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Abstract

Unpaired image-to-image translation (121) is an ill-posed prob-
lem, as an infinite number of translation functions can map the
source domain distribution to the target distribution. Therefore,
much effort has been put into designing suitable constraints, e.g.,
cycle consistency (CycleGAN), geometry consistency (GCGAN),
and contrastive learning-based constraints (CUTGAN), that help
better pose the problem. However, these well-known constraints
have limitations: (1) they are either too restrictive or too weak
for specific 121 tasks; (2) these methods result in content dis-
tortion when there is a significant spatial variation between the
source and target domains. This paper proposes a universal reg-
ularization technique called maximum spatial perturbation con-
sistency (MSPC), which enforces a spatial perturbation function
(T') and the translation operator (G) to be commutative (i.e.,
ToG =
training components for learning the spatial perturbation func-

G o T). In addition, we introduce two adversarial

tion. The first one lets T' compete with G to achieve maximum per-
turbation. The second one lets G and T' compete with discrimina-
tors to align the spatial variations caused by the change of object
size, object distortion, background interruptions, etc. Our method
outperforms the state-of-the-art methods on most 121 benchmarks.
We also introduce a new benchmark, namely the front face to pro-
file face dataset, to emphasize the underlying challenges of 121 for
real-world applications. We finally perform ablation experiments
to study the sensitivity of our method to the severity of spatial per-
turbation and its effectiveness for distribution alignment.

1. Introduction

In unpaired image-to-to image translation (I2I), one aims
to translate images from a source domain X’ to a target do-
main ), with data drawn from the marginal distribution
of the source domain (Px) and that of the target domain

1 Equal Contribution. Code is released at ht tps://github.com/
batmanlab/MSPC.
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Figure 1. In this figure, we illustrate the the proposed MSPC on
(a) consistency regularization under maximum spatial perturbation
and (b) aligning the spatial distributions between source X and
Yr via spatial perturbation function 7'

(Py). Unpaired I2I has many applications, such as super-
resolution [12, 15], image editing [13, 49], and image de-
noising [4,41]. Howeyver, it is an ill-posed problem, as there
is an infinite choice of translators G that can map Py to Py .

Various constraints on the translation function G have
been proposed to remedy the ill-posedness of the problem.
For example, cycle consistency (CycleGAN) [50] enforces
the cyclic reconstruction consistency: X — G(X) — X,
which means G and its inverse are bijections. CUTGAN
[37] maximizes the mutual information between an input
image and the translated image via constrastive learning on
the patch-level features. The GCGAN [16], on the other
hand, effectively uses geometric consistency by applying a
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predefined geometry transformation g, i.e., fixed rotation,
encouraging G to be robust to geometry transformation.
The underlying assumption of the GCGAN is that the G
and g are commutative (i.e., g o G = G o g). However, Cy-
cleGAN assumes that the relationship of bijection between
source and target, which is limited for most real-life appli-
cations [37]. For instance, the translation function is non-
invertible in the Cityscapes — Parsing task. Though geom-
etry consistency used in GCGAN is a general I2] constraint,
it is too weak in the sense that the model would easily mem-
orize the pattern of a fixed transformation. CUTGAN en-
forces the strong correlation between the input images and
the translated images at the corresponded patches; thus it
would fail when the patches at the same spatial location do
not contain the same content, e.g., in the Front Face — Pro-
file task (shown in Figure 5). Thus, the above models are
either too restrictive or too weak for specific 121 tasks. Be-
sides, all of them overlook the extra spatial variations in
image translation, which are caused by the change of object
size, object distortion, background interruptions, etc.

To tackle the issues above, we propose a novel regu-
larization called the maximum spatial perturbation consis-
tency (MSPC), which enforces a new type of constraint and
aligns the content’s spatial distribution content across do-
mains. Our MSPC generalizes GCGAN by learning a spa-
tial perturbation function 7', which adaptively transforms
each image with an image-dependent spatial perturbation.
Moreover, MSPC is based on the new insight that consis-
tency on hard spatial perturbation would boost the robust-
ness of translator G. Thus, MSPC enforces the maximum
spatial perturbation function (7") and the translation opera-
tor (G) to be commutative (i.e., T oG = GoT). To generate
the maximum spatial perturbation, we introduce a differen-
tiable spatial transformer 7" [24] to compete with the trans-
lation network G in a mini-max game, which we mark as the
perturbation branch. More specifically, T tries to maximize
the distance between T'(G (X)) and G(T'(X)), and G mini-
mizes the difference between them. In this way, our method
dynamically generates the hardest spatial transformation for
each image, avoiding overfitting G to specific spatial trans-
formations. The Figure la give a simple illustration of how
the image-dependent spatial perturbation works on the 121
framework.

