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Abstract

Epoch gradient descent method (a.k.a. Epoch-GD) proposed by [16] was deemed
a breakthrough for stochastic strongly convex minimization, which achieves the
optimal convergence rate of O(1/T ) with T iterative updates for the objective
gap. However, its extension to solving stochastic min-max problems with strong
convexity and strong concavity still remains open, and it is still unclear whether
a fast rate of O(1/T ) for the duality gap is achievable for stochastic min-max
optimization under strong convexity and strong concavity. Although some re-
cent studies have proposed stochastic algorithms with fast convergence rates for
min-max problems, they require additional assumptions about the problem, e.g.,
smoothness, bi-linear structure, etc. In this paper, we bridge this gap by providing
a sharp analysis of epoch-wise stochastic gradient descent ascent method (referred
to as Epoch-GDA) for solving strongly convex strongly concave (SCSC) min-max
problems, without imposing any additional assumption about smoothness or the
function’s structure. To the best of our knowledge, our result is the first one that
shows Epoch-GDA can achieve the optimal rate of O(1/T ) for the duality gap
of general SCSC min-max problems. We emphasize that such generalization of
Epoch-GD for strongly convex minimization problems to Epoch-GDA for SCSC
min-max problems is non-trivial and requires novel technical analysis. Moreover,
we notice that the key lemma can also be used for proving the convergence of
Epoch-GDA for weakly-convex strongly-concave min-max problems, leading to
a nearly optimal complexity without resorting to smoothness or other structural
conditions.

1 Introduction

In this paper, we consider stochastic algorithms for solving the following min-max saddle-point
problem with a general objective function f without smoothness or any other special structure:

min
x∈X

max
y∈Y

f(x, y), (1)

where X ⊆ Rd and Y ⊆ Rn are closed convex sets and f : X × Y → R is continuous. It is of
great interest to find a saddle-point solution to the above problem, which is defined as (x∗, y∗) such
thatf(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), ∀x ∈ X, y ∈ Y. Problem (1) covers a number of applications
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in machine learning, including distributionally robust optimization (DRO) [31, 30], learning with
non-decomposable loss functions [27, 11, 43, 26], and generative adversarial networks [13, 3].

In this work, we focus on two classes of the min-max problems: (i) strongly-convex strongly-concave
(SCSC) problem where f is strongly convex in terms of x for any y ∈ Y and is strongly concave in
terms of y for any x ∈ X; (ii) weakly-convex strongly-concave (WCSC) problem, where there exists
ρ > 0 such that f(x, y) + ρ

2‖x‖
2 is strongly convex in terms of x for any y ∈ Y and is strongly

concave in terms of y for any x ∈ X . Both classes have applications in machine learning [41, 36].

Although stochastic algorithms for convex-concave min-max problems have been studied exten-
sively in the literature, their research is still far behind its counterpart for stochastic convex
minimization problems. Below, we highlight some of these gaps to motivate the present work.
For the sake of presentation, we first introduce some terminologies. The duality gap at (x, y)
is defined as Gap(x, y) := f(x, ŷ(x)) − f(x̂(y), y), where x̂(y) := arg minx′∈X f(x′, y) and
ŷ(x) := arg maxy′∈Y f(x, y′). If we denote by P (x) := maxy′∈Y f(x, y′), then P (x)− P (x∗) is
the primal objective gap, where x∗ = arg minx∈X P (x).

When f is convex in x and concave in y, many studies have designed and analyzed stochastic
primal-dual algorithms for solving the min-max problems under different conditions of the problem
(see references in next section). A standard result is provided by [32], which proves that primal-
dual SGD suffers from a convergence rate of O(1/

√
T ) for the duality gap without imposing any

additional assumptions about the objective function. This is analogous to that for stochastic convex
minimization [32]. However, the research of stochastic algorithms for SCSC problems lacks behind
that for strongly convex minimization problems. A well-known result for stochastic strongly convex
minimization is given by [16], which presents the first fast convergence rate O(1/T ) for stochastic
strongly convex minimization by the Epoch-GD algorithm, which runs standard SGD in an epoch-
wise manner by decreasing the step size geometrically. However, a fast rate of O(1/T ) for the duality
gap of a stochastic algorithm is still unknown for general SCSC problems. We notice that there
are extensive studies about stochastic algorithms with faster convergence rates than O(1/

√
T ) for

solving convex-concave min-max problems [46, 38, 37, 10, 6, 5, 35, 21, 41, 18, 47]. However, these
works usually require additional assumptions about the objective function (e.g., smoothness, bilinear
structure) or only prove the convergence in weaker measures (e.g., the primal objective gap, the
distance of a solution to the saddle point).

