arXiv:2005.02426v2 [cs.DC] 8 Oct 2020

Communication-Efficient Distributed Stochastic AUC Maximization
with Deep Neural Networks

Zhishuai Guo'! Mingrui Liu' Zhuoning Yuan' LiShen? Wei Liu?> Tianbao Yang '

Abstract

In this paper, we study distributed algorithms
for large-scale AUC maximization with a deep
neural network as a predictive model. Although
distributed learning techniques have been inves-
tigated extensively in deep learning, they are
not directly applicable to stochastic AUC max-
imization with deep neural networks due to its
striking differences from standard loss minimiza-
tion problems (e.g., cross-entropy).Towards ad-
dressing this challenge, we propose and analyze
a communication-efficient distributed optimiza-
tion algorithm based on a non-convex concave re-
formulation of the AUC maximization, in which
the communication of both the primal variable
and the dual variable between each worker and
the parameter server only occurs after multiple
steps of gradient-based updates in each worker.
Compared with the naive parallel version of an
existing algorithm that computes stochastic gra-
dients at individual machines and averages them
for updating the model parameters, our algorithm
requires a much less number of communication
rounds and still achieves a linear speedup in the-
ory. To the best of our knowledge, this is the first
work that solves the non-convex concave min-
max problem for AUC maximization with deep
neural networks in a communication-efficient dis-
tributed manner while still maintaining the linear
speedup property in theory. Our experiments on
several benchmark datasets show the effective-
ness of our algorithm and also confirm our the-
ory.

"Department of Computer Science, The University of Towa,
Iowa City, 1A 52242, USA >Tencent Al Lab, Shenzhen, China.
Correspondence to: Tianbao Yang <tianbao-yang@uiowa.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1. Introduction

Large-scale distributed deep learning (Dean et al., 2012;
Liet al., 2014) has achieved tremendous successes in var-
ious domains, including computer vision (Goyal et al.,
2017), natural language processing (Devlin et al., 2018;
Yang et al., 2019), generative modeling (Brock et al.,
2018), reinforcement learning (Silver et al., 2016; 2017),
etc. From the perspective of learning theory and optimiza-
tion, most of them are trying to minimize a surrogate loss of
a specific error measure using parallel minibatch stochastic
gradient descent (SGD). For example, on the image clas-
sification task, the surrogate loss is usually the cross en-
tropy between the estimated probability distribution accord-
ing to the output of a certain neural network and the vec-
tor encoding ground-truth labels (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2014; He et al., 2016), which is a
surrogate loss of the misclassification rate. Based on the
surrogate loss, parallel minibatch SGD (Goyal et al., 2017)
is employed to update the model parameters.

However, when the data for classification is imbalanced,
AUC (short for Area Under the ROC Curve) is a more suit-
able measure (Elkan, 2001). AUC is defined as the prob-
ability that a positive sample has a higher score than a
negative sample (Hanley & McNeil, 1982; 1983). Despite
the tremendous applications of distributed deep learning in
different fields, the study about optimizing AUC with dis-
tributed deep learning technologies is rare. The commonly
used parallel mini-batch SGD for minimizing a surrogate
loss of AUC will suffer from high communication costs in
a distributed setting due to the non-decomposability nature
of AUC measure. The reason is that positive and negative
data pairs that define a surrogate loss for AUC may sit on
different machines. To the best of our knowledge, Liu et al.
(2020Db) is the only work trying to optimize a surrogate loss
of AUC with a deep neural network that explicitly tackles
the non-decomposability of AUC measure. Nevertheless,
their algorithms are designed only for the single-machine
setting and hence are far from sufficient when encountering
a huge amount of data. Although a naive parallel version
of the stochastic algorithms proposed in (Liu et al., 2020b)
can be used for distributed AUC maximization with a deep
neural network, it would still suffer from high communi-

http://arxiv.org/abs/2005.02426v2

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

cation overhead due to a large number of communication
rounds.

In this paper, we bridge the gap between stochastic AUC
maximization and distributed deep learning by proposing a
communication-efficient distributed algorithm for stochas-
tic AUC maximization with a deep neural network. The
focus is to make the total number of communication
rounds much less than the total number of iterative
updates. We build our algorithm upon the nonconvex-
concave min-max reformulation of the original problem.
The key ingredient is to design a communication-efficient
distributed algorithm for solving the regularized min-max
subproblems using multiple machines. Specifically, we fol-
low the proximal primal-dual algorithmic framework pro-
posed by (Rafique et al., 2018; Liu et al., 2020b), i.e., by
solving a sequence of quadratically regularized min-max
saddle-point problems with periodically updated regular-
izers successively. The key difference is that the inner
min-max problem solver is built on a distributed periodic
model averaging technique, which consists of a fixed num-
ber of stochastic primal-dual updates over individual ma-
chines and a small number of averagings of model pa-
rameters from multiple machines. This mechanism can
greatly reduce the communication cost, which is simi-
lar to (Zhou & Cong, 2017; Stich, 2018; Yu et al., 2019b).
However, their analysis cannot be applied to our case since
their analysis only works for convex or non-convex mini-
mization problems. In contrast, our algorithm is designed
for a particular non-convex concave min-max problem in-
duced by the original AUC maximization problem. Our
contributions are summarized as follows:

e We propose a communication-efficient distributed
stochastic algorithm named CoDA for solving a
nonconvex-concave min-max reformulation of AUC
maximization with deep neural networks by local
primal-dual updating and periodically global vari-
able averaging. To our knowledge, this is the first
communication-efficient distributed stochastic algo-
rithm for learning a deep neural network by AUC max-
imization.

e We analyze the iteration complexity and communica-
tion complexity of the proposed algorithm under the
commonly used Polyak- Lojasiewicz (PL) condition
as in (Liu et al., 2020b). Comparing with (Liu et al.,
2020b), our theoretical result shows that the iteration
complexity can be reduced by a factor of K (the num-
ber of machines) in a certain region, while the commu-
nication complexity (the rounds of communication)
is much lower than that of a naive distributed ver-
sion of the stochastic algorithm proposed in (Liu et al.,
2020b). The summary of iteration and communication
complexities is given in Table 1.

e We verify our theoretical claims by conducting experi-

ments on several large-scale benchmark datasets. The
experimental results show that our algorithm indeed
exhibits good acceleration performance in practice.

2. Related Work

Stochastic AUC Maximization. It is challenging to di-
rectly solve the stochastic AUC maximization in the online
learning setting since the objective function of AUC maxi-
mization depends on a sum of pairwise losses between sam-
ples from positive and negative classes. Zhao et al. (2011)
addresses this problem by maintaining a buffer to store rep-
resentative data samples, employing the reservoir sampling
technique to update the buffer, calculating gradient infor-
mation based on the data in the buffer, and then perform-
ing a gradient-based update rule to update the classifier.
Gao et al. (2013) does not maintain a buffer, while they in-
stead maintained first-order and second-order statistics of
the received data to update the classifier by gradient-based
update. Both of them are infeasible in big data scenar-
ios since Zhao et al. (2011) suffers from a large amount
of training data and Gao et al. (2013) is not suitable for
high dimensional data. Ying et al. (2016) addresses these
issues by introducing a min-max reformulation of the orig-
inal problem and solving it by a primal-dual stochastic gra-
dient method (Nemirovski et al., 2009), in which no buffer
is needed and the per-iteration complexity is the same mag-
nitude as the dimension of the feature vector. Natole et al.
(2018) improves the convergence rate by adding a strongly
convex regularizer upon the original formulation. Based
on the same saddle point formulation as in (Ying et al.,
2016), Liu et al. (2018) gets an improved convergence rate
by developing a multi-stage algorithm without adding the
strongly convex regularizer. However, all of these stud-
ies focus on learning a linear model. Recently, Liu et al.
(2020b) considers stochastic AUC maximization for learn-
ing a deep non-linear model, in which they designed a
proximal primal-dual gradient-based algorithm under the
PL condition and established non-asymptotic convergence
results.