To align the spatial distribution of the content, 7" and G
cooperate to compete with a discriminator D,,.,; in another
mini-max game, which we mark as an alignment branch.
In the alignment branch, T participates in aligning the dis-
tribution between the translated images and the target im-
ages by alleviating the spatial discrepancy, i.e. adjusting the
object’s size, cropping out the noisy background, and fur-
ther reducing undesired distortions in the translation net-
work GG. We evaluate our model on several widely studied
benchmarks, and additionally, we construct a Front Face —

Profile dataset with significant domain gaps to emphasize
the challenges in real-world applications. The experimen-
tal results show that the proposed MSPC outperforms its
competitors on most 121 tasks. More importantly, MSPC
performs the most stable across various I2I tasks, demon-
strating the universality of our constraint. The Figure 1b
shows the visual examples the alignment effect on source
and target images via dynamic spatial transformation func-
tion.

2. Related Work
2.1. Generative Adversarial Network

Generative adversarial networks (GANs) [19] train a
min-max game between the generator G' and the discrim-
inator D, where D tries to discriminate between the data
distribution and the generated distribution. When G and D
reach a equilibrium, the generated distribution will exactly
match the data distribution. In recent years, GANs have
been explored in many image synthesis tasks, such as super-
vised and unsupervised image generation [3, | [, 18,33,34],
domain adaptation [2, 1 7,47], image inpainting [36,40,42],
etc.

2.2. Image-to-Image Translation

The paired image-to-image translation task can be traced
back to [14], which proposes a non-parametric texture
model. With the development of deep learning, the recent
Pix2Pix model [23] expands the conditional GAN model to
the image translation and learns a conditional mapping from
source images to the target images with paired data. There
are also other works in this line of research, such as [25,39].
However, paired images are expensive to collect, and thus
the latest works focus on the setting with semi-supervised
and unsupervised settings. Compared to existing unpaired
setting, [44] considers a more challenging setting where
contents of two domains are unaligned and proposes to ad-
dress this issue with importance re-weighting. As a semi-
supervised method, [35] performs image translation with
the combined limited paired images and sufficient unpaired
images. Furthermore, [1, 5-8, 16,26,28,29,31,37,43,46,

, 50] focus on the unsupervised image translation tasks.
In these works, CycleGAN [50] proposes a cycle consis-
tency between the input images and the translated images.
GCGAN [16] minimizes the error translated images via the
rotation on the input images. CUTGAN [37] maximizes the
mutual information between the input and the translated im-
ages via contrastive learning. UNIT [28] proposes a strong
assumption of content sharing and style change between
two image domains in the latent space. To obtain diverse
translation results, MUNIT [22] and DRIT [27] disentan-
gle the content and the style and generate diverse outputs
by combing the same content with different styles. In this



paper, we focus on the unsupervised task with deterministic
output of image translation.

2.3. Consistency Regularization of Semi-Supervised
Learning

Among various methods for the semi-supervised classi-
fication, clustering, or regression task, consistency regular-
ization has attracted much attention, as discussed in a re-
cent survey paper on deep semi-supervised learning [45].
The constraint of consistency regularization assumes that
the manifold of data is smooth and that the model is ro-
bust to the realistic perturbation on the data points. In other
words, consistency regularization can force the model to
learn a smooth manifold via incorporating the unlabeled
data. Though GCGAN was proposed from a different per-
spective, it can be considered as a variation of II model [38],
which enforces consistent model prediction on two random
augmentations on a labeled or unlabeled sample.

The regularization method closely related to the pro-
posed MSPC is virtual adversarial training (VAT) [32]. VAT
introduced the concept of adversarial attack [20] as a consis-
tency regularization in semi-supervised classification. This
method learns a maximum adversarial perturbation as a ad-
ditive noise on the data-level. To be more specific, it finds
an optimal perturbation v on a input sample = under the
constraint of 7 < J. Letting R and f denote the estimation
of distance between two vectors and the predicted model
respectively, we can formulate it as:

min max E,ep, R(f(0,2), f(0,7+7)). (1)
Fowlvli<o

3. Proposed Method

In unsupervised 121, one has access to the unpaired im-
ages X, C REXHXW which are from the source and
target domains, respectively. The goal is to translate im-
age of {z;2 € X} to {y;y € Y}. Our proposed MSPC
has four components and three branches. For the compo-
nents, we have an image translator (7, a spatial perturba-
tion function 7" and two image discriminators D and Dr.
As the three branches, a) G and D are for regular adver-
sarial training for the image translation; b) G and T' com-
pete with each other in the maximum spatial perturbation
branch; ¢) G and T' cooperate together to compete with D
in the spatial alignment branch. The overall architecture of
our method is shown in Figure 2a. Below we will explain
our method in the order of the branches.