We aim to bridge this gap by presenting the first optimal rate O(1/T ) of the duality gap for solving
general SCSC problems. In particular, we propose an epoch-wise stochastic gradient descent ascent
(Epoch-GDA) algorithm - a primal-dual variant of Epoch-GD that runs stochastic gradient descent
update for the primal variable and stochastic gradient ascent update for the dual variable for solving (1).
Although the algorithmic generalization is straightforward, the proof of convergence in terms of
the duality gap for Epoch-GDA is not straightforward at all. We note that the key difference in
the analysis of Epoch-GDA is that to upper bound the duality gap of a solution (x̄, ȳ) we need to
deal with the distance of an initial solution (x0, y0) to the reference solutions (x̂(ȳ), ŷ(x̄)), where
x̂(ȳ) = arg minx′∈X f(x′, ȳ) and ŷ(x̄) = arg maxy′∈Y f(x̄, y′) depend on ȳ and x̄, respectively. In
contrast, in the analysis of the objective gap for Epoch-GD, one only needs to deal with the distance
from an initial solution x0 to the optimal solution x∗, i.e., ‖x0−x∗‖22, which by strong convexity can
easily connects to the objective gap P (x0)− P (x∗), leading to the telescoping sum on the objective
gap. Towards addressing the challenge caused by dealing with the duality gap, we present a key
lemma that connects the distance measure ‖x0− x̂(ȳ)‖22 +‖y0− ŷ(x̄)‖22 to the duality gap of (x0, y0)
and (x̄, ȳ). In addition, since we use the same technique as Epoch-GD for handling the variance of
stochastic gradient by projecting onto a bounded ball with shrinking radius, we have to carefully
prove that such restriction does not affect the duality gap for the original problem, which also needs
to deal with bounding ‖x0 − x̂(ȳ)‖22 and ‖y0 − ŷ(x̄)‖22.

Moreover, we notice that the aforementioned key lemma and the telescoping technique based on the
duality gap can also be used for proving the convergence of Epoch-GDA for finding an approximate
stationary solution of general WCSC problems. The algorithmic framework is similar to that
proposed by [36], i.e., by solving SCSC problems successively, but with a subtle difference in
handling the dual variable. In particular, we do not need additional condition on the structure of the
objective function and extra care for dealing with the dual variable for restart as done in [36]. This
key difference is caused by our sharper analysis, i.e., we use the telescoping sum based on the duality
gap instead of the primal objective gap as in [36]. As a result, our algorithm and analysis lead to a
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Table 1: Summary of complexity results of this work and previous works for finding an ε-duality-gap
solution for SCSC or an ε-stationary solution for WCSC min-max problems. We focus on comparison
of existing results without assuming smoothness of the objective function. Restriction means whether
an additional condition about the objective function’s structure is imposed.

Setting Works Restriction Convergence Complexity

[32] No Duality Gap O
(
1/ε2

)
SCSC [41] Yes Primal Gap O (1/ε+ n log(1/ε))

This paper No Duality Gap O (1/ε)

[36] No Nearly Stationary Õ
(
1/ε6

)
WCSC [36] Yes Nearly Stationary Õ

(
1/ε4 + n/ε2

)
This paper No Nearly Stationary Õ

(
1/ε4

)
nearly optimal complexity for solving WCSC problems without the smoothness assumption on the
objective [2] 1. Finally, we summarize our results and the comparison with existing results in Table 1.

2 Related Work

Below, we provide an overview of related results in this area and the review is not necessarily
exhaustive. In addition, we focus on the stochastic algorithms, and leave deterministic algorithms [4,
33, 42, 12, 34, 19, 14, 20, 28, 15] out of our discussion.

[32] is one of the early works that studies stochastic primal-dual gradient methods for convex-concave
min-max problems, which establishes a convergence rate of O(1/

√
T ) for the duality gap of general

convex-concave problems. Following this work, many studies have tried to improve the algorithm
and the analysis for a certain class of problems by exploring the smoothness condition of some
component functions [23, 47, 21] or bilinear structure of the objective function [5, 6]. For example,
[47] considers a family of min-max problems whose objective is f(x) + g(x) + φ(x, y) − J(y),
where the smoothness condition is imposed on f and φ and strong convexity is imposed on f if
necessary, and establishes optimal or nearly optimal complexity of a stochastic primal-dual hybrid
algorithm. Although the dependence on each problem parameter of interest is made (nearly) optimal,
the worst case complexity is still O(1/

√
T ). [21] considers single-call stochastic extra-gradient

and establishes O(1/T ) rate for smooth and strongly monotone variational inequalities in terms of
the square distance from the returned solution to the saddle point. [44] also considers variational
inequalities with a smoothing technique, so that it handles nonsmooth problems, but they derive the
convergence of the square distance from the returned solution to the saddle point, as in [21]. The
present work is complementary to these developments by making no assumption on smoothness
or the structure of the objective but considers strong (weak) convexity and strong concavity of the
objective function. It has applications in robust learning with non-smooth loss functions [41, 36].

