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Abstract. Creating a large-scale dataset of abnormality annotation on
medical images is a labor-intensive and costly task. Leveraging weak
supervision from readily available data such as radiology reports can
compensate lack of large-scale data for anomaly detection methods.
However, most of the current methods only use image-level pathological
observations, failing to utilize the relevant anatomy mentions in reports.
Furthermore, Natural Language Processing (NLP)-mined weak labels
are noisy due to label sparsity and linguistic ambiguity. We propose an
Anatomy-Guided chest X-ray Network (AGXNet) to address these issues
of weak annotation. Our framework consists of a cascade of two net-
works, one responsible for identifying anatomical abnormalities and the
second responsible for pathological observations. The critical component
in our framework is an anatomy-guided attention module that aids the
downstream observation network in focusing on the relevant anatomical
regions generated by the anatomy network. We use Positive Unlabeled
(PU) learning to account for the fact that lack of mention does not nec-
essarily mean a negative label. Our quantitative and qualitative results
on the MIMIC-CXR dataset demonstrate the effectiveness of AGXNet
in disease and anatomical abnormality localization. Experiments on the
NIH Chest X-ray dataset show that the learned feature representations
are transferable and can achieve the state-of-the-art performances in dis-
ease classification and competitive disease localization results. Our code
is available at https://github.com/batmanlab/AGXNet.

Keywords: Weakly-supervised learning - PU learning - Disease
detection - Class activation map - Residual attention

1 Introduction

There is considerable interest in developing automated abnormality detection
systems for chest X-rays (CXR) in order to improve radiologists’ workflow effi-

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-16443-9 63.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): MICCAI 2022, LNCS 13435, pp. 658668, 2022.
https://doi.org/10.1007/978-3-031-16443-9_63


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16443-9_63&domain=pdf
https://github.com/batmanlab/AGXNet
https://doi.org/10.1007/978-3-031-16443-9_63
https://doi.org/10.1007/978-3-031-16443-9_63

Anatomy-Guided Weakly-Supervised Abnormality Localization in CXR 659

Anatomy
Encoder

Relations

(ai.ox)=P
(a;,06)=P

Anatomy-Guided Attention
k
(@]
>
=

gO ) Observation
Encoder

Fig. 1. Schematic diagram of the proposed AGXNet. Our architecture comprises of
two classification networks, g, for anatomical abnormalities and g, for pathological
observations. Relations (ai,o0r) = P, (aj,or) = P are parsed from the report and
represent that the observation oy is annotated as Present in two anatomical landmarks
a;,aj, respectively. We obtain the anatomy-guided attention map H" by aggregating
CAMs of ai,a; and incorporate the H k as a residual attention into go. The symbols
fa, fo denote the intermediate anatomy and observation features, respectively.

ciency and reduce observational oversights [3,6,13,19]. Typically, training a high-
precision detection model using deep learning requires high-quality annotations.
However, collecting large-scale annotations by clinical experts is time-consuming
and prohibitively expensive. This motivates weakly-supervised learning (WSL)
methods [2,14,16,24] that leverage weak supervision from paired CXR reports
that are readily available on a large scale. There are, however, two unaddressed
challenges: (1) The entire report is often summarized to a small set of disease
labels, which misses the opportunity of incorporating anatomical context, and
(2) Weak labels derived from radiology reports using Natural Language Pro-
cessing (NLP) are noisy due to the sparsity of the labels and the ambiguity of
the language. Improper handling of labeling noise can result in underperforming
models. We propose a novel WSL framework to bridge these two gaps.

A variety of automated text labelers [9,11,18,24] have been developed to
extract image-level observations from CXR reports. However, they do not
consider anatomy mentions that provide important contexts for associated
observations. Aiming to fill this gap, the recently developed pipelines, Chest
ImaGenome [26] and RadGraph [10] extract fine-grained “observation-located at-
anatomy” relations, (e.g., “opacity in the right lower lung”), from CXR reports.
Yet none of them has been incorporated into a weakly-supervised disease detec-
tion method. We build our WSL framework based on the RadGraph dataset.
Radiologists typically employ a systematic approach [21] when reading CXR
images to ensure that no significant abnormality is missed. This approach is
essentially documented in CXR reports which typically have imaging observa-
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tions paired with the related anatomical locations. We design an architecture
that reflects this process.