3.1. Adversarial Constraint on Image Translation

A straightforward way of building the translation frame-
work (branch a) is to utilize generative adversarial train-
ing [19], which forces the translated images to be similar

to the target images.
mén mgxIEpry log D(y) + E.py log(1 — D(G(x))),

which is exactly branch a) of our method and has been
widely adopted in most 121 approaches [16,37,50].

3.2. Maximum Spatial Perturbation Consistency

In the maximum spatial perturbation branch (branch b),
we specify the proposed maximum spatial perturbation con-
sistency (MSPC) for regularizing the unsupervised transla-
tion network. Concisely, we propose an adversarial spatial
perturbation network 7' that is to be trained together with
the translator G. The formulation is as follows:

mgn mj@wame I1T(G(z)) = G(T(x))|l4, @

where T aims to maximize the L distance between the
translated image from original input x and the spatial per-
turbed image T'(z), and G learns to minimize the diver-
gence caused by 7', which is the effect of of spatial perturba-
tion. It is worth noting that 7" is a parameterized and differ-
entiable network, thanks to [24]; details will be introduced
later. Thus, for each image z;, the learned spatial perturba-
tion 7; is specific to the image. In other words, 7' generates
different spatial perturbations for different images, while
in GCGAN, T only represents a fixed spatial transforma-
tion. Moreover, our spatial perturbation function T' changes
as training proceeds. To design the consistency loss, we
construct the correspondence between the translated image
G(z;) and the perturbed translated image G(T;(x;)) via ap-
plying the learned T; on the translated images, which is
T;(G(z;)). A graphic illustration of this branch is given
in Figure 2b.

3.3. Spatial Alignment of the Transformer T

In branch b), T" plays an important role to generate max-
imum perturbation that tries to confuse G and enable G to
be more robust across different 121 tasks. Furthermore, the
deforming property of 7" can help align the spatial distribu-
tion in an unsupervised manner between the source images
X and the target images Y by scaling, rotating, cropping
noisy background, etc. As shown in Figure 2¢, G and T try
to force the distribution of G(7'(X)) to approach the distri-
bution of the transformed target images 7'(Y") via adversar-
ial training with another discriminator Dr. In this process,
the target distribution of P(T'(Y")) is also deformed to be
close to the generated distribution, which is different from
the regular generative adversarial training with a fixed tar-
get distribution. Thus, in the process of c), the adversarial
training process can be formulated as the following min-
max game,

)

3)
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min I%a;xEprY log D(T'(y)) + Epwpy log(l — D(G(T'(2)))).-
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Figure 2. Illustration of proposed MSPC model, (a)we can summarize our model as three branches of learning 1) X — G — D «+ Y
DX >G—>T 101+ G+T+X;3)X >T —>G— Dr < T + Y. 1),2), 3) specify the regular adversarial training,
maximum spatial perturbation and spatial alignment respectively. To be more specific, we show the adversarial training between G, T in

(b) and G, T, D in (c) via the forward and backward flow.

3.4. Differentiable T’

Figure 3. Illustration of spatial transformation network (STN). The
network 7" outputs the coordinates of the deformed grids over the
images and then the new images are generated via interpolating in
these grids; it is differentiable and can be optimized with stochastic
gradient decent.

All of these functionalities of 7" in the above sections are
based on the nice property that 7" is differentiable and can
be optimized with stochastic gradient decent. According
to [24], it can be modeled in two steps. In the first step of

transforming image, we construct a grid over the image, and
the transformation network 7" outputs the coordinates of the
transformed grids. Assuming the image size is H x W, we
can simply formulate the process of transformation as

{(p},p});i=1,2,3,..,n,j =1,2,3,...,m} = T(x),
H W
VE =3 UL k(! — ahs @p)k(p] — q3; ),

n

Viome[l...H|; Vine[l...W];Vee[1...C], ¥

where (q}, q?) represent the coordinate of original grid, U
is the pixel value of original image, c is the indicator of im-
age channel, (p}, p7) denotes the new coordinates of trans-
formed grids, k(; ®,1), k(; ®,2) represents the kernel of the
interpolating image, and we use V; to denote the trans-
formed pixel value in location (p}, p?). See Figure 3 for
an graphic illustration. For the convenience of later formu-
lation, we simply refer to T'(x) as the learned transformed
image.
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3.5. Constraint on T’

(a) Image get distorted heavily without scaling
constraint.
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(b) Majority of Image is cropped out.