In the machine learning community, many works have considered stochastic primal-dual algorithms
for solving regularized loss minimization problems, whose min-max formulation usually exhibits
bi-linear structure [46, 37, 39, 10, 35]. For example, [46] designs a stochastic primal-dual coordinate
(SPDC) method for SCSC problems with bilinear structure, which enjoys a linear convergence for the
duality gap. Similarly, in [45, 38], different variants of SPDC are proposed and analyzed for problems
with the bilinear structure. [35] proposes stochastic variance reduction methods for a family of
saddle-point problems with special structure that yields a linear convergence rate. An exception that
makes no smoothness assumption and imposes no bilinear structure is a recent work [41]. It considers
a family of functions f(x, y) = y>`(x) − φ∗(y) + g(x) and proposes a stochastic primal-dual
algorithm similar to Epoch-GDA. The key difference is that [41] designs a particular scheme that
computes a restarting dual solution based on ∇φ(`(x̄)), where x̄ is a restarting primal solution in
order to derive a fast rate of O(1/T ) under strong convexity and strong concavity. Additionally, their

1Although [2] only concerns the lower bound of finding a stationary point of smooth non-convex problems
minx f(x) through stochastic first-order oracle, it is a special case of the WCSC problem.
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fast rate O(1/T ) is in terms of the primal objective gap, which is weaker than our convergence result
in terms of the duality gap.

There is also increasing interest in stochastic primal-dual algorithms for solving WCSC min-max
problems. To the best of our knowledge, [36] is probably the first work that comprehensively
studies stochastic algorithms for solving WCSC min-max problems. To find a nearly ε-stationary
point, their algorithms suffer from an O(1/ε6) iteration complexity without strong concavity and an
O(1/ε4 + n/ε2) complexity with strong concavity and a special structure of the objective function
that is similar to that imposed in [41]. Some recent works are trying to improve the complexity for
solving WCSC min-max problems by exploring other conditions (e.g., smoothness) [25, 29, 40, 22].
For example, [25] establishes an O(1/ε4) complexity for a single-loop stochastic gradient descent
ascent method, while [29, 40, 22] make use of variance reduction or momentum to achieve O(1/ε3)
complexity. However, their analysis requires the smoothness condition and some of their algorithms
need to use a large mini-batch size in the order O(1/ε2). In contrast, we impose neither assumption
about smoothness nor special structure of the objective function. The complexity of our algorithm is
Õ(1/ε4) for finding a nearly ε-stationary point, which is the state of the art result for the considered
non-smooth WCSC problem.

3 Preliminaries

This section provides some notations and assumptions used in the paper. We let ‖ · ‖ denote the
Euclidean norm of a vector. Given a function f : Rd → R, we denote the Fréchet subgradi-
ents and limiting Fréchet gradients by ∂̂f and ∂f , respectively, i.e., at x, ∂̂f(x) = {v ∈ Rd :

limx→x′ inf f(x)−f(x′)−v>(x−x′)
‖x−x′‖ ≥ 0}, and ∂f(x) = {v ∈ Rd : ∃xk

f→ x, vk ∈ ∂̂f(xk), vk →

v, v ∈ ∂̂f(x)}. Here xk
f→ x represents xk → x with f(xk)→ f(x). A function f(x) is µ-strongly

convex on X if for any x, x′ ∈ X , ∂f(x′)>(x − x′) + µ
2 ‖x − x

′‖2 ≤ f(x) − f(x′). A function
f(x) is ρ-weakly convex on X for any x, x′ ∈ X ∂f(x′)>(x− x′)− ρ

2‖x− x
′‖2 ≤ f(x)− f(x′).

Let Gx ∈ ∂xf(x, y; ξ) denote a stochastic subgradient of f at x given y, where ξ is used to de-
note the random variable. Similarly, let Gy ∈ ∂yf(x, y; ξ) denote a stochastic sugradient of f at y
given x. Let ΠΩ[·] denote the projection onto the set Ω, and let B(x,R) denote an Euclidean ball
centered at x with a radius R. Denote by dist(x,X) the distance between x and the set X , i.e.,
dist(x,X) = minv∈X ‖x− v‖. Let Õ(·) hide some logarithmic factors.