The second challenge is that weak labels extracted from CXR reports are
inherently noisy. Typically, only a subset of weak labels is mentioned in a report,
and unlabeled data is handled using a basic zero-imputation strategy. However,
lack of mention does not necessarily mean a negative label. For example, a CXR
report that contains mentions of strong visual clues for pneumonia, such as opac-
ity or consolidation, may not specifically establish pneumonia as a diagnosis due
to human variability in the reporting process. We also consider uncertainty men-
tions (e.g., may, possible, can’t exclude) as unlabeled, where the noise originates
from the intrinsic ambiguities in reports. We formulate this problem as a Positive
Unlabeled (PU) learning [1] where the learner has access to a small set of exam-
ples with high-confidence labels (either positive or negative) and a large amount
of unlabeled data mixed by positive and negative examples with an unknown
mixture ratio.

In this paper, we present Anatomy-Guided chest X-ray Networks (AGXNet),
a novel WSL framework that leverages information from pathological observa-
tions and their associated anatomical landmarks mentioned in CXR reports. Our
architecture consists of a cascade of two networks, with the upstream anatomy
network tasked with identifying anatomical abnormalities in CXR images and
the downstream observation network tasked with identifying pathological obser-
vations. The inclusion of an anatomy-guided attention (AGA) module aims to aid
the observation network paying attention to abnormalities in the context of asso-
ciated anatomical landmarks. During training, the AGA module also provides a
feedback loop to the upstream anatomy network, thus mutually improving the
quality of both types of features. In addition, we adopt a PU learning technique
to estimate the fraction of positive samples in the unlabeled data and use a self-
training approach to iteratively reduce noise in labels. Our model is trained end-
to-end. We evaluate the proposed framework on the MIMIC-CXR [12] dataset.
Results show that the proposed AGXNet model outperforms both supervised
and weakly-supervised baselines in disease localization. In-depth ablation stud-
ies demonstrate that both AGA module and PU learning can help to improve
localization accuracy. We further evaluate the pre-trained encoders on the NIH
Chest X-ray dataset [24] and show that the transferred models achieve the state-
of-the-art (SOTA) results in disease classification and competitive performance
in disease localization.

2 Methods

We parse the report into an adjacency matrix that encodes the relations between
the observations and anatomical landmarks. The AGA module connects two
networks that are used to predict the presence of observations and anatomical
abnormalities in CXR images. We use PU learning to explicitly address noise in
unlabeled observations. The proposed framework is illustrated in Fig. 1.
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Report Representation. We use the RadGraph [10] to parse reports to
anatomical landmark tokens {a;}, observation tokens {0y}, and encode their
relations using an adjacency matrix A. An entry A(j,k) can take one of the
three variants P, N, or U, representing whether the observation oy is Present,
Absent or Unlabeled in the anatomical landmark a;. Note, for o that is men-
tioned without a specified location (e.g., “No evidence of pneumothoraz”), we
link it to a special anatomical landmark token named unspecified. Figure A.1
shows an example adjacent matrix. We summarize the image-level labels for
observation and anatomical landmark using the adjacency matrix. An observa-
tion oy is assigned a positive label (y(ox) = 1) if column A(-, k) has at least
one P entry, a negative label (y(or) = 0) if column A(-, k) has no P entry and
at least one N entry, and assigned as unlabeled (y(ox) = u) if column A(-, k)
only has U entries. For anatomy, an anatomical landmark is labeled as abnormal
y(a;) = 1if row A(j, -) has at least one P entry, otherwise it is labeled as normal

y(a;) = 0.
Anatomy Network. The anatomy network g, is responsible for identifying

abnormalities from anatomical landmarks. The weighted binary cross-entropy
(BCE) loss for a; is given by:

Lo)(Oaw)) ==b" > In(ga(x)) —b; > In(l—ga(z)), (1)

y(a;)=1 y(a;)=0

where 0, is the parameter of anatomy encoder network, w’ is the classification
weight corresponding to a;, « is an image, g,(z) is the predicted probability of
being abnormal in a;, bj+ and b; are balancing factors introduced in [20].