Figure 4. Illustration of information loss on perturbed images
caused by unconstrained 7.

However, without suitable constraints enforced on 1, T’
would produce trivial transformation on images, which may
worsen the performance of G, leading to information loss of
images as illustrated in Figure 4. One can naturally come
up with an immediate, straightforward way to impose this
constraint, for instance, by using

®)

However, G is a flexible function that can gradually adapt to
whatever transformation learned from 7", and thus 7" would
still produce transformation beyond the given image distri-
bution. To solve this issue, we directly design a relative
scaling constraint of 7" on the original and transformed co-
ordinates, which is designed to tackle the issue shown in
Figure 4a. Besides, the major proportion of images would
be moved out of the original grids as illustrated in Figure 4b,
thus we also enforce an absolute constraint on 7", which re-
stricts the average translation of target coordinates in a rea-
sonable range. According to the property of 1" as explained
in Section 3.4, the spatial transformation is based on system
of coordinates. Thus, we can directly enforce the relative
scaling and the absolute translation constraint on the trans-
formed coordinates, which can be formulated as

IT(G(z)) — G(T(@))|l, < € wrt. T.

1 _ lppj]
a gl

<a,i#jl—b<) pi<b  (6)
=1

where ¢;, p; are the grid coordinates of original and trans-
formed images, respectively, and a, b are constants. The

(98]

intuition is that, we do not allow the image to be severely
distorted beyond a certain scaling and the average transla-
tion of coordinates should also be controlled in a reasonable
range. The overall formulation of our model can be summa-
rized as follow:

min max By.py log D(y) + Eznpy log(1 — D(G()))
+Ey~py log Dr(T(y)) + Epnpy log(l = Dr(G(T(2)))),
minmax B, py [T(G(2)), G(T ()],

1 _ lpipj]

. @)
a gl

<a,i#jl—b< pi<b
=1

4. Experiment

We conduct quantitative experiments in different settings
on front face—profile, Cityscapes [9], Google Map [23],
horse—zebra translations. For face—profile, we aim to
simulate the real-world application, in which we do not have
any paired training identities from source to target but eval-
uate the performance on the held-out front and profile faces
with the paired identities. The Cityscapes and Google Map
datasets contain paired images in the training datasets, but
all the models are trained in an unpaired manner and also
tested on paired held-out testing set.s Additionally, we also
test the model the on the popular horse—zebra where paired
data are not available.

4.1. Training Configuration

We unify the model training configuration in this section.
We Compare our MSPC, the modified virtual adversarial
training (VAT), and the modified mean teacher (MT) mod-
els with the recently proposed, popular CycleGAN, GC-
GAN and CUTGAN, where “modified” means transferred
from semi-supervised framework to I121. Please refer to the
Section 1 in supplementary for the detailed implementa-
tion of modified VAT and MT. We choose the 9-layers of
ResNet-Generator with encoder-decoder style [50] and the
PatchGAN-Discriminator [23] for all of the models. Be-
sides, we choose the Resnet-19 as our 1" network structure.
For all of the model optimization, we set the batch-size
to 4 and optimizer to Adam with learning rate 2 x 1074
and § = [0.5,0.999]. On all of the dataset, to be fair, we
train each model with 200 epoches and we report the per-
formance of the model from the last epoch because of no
validation is provided.

Additionally, for our MSPC model, we have three mini-
max game between G, T, D, Dp.,;. Thus, we separate the
model training procedure into two steps, {D, Dpert, T} —
step and G — step. In each step, we only optimize the cor-
responding networks and fix others. The size of the spatial
transformation grid is 2 x 2. For all the experiments, we set
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Source Target(GT)

MSPC(Ours) MT Modified

VAT Modified

Figure 5. Examples on dataset with paired source and target images, all examples are held out from training dataset. The front face—profile
task does not include any paired identity, which is a difficult setting and CycleGAN, GCGAN and CUT cannot be stably trained and collapse
in the early training stage. Our model shows a stability across all tasks of image translation.