For a WCSC min-max problem, it is generally a hard problem to find a saddle point. Hence, we
use nearly ε-stationarity as the measure of convergence for solving WCSC problems [36], which is
defined as follows.

Definition 1. A solution x is a nearly ε-stationary point of minx ψ(x) if there exist z and a constant
c > 0 such that ‖z − x‖ ≤ cε and dist(0, ∂ψ(z)) ≤ ε.

For a ρ-weakly convex function ψ(x), let z = arg minx∈Rd ψ(x) + γ
2 ‖x − x̃‖

2 where γ > ρ and
x̃ ∈ Rd is a reference point. Due to the strong convexity of the above problem, z is unique and
0 ∈ ∂ψ(z) + γ(z − x̃), which results in γ(x̃ − z) ∈ ∂ψ(z), so that dist(0, ∂ψ(z)) ≤ γ‖x̃ − z‖.
According to [8, 7, 9], we can find a nearly ε-stationary point x̃ as long as γ‖x̃− z‖ ≤ ε.
Before ending this section, we present some assumptions that will be imposed in our analysis.

Assumption 1. X and Y are closed convex sets. There exist initial solutions x0 ∈ X, y0 ∈ Y and
ε0 > 0 such that Gap(x0, y0) ≤ ε0.

Assumption 2. (1) f(x, y) is µ-strongly convex in x for any y ∈ Y and λ-strongly concave in y for
any x ∈ X . (2) There exist B1, B2 > 0 such that E[exp( ‖Gx‖

2

B2
1

)] ≤ exp(1) and E[exp(
‖Gy‖2
B2

2
)] ≤

exp(1).

Assumption 3. (1) f(x, y) is ρ-weakly convex in x for any y ∈ Y and is λ-strongly concave in y for
any x ∈ X . (2) E[‖Gx‖2] ≤M2

1 and E[‖Gy‖2] ≤M2
2 .

Remark: When f(x, y) is smooth in x and y, the second condition in the above assumption can be
replaced by the bounded variance condition.
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Algorithm 1 Epoch-GDA for SCSC Min-Max Problems
1: Init.: x1

0 = x0 ∈ X , y1
0 = y0 ∈ Y , η1

x, η
1
y, R1, T1

2: for k = 1, 2, ...,K do
3: for t = 0, 1, 2, ..., Tk − 1 do
4: Compute stochastic gradients Gkx,t ∈ ∂xf(xkt , y

k
t ; ξkt ) and Gky,t ∈ ∂yf(xkt , y

k
t ; ξkt ).

5: xkt+1 = ΠX∩B(xk0 ,Rk)(x
k
t − ηkxGkx,t)

6: ykt+1 = ΠY ∩B(yk0 ,Rk)(y
k
t + ηkyGky,t)

7: end for
8: xk+1

0 = x̄k = 1
Tk

∑Tk−1
t=0 xkt , yk+1

0 = ȳk = 1
Tk

∑Tk−1
t=0 ykt

9: ηk+1
x =

ηkx
2 , ηk+1

y =
ηky
2 , Rk+1 = Rk/

√
2, Tk+1 = 2Tk.

10: end for
11: Return (x̄K , ȳK).

4 Main Results

4.1 Strongly-Convex Strongly-Concave Min-Max Problems

In this subsection, we present the main result for solving SCSC problems. The proposed Epoch-
GDA algorithm for SCSC min-max problems is shown in Algorithm 1. As illustrated, our algorithm
consists of a series of epochs. In each epoch (Line 3 to 7), standard primal-dual updates are performed.
After an epoch ends, in Line 8, the solutions x̄k and ȳk averaged over the epoch are returned as the
initialization for the next epoch. In Line 9, step sizes ηx,k+1 and ηy,k+1, the radius Rk+1 and the
number of iterations Tk+1 are also adjusted for the next epoch. The ball constraints B(xk0 , Rk) and
B(yk0 , Rk) at each iteration are used for the convergence analysis in high probability as in [16, 17]. It
is clear that Epoch-GDA can be considered as a primal-dual variant of Epoch-GD [16, 17].

The following theorem shows that the iteration complexity of Algorithm 1 to achieve an ε-duality gap
for a general SCSC problem (1) is O(1/ε).
Theorem 1. Suppose Assumption 1 and Assumption 2 hold and let δ ∈ (0, 1) be a failing probability
and ε ∈ (0, 1) be the target accuracy level for the duality gap. Let K = dlog( ε0ε )e and δ̃ =

δ/K, and the initial parameters are set by R1 ≥ 2
√

2ε0
min{µ,λ} , η1

x =
min{µ,λ}R2

1

40(5+3 log(1/δ̃))B2
1

, η1
y =

min{µ,λ}R2
1

40(5+3 log(1/δ̃))B2
2

and

T1 ≥
max

{
3202(B1 +B2)23 log(1/δ̃), 3200(5 + 3 log(1/δ̃)) max{B2

1 , B
2
2}
}

min{µ, λ}2R2
1

.