Communication Efficient Algorithms. There are mul-
tiple approaches for reducing the communication cost
in distributed optimization, including skipping commu-
nication and compression techniques. Due to limit
of space, we mainly review the literature on skipping
communication. For compression techniques, we refer
the readers to (Jiang & Agrawal, 2018; Stich et al., 2018;
Basuetal.,, 2019; Wangnietal.,, 2018; Bernstein et al.,
2018) and references therein. Skipping communication
is realized by doing multiple local gradient-based up-
dates in each worker before aggregating the local model
parameters. One special case is so-called one-shot av-
eraging (Zinkevichetal., 2010; McDonald et al., 2010;
Zhang et al., 2013), where each machine solves a local

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Table 1. The summary of Iteration and Communication Complexities, where K is the number of machines and p < 1. NP-PPD-SG
denotes the naive parallel version of PPD-SG, which is also a special case of our algorithm, whose complexities can be derived by

following our analysis.

Algorithm | Setting | Iteration Complexity | Communication Complexity
PPD-SG (Liu et al., 2020b) | Single O(1/(u?e)) -

NP-PPD-SG Distributed | O(1/(K 1%¢)) O(1/(K pi%e))

CoDA Distributed | O(1/(K u2e)) O(1/(u3/2€/?))

problem and averages these solutions only at the last iterate.
Some works (Zhang et al., 2013; Shamir & Srebro, 2014;
Godichon-Baggioni & Saadane, 2017; Jainetal., 2017;
Koloskova et al., 2019; Koloskova* et al., 2020) consider
one-shot averaging with one-pass of the entire data and es-
tablish statistical convergence, which is usually not able
to guarantee the convergence of the training error. The
scheme of local SGD update at each worker with skip-
ping communication is analyzed for convex (Stich, 2018;
Jaggi et al., 2014) and nonconvex problems (Zhou & Cong,
2017; Jiang & Agrawal, 2018; Wang & Joshi, 2018b;
Lin et al., 2018b; Wang & Joshi, 2018a; Yu et al., 2019b;a;
Basuetal.,, 2019; Haddadpouretal., 2019). There
are also several empirical studies (Poveyetal.,, 2014;
Su & Chen, 2015; McMahan et al., 2016; Chen & Huo,
2016; McMahan et al., 2016; Lin et al., 2018b; Kamp et al.,
2018) showing that this scheme exhibits good empirical
performance for distributed deep learning. However, all of
these works only consider minimization problems and do
not apply to the nonconvex-concave min-max formulation
as considered in this paper.

Nonconvex Min-max Optimization. Stochastic noncon-
vex min-max optimization has garnered increasing at-
tention recently (Rafique etal., 2018; Linetal.,, 2018a;
Sanjabi et al., 2018; Luetal., 2019; Linetal., 2019;
Jinetal., 2019; Liuetal., 2020a). Rafique et al. (2018)
considered the case where the objective function is weakly-
convex and concave and proposed an algorithm based on
the spirit of proximal point method (Rockafellar, 1976),
in which a proximal subproblem with periodically updated
reference points is approximately solved by an appropriate
stochastic algorithm. They established the convergence to
a nearly stationary point for the equivalent minimization
problem. Under the same setting, Lu et al. (2019) designed
a block-based algorithm and showed that it can converge to
a solution with a small stationary gap, and Lin et al. (2019)
considered solving the problem using vanilla stochas-
tic gradient descent ascent and established its conver-
gence to a stationary point under the smoothness assump-
tion. There are also several papers (Linetal., 2018a;
Sanjabi et al., 2018; Liu et al., 2020a) trying to solve non-
convex non-concave min-max problems. Lin et al. (2018a)
proposed an inexact proximal point method for solv-
ing a class of weakly-convex weakly-concave problems,

which was proven to converge to a nearly stationary
point. Sanjabi et al. (2018) exploited the PL condition for
the inner maximization problem and designed a multi-step
alternating optimization algorithm which was able to con-
verge to a stationary point. Liu et al. (2020a) considered
solving a class of nonconvex-nonconcave min-max prob-
lems by designing an adaptive gradient method and estab-
lished an adaptive complexity for finding a stationary point.
However, none of them is particularly designed for the dis-
tributed stochastic AUC maximization problem with a deep
neural network.

3. Preliminaries and Notations
The area under the ROC curve (AUC) on a population level
for a scoring function i : X — R is defined as

AUC(h) =Pr(h(x) > x|y =1,y = -1), (1)

where z = (x,y) and 2 = (x,y’) are drawn indepen-
dently from P. By employing the squared loss as the sur-
rogate for the indicator function which is commonly used
by previous studies (Gao et al.,, 2013; Ying et al., 2016;
Liu et al., 2018; 2020b), the deep AUC maximization prob-
lem can be formulated as

min E, 5 [(1 - h(w;x) +h(w;x))*ly = 1,9 = ~1],
weR

where h(w; x) denotes the prediction score for a data sam-
ple x made by a deep neural network parameterized by w.
It was shown in (Ying et al., 2016) that the above problem
is equivalent to the following min-max problem:

min max f(w,a,b,a) = E,[F(w,a,b,0,2)], (2)
(:Ibe)gﬂ ek

where

F(w,a,b,a;z) = (1 —p)(h(w;x) — a)?Ij,
+ p(h(w;x) = b)Ij— 1) + 2(1 + a) (ph(w; x)[[,—_y
— (1= p)h(w,x)Ij,—y)) — p(1 — p)a?,

where p = Pr(y = 1) denotes the prior probability that
an example belongs to the positive class, and I denotes an
indicator function. The above min-max reformulation al-
lows us to decompose the expectation over all data into the
expectation over data on individual machines.

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

In this paper, we consider the following distributed AUC
maximization problem:

K
. 1
VI\}ER% Ig}gﬂi(f(waavbaa) - Ez.fk(wvaabv O[), (3)
(a,b)€R2 k=1

where K is the total number of machines, fr(w,a,b, o) =
E,x [Fi(w,a,b,a;2%)], 28 = (x*,9%) ~ Py, Py is the
data distribution on machine k, and Fj,(w,a,b, a; z’“) =
F(w,a,b,a;zk). Our goal is to utilize K machines to
jointly solve the optimization problem (3). We emphasize
that the k-th machine can only access data z° ~ P of
its own. It is notable that our formulation includes both
the batch-learning setting and the online learning setting.
For the batch-learning setting, P;, represents the empirical
distribution of data on the k-th machine and p denotes the
empirical positive ratio for all data. For the online learning
setting, P, = PP, Vk represents the same population distri-
bution of data and p denotes the positive ratio in the popu-
lation level.

Notations. We define the following notations:

v=(wl,a,b", o) = mgxf(v, a),

$e(v) = $(v) + %HV—VHHQ,

vy =argming(v), vj = argming,(v).
We make the following assumption throughout this paper.

Assumption 1

(i) There exist vy, Ao > 0 such that ¢(vo) — (b(vz,) < Ap.
(ii) For any x, | Vh(w;x)|| < G},

(iii) ¢(v) satisfies the p-PL condition, i.e., u(d(v) —
d(vi)) < 3IIVO(WV)|12; ¢(v) is Li-smooth, i.e., |p(v1) —
P(v2)| < Liflvi — val|.

(iv) For any x, h(w;x) is Ly-smooth, and h(w;x) € [0, 1].

Remark: Assumptions (i), (ii), (iii) and h(w;x) € [0, 1]
of (iv) are also assumed in (Liu et al., 2020b), which have
been justified as well. L-smoothness of function % is a
standard assumption in the optimization literature. Finally,
it should be noted that p is usually much smaller than
1 (Yuan et al., 2019). This is important for us to understand
our theoretical result later.

4. Main Result and Theoretical Analysis

In this section, we first describe our algorithm, and then
present its convergence result followed by its analysis. For
simplicity, we assume that the ratio p of data with the pos-
itive label is known. For the batch learning setting, p is
indeed the empirical ratio of positive examples. For the on-
line learning setting with an unknown distribution, we can

Algorithm 1 CoDA
1: Initialization: (vo = 0 € R®*2 oy =0, 7).
2: fors=1,...,5do
30 vy =DSG(vs_1,s5-1,Ms, Ts,ms, Ls,7);
4: Each machine draws a minibatch {zf, ...,z } of
size m, and does:

M ms
. E _ ok E _
5. h_ — Z h(VS,X,L-)]ny:—l’ N_ — Z I[yéc:_l,
i=1 i=1
ko SR k k_ <R
6: h+: Zh(vs;xi)ﬂyle,NJr: Zﬂyle;
i=1 i=1
K k k
h h .
7 g = % [W N—t} ; & communicate
k=1 +
8: end for

9: Return vg.

follow the online estimation technique in (Liu et al., 2020b)
to do the parameter update.

