X1, Xa) = KL(S(X1565)[[S (X2 05)), (1)

where KL divergence is measured between the two softmax outputs. In Eq. 1,
the two synthesizers 1" are trained to maximize {consistency and S is trained to
minimize it.
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ADS Network Architecture. The goal of the ADS T is to generate the syn-
thetic domains with hardest perturbation for S. Meanwhile, the semantics of
the images, such as the boundary and shape of the organs, should keep consis-
tent with source images and the changes are limited to the texture of the tissues.
To achieve the effect mentioned above, we proposed a modified version of Global
Intensity Non-Linear Augmentation module (GIN) [15]. GIN utilizes a shallow
CNN structure with randomly initialized weights for the convolution filters plus
a mixup with ratio of @ ~ U(0,1) to generate multi-modalities from source
domain. Unlike GIN, in our method, the synthesizer T is learned adversarially,
so we cannot initialize T' randomly to generalize multiple modalities. Thus, with-
out randomness from the parameters of T', we can only interpolate the domains
with the mixup parameter, which limits the variance of synthetic domains. To
alleviate this issue, we incorporate the adaptive instance normalization (AdalN)
block [8] to introduce randomness to the generated domain. The design of the
proposed T is shown in Fig. 1 (b) (Fig. 2).

~ Maximize

X X D} X,; X, (inimize
Positive
= N FGoy [, :
. D Negative v fp
] X, X,

Embedding Space

Fig. 2. Mutual information maximization.

3.2 MI Regularization

Without proper regularization, T' can change semantics of the image arbitrarily.
To ensure that the boundary and shape are shared underlying semantics between
the synthetic image and the source image, we can maximize the mutual infor-
mation between two images to keep the semantics. Thus, we propose to add the
mutual information maximization (MIM) constraint to the synthesized images as
maximizing MI(X, X), where 64 is the parameters of the mutual information esti-
mator. Exact calculation of mutual information is computationally prohibitive.
Inspired by the success of contrastive learning in image-to-image translation [16],
we use patch-based contrastive loss as a surrogate for MI. Specifically, we uti-
lize constrastive learning on the image patch level to maximize the MI between
the source images and the transformed images, which exactly satisfies our goal.
Thus, we can adapt [16] to our model and reformulate it as follows:

§ eXP(fp S/ T) '
exp(fp - fp/T) + En;ép exp(fp - fu/7)

(rr(X, X) = log (2)
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In Eq. 2, the £;;5 is maximized and the numerator is the inner product of two cor-
responding patch features with exponential re-scaling, the fp and f, denote the
features extracted by F(Xp; 04), F(X,;604), where Xp, X, represent the patches
of the synthesized image and the source image at the corresponding location
respectively and they are the positive pair for contrastive learning. For the neg-
ative pair, we can see the same operation of the f, and f, in the denominator. In
Eq.2, we are trying to maximize the semantic correlation between the synthe-
sized image and the input via pushing similarity of patches at the corresponding
location and dissimilarity at different locations.

3.3 Model Optimization

As mentioned above, the segmentation masks are kept consistent from the source
domain to synthesized domains. Thus we also have the supervised loss as below:

Csup(X,Y) = KL(S(X;04)[|Y). 3)
Our two-step optimization for the proposed model can be summarized as:

update (5 : min E ESUP(Xl,Y) +£Sup(X2,Y) +£Cons(X17X2)
X,Y~Pxy

update 01,092,604 : max E Coon(X1, Xo) + Larr (X, X1) 4 € (X, Xo).
01,602,04 X~Px,z~P,

4 Experiments

We evaluate our model on two experimental settings. For the first setting, we
test the generalizability of the model on an unseen modality by using abdom-
inal CT scans from [1] and MRI scans from [9] as the source domain and
target domain respectively. For the second setting, we aim to test the gen-
eralizability of our model on unseen data distribution shift caused by differ-
ent scanner machine settings. We obtain the data from six different organi-
zations (RUNMC,BMC,HCRUDB,UCL,BIDMC,HK) and adopt the following
cross-validation procedure: we select the data from one organization as the source
domain for training and hold out the rest as the target domains for testing. Fur-
thermore, we conduct a detailed ablation study to analyze the effectiveness of
each component of the proposed method.

4.1 Training Configuration

We use Efficient-b2 [19] as the backbone for the segmentation network S and
modify it with UNet-style skip connection. The synthesizer network 7T has 4
convolutional blocks, each block consisting of 3 x 3 convolutional kernel with
the channel size of 2, Leaky-ReLU and AdalIN. For the MIM model, we use
the encoder part of the generator with a fully connected layer as the feature
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extractor F' from [16]. We choose Adam optimizer [10] for all of the models with
initial learning rate 3 x 10~ and 3 = [0.5,0.999]. The learning rate will linearly
decay to zero at the end of the training. The total training epochs are 2,000. We
compare our method to Cutout, AdvBias, RandConv and GIN [15] under the
same settings.