Then the total number of iterations of Algorithm 1 to achieve an ε-duality gap, i.e., Gap(x̄K , ȳK) ≤ ε,
with probability 1− δ is

Ttot =
max

{
3202(B1 +B2)23 log(1/δ̃), 3200(5 + 3 log(1/δ̃)) max{B2

1 , B
2
2}
}

4 min{µ, λ}ε
.

Remark 1. To the best of our knowledge, this is the first study that achieves a fast rate of O(1/T )
for the duality gap of a general SCSC min-max problem without any special structure assumption or
smoothness of the objective function and an additional computational cost. In contrast, even if the
algorithm in [41] attains the O(1/T ) rate of convergence, it i) only guarantees the convergence of
the primal objective gap, rather than the duality gap, ii) additionally requires a special structure of
the objective function, and iii) needs an extra O(n) computational cost of the deterministic update at
each outer loop to handle the maximization over y. In contrast, Algorithm 1 has stronger theoretical
results with less restrictions of the problem structures and computational cost.
Remark 2. A lower bound of O(1/T ) for stochastic strongly convex minimization problems has
been proven in [1, 17]. Due to Gap(x, y) ≥ P (x)−P (x∗), bounding the duality gap is more difficult
than bounding the primal gap. This means that our convergence rate matches the lower bound and is
therefore the best possible convergence rate without adding more assumptions.

4.2 Weakly-Convex Strongly-Concave Problems
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Algorithm 2 Epoch-GDA for WCSC Min-Max Problems
1: Init.: x1

0 = x0 ∈ X , y1
0 = y0 ∈ Y , γ = 2ρ.

2: for k = 1, 2, ...,K do
3: Set Tk = 106(k+1)

3 , ηkx = 4
ρ(k+1) , ηky = 2

λ(k+1) .
4: for t = 1, 2, ..., Tk do
5: Compute Gkx,t ∈ ∂xf(xkt , y

k
t ; ξkt ) and Gky,t ∈ ∂yf(xkt , y

k
t ; ξkt ).

6: xkt+1 = arg minx∈X x
>Gkx,t + 1

2ηkx
‖x− xkt ‖2 + γ

2 ‖x− x
k
0‖2

7: ykt+1 = arg miny∈Y −y>Gky,t + 1
2ηky
‖y − ykt ‖2

8: end for
9: xk+1

0 = x̄k = 1
T

∑T−1
t=0 xkt , yk+1

0 = ȳk = 1
T

∑T−1
n=0 y

k
t

10: end for
11: Return xτ0 by τ randomly sampled from {1, ...,K}.

In this subsection, we present the convergence results for solving WCSC problems, where the
objective function f(x, y) in (1) is ρ-weakly convex in x and λ-strongly concave in y. The proposed
Epoch-GDA algorithm for WCSC min-max problems is summarized in Algorithm 2. As our
Algorithm 1, Algorithm 2 consists of a number of epochs. As shown in Line 4 to Line 8, each
epoch performs primal-dual updates on x and y. When updating x at the k-th stage, an additional
regularizer γ

2 ‖x − x
k
0‖2 is added, where the value γ = 2ρ. The added term is used to handle the

weak convexity condition. After an epoch ends, average solutions of both x and y are restarted as
the initial ones for the next epoch. The step sizes for updating x and y are set to O(1/(ρk)) and
O(1/(λk)) at the k-th epoch, respectively. If we define f̂k(x, y) = f(x, y) + γ

2 ‖x− x
k
0‖2, we can

see that f̂k(x, y) is ρ-strongly convex in x and λ-strongly concave in y, since f(x, y) is ρ-weakly
convex and γ = 2ρ. Indeed, for each inner loop of Algorithm 2, we actually work on the SCSC
problem minx∈X maxy∈Y f̂k(x, y).

It is worth mentioning the key difference between our algorithm and the recently proposed stochastic
algorithm PG-SMD [36] for WCSC problems with a special structural objective function. PG-SMD
also consists of two loops. For each inner loop, it runs the same updates with the added regularizer
on x as Algorithm 2. It restarts x by averaging the solutions over the inner loop, like our x̄k, but
restarts y by taking the deterministic maximization of (1) over y given x̄k, leading to an additional
O(n) computational complexity per epoch. In addition, PG-SMD sets ηky = O(1/(γλ2k)). Although
Algorithm 2 shares similar updates to PG-SMD, our analysis yields stronger results under weaker
assumptions — the same iteration complexity Õ(1/ε4) without deterministic updates for y and
special structure in the objective function. This is due to our sharper analysis that makes use of the
telescoping sum based on the duality gap of f̂k instead of the primal objective gap.