Algorithm 1 describes the proposed algorithm CoDA for
optimizing AUC in a communication-efficient distributed
manner. CoDA shares the same algorithmic framework
as proposed in (Liu et al., 2020b). In particular, we em-
ploy a proximal-point algorithmic scheme that succes-
sively solves the following convex-concave problem ap-
proximately:

1
minmaxf(v,a)+2—||V—Vo||2, 4)
v @ Y

where 7y is an appropriate regularization parameter to make
sure that the regularized function is strongly-convex and
strongly-concave. The reference point v is periodically
updated after a number of iterations. At the s-th stage our
algorithm invokes a communication-efficient algorithm for
solving the above strongly-convex and strongly-concave
subproblems. After obtaining a primal solution v, at the
s-th stage, we sample some data from individual machines
to obtain an estimate of the corresponding dual variable .

Our new contribution is the communication-efficient dis-
tributed algorithm for solving the above strongly-convex
and strongly-concave subproblems. The algorithm referred
to as DSG is presented in Algorithm 2. Each machine
makes a stochastic proximal-gradient update on the primal
variable and a stochastic gradient update on the dual vari-
able at each iteration. After every [iterations, all the K
machines communicate to compute an average of local pri-
mal solutions v# and local dual solutions o¥. It is not diffi-
cult to show that when I = 1, our algorithm reduces to the
naive parallel version of the PPD-SG algorithm proposed
in (Liu et al., 2020b), i.e., by averaging individual primal
and dual gradients and then updating the primal-dual vari-

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

ables according to the averaged gradient !. Our novel analy-
sis allows us to use I > 1 to skip communications, leading
to a much less number of communications. The intuition
behind this is that, as long as the step size 7, is sufficiently
small we can control the distance between individual so-
lutions (v¥, a¥) to their global averages, which allows us
to control the error term that is caused by the discrepancy
between individual machines. We will provide more expla-

nations as we present the analysis.

Below, we present the main theoretical result of CoDA.
Note that in the following presentation, Ly, H, B, oy, 0,
are appropriate constants, whose values are given in the
proofs of Lemma 1 and Lemma 2 in the supplement.

Theorem 1 Set ~ = 21v c = %

ns = mKexp(=(s — 1)) = OQ) T, =

max(8,8Gj, _

ﬁexp((s — 1e), I, = max(1,1//Kny)
_ 14+C log(K)

and ms = max(nfﬂTsﬂpz(l*p)z’log(l/ﬁ))’ where
1

Cc = % and p = max(p,1 — p). To re-

turn vg such that Elp(vs) — ¢(vi)] < € it suf-

fices to choose S > 5L"%max{log(zfo) ,logS +

8]

2 2 2
log [2—?0 M} } As a result, the number of

. . . _ Ag Ly
iterations is at most T = O<max (uenoK’ ;ﬂKe))

and the
— K A1/2 K L1/2 ~
O| max T M(UOOE)I/27 Wt mran , where O

and H,B,oy,0, are

number of communications is at most

suppresses logarithmic factors,
appropriate constants.

We have the following remarks about Theorem 1.

* First, we can see that the step size 7, is reduced ge-
ometrically in a stagewise manner. This is due to
the PL condition. We note that a stagewise geometri-
cally decreasing step size is usually used in practice in
deep learning (Yuan et al., 2019). Second, by setting
no = O(1/K) we have I, = 6(— exp((s — 1)¢/2).
It means two things: (i) the larger the number of ma-
chines the smaller value of I, i.e., more frequently
the machines need to communicate. This is reason-
able since more machines will create a larger discrep-
ancy between data among different machines; (ii) the
value I, can be increased geometrically across stages.
This is because that the step size 7, is reduced geo-
metrically, which causes one step of primal and dual
updates on individual machines to diverge less from

'A tiny difference is that we use a proximal gradient update to
handle the regularizer % ||v —vol|?, while Liu et al. (2020b) used
the gradient update. Using the proximal gradient update allows us
to remove the assumption that || v — vo/| is upper bounded.

Algorithm 2 DSG(vg, ag,n, T, I,7)

Each machine does initialization: v& = vo, af = ay,

fort=0,1,...,T —1do
Each machine k updates its local solution in parallel:

koo : k k. k)T
Viy1 = argmin VF(vi,afz7)t v

v = vEI?+ v —voll?]
0‘?—1—1 = O‘z]ec + nVaFk(Vt) afﬂf)’

if {4+ 1mod I =0 then
K
vf_H = % > v,’fﬂ, ¢ communicate
k=1

ko1 k -
iy =3¢ D Oy, © communicate

end if
end for
L& &
Return v = 4 kzl T t; vy

their averaged solutions. As a result, more communi-
cations can be skipped.

* Second, we can see that when K < O(1/pn), w
have the total iteration complexity given by O(—).
Compared with the iteration complexity of the PPD-
SG algorithm proposed in (Liu et al., 2020b) that is
O(ﬁ), the proposed algorithm CoDA enjoys an it-
eration complexity that is reduced by a factor of K.
This means that up to a certain large threshold ©(1/)
for the number K of machines, CoDA enjoys a linear
speedup.

* Finally, let us compare CoDA with the naive parallel
version of PPD-SG, which is CoDA by setting I = 1.
In fact, our analysis of the iteration complexity for
this case is still applicable, and it is not difficult to
show that the iteration complexity of the naive par-
allel version of PPD-SG is given by O(u2 L—) when
K < 1/p. As aresult, its communication complex-
ity is also O(H2 L—). In contrast, CoDA’s communi-

cation complexity is 6(@) when K < i <

< % according to Theorem 1 2. Hence,

our algorlthm is. rnore communication efficient, i.e.,

O(7 L)< O(7e) when K < . This means
that up to a certam large threshold ©(1/u) for the
number K of machines, CoDA has a smaller commu-
nication complexity than the naive parallel version of

PPD-SG.

2 Assume that € is set to be smaller than .
3Indeed, K can be as large as m for CoDA to be more

communication-efficient.

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

4.1. Analysis

Below, we present a sketch of the proof of Theorem 1 by
providing some key lemmas. We first derive some useful
properties regarding the random function Fi, (v, a, z).

Lemma 1 Suppose that Assumption 1 holds and 1 <
min(m, 2(11 L 210) Then there exist some constants
Ls, By, By, 0y, 04 such that

Vv Fi(vi,;2) — VyFi(va, a;2)|| < Laf[vi — val|,
||VVF]€(V5 Q; Z)”2 S B\QH |V06Fk(va g Z)|2 S Bi,
E[|Vefiu(v, @) = VyFi(v, a;2)[%] < 03
E[|Vafi(v,a) = VaFi(v,a;2)[] < o3

Remark: We include the proofs of these properties in

the Appendix. In the following, we will denote B? =
max(B2, B2) and Ly, = max(Ly, Ly).

Next, we introduce a key lemma, which is of vital impor-
tance to establish the upper bound of the objective gap of
the regularized subproblem.

Lemma 2 (One call of Algorithm 2) Let ¢(v) =
max f(v,a) + %HV — voll, v be the output of

argminy(v),
% |V — vol|?. By running Algorithm 2

Algorithm 2, and vy, = a*(v) =

argmax f(v,a) +

with given input v, g for T iterations, v = T’ andn <
: 1 1 3 1 11
min{ TvT3GZ 1t TaT3G2 /Ly 2 2p(1—p)° 2(1-p)° 2p)

we have

2 R 2 E N 2
B10(e) — min(ey] <20 = vl +Ea0 = 0 (@)
v 7’]T
2 2
+HPIPB s 4 120y +30a)

2K ’

where i, = 2p(1 — p), Lo = 2p(1 — p), Go =
2max{p,1 — p}, Gy = 2max{p,1 — p}Gy, and H =
(e 06 oL1)
Mo v Ly Mo)"
Remark: The above result is similar to Lemma 2
in (Liu et al.,, 2020b). The key difference lies in the sec-
ond and third terms in the upper bound. The second term
arises because of the discrepancy of updates between in-
dividual machines. The third term is due to the variance
reduction by using multiple machines, which is the key to
establish the linear speed-up. It is easy to see that by set-
ting [= ﬁ, the second term and the third term have the

same order. With the above lemma, the proof of Theorem 1
follows similar analysis to in (Liu et al., 2020b).