AGA. We introduce the AGA module to guide the downstream observation
network g, focusing on the relevant anatomical regions mentioned in the radi-
ology report. In detail, we construct the AGA map H* for observation o by
aggregating the class activation maps (CAMs) [27] for locations {a;} where o,
was positively observed, i.e., A(aj,o0r) = P. Formally,

Qa,wj ZH{A aJ,Ok = P}Zwéfa(:; 56 0(1)7 (2)

CAM(CLJ')

where f,(:,:,¢) represents the activation of channel ¢ in anatomy feature map
fa, and 1{A(a;, 0r) = P} is an indicator function. We then transform the values
of H* to [0, 1] using the min-max normalization.

Observation Network. The observation network g, is responsible for identi-
fying the presence of pathological observations in CXR images. We incorporate
the H* into g, as a residual attention map and modify the observation feature
map f, as follows, f; = (1+03-H ¥)® f,, where ® indicates element-wise multi-
plication for spatial positions, and [ is a scaling hyperparameter. The weighted
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BCE loss for oy, is given by:
‘Cok(G) = 7in_ Z ln(go(x,Hk)) - b]; z ln(l - go(vak))a (3)

y(og)=1 y(or)€{0,u}

where © = (6,,wk, 0,,w?), 6, is the parameter of observation encoder network,

wk is the classification weight corresponding to o, go(z, H*) is the predicted

]
probability of o being present in the image, bz,' and b'k’,' are balancing factors. It
is important to note that mapping all unlabeled examples to negative (|y(ox) €
{0,u}| = |N|+ |U|) would overlook the noise in the unlabeled data, which can
degrade model performance. We explicitly handle the randomness present in

unlabeled data and formulate this problem using a PU learning approach.

PU Learning. The distribution of unlabeled data P, can be decomposed as,
P, = aP, + (1 — a)P,, where o denotes the mixture proportion of positive
examples in the unlabeled data, and P,, P,, denotes the class-conditional distri-
bution for positive and negative class, respectively. We adopt the method Best
Bin Estimation (BBE) proposed by Garg et al. [5] to estimate «. In short, let
Xp, X, X, denote the positive, negative and unlabeled samples for o in the
validation data set, F}(z), Fy,(z) denote the empirical cumulative distributions
of the predicted probabilities of the observation network, named Z,, Z,. The
mixture proportion « is estimated by minimizing the upper confidence bound
of the ratio, namely (1 — F,(2))/(1 — F,(z)). We integrate the BBE with an
iterative self-training approach summarized as follows: (1) warm-start training
with treating all unlabeled samples as negative, (2) estimating o using BBE, (3)
removing « fraction of unlabeled training samples scored as most positive and
relabeling the rest 1 — o unlabeled samples as negative, (4) updating the model
using positive samples (| P|) and provisional negative samples (|N|+ (1 —«)|U]).
We repeat steps 2 to 4 until the classifiers reach the best validation performance.

Optimization. The final loss is given by: £ = Nin Z;V“ Ly, + Nio Zg" Lo, ,
where N,, N, are the number of anatomy and observation labels used in training,
respectively. The network is trained end-to-end. Importantly, during training, the
gradients 0L, /00, OL,, /0wl provide a feedback loop to the anatomy network
through the AGA module, mutually reinforcing the anatomy and observation
features. During inference time, we do not require any text input and set H* = 0.

3 Experiments

Experiments are carried out to evaluate the performance of AGXNet in abnor-
mality classification and localization. We conduct ablation studies to validate
the efficiency of the AGA module and PU learning. We also test the robustness
and transferability of the learned anatomy and observation features.