Let P̂ (x) = P (x) + IX(x) where IX(x) denotes the indicator function of the constraint set X at
x. The convergence result of Algorithm 2 that achieves a nearly ε-stationary point with Õ(1/ε4)
iteration complexity is summarized below.

Theorem 2. Suppose Assumption 3 holds. Algorithm 2 guarantees E[dist(0, ∂P̂ (x̂∗τ ))2] ≤

γ2E[‖x̂∗τ − xτ0‖2] ≤ ε2 after K = max

{
1696γ(

2M2
1
ρ +

M2
2
λ )

ε2 ln(
1696γ(

2M2
1
ρ +

M2
2
λ )

ε2 ), 1376γε0
5ε2

}
epochs,

where τ is randomly sampled from {1, ...,K} and (x̂∗k, ŷ
∗
k) is the saddle-point of f̂k(x, y). The total

number of iteration is
∑K
k=1 Tk = Õ( 1

ε4 ).

Remark 3. Theorem 2 shows that the iteration complexity of Algorithm 2 to attain an ε-nearly
stationary point is Õ(1/ε4). It improves the result of [36] for WCSC problems in terms of two aspects.
First, [36] requires a stronger condition on the structure of the objective function, while our analysis
simply assumes a general objective function f(x, y). Second, [36] requires to solve the maximization
over y at each epoch, which may introduce an O(n) computational complexity for y ∈ Rn 2. In
contrast, our algorithm restarts both the primal variable x and dual variable y at each epoch, which
does not need an additional cost.

2Although the exact maximization over y for restarting next epoch might be solved approximately, it still
requires additional overhead.
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Finally, we note that when f(x, y) is smooth in x and y, we can use stochastic Mirror Prox algo-
rithm [23] to replace the stochastic gradient descent ascent updates (Step 6 and Step 7) such that we
can use a bounded variance assumption of the stochastic gradients instead of bounded second-order
moments. It is a simple exercise to finish the proof by following our analysis of Theorem 2.

We prove the expectation result for WCSC in Theorem 2 for consistency with previous results [36].
In fact, we can also derive the high probability version. We provide a proof sketch at the end of the
proof of Theorem 2 in the appendix and leave the details to the longer version.

5 Analysis

In this section, we present the proof of Theorem 1 and a proof sketch of Theorem 2. As we
mentioned at the introduction, the key challenge in the analysis of Epoch-GDA lies in handling
the variable distance measure ‖x̂(y1) − x0‖2 + ‖ŷ(x1) − y0‖2 for any (x0, y0) ∈ X × Y and
(x1, y1) ∈ X × Y and its connection to the duality gaps, where x̂(y1) = arg minx′∈X f(x′, y1) and
ŷ(x1) = arg maxy′∈Y f(x1, y

′). Hence, we first introduce the following key lemma that is useful in
the analysis of Epoch-GDA for both SCSC and WCSC problems. It connects the variable distance
measure ‖x̂(y1)− x0‖2 + ‖ŷ(x1)− y0‖2 to the duality gaps at (x0, y0) and (x1, y1).

Lemma 1. Consider the following µ-strongly convex in x and λ-strongly concave problem
minx∈Ω1 maxy∈Ω2 f(x, y). Let (x∗, y∗) denote the saddle point solution to this problem. Sup-
pose we have two solutions (x0, y0) ∈ Ω1×Ω2 and (x1, y1) ∈ Ω1×Ω2. Then the following relation
between variable distance and duality gaps holds

µ

4
‖x̂(y1)− x0‖2 +

λ

4
‖ŷ(x1)− y0‖2 ≤ max

y′∈Ω2

f(x0, y
′)− min

x′∈Ω1

f(x′, y0)

+ max
y′∈Ω2

f(x1, y
′)− min

x′∈Ω1

f(x′, y1). (2)

5.1 Proof of Theorem 1 for the SCSC setting

The key idea is to first show the convergence of the duality gap with respect to the ball constraints
B(xk0 , Rk) and B(yk0 , Rk) in an epoch (Lemma 2). Then we investigate the condition to make
x̂(ȳk) ∈ B(xk0 , Rk) and ŷ(x̄k) ∈ B(yk0 , Rk) given the average solution (x̄k, ȳk), which allows us
to derive the duality gap Gap(x̄k, ȳk) for the original problem. Finally, under such conditions, we
show how the duality gap between two consecutive outer loops can be halved (Theorem 3), which
implies the total iteration complexity (Theorem 1). Below, we omit superscript k when it applies to
all epochs.