Sketch of the Proof of Lemma 2. Below, we present a
roadmap for the proof of the key Lemma 2. The main
idea is to first bound the objective gap of the subproblem

in Lemma 3. Then we further bound every term in the RHS
in Lemma 3 appropriately, which is realized by Lemma 4,
Lemma 5 and Lemma 6. All the detailed proofs of Lemmas
can be found in Appendix.

Lemma 3 Define v, = &S n vi,a, = + S0 ok,
Suppose Assumption 1 holds and by running Algorithm 2,
we have

(%)~ ming(v)

T
1)) o
< T ; |:<va(th1, Qt—1),Vi—Vy)F2L(Vi—V0, Vi —Vy,)
= e
+ (Vaf(Vi-1,-1),0" —)

Az

Lo +3G2/Ly

Ly + 3G? / tta
+—|—7/,LL 3

B (s — 54:571)2

Ve = Ve | *+

Az

2L
+ Ve = VIl = Lol = Vi P = B (G — o)

Next, we will bound Aq, A> in Lemma 4 and Lemma 5.
As can be cancelled with similar terms in the following
two lemmas. The remaining terms will be left to form a
telescoping sum with other similar terms in the following
two lemmas.

T
K
Lemma 4 Define v, = argmin <% 3 Vfh ok])> v
v k=1

— V|2 + %Hv —vo||%. We have

3G2 1 o~ - 3Ly 1 .
m%thW«w1277;wkuﬁ

2

+E (vak(fouaffl)—Vka(folvafq; fol)vot - VT&)
1

Z Va fk(Vt 1704115c 1)

Lemma 5 Define ¢y = a1 + 4+

and

7’] K
ég:dtiﬁ_?;—l (VaFe(viy,af 1328 1 Vafu(Viii,0p 1))
We have,

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

3G2 1

3L2 1 P
ZHVt v P Kzl(&tfl_atfl)

20

3n, 1 . X X X
—"(g Z[vafk(vizl, af 1) = VaFi(vii, af_15201)))°
k=1

+%k:l(Vafk(vf,l,af,l)—VaFk(vf,l,af,l;zf,l),&tﬂ—dt>
1, _ w2 N2 - * N2
+%((Oét 1—a (V) = (G-1—a)" —(m—a’ (v))")
Mo .22 1 . -2 . - 2
2 (@ —a” () + 5-((0"(9) = &)° (0" (9) = o)),

The first two terms in the upper bounds of A, Ao are the
differences between individual solutions and their averages,
the third term is the variance of stochastic gradient, and the
expectation of the fourth term will diminish. The lemma
below will bound the difference between the averaged solu-
tion and the individual solutions.

Lemma 6 If K machines communicate every I iterations,
and update with step size 1, then

K

1 _

7 2 BlIve = vi[*] < 49”1 Bl
k=1

1 K

7 2 Ella = af[’] < 49 1* Bilrs.
k=1

Combining the results in Lemma 3, Lemma 4, Lemma 5
and Lemma 6, we can prove the key Lemma 2.

5. Experiments

In this section, we conduct some experiments to verify our
theory. In our experiments, one “machine” corresponds to
one GPU. We use a cluster of 4 computing nodes with each
computer node having 4 GPUs, which gives a total of 16
“machines”. We would like to emphasize that even though
4 GPUs sit on one computing node, they only access to
different parts of the data. For the experiment with K = 1
GPU, We run one computing node by using one GPU. For
experiments with X = 4 GPUs, we run one computing
node by using all four GPUs, and for those experiments
with K = 16 GPUs, we use four computing nodes by using
all GPUs. We notice that the communication costs among
GPUs on one computing node may be less than that among
GPUs on different computing nodes. Hence, it should be
kept in mind that when comparing with X' = 4 GPUs on
different computing nodes, the margin of using K = 16
GPUs over using K = 4 GPUs should be larger than what
we will see in our experimental results. All algorithms are
implemented by PyTorch (Paszke et al., 2019).

Data. We do experiments on 3 datasets: Cifarl0, Cifar100
and ImageNet. For Cifarl0, we split the original training
data into two classes, i.e., the positive class contains 5 orig-
inal classes and the negative class is composed of the other
5 classes. The Cifar100 dataset is split in a similar way,

i.e., the positive class contains 50 original classes and the
negative class is composed of the other 50 classes. Testing
data for Cifarl0 and Cifarl00 is the same as the original
dataset. For the ImageNet dataset, we sample 1% of the
original training data as testing data and use the remain-
ing data as the training data. The training data is split in a
similar way to Cifar10 and Cifar100, i.e., the positive class
contains 500 original classes and the negative class is com-
posed of the other 500 classes. For each dataset, we create
two versions of training data with different positive ratios.
By keeping all data in the positive and negative classes, we
have p = 50% for all three datasetes. To create imbal-
anced data, we drop some proportion of the negative data
for each dataset and keep all the positive examples. In par-
ticular, by keeping all the positive data and 40% of the neg-
ative data we construct three datasets with positive ratio
p = 71%. Training data is shuffled and evenly divided to
each GPU, i.e., each GPU has access to 1/K of the train-
ing data, where K is the number of GPUs. For all data,
we use ResNet50 as our neural network (He et al., 2016)
and initialize the model as the pretrained model from Py-
Torch. Due to the limit of space, we only report the results
on datasets with p = 71% positive ratio, and other results
are included in the supplement.

Baselines and Parameter Setting. For baselines, we com-
pare with the single-machine algorithm PPD-SG as pro-
posed in (Liu et al., 2020b), which is represented by K =1
in our results, and the naive parallel version of PPD-SG,
which is denoted by K = X, I = 1 in our results. For
all algorithms, we set T, = Tp3*, n, = no/3*. Ty
and 79 are tuned for PPD-SG and set to the same for
all other algorithms for fair comparison. 7p is tuned in
[2000, 5000, 10000], and 7 is tuned in [0.1,0.01,0.001].
We fix the batch size for each GPU as 32. For simplicity, in
our experiments we use a fixed value of I in order to see its
tradeoff with the number of machines K.

Results. We plot the curve of testing AUC versus the num-
ber of iterations and versus running time. We notice that
evaluating the training objective function value on all ex-
amples is very expensive, so we use the testing AUC as our
evaluation metric. It may cause some gap between our re-
sults and the theory; however, the trend should be enough
for our purpose to verify that our distributed algorithms can
enjoy faster convergence in both the number of iterations
and running time. We have the following observations.

e Varying K. By varying K and fixing the value of
I, we aim to verify the parallel speedup. The results
are shown in Figure 1(a), Figure 2(a) and Figure 3(a).
They show that when K becomes larger, then our algo-
rithm requires a less number of iterations to converge
to the target AUC, which is consistent with the parallel
speedup result as indicated by Theorem 1. In addition,
CoDA with K = 16 machines is also the most time-

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Positive Ratio=71% IMAGENET

Positive Ratio=71% IMAGENET

Positive Ratio=71% IMAGENET Positive Ratio=71% IMAGENET

0.80 --- K=1 —
K=2, I=64 K=2, I=64 —
0.75 K=4, 1=-64 0.75 K=4, 1=64 0.75 —— K=16, 1=512 0.75 — K=16, I=512
—— K=16, 1=64 —— K=16, 1=64 —— K=16, 1=1024 — K=16, [=1024
0705 10 15 20 25 0705 500 1000 1500 0705 10 15 20 25 0.70 500 1000 1500 2000 2500 3000
Iter (*1600) Time(sec) Iter (*1600) Time(sec)
(a) Fix I, vary K (b) Fix K, vary 1
Figure 1. ImageNet, positive ratio = 71%.
Positive Ratio=71% CIFAR100 Positive Ratio=71% CIFAR100 Positive Ratio=71% CIFAR100 Positive Ratio=71% CIFAR100
0.85 0.85
0.80 0.80
Sors Sors
< <
0.70 0.70
065 065 —— K=16, I=512
—— K=16, 1=1024 —— K=16, [=1024
0605 B 10 15 20 25 06074556 500 750 1000 1250 1500 0605 B 10 15 20 25 0600550 1000 1500 2000 2500 3000
Iter (*1600) Time(sec) Iter (*1600) Time(sec)

(a) Fix I, vary K

Positive Ratio=71% CIFAR10

(b) Fix K, vary I

Figure 2. Cifar100, positive ratio = 71%.