Method Cityscapes—Parsing Front Face—Profle = Horse—Zebra
pixAcct classAcecT mAPYT FID| FID|
CycleGAN [50]  0.595 0.234 0.171 107.70 69.40
GCGAN [16] 0.563 0.195 0.143 128.31 74.89
CUTGAN [37]  0.587 0.225 0.166 244.50 84.26
MT Modified 0.121 0.055 0.018 52.95 62.28
VAT Modified 0.484 0.100 0.064 145.54 70.21
MSPC (ours) 0.740 0.296 0.226 37.01 61.2
Method Parsing— Cityscapes Aerial Photograph—Map
pixAcct classAcet mAP T RMSE| PixACC 1
CycleGAN [50]  0.508 0.184 0.117 32.70 0.265
GCGAN [16] 0.583 0.201 0.128 33.12 0.264
CUTGAN [37]  0.681 0.243 0.172 3545 0.222
MT Modified 0.455 0.145 0.086 35.43 0.216
VAT Modified 0.281 0.109 0.053 63.38 0.042
MSPC (ours) 0.612 0.214 0.156 32.97 0.265

Table 1.

Comparison with baselines on four dataset with quantitative results, they are conducted on the translation settings of

cityscapes—parsing, parsing—cityscapes, front face—profile, horse—zebra and aerial photograph—map respectively. The best scores
are bold. Our model shows overall competitive results and robust performance across different settings.

the maximum scale of perturbation to be a = %, b =3 and
the translation factors to be ¢ = —0.25,d = 0.25.

4.2. Dataset Configuration and Results

Front Face—Profile In this new dataset, we aim to have
an unbiased evaluation metric in real-life applications and
explore the possibility of performing the image translation
task under a big gap between the source and target domains.
To construct such a front face—profile image translation
dataset, we sample from CMU Multi-PIE Face [2 1], which
consists of 250 identities with different camera angles and

the conditions of illumination. We extract two angles of the
front and the profile from the dataset and divide them into
training and testing sets by different identities. All face im-
ages are resized to 128 x 128.. In the training set, we have
200 identities, 100 in the source and 100 in the target, which
do not overlap. For the testing division, we set the source
and the target to be paired and calculate the FID score be-
tween the translated profile faces and the ground truth of
the profile faces. it is worth mentioning that the FID socore
is unbiased in this setting due to the paired idenity in the
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Source Target

MSPC(Ours) MT Modified VAT Modified GC Cycle

Figure 6. Examples on dataset with unpaired source and target images, all examples are held out from training dataset.

testing set. The lower FID score on the testing set indicates
better performance of models.

Quantitative results are shown in Table 1 and some of the
qualitative results are shown in Figure 5. More qualitative
results will be listed in the Section 2 of the supplementary.
As we can see from the table and the generated faces, the
CycleGan, GCGAN, and CUTGAN failed to stably gener-
ate profile from front faces and that our model of the MSPC
and the modified MT can generate the faces with high fi-
delity. Furthermore, except our model, all the remaining
models fail to translate front face to the profile while keep-
ing the identity. This illustrates that our model is robust to
the large domain gap in the image translation task.
Cityscapes consists of city scene images and the mask-
level annotation, which can be used to test the ability of
model to discover the correspondence between data and
labels. There are 3,975 images with paired segmentation
mask, 19 categories, and 1 ignored class. We follow the
standard training setting of [16,37,50]: the dataset is sepa-
rated into the 2,975 and 500 samples for training and test-
ing. The original resolution of the image is 1024 x 2048.
During the training, the images are resized to 128 x 128 for
city—parsing direction. For the parsing—image synthesis,
we first resize images into 144 x 144 and then randomly
crop images to be 128 x 128. In this experiment, we are
trying to explore how well the models can discover the se-
mantics without paired labels.

For the evaluation on cityscapes dataset, we follow the
same protocol of [9, 30,50]. We report the average pixel
accuracy, class accuracy, and the mean IOU with respect to
the ground truth. To evaluate the quality of parsing—image
synthesis, we utilize the pre-trained FCN [23] to extract the
predicted segmentation map.

Aerial photo—Map The setting of the dataset is similar
to Cityscapes and is obtained from the Google Map [23].
It contains 1096 training images and 1098 testing images.

We conduct the translation in direction Aerial photo—Map.
The images are resized to 256 x 256. The RMSE and the
pixel accuracy are reported across different models.

Horse—Zebra For the Horse—Zebra translation sce-
nario, we test if the model is capable of handling the case of
real-life applications. The dataset is re-sampled from Ima-
geNet [10]. The source dataset includes 939 horse images
and the target includes 1177 zebra images from the wild.
The images are resized to 256 x 256. Because there are no
paired images in the testing set, the FID score is biased and
reported for reference only.