Lemma 2. Suppose Assumption 2 holds. Let Line 3 to 7 of Algorithm 1 run for T iterations (omitting
the k-index) by fixed step sizes ηx and ηy . Then with the probability at least 1− δ̃ where 0 < δ̃ < 1,
for any x ∈ X ∩ B(x0, R) and y ∈ Y ∩ B(y0, R), x̄ =

∑T−1
t=0 xt/T , ȳ =

∑T−1
t=0 yt/T satisfy

f(x̄, y)− f(x, ȳ) ≤‖x− x0‖2

ηxT
+
‖y − y0‖2

ηyT
+
ηxB

2
1 + ηyB

2
2

2
(5 + 3 log(1/δ̃))

+
4(B1 +B2)R

√
3 log(1/δ̃)

√
T

. (3)

Remark 4. Lemma 2 is a standard analysis for an epoch of Algorithm 1. The difficulty arises when
attempting to plug x and y into (3). In order to derive the duality gap on the LHS of (3), we have
to plug in x ← x̂(ȳ) and y ← ŷ(x̄). Nevertheless, it is unclear whether x̂(ȳ) ∈ B(x0, R) and
ŷ(x̄) ∈ B(y0, R), which is the requirement for x and y to be plugged into (3). In the following lemma,
we investigate the condition to make x̂(ȳ) ∈ B(x0, R) and ŷ(x̄) ∈ B(y0, R) based on Lemma 1.

Lemma 3. Suppose Assumption 2 holds. Let x̂R(y) := arg minx∈X∩B(x0,R) f(x, y) and ŷR(x) :=
arg maxy∈Y ∩B(y0,R) f(x, y). Assume the initial duality gap Gap(x0, y0) ≤ ε0. Let Lines 3 to

7 of Algorithm 1 run T iterations with δ̃ ∈ (0, 1), R ≥ 2
√

2ε0
min{µ,λ} , ηx = min{µ,λ}R2

40(5+3 log(1/δ̃))B2
1

,

7



ηy = min{µ,λ}R2

40(5+3 log(1/δ̃))B2
2

and

T ≥
max

{
3202(B1 +B2)23 log(1/δ̃), 3200(5 + 3 log(1/δ̃)) max{B2

1 , B
2
2}
}

µ2R2
.

Then, with probability at least 1− δ̃, it holds ‖x̂R(ȳ)− x0‖ < R, ‖ŷR(x̄)− y0‖ < R.

Remark 5. Lemma 3 shows that if we properly set the values of R, ηx, ηy and T , then x̂R(ȳ) and
ŷR(x̄) are the interior points of B(x0, R) and B(y0, R) with high probability. Therefore, we conclude
that x̂(ȳ) = x̂R(ȳ) and ŷ(x̄) = ŷR(x̄) with probability 1− δ̃ under the conditions of Lemma 3, which
allows us to derive the duality gap in LHS of (3) of Lemma 2.

We would highlight that x̂(ȳ) ∈ B(x0, R) and ŷ(x̄) ∈ B(y0, R) have to be confirmed in high
probability, rather than in expectation. If we show E[‖x̂(ȳ) − x0‖] < R, it is still unclear x̂(ȳ) ∈
B(x0, R), as pointed in [47]. The following theorem gives the relation of duality gaps between two
consecutive epochs of Algorithm 1 by using Lemma 2 and the conditions proven by Lemma 3.
Theorem 3. Consider the k-th epoch of Algorithm 1 with an initial solution (xk0 , y

k
0 ) and the

ending averaged solution (x̄k, ȳk). Suppose Assumption 2 holds and Gap(xk0 , y
k
0 ) ≤ εk−1. Let

Rk ≥ 2
√

2εk−1

min{µ,λ} (i.e. εk−1 ≤ min{µ,λ}R2
k

8 ), ηkx =
min{µ,λ}R2

k

40(5+3 log(1/δ̃))B2
1

, ηky =
min{µ,λ}R2

k

40(5+3 log(1/δ̃))B2
2

and

Tk ≥
max

{
3202(B1 +B2)23 log(1/δ̃), 3200(5 + 3 log(1/δ̃)) max{B2

1 , B
2
2}
}

min{µ, λ}2R2
k

.

Then we have with probability 1− δ̃, Gap(x̄k, ȳk) ≤ min{µ,λ}R2
k

16 .
Remark 6. Theorem 3 shows that after running Tk iterations at the k-th stage, the upper bound of
the duality gap would be halved with high probability, i.e., from min{µ,λ}R2

k

8 to min{µ,λ}R2
k

16 . Then, in
order to make the duality gap of each outer loop of Algorithm 1 halved from the last epoch, we can

simply set R2
k+1 =

R2
k

2 , and accordingly, ηx,k+1 =
ηkx
2 , ηy,k+1 =

ηky
2 and Tk+1 = 2Tk.