Positive Ratio=71% CIFAR10

Positive Ratio=71% CIFAR10 Positive Ratio=71% CIFAR10

0 5 10 15 20
Iter (~1600)

K=1

K=16, =1
K=16, I=8
K=16, I=64
K=16, I=512
K=16, I=1024

—— K=16, 1=512
—— K=16, 1=1024

25 B 0 250 500 750 1000 1250 150

Time(sec)

(a) Fix I, vary K

Positive Ratio=71% CIFAR100

0 5 10 15 20 25 o
Iter (~1600)

500

1000 1500 2000 2500 3000
Time(sec)

(b) Fix K, vary I

Figure 3. Cifar10, positive ratio = 71%.

Positive Ratio=71% CIFAR100

0.85 0.85
0.80 0.80
o o
Sos Sos
< <
0.70 0.70
0.65 0.65
0. 0 5 10 15 20 25 0. 0 500 1000 1500 2000 2500 3000 350t

Iter (*1600)

Time(sec)

Figure 4. Cifar100, positive ratio = 71%, K=4.

Positive Ratio=71% CIFAR10

Positive Ratio=71% CIFAR10

=1024

10 15
Iter (*1600)

0 500 1000 1500 2000 2500 3000 3500
Time(sec)

Figure 5. Cifar10, positive ratio = 71%, K=4.

efficient algorithm among all settings.

e Varying /. By varying I and fixing the value of K,
we aim to verify that skipping communications up to
a certain number of iterations of CoDA does not hurt
the iteration complexity but can dramatically reduce
the total communication costs. In particular, we fix
K = 16 and vary [in the range {1, 8,64,512,1024}.
The results are shown in Figures 1(b), Figures 2(b) and
Figures 3(b). They exhibit that even when I becomes
moderately large, our algorithm is still able to deliver
comparable performance in terms of the number of it-
erations compared with the case when I = 1. The
largest value of I that does not cause a dramatic per-
formance drop compared with [= 11is I = 1024,
I = 64, I = 64 on ImageNet, CIFAR100 and CI-
FAR10, respectively. However, up to these thresh-
olds the running time of CoDA can be dramatically
reduced than the naive parallel version with I = 1.

e Trade-off between I and K. Finally, we verify the
trade-off between [and K as indicated in Theorem 1.
To this end, we conduct experiments by fixing K = 4
GPUs and varying the value /, and comparing the lim-

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

its of I for K = 4 and K = 16. The results of using
K = 4 on CIFAR100 and CIFARIO are reported in
Figure 4 and Figure 5. We can observe that when
K = 4 the upper limit of I that does not cause a
dramatic performance drop compared with I = 1 is
I = 512 for the two datasets, which is larger than the
upper limit of I = 64 for ' = 16. This is consistent
with our Theorem 1.

6. Conclusion

In this paper, we have designed a communication-efficient
distributed stochastic deep AUC maximization algorithm,
in which each machine is able to do multiple iterations
of local updates before communicating with the central
node. We have proven the linear speedup property and
shown that the communication complexity can be dramati-
cally reduced for multiple machines up to a large threshold
number. Our empirical studies verify the theory and also
demonstrate the effectiveness of the proposed distributed
algorithm on benchmark datasets.

Acknowledgements

This work is partially supported by National Science Foun-
dation CAREER Award 1844403 and National Science
Foundation Award 1933212.

References

Basu, D., Data, D., Karakus, C., and Diggavi, S. Qsparse-
local-sgd: Distributed sgd with quantization, sparsifica-
tion and local computations. In Advances in Neural In-
formation Processing Systems, pp. 1466814679, 2019.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and
Anandkumar, A. signsgd: Compressed optimisation for
non-convex problems. arXiv preprint arXiv:1802.04434,
2018.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096,2018.

Chen, K. and Huo, Q. Scalable training of deep learning
machines by incremental block training with intra-block
parallel optimization and blockwise model-update filter-
ing. In 2016 ieee international conference on acoustics,
speech and signal processing (icassp), pp. 5880-5884.
IEEE, 2016.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Ranzato, M., Senior, A., Tucker, P, Yang,
K., et al. Large scale distributed deep networks. In

Advances in neural information processing systems, pp.
1223-1231,2012.

Devlin, J., Chang, M.-W.,, Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Elkan, C. The foundations of cost-sensitive learning. In
International joint conference on artificial intelligence,
volume 17, pp. 973-978. Lawrence Erlbaum Associates
Ltd, 2001.

Gao, W., Jin, R., Zhu, S., and Zhou, Z.-H. One-pass auc
optimization. In /CML (3), pp. 906-914, 2013.

Godichon-Baggioni, A. and Saadane, S. On the rates of
convergence of parallelized averaged stochastic gradient
algorithms. arXiv preprint arXiv:1710.07926,2017.

Goyal, P, Dolldr, P, Girshick, R., Noordhuis, P,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch sgd: Training imagenet in
1 hour. arXiv preprint arXiv:1706.02677,2017.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and
Cadambe, V. Local sgd with periodic averaging: Tighter
analysis and adaptive synchronization. In Advances

in Neural Information Processing Systems, pp. 11080-
11092, 2019.

Hanley, J. A. and McNeil, B. J. The meaning and use of the
area under a receiver operating characteristic (roc) curve.
Radiology, 143(1):29-36, 1982.

Hanley, J. A. and McNeil, B. J. A method of comparing
the areas under receiver operating characteristic curves
derived from the same cases. Radiology, 148(3):839-
843, 1983.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp- 770-778, 2016.

Jaggi, M., Smith, V., Takdc, M., Terhorst, J., Krishnan, S.,
Hofmann, T., and Jordan, M. I. Communication-efficient
distributed dual coordinate ascent. In Advances in Neu-
ral Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pp.
3068-3076,2014.

Jain, P., Netrapalli, P, Kakade, S. M., Kidambi, R., and
Sidford, A. Parallelizing stochastic gradient descent for
least squares regression: mini-batching, averaging, and
model misspecification. The Journal of Machine Learn-
ing Research, 18(1):8258-8299,2017.

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Jiang, P. and Agrawal, G. A linear speedup analysis of dis-
tributed deep learning with sparse and quantized commu-
nication. In Advances in Neural Information Processing
Systems, pp. 2525-2536,2018.

Jin, C., Netrapalli, P., and Jordan, M. I. Minmax optimiza-
tion: Stable limit points of gradient descent ascent are
locally optimal. arXiv preprint arXiv:1902.00618,2019.

Kamp, M., Adilova, L., Sicking, J., Hiiger, F., Schlicht, P,,
Wirtz, T., and Wrobel, S. Efficient decentralized deep
learning by dynamic model averaging. In Joint Euro-
pean Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 393—409. Springer, 2018.

Koloskova, A., Stich, S. U., and Jaggi, M. Decentral-
ized stochastic optimization and gossip algorithms with
compressed communication. In Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, pp.
3478-3487,2019.

Koloskova*, A., Lin*, T., Stich, S. U., and Jaggi,
M. Decentralized deep learning with arbitrary com-
munication compression. In International Confer-
ence on Learning Representations, 2020. URL

https://openreview. net/forum?id=SkgGCer%tole M., Ying

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,

pp. 1097-1105, 2012.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In 11th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 14), pp. 583—
598, 2014.