Experimental Details. We first evaluate the proposed AGXNet on the
MIMIC-CXR dataset [12]. The RadGraph’s inference dataset [10] provides anno-
tations automatically generated by DYGIE++ [23] model for 220,763 MIMIC-
CXR reports. We select the corresponding 220,763 frontal images from the
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MIMIC-CXR dataset and obtain their adjacency matrix representations from the
RadGraph annotations. The adjacency matrix of each sample has 48 rows (46
anatomical landmarks, 1 unspecified, 1 other anatomies representing anatomy
tokens in the tail distribution) and 64 columns (63 mostly mentioned observa-
tions and 1 other observations representing observation tokens in the tail distri-
bution). Appx. B provides additional details of anatomical labels. For evaluation
of disease localization, we use a held out set [22] of MIMIC-CXR images with 390
bounding boxes (BBox) for pneumonia (196/390) and pneumothorax (194/390)
annotated by board-certified radiologists. For evaluation of anatomical abnor-
mality localization, we utilize the anatomy BBox from the Chest ImaGenome
dataset [26], which were extracted by an atlas-based detection pipeline. We use a
80%-10%-10% train-validation-test split with no patient shared across splits. For
both anatomy and observation encoders in AGXNet, we use DenseNet-121 [§]
with pre-trained weights from ImageNet [4] as the backbone. We train our frame-
work to predict presence of abnormality in the 46 anatomical landmarks and the
presence of two diseases (i.e., pneumonia and pneumothorax) that have ground
truth BBox in [22]. The ( is set to be 0.1 based on validation results. We optimize
the networks using SGD with momentum = 0.9, weight decay = 10e~* and stop
training once the validation error reaches minimum. The learning rate is set to be
0.01 and divided by 10 every 6 epochs. We resize all images to 512 x 512 without
any data augmentation and set the batch size as 16. The model is implemented
in PyTorch and trained on a single NVIDIA GPU with 32G of memory.

Evaluation Metric. We produce disease-specific CAMs for pneumonia and
pneumothorax, and anatomy-specific CAMs for the anatomical landmarks. We
apply a thresholding-based bounding box generation method and extract iso-
lated regions in which pixel values are greater than the 95% quantile of the
CAM’s pixel value distribution. We evaluate the generated boxes against the
ground truth BBox using intersection over union ratio (IoU). A generated box
is considered as a true positive when IoU > T'(IoU), where T'(x) is a threshold.

Table 1. Disease localization on MIMIC-CXR. Results are reported as the average
over 5 independent runs with standard deviations. The highest values are highlighted
in bold, and the best results without BBox annotation are underlined.

Disease Model Supervised | IoU @ 0.1 IoU @ 0.25 IoU @ 0.5

Recall Precision Recall Precision Recall Precision
0.52+£0.04 |[0.1940.00 |0.41+0.04 [0.1540.00 |0.26 =% 0.00 |0.09 =+ 0.00
0.68+0.01 [0.40+£0.01 [0.47£0.01 |0.28+0.00 |0.1440.01 |0.08+0.01
0.67+£0.04 |0.414+0.03 |0.54+0.04 |0.33+0.03 |0.16+0.02 |0.10+0.01
0.75 + 0.01 | 0.44 £ 0.01 | 0.60 + 0.02 | 0.35 £ 0.01 | 0.16 + 0.00 | 0.09 £ 0.00
0.74+0.03 |0.43+0.02 |0.58+0.03 |0.34+0.02 |0.13+£0.01 |0.07+0.01
0.66 £0.04 |0.274+0.04 |0.62+0.04 |0.26+0.09 |0.42=+0.04|0.17+0.03
0.73+0.01 [0.40+£0.01 [0.51£0.01 |0.28+0.01 |0.1940.01 |0.10+0.01
0.69+0.01 |0.44£0.01 |0.59+0.02 |0.37+0.02 |0.18+0.02 |0.11+0.01
0.67+0.02 |0.46+0.01 [0.58+£0.02 |0.39+0.02 |0.184+0.03 |0.1240.02
0.73 +0.01|0.47 +0.01 | 0.62 + 0.01 | 0.40  0.01 | 0.20 £ 0.01 |0.13 £ 0.01

Pneumothorax | RetinaNet [15]
CheXpert [9]

AGXNet w/o AGA
AGXNet w/ AGA
AGXNet w/ AGA + PU
Pneumonia RetinaNet [15]
CheXpert [9]

AGXNet w/o AGA
AGXNet w/ AGA
AGXNet w/ AGA + PU

FIEEERIEEEEES
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Evaluating Disease Localization. We trained a RetinaNet [15] using the
annotated BBox from [22] as the supervised baseline and a DenseNet-121 using
CheXpert [9] disease labels for CAM-based localization as the WSL baseline.
We investigated three variants of AGXNet to understand the effects of AGA
module and PU learning. Table 1 shows that AGXNet trained with PU learning
achieved the best localization results for pneumonia at T'(IoU) = 0.1 and 0.25,
while AGXNet trained without PU learning performed best in pneumothorax
localization at the same IoU thresholds. Note that the label noise in pneumoth-
orax is intrinsically low, thus adding PU learning may not significantly improve
its localization accuracy. RetinaNet achieved the best localization results at
T(IoU) = 0.5, probably due to its direct predictions for the coordinates of BBox.