Overall, our model gain a competitive performance on
all dataset settings and shows a very robust generality. We
found that CUT achieves high scores of semantic segmen-
tation on the Parsing—Cityscapes task and that CycleGAN
has the best results on Aerial photo—Map. On the remain-
ing datasets, our model always achieves the best results un-
der the same settings. CUT owns the feature of maximiz-
ing the mutual information, which can translate images well
on a setting without changing much semantic information.
The bijective assumption of CycleGAN is suitable for the
Map dataset. More qualitative results are shown in Figure 6,
which are operated on horse—zebra, selfie—anime, cat —
dog, and apple—orange. One can see that the proposed
MSPC can preserve the image features well and does not
cause unnecessary change of the background, which shows
the ability of the spatial alignment of the proposed MSPC.

4.3. Ablation Study

Front Face — Profile, changing scaling factor a. FID J.
a=1 a=2 a=3 a=5 a=8 RSP
42.19 4182 37.01 3872 60.21 67.33

Table 2. This tables shows the results of the proposed MSPC under
different scales of perturbation by changing the scaling factor of a
as well as the random spatial perturbation (RSP) for comparison.
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Figure 7. Perturbation changes as epoch grows.

Effect of scale of perturbation To study the effect of per-
turbation on model performance, we change the scaling fac-
tor of the proposed scaling constraint and conduct the ex-
periments on the front face—profile setting and report the
FIDs. To show the effectiveness of maximum perturbation,
we also compare with the model of random spatial pertur-
bation (RSP) in Table 2, in which the spatial transformation
is randomly sampled from the fixed and predefined spatial
transformation of rotation, cropping, zoom in, zoom out,
stretching, and squeezing. The results in Table 2 shows
that in a certain range of perturbation, more severe pertur-
bation leads to better performance. However, if the per-
turbation goes beyond image distribution, e.g., images get
unreasonably distorted, the performance of MSPC would
be cut back. Also the visualization of perturbation with-
out the constraint in Equation 6 is shown in the Section 3
of supplementary. Also, we show the dynamic changing of
perturbation during training in Figure 7.

Front Face — Profile, divergence between distributions. FID |
XY TX)TY) GX)Y G(T(X)),TY)
112.69 65.81 37.01 30.85

Table 3. This tables quantifies the effect of spatial alignment by
transformer 7. Each row reports the divergence between listed
pairs. X, Y, T(X), T(Y) denote the source images, target images,
transformed source images by 7', and transformed target images
by T'. G(X) is the translated images and G(T'(X)) represents the
translated transformed images.

Effect of Spatial Alignment of ' As we have mentioned
in Section 3.3, the spatial perturbation function also plays
a role in aligning the image distributions. We conduct an
experiment on front face—profile to demonstrate this effect
by comparing the FID score between different data pairs.
We listed all the controlling pairs in Table 3. (X,Y") de-
notes the divergence between the original source and target
images without image translation or spatial transformation.
(T'(X),T(Y)) is the pair of images of spatial transformed
source and target images. G(X) and G(T'(X)) represent
the translated images and the translated spatial transformed

images. The divergence of pair of (T'(X),T(Y)) is smaller
than (X, Y"), because of the effect of spatial alignment by T’
only. The divergence is further reduced after both the spa-
tial alignment and the image translation, compared to the
pair of (G(X),Y’) with only image translation. The result
clearly shows that the transformer 7 is capable of alleviat-
ing the discrepancy in distribution between the source and
the target via the spatial transformation.

5. Conclusion

This paper proposes a general regularization method of
maximum spatial perturbation consistency (MSPC) to ad-
dress the limitations of the popular models for image-to-
image translation (I2I), including [16, 37, 50]. We demon-
strate 1) that the proposed MSPC is more robust to differ-
ent applications; 2) that MSPC can help alleviate the spa-
tial discrepancy between domains, such as the discrepancy
caused adjusting the object’s size and cropping out the noisy
background, and further reduce undesired distortions for the
translation network. Our method outperforms the state-of-
the-art methods on most of of the I2I benchmarks. We also
introduce a new benchmark, namely, the front face to pro-
file face dataset, to emphasize the underlying challenges of
121 for real-world applications. We finally perform ablation
experiments to investigate the sensitivity of our method to
the severity of spatial perturbation and its effectiveness for
distribution alignment.
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