Lin, Q., Liu, M., Rafique, H., and Yang, T. Solv-
ing weakly-convex-weakly-concave saddle-point prob-
lems as weakly-monotone variational inequality. arXiv
preprint arXiv:1810.10207,2018a.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t
use large mini-batches, use local sgd. arXiv preprint
arXiv:1808.07217,2018b.

Lin, T., Jin, C., and Jordan, M. I. On gradient descent as-
cent for nonconvex-concave minimax problems. arXiv
preprint arXiv:1906.00331,2019.

Liu, M., Zhang, X., Chen, Z., Wang, X., and Yang, T. Fast
stochastic auc maximization with o (1/n)-convergence
rate. In International Conference on Machine Learning,
pp- 3195-3203,2018.

Liu, M., Mroueh, Y., Ross, J., Zhang, W., Cui, X,
Das, P, and Yang, T Towards better under-
standing of adaptive gradient algorithms in gen-
erative adversarial nets. In International Confer-
ence on Learning Representations, 2020a. URL

https://openreview.net/forum?id=SJIxImOVtwH.

Liu, M., Yuan, Z., Ying, Y., and Yang, T. Stochastic auc
maximization with deep neural networks. /CLR, 2020b.

Lu, S., Tsaknakis, 1., Hong, M., and Chen, Y. Hybrid block
successive approximation for one-sided non-convex min-
max problems: Algorithms and applications. arXiv
preprint arXiv:1902.08294,2019.

McDonald, R., Hall, K., and Mann, G. Distributed training
strategies for the structured perceptron. In Human lan-
guage technologies: The 2010 annual conference of the
North American chapter of the association for computa-
tional linguistics, pp. 456-464. Association for Compu-
tational Linguistics, 2010.

McMahan, H. B., Moore, E., Ramage, D., Hampson,
S., et al. Communication-efficient learning of deep
networks from decentralized data. arXiv preprint
arXiv:1602.05629,2016.

Y., and Lyu, S. Stochastic proximal al-
gorithms for auc maximization. In International Confer-
ence on Machine Learning, pp. 3707-3716, 2018.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Ro-
bust stochastic approximation approach to stochastic pro-
gramming. SIAM Journal on optimization, 19(4):1574—
1609, 2009.

Nesterov, Y. E. Introductory Lectures on Convex Optimiza-
tion - A Basic Course, volume 87 of Applied Optimiza-
tion. Springer, 2004.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., etal. Pytorch: Animperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, pp. 8024-8035, 2019.

Povey, D., Zhang, X., and Khudanpur, S. Parallel training
of dnns with natural gradient and parameter averaging.
arXiv preprint arXiv:1410.7455, 2014.

Rafique, H., Liu, M., Lin, Q., and Yang, T. Non-
convex min-max optimization: Provable algorithms
and applications in machine learning. arXiv preprint
arXiv:1810.02060,2018.

Rockafellar, R. T. Monotone operators and the proximal
point algorithm. SIAM journal on control and optimiza-
tion, 14(5):877-898, 1976.

https://openreview.net/forum?id=SkgGCkrKvH
https://openreview.net/forum?id=SJxIm0VtwH

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Sanjabi, M., Razaviyayn, M., and Lee, J. D. Solving
non-convex non-concave min-max games under polyak-
1 ojasiewicz condition. arXiv preprint arXiv:1812.02878,
2018.

Shamir, O. and Srebro, N. Distributed stochastic optimiza-
tion and learning. In 2014 52nd Annual Allerton Confer-
ence on Communication, Control, and Computing (Aller-
ton), pp. 850-857. IEEE, 2014.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484,2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without hu-
man knowledge. Nature, 550(7676):354-359, 2017.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556,2014.

Stich, S. U. Local sgd converges fast and communicates
little. arXiv preprint arXiv:1805.09767,2018.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified
sgd with memory. In Advances in Neural Information
Processing Systems, pp. 4447-4458, 2018.

Su, H. and Chen, H. Experiments on parallel training
of deep neural network using model averaging. arXiv
preprint arXiv:1507.01239,2015.

Wang, J. and Joshi, G. Adaptive communication strate-
gies to achieve the best error-runtime trade-off in local-
update sgd. arXiv preprint arXiv:1810.08313,2018a.

Wang, J. and Joshi, G. Cooperative sgd: A
unified framework for the design and analysis of
communication-efficient sgd algorithms. arXiv preprint
arXiv:1808.07576,2018b.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient spar-
sification for communication-efficient distributed opti-
mization. In Advances in Neural Information Processing

Systems, pp. 1299—1309, 2018.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R. R, and Le, Q. V. Xlnet: Generalized autoregressive
pretraining for language understanding. In Advances in
neural information processing systems, pp. 5754-5764,
2019.

Ying, Y., Wen, L., and Lyu, S. Stochastic online auc maxi-
mization. In Advances in Neural Information Processing
Systems, pp. 451-459,2016.

Yu, H.,, Jin, R., and Yang, S. On the linear speedup
analysis of communication efficient momentum sgd for
distributed non-convex optimization. arXiv preprint
arXiv:1905.03817,2019a.

Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd with
faster convergence and less communication: Demystify-
ing why model averaging works for deep learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 5693-5700, 2019b.

Yuan, Z., Yan, Y., Jin, R., and Yang, T. Stagewise train-
ing accelerates convergence of testing error over SGD.
In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pp. 2604-2614,2019.

Zhang, Y., Duchi, J. C., and Wainwright, M. .
Communication-efficient algorithms for statistical opti-
mization. The Journal of Machine Learning Research,
14(1):3321-3363,2013.

Zhao, P, Jin, R., Yang, T., and Hoi, S. C. Online auc max-
imization. In Proceedings of the 28th international con-
ference on machine learning (ICML-11), pp. 233-240,
2011.

Zhou, F. and Cong, G. On the convergence properties
of a k-step averaging stochastic gradient descent al-
gorithm for nonconvex optimization. arXiv preprint
arXiv:1708.01012,2017.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Par-
allelized stochastic gradient descent. In Advances in
neural information processing systems, pp. 2595-2603,
2010.

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

A. Proof of Theorem 1

|[v — vs_1]|?. We can see that ¢(v) is convex and smooth since v < 1/Ly. The

Proof. Define ¢5(v) = ¢(v) + 5
smooth coefficient of ¢, is f)v = Ly + 1/v. According to Theorem 2.1.5 of (Nesterov, 2004), we have
IVes(va)l* < 2Lu(s(vs) = 65(v5,)- ®)
Applying Lemma 2, we have
* 2 * 112 1 2712 p2 5(2034‘303)
Es 1]¢s(vs) — ¢S(V¢s)] < 15T s [Ve—1 — Ve |7+ noTs (ag—1 —a*(v)) + Hn I;B"Ir,~1 + oK .
~ 5% hwaad e,
Denote Xlfwn = (le’ . ’an)’ ylfm = (y s Ym) and fk(xl msr Y1:m) = IZIm— - Exk [h(WS,Xk)|y] If
’ E Hyk:y
i=1 K3
¥)y]. Noting 0 < h(w;x) < 1, we

Sl > 0, then =1
> I

i=1"yk=y
i=1 ViV
have Var(h(w;x*)|y) < 52 < 1. Then we know that
Flok k 2,k 62
Exlf, R [(f(xl:msvylzms)) |y1:ms] < st Ix H(ZZn:sl]Iy’?:y>0) +1- H(ZZn:sl]ka:yzo)
T 1 1 ©)
Iy, >0
< + H(st I _0).
N Zznsl Hyk—y ==y
Hence,
sfl[fk(xlle:msvyllczms)] = Eyims |:Ex)1€;m [(fk(xlf:7rstyf:ms))2|yf:m3]:|
H@;”Sln >0 1 X @)
<FE I~ms o < — 1—Pr(y; = s
= YT, > }ka_y + Lisilpo, =0 = msPr(yk =y) +(1y =)
Denote
K
We; X)k h(ws; I
oe(vs)—argmava57 —1ZE|:) e () k1:|
b1 -p p
X (8)
1
= =2 [B [pwax) = —1] - B [nwaxt) 't =1]]
K
Therefore,
1 K Z h(W5 17XZ)]I k771 K 1
sm1l(as—1 — a”(vem))?] = B — ? > h(weorixt)ly = —
k:l Z I, P k=1 i
ms—1 12
K Ko (W x)Le,
1 i=1 !
Sl =] < 3
K= k=1 ; Le_,
2 2(1 — Pr(y = _1))m371 2m
< 1-P 1 s—1
o m = B . (1= Pyt = 1))
2 2(1 — Pr(y; = 1))™=-1 k 2m
1= Pr(yf = 1))2met
+ e =T : (1 Pr(yt = 1))
2 3p7ns,1 3(1 _ p)'ms,l (1 3p7ns 1)
< + T <2
~ Kms—1p(1 —p) K K - Kms_1p(1—p) K
<9 (1 n C) 2(1+0C)
- Kms_1p(1—p) Kms—1) =~ Kms_1p(1—p)’

(C)]

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

1

~Tn(1/p -~

where C' = ?’2’1“71/;) and p = max(p, 1 — p).