Table 2. Ablation studies on AGA and PU Learning. Results are averaged over 5 runs.
«: mixture proportion of positive samples. AA: anatomic abnormality. LAL: left apical
lung. LL: left lung. RAL: right apical lung. RLL: right lower lung. RL: right lung.

Model Classification AA localization

Pneumonia Pneumothorax | Accuracy @ IoU = 0.25

«@ AUPRC | « AUPRC |LAL LL |RAL|RLL RL
AGXNet w/o AGA - 0.57 - 0.55 0.02 | 0.10 |0.08 |0.43 | 0.12
AGXNet w/ AGA - 0.57 — 0.57 0.28 [0.22 1 0.49 |0.63 |0.22
AGXNet w/ AGA+PU |0.14|0.62 0.03/0.57 0.380.23  0.50 | 0.69  0.22

Ablation Studies. Table2 shows additional results of ablation studies for
AGXNet, including (1) disease classification performance on the positive and
negative samples in the test set using the area under the precision-recall curve
(AUPRC), and (2) anatomical abnormality localization accuracy at T'(IoU) =
0.25 for {a;}, where A(aj,ox) = P and oy € {pneumonia, pneumothorax}.
Effect of AGA: Results in Table1 and Table2 show that the AGA module
significantly improved the results of pneumothorax detection and anatomical
abnormality detection, suggesting that the attention module mutually enhanced
both types of features. Figure 2 shows the qualitative comparison of two models
with (M2) and without (M1) the AGA module. M2 correctly detects pneumoth-
orax and the relevant abnormal anatomical landmarks in both examples, while
M1 fails to do so. Furthermore, in the second example, a pigtail catheter is
applied to treat pneumothorax and acts as the only discriminative feature used
by M1, while M2 is more robust against this shortcut and detects disease in
the correct anatomical location. Effect of PU Learning: Table 2 shows that
the estimated mixture proportion of positive examples («) is significantly higher
in pneumonia (14%) than in pneumothorax (3%), reflecting the fact that there
is considerable variability in pneumonia diagnoses [17]. Accordingly, results in
Table 1 and Table 2 show that using the PU learning technique improves the per-
formance of pneumonia classification and localization, while it is less effective
for pneumothorax whose label noise is intrinsically low.
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Table 3. The test AUROCs for the NIH Chest X-ray disease classification task.

Method Atelectasis | Cardiomegaly | Effusion | Infiltration | Mass | Nodule | Pneumonia | Pneumothorax | Mean
Scratch 0.79 0.91 0.88 0.69 0.81 [0.70 0.70 0.82 0.79
Wang et al. [24] 0.72 0.81 0.78 0.61 0.71 |0.67 0.63 0.81 0.72
Wang et al. [25] 0.73 0.84 0.79 0.67 0.73 |0.69 0.72 0.85 0.75
Liu et al. [16] 0.79 0.91 0.88 0.69 0.81 [0.73 0.75 0.89 0.80
Rajpurkar et al. [20] | 0.82 0.91 0.88 0.72 0.86 |0.78 0.76 0.89 0.83
Han et al. [7] 0.84 0.93 0.88 0.72 0.87 | 0.79 0.77 0.90 0.84
AGXNet - Ana. 0.84 0.91 0.90 0.71 0.86 |0.80 0.74 0.86 0.83
AGXNet - Obs. 0.85 0.92 0.90 0.72 0.86 |0.80 |0.76 0.87 0.84
AGXNet - Both 0.85 0.92 0.90 0.72 0.87 |0.80 |0.76 0.88 0.84

Ex2: "a small righ apical pneumothorax decreased in size”