Proof. (of Theorem 3) For any x ∈ B(xk0 , Rk) and y ∈ B(yk0 , Rk), we have ‖x − xk0‖ ≤ R and
‖y − yk0‖ ≤ R, so by (3) of Lemma 2, we have with probability 1− δ̃

f(x̄k, y)− f(x, ȳk)
(a)

≤ R2
k

ηkxTk
+

R2
k

ηkyTk
+
ηkxB

2
1

2
(5 + 3 log(1/δ̃)) +

ηkyB
2
2

2
(5 + 3 log(1/δ̃))

+
4(B1 +B2)Rk

√
3 log(1/δ̃)

√
Tk

(b)

≤ min{µ, λ}R2
k

16
, (4)

where inequality (a) is due to x ∈ B(xk0 , Rk) and y ∈ B(yk0 , Rk). Inequality (b) is due to the
values of ηkx, ηky and Tk. Recall the definitions x̂(ȳk) = arg minx∈X f(x, ȳk) and ŷ(x̄k) =

arg maxy∈Y f(x̄k, y). By Lemma 3, we have x̂(ȳk) ∈ B(xk0 , Rk) and ŷ(x̄k) ∈ B(yk0 , Rk) with
probability 1− δ̃. Then from (4) we have

Gap(x̄k, ȳk) = max
y∈Y

f(x̄k, y)−min
x∈X

f(x, ȳk) ≤ min{µ, λ}R2
k

16
.

Given the condition Gap(xk0 , y
k
0 ) ≤ εk−1 ≤ min{µ,λ}R2

k

8 , we then conclude that running Tk iterations
in an epoch of Algorithm 1 would halve the duality gap with high probability. As indicated in
Theorem 3, the duality gap Gap(x̄k, ȳk) can be halved as long as the condition of Theorem 3 holds.
Then Theorem 1 is implied (the detailed proof is in Supplementary Materials).

5.2 Proof Sketch of Theorem 2 for the WCSC setting

Due to limit of space, we only present a sketch here and present the full proof in the Supple-
ment. Recall f̂k(x, y) = f(x, y) + γ

2 ‖x − x
k
0‖2. Let us denote its duality gap by Ĝapk(x, y) =

f̂k(x, ŷk(x)) − f̂k(x̂k(y), y), where we define ŷk(x) := arg maxy′∈Y f̂k(x, y′) given x ∈ X and

8



x̂k(y) := arg minx′∈X f̂k(x′, y) given y ∈ Y . Its saddle point solution is denoted by (x̂∗k, ŷ
∗
k), i.e.,

f̂k(x̂∗k, y) ≤ f̂k(x̂∗k, ŷ
∗
k) ≤ f̂k(x, ŷ∗k) for any x ∈ X and y ∈ Y . The key idea of our analysis is to

connect the duality gap Ĝapk(xk0 , y
k
0 ) to γ2‖x̂∗k − xk0‖2, and then by making γ2‖x̂∗k − xk0‖2 ≤ ε2,

we can show that xk0 is a nearly ε-stationary point. To this end we first establish a bound of the
duality gap for the regularized problem f̂k(x, y) for the k-th epoch (Lemma 4). Then we con-
nect it to γ‖x̂∗k − xk0‖2 (Lemma 5). Finally, we bound γ‖x̂∗k − xk0‖2 by a telescoping sum of
E[Ĝapk(xk0 , y

k
0 )]− E[Ĝapk+1(xk+1

0 , yk+1
0 )] and E[P (xk0)− P (xk+1

0 )].

6 Conclusions

In this paper, we filled the gap between stochastic min-max and minimization optimization problems.
We proposed Epoch-GDA algorithms for general SCSC and general WCSC problems, which do
not impose any additional assumptions on the smoothness or the structure of the objective function.
Our key lemma provides sharp analysis of Epoch-GDA for both problems. For SCSC min-max
problems, to the best of our knowledge, our result is the first one to show that Epoch-GDA achieves
the optimal rate of O(1/T ) for the duality gap of general SCSC min-max problems. For WCSC
min-max problems, our analysis allows us to derive the best complexity Õ(1/ε4) of Epoch-GDA to
reach a nearly ε-stationary point, which does not require smoothness, large mini-batch sizes or other
structural conditions.

Broader Impact

A discussion about broader impact is not applicable since our work is very theoretical and currently
has no particular application.
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