Since h(w;x) is G,-Lipschitz, E[h(w,x)|y = —1] — E[h(w,x)|y = 1] is 2Gp-Lipschitz. It follows that

Es q[(as—1 — a*(VS))2] =Es q[(as—1 —a"(ve1) +a"(veo1) — O‘*(VS))2]

< By 2001 — 0" (ve 1) + 20" (ve1) — 0" (va))?]
= Es—l[2(a5—1 - a*(VS))Q]

+ 2

K
1
7o [Esl[mwsl; xb) g = 1] = By [h(woo13xb)]y
k=1

2(1+0C) 9 9
S g G Eellve = vilP)

(10
Since mg_q > M%, then we have
2||veor = Vi [+8GLE[[Vs—1 — Vill] ny0? 15 (205 +302)
Elops(vs) — s (vi)] < : S7o 4 Hp?I2B2T Is\%Pv T 27a)
[6s(vs) = &s(v5,)] < 0T + o PHNLIB e+ -
2lve_1 — Vi |IP +8G2E|||vs_1 — Vs s (02 + o2
_ 2vecs = v, [P+ 8GR E| Bl 4 g, o 2ot o)
nsTs K
We define I, = 1//Kns = le/% exp(c(S;I)). Applying this and (11) to (5), we get
. [2][velr —VE |2+ 8G2E[||[vs_1 — v 2 2 2
T] = 2| ALl SR Yo gy 228
Nsds
12
o [V SV PASGREIN e =l e o]
S nT. T K]
Taking v = ﬁ, then Ly = 3Ly. Note that ¢s(v) is (y~! — Ly)-strongly convex, we have
% Lv *)12
d)s(vsfl) > ¢5(V¢S) + 7”"571 — Vg, (13)
Plugging (13) into (11), we get
Es 1[p(vs) + Ly|vs — stlHQ]
2([ve—1 — VZ II* + SG%ES—I[”VS—I —v,|?] 2 2ns(02 + 02)
< < * s H 2[/ B2 s\Yv [e%
> d) (VQSS) + nsTs + Al + K
L, . (14)
< ¢s(vs—1) - 7”"5—1 - V¢SH2+
2[|vs—1 — V:ﬁ II? + SG}%ES—I[”VS—I — %] 2 2ns(02 + 02)
s H 2[/ B2 s\Yv [e% .
T + Hn 57+ - K
Noting 75 Ts Ly = max(8,8G%) and ¢s(vs—1) = ¢(vs_1), we rearrange terms and get
2l|lvs_y — v¥ |24+ 8G2Es_1[||vs_1 — vsl|? 2 2 2
IVa-1 = v, né: lver = Vel _ e,) = B (v + HR2I B + 7”5(”;; %) (s)

Combining (12) and (15), we get

2 2
Eerl V.| < 2Lu[o(vinn) - Eocilotv)] + 232 4 %))

ot o) (16)
=6Ly |:¢(Vs—l) — Bo1[6(v,)] + 2HR I, B + w}'

y* =1]] = [Eca[h(we; x)|y* = —1] — Es_1[h(wg; xF)|y"

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Taking expectation on both sides over all randomness until v_; is generated and by tower property, we have

E|[Vés(vs)|* < 6Ly (E[¢(Vsl) = 6(vy)] = Blo(vs) — ¢(vy)] + 2Hn2T ;B + %

Since ¢(v) is Ly-smooth and hence is L. -weakly convex, we have

B(va1) 2 9v) +{VO(¥a), Vot = V) = D lves v

= 6(va) + (VO(va) + 2Lu(Vs = Vo 1), Vot = Va) F 5 Lullve s = v,

= 6(v.) + (V65(v2), vart = Vo) + S Lullvas = vl (18)
= 6(v.) - %ws(vs), Vou(v.) = Vo(v.) + 5 V6u(v.) - Vorv.) P

= 6(v.) = 5900l = 1= (Vau(v.). Vo(v)) + 5= [V(v.)|

Rearranging terms, it yields

¢(Vs) —¢(vs1) < IIszﬁs(Vs)ll2 + —<V¢S(Vs) Vo(vs)) — %HW)(VS)HQ

- 8L 4Ly
3
<5 ||V<zﬁs(vs)||2 (I\V¢S(VS)I\Q+I\V¢(VS)II) — g IVeVol?
v 19)
o 2_ - 2
— IVl 4LVHV¢(VS)H
V6. (vo)ll? = 5= (6(vs) = 6(v3)
= 4L ’ 2Ly " ¢
Define A; = ¢(v;) — ¢(v}). Combining (17) and (19), we get
2 2
Ay~ Av] < 2B — Ay 4 3mr?p 4 SO) i (20)
2 K 2L
Therefore,
5 I 5 2712 2 61s(0g +02)
-+ <= _ —v 21
Using ¢ = w/Ly 4q defined in the theorem
5+un/Ly 4
5L 2L, 2p2 6ns(02 + 02)
ElAs] € 7—— 5Lvtp E[As—1] + 5LV+M[3H7751 B %
2 2
=(1-¢) [E[Asﬂ + % <3Hn§1’§32 + 76"5(”;{+ “a))]
6HB? <~ 5 C12(02 4 02) & . (22)
S 2 S+1— v a S+1—
< (1= BlAg) + 2o Y 11— 1 4 ST LIl (1 - S
Jj=1 Jj=1
g 6HB2 & 9 /2 S+l 12(02 +02) 5 S41—j
= (1= 0)*BlAg] + — > i1 -o J+Tznj(1—c) Y

Jj=1 Jj=1

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

We then have

E[As] < (1 ¢)SE[Ao] + (GHB y Blovto)Zm

S+1 —J
5K
6H B2 12(0 +a
< exp(—cS)Ap + (e +) 2777 exp(—c(S+1-17)) (23)
HB?> 12
= exp(—cS)Ap + (6 =t (Uv5+ GQ)) n0S exp(—cS).

To achieve F[Ag] < e, it suffices to make

exp(—cS)Ag < €/2

(24)
and
<6H5B2 + 12(03;_ ai)) 1S exp(—cS) < ¢/2. (25)
So, it suffices to make
§>ct Inax{log (M) log S + log [27670 6HB” + 1§(U * %)} } (26)
Taking summation of iteration over s = 1, ..., .S, we have the total iteration complexity as
T— iTs < max{8,8G3 } exp(cS) — 1 < max{8,8G3} 5Ly + p exp(cS)
ot LynoK exp(c) -1 LynoK p 7
oo M) oo)

To analyze the total communication complexity, we will analyze two cases: (1) # >15(2)

1
K\/ﬁo -

K\/_ (1, K\l/n_o exp((551))) = K\/_ ex p(c(s 1)) forany s > 1.
The total number of communications:

XS: Ts Z max(8,8G%) exp <c(s - 1)) _ max(8,8G7) exp(cS/2) — 1

Lvné/z 2 Lvﬂé/Q exp(c/2) —1

(28)
5 (280/9)2 (SOHB? +12(03 +2))'/2\ _ 5 (_A)° Ly?
- max 1/2 1/2 - 1/27 ,3/2.1/2
[I p(noe)t/? pd/2e
2) If W < 1, then I, = 1 for s < [2c'log(K/mo)+1] = Si and I, = L
2(5+u/Lv)

s = Kmexp(sgl) for s >
S) Yog(K (/1) + 1.
w/Ly

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Obviously, 51 < %/L) log(K /no) + 2. The number of iterations from s = 1 to Sy is

S1 S1
max{8, 8G?}
SX:TS = Z LK exp(c(s — 1))

s=1
~ max{8,8G}} exp(cS1) — 1
T T E eplo) 1
29)
_;max{8,8G7} (
<c 7770LVK exp (2log(K\/mo) + 2¢)

_ymax{8,8G7} 2u/ Ly
= 7‘[{ _—
¢ T IVKE PN 5 /Ly

< c 'max{8,8G?} K exp (2).