Ex1: “a small left-sided apical pneumothorax remains”
P |

M1: w/o AGA

M2: w/ AGA

|

CAM(‘Left apical lung”) CAM(*Pneumothorax’) CAM(*Right apical lung") CAM(‘Pneumothorax’)

Fig. 2. AGXNet with (M2) or without (M1) the AGA module for pneumothorax detec-
tion. Heatmaps indicate the CAMs. The blue and green boxes stand for ground truth
anatomy and disease annotations. The red boxes are generated from the CAMs. (Color
figure online)

Table 4. The localization accuracy for the NIH Chest X-ray disease localization task.
The highest values are highlighted in bold, and the best results without BBox annota-
tion are underlined.

T(IoU) | Method Supervised | Atelectasis | Cardiomegaly | Effusion | Infiltration | Mass | Nodule | Pneumonia | Pneumothorax | Mean

0.1 Scratch X 0.46 0.85 0.61 0.40 0.48 |0.11 0.56 0.25 0.47
Han et al. [7] v 0.72 0.96 0.88 0.93 0.74 10.45 0.65 0.64 0.75
Wang et al. [24] | X 0.69 0.94 0.66 0.71 0.40 |0.14 0.63 0.38 0.57
AGXNet - Ana. | X 0.64 0.99 0.66 0.69 0.69 |0.29 0.73 0.29 0.62
AGXNet - Obs. | X 0.61 0.99 0.70 0.70 0.69 |0.23 0.72 0.55 0.65
AGXNet - Both | X 0.71 1.00 0.69 0.68 0.68 |0.22 0.71 0.62 0.66

0.3 Scratch X 0.10 0.45 0.34 0.15 0.14 |0.00 0.31 0.06 0.19
Han et al. [7] v 0.39 0.85 0.60 0.67 0.43 |0.21 0.40 0.45 0.50
Wang et al. [24] | X 0.24 0.46 0.30 0.28 0.15 |0.04 0.17 0.13 0.22
AGXNet - Ana. | X 0.20 0.48 0.40 0.43 0.28 |0.00 0.46 0.13 0.30
AGXNet - Obs. | X 0.22 0.62 0.45 0.46 0.27 |0.01 0.54 0.31 0.36
AGXNet - Both | X 0.27 0.56 0.47 0.45 0.27 |0.01 0.50 0.36 0.36

Transfer Learning on NIH Chest X-ray. We pre-trained an AGXNet + PU
model on the MIMIC-CXR dataset using the 46 anatomy labels and 8 obser-
vation labels listed in C.1. We then fine-tuned the encoder(s) and re-trained a
classifier using the NTH Chest X-ray dataset [24]. We investigated three variants
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of fine-tuning regimes: (1) only using anatomy encoder, (2) only using observa-
tion encoder, and (3) using both encoders and their concatenated embeddings.
We compare our transferred models with a baseline model trained from scratch
using the NTH Chest X-ray dataset and a series of relevant baselines. We evaluate
the classification performance using the area under the ROC curve (AUROC)
score and the localization accuracy at T'(IoU) = 0.1, 0.3 across the 8 diseases.
Table 3 shows that all variants of fine-tuned AGXNet models achieve disease
classification performances comparable to the SOTA method [7], demonstrating
that both learned anatomy and observation features are robust and transferable.
Table 4 shows that all variants of fine-tuned AGXNet models outperform learn-
ing from scratch and the existing CAM-based baseline method [24] in disease
localization. Note that the model proposed by Han et al. [7] achieved higher
accuracy by utilizing the ground truth BBox during training, therefore it is not
directly comparable and should be viewed as an upper bound method.

4 Conclusion

In this work, we propose a novel WSL framework to incorporate anatomical
contexts mentioned in radiology reports to facilitate disease detection on corre-
sponding CXR images. In addition, we use a PU learning approach to explicitly
handle noise in unlabeled data. Experimental evaluations on the MIMIC-CXR
dataset show that the addition of anatomic knowledge and the use of PU learning
improve abnormality localization. Experiments on the NIH Chest X-ray datasets
demonstrate that the learned anatomical and pathological features are transfer-
able and encode robust classification and localization information.
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