4.2 Data Prepossessing and Evaluation Metrics

Before training and testing, we first resize all of the 3D volumes at the axial plane
to the size of 192 x 192. For the CT modality, we clip the intensity into the range
of [—275,125]. For the MRI modality, the top 99.5% of intensity values are cut
out. We also apply all variations of predefined augmentations to the 3D volumes
before we slice them into 2D images. These augmentations include random con-
trast via gamma transformation, Gaussian noise addition, affine transformation,
3D elastic transformation and intensity normalization of zero mean and unit
variance. All of these predefined augmentations are performed with MONAIL
More details of the data prepossessing and augmentation steps can be found in
Appendix A.

To evaluate single source domain generalization, we do not access the target
testing dataset during training. Thus, we split all source datasets into training
and evaluation partitions with proportions 70% and 30%, respectively. For the
final testing on the target datasets, we pick the saved model checkpoint which
has the best predictive performance on the source evaluation split. We use the
Dice score (DS) for evaluating the performance of the different methods.

4.3 Experimental Results and Empirical Analysis

We summarize our results in Table 1. Across three different single domain gener-
alization settings, our proposed method achieves the best performance compared
with the baseline models. Notably, compared with [15], the overall performance
on Cardiac bSSFP-LGE is worse than their reported results, although we have
tried our best to replicate the baseline results under the suggested settings of [15].
We also visualize the segmentation results in the Fig.3. Our method succeeds
in some difficult samples, where the partial spleen is missing or mis-classified in
the Abdominal CT-MRI, or missing semantic structure in Cardiac bSSFP-LGE.
We also observe the coarse segmentation mask in Prostate Cross-Centers for the
baseline methods. The above quantitative and qualitative results show the effec-
tiveness of our adversarial training framework. more visual results are shown in
Appendix B.

4.4 Ablation Study

We conduct extra experiments to study the effectiveness of each component in
our model. In Table2, we compare the performance results of our model with-
out adversarial training, our model without the mutual information regularizer,
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Fig. 3. Visualization of results.

Table 1. Results on three single source domain generalization settings.

Method Abdominal CT-MRI Cardiac bSSFP-LGE Prostate Cross-center
Liver |R-Kidney | L-Kidney | Spleen | Average | L-ventricle | Myocardium | R-ventricle | Average | Average
ERM 73.35 | 75.92 74.20 82.93 | 76.60 51.19 72.7 70.40 64.76 51.57
Cutout 76.57 | 80.06 77.96 78.90 |78.37 65.13 77.58 70.44 71.05 58.79
AdvBias | 74.97 |86.16 78.39 72.45 | 77.99 60.10 77.52 72.29 69.97 60.47
RandConv | 78.07 |83.31 80.69 80.23 |80.58 67.48 85.39 80.46 77.78 68.14
GIN 83.16 |85.99 82.17 82.22 |83.39 71.22 84.10 82.06 79.12 70.15
Ours 85.24 | 89.87 86.92 81.69 |85.93 73.37 86.10 81.45 80.31 71.42

and our completed model. This experiment is conducted in the Abdominal CT-
MRI under the same setups as described above. The model without adversarial
training still achieves better results than the model without mutual information
regularization by a small gap. However, we can see that both adversarial train-
ing and the MI regularizer can coorporate with each other to achieve superior
performance.
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Table 2. Ablation on Abdominal CT — MRI.

Abdominal CT-MRI

Method Liver | R-kidney | L-kidney | Spleen | Average
Ours w/o adversarial | 84.59 | 85.52 87.79 79.21 |84.28
Ours w/o MI 83.23 | 85.62 83.71 82.79 | 83.59
Ours 85.24 | 89.87 86.92 81.69 | 85.93

5 Conclusion

We successfully trained a model on a single source domain and deploy it on
unseen target domains for the purpose of single domain generalization (SDG).
Because of the limited training data and the unpredictable target domain shift,
the generalizability of segmentation models is restricted, especially for medi-
cal images. Therefore, we propose a novel adversarial training framework to
improve the generalizability of the SDG segmentation model. We synthesize the
new domains via learning an adversarial domain synthesizer (ADS) in the pro-
posed method. We assume that the unseen domains can be interpolated from
synthetic domains, and the adversarial synthetic domains can guarantee suffi-
cient coverage. To constrain the semantic consistency between synthetic images
and the corresponding source images, we propose a mutual information regu-
larizer, which can be estimated by patch-level contrastive learning. We evaluate
our method for various organ segmentation for unseen modalities, scanning pro-
tocols, and scanner sites. The proposed method shows a consistent improvement
over the baseline methods.
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