Thus, the total number of communications is

5, 5.1
DL+ D T
s=1 s=S1+1
5
8,8G?) s—1 u/L
= ¢ 'max{8,8G7} K exp (2) + Z max(8, 8G}) exp (I
’ 172
s=51+1 Lvﬁo/ 2 54 p/ly
s
1 5 max(8,8G3) s—1 p/Ly
< ¢ 'max{8,8G;} K exp (2) + Z i exp 2 5+ /L (30)

Ly
max(8, 8G2) exp(5 5i{¢/Lv) -1

1/2 Ly
Lyng/ exp(ﬂﬁﬁ)) -1

co K, A& K L7
AV e Per2t o et))

B. Proof of Lemma 1

< ¢ ' max{8,8G7} K exp (2) +

To prove Lemma 1, we need the following Lemma 7 and Lemma 8 to show that the trajectories of «, a and b are constrained
in closed sets in Algorithm 2.

Lemma 7 Suppose Assumption (1) holds and n < m. Running Algorithm 2 with the input given by Algorithm 1, we

max{p,(1-p)}

have || < o =p)

for any iteration t and any machine k.

Proof. Firstly, we need to show that the input for any call of Algorithm (2) satisfies |ap| < %. If Algorithm

2 is called by Algorithm 1 for the first time, we know |ag| = 0 < W Otherwise, by the update of alpha, in

Algorithm (1) (lines 4-7), we know that the input for Algorithm (2) satisfies |ag| < 2 < % since h(w;x"*) €
[0, 1] by Assumption 1(iv).

Next, we will show by induction that |a¥| < % for any iteration ¢ and any machine % in Algorithm 2. Obviously,
laf| <2< w for any k.

Assume |af| < W for any k.

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

(1) If t + 1 mod I # 0, then we have

of +n(2(ph(wi; x) =1 — (1 — p)h(wy;x)[,—1)) — 2p(1 — p)ay)

|0‘f+1| =

< ‘(1 —2np(1 —p))of | + ‘%(ph(Wf; x)[y=—1j — (1 — p)h(w}; X)H[y—l])‘

p)) max{p, (1 — p)}

< (1—=2np(1 — + 2nmax{p, (1 —p (31
(1= 2p(i {p. (1= p)}
max{p, (1 —p)}
=1 =2np(1 = p) +2np(1 = p))—————<—
(1~ 2mp(1 —p) + 20p(1 —p)) =2
_ max{p,(1-p)}
p(1=p)

(2)If t + 1 mod I = 0, then by same analysis as above, we know that |af] < % before being averaged across
machines. Therefore, after being averaged across machines, it still holds that |/] < %.

Therefore, |af | < w holds for any iteration ¢ and any machine & at any call of Algorithm (2). [J

Lemma 8 Suppose Assumption (1) (1) holds and n < min(s=— Running Algorithm 2 with the input given by

1
2(1 p)’ 2p)
Algorithm (1), we have that |a¥| < 1 and |b¥| < 1 for any iteration t and any machine k.

Proof. At the first call of Algorithm (2), the input satisfies |ag| < 1 and |bo| < 1. Thus |af| < 1 and [bf| < 1 for any
machine k.

Assume |af| < 1 and |[b¥| < 1. Then:
(1)t + 1 mod I # 0, then we have

laf| = #aﬁl"'#ao— nnTv Fie(Vi_1, af_1,2¢1)
= |t e+ 0 p) (o xk) —af)
= |0 et (= 20—)y 21— P e o)
<[] | et 20 | |20 = bt e
< s (2 p) + 21—)
=1

(2)Ift+1mod I = 0, then by the same analysis as above, we have that |a '+1| < 1 before being averaged across machines.
Therefore, after being averaged across machines, it still holds that |af 1 | <1.

Thus, we can see that |af| < 1 holds for any iteration ¢ and any machine in this call of Algorithm 2. Therefore, the output
of the stage also has |a| < 1.

Then we know that in the next call of Algorithm (2), the input satisfies |ag| < 1, by the same proof, we can see that |af| < 1
holds for any iteration ¢ and any machine k in any call of Algorithm (2). With the same techniques, we can prove that |bY|
holds for any iteration ¢ and any machine & in any call of Algorithm (2). O

With the above lemmas, we are ready to prove Lemma 1 and derive the claimed constants.

By definition of F'(v, a; z) and noting that v = (w, a, b), we have

VoFi(v,;2) = VW Fr(v,;2)", Vo Fi (v, 0;2), Vi Fi (v, o 2)) 7. (33)

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Addressing each of the three terms on RHS, it follows that
VwFi(v,a;z) = {2(1 —p)(h(w;x") —a) —2(1 +a)(1 — p)] Vh(w;xk)ﬂ[ykzl]

n [2p<h<w; x4) — B) +2(1 + a)p] Vh(w;x*) Ty,

VoFi(v,;2) = —2(1 — p)(h(w; 2") — a)lyr—1j,
VyFr(v,;2) = —2p(h(w;x) —b).

Since [h(w;x*)| € [0,1], [Vh(w;x")|| < Gy, |af < 22212} jq] < T and b < 1, we have

IVwFi(v,0;2)| < [12(1 = p)(h(w;x*) — a) = 2(1+ a)(1 = p)[|Gh + [[2p(h(w; x*) — b) + 2(1 + a)p|| G},

< |6 + 2al(1 — p)Gy + |6 + 2a|pGh

[VaFr(v,a;2)|| < 4(1 - p),

(Vo Fi(v,c;2)| < 4p.

Thus,

IV F(v,0;2) 1> = Vo Fi (v, 0 2) |* + [V Fi (v, a52) |2 + [Vo Fi(v, a5 2) |2
< (6 T wf G% +16(1 — p)* + 16p?
= p(1—p) '

[VaFr(v,a;2)||> = [|2ph(w; x*) L1 — 2(1 — p)h(w; x")[,i—; — 2p(1 — p)a|?
< (2p+2(1 —p) +4max{p,1—p})® = (2 + 4max{p, 1 — p})>.

2
Thus, B2 = (6 + %) G2 +16(1 — p)? + 16p and B2 = (2 + dmax{p,1 — p})2.
It follow that

Vo fu(v,a)| = |E[VaFi(v,a;2")]| < By.

Therefore,

E(|Vyfu(v,a) = Vo Fi(v,0;2")|°] < 2]V fi(v, @) + 2| B[V Fi (v, o5 2")] %] < 453,

Similarly,

|vafk(W,a,b,Oé)| = |E[VQFk(W7aabva;Zk)]| < B,.

Therefore,

E([Vafr(v,a) = VaFi(v,a;2°) %] < 2[Vafu(v,a)]* + 2B[Fi(v, a;2")]] < 4B3.

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Thus, 02 = 4B2 and 02 = 4B2.

Now, it remains to derive the constant Lo such that ||Vy Fj (v, a;z2) — Vy Fi(va, a;2)|| < La|[vi — va|.
By (34), we get

IVwEFi(vi,a;2) — VwFy(ve, a;2)||
= | |20 = motwsi) = 02) = 200+ @)1 =)| T Ty + 20003 = 1) 201+)| Vs a iy
- [2(1) (h(waix) — az) — 21 + @)1 —p>] Vh(was X)L o) [2p<h<vv2; x) — b2) +2(1 1 a)p] wa;x’“)ﬂ[yk:,u] H

=1{|2(1 —p) {h(wl;xk)Vh(wl; x"*) — h(wa; xk)Vh(wQ;xk)] Ipyr—1) +2p {h(wl;xk)Vh(wl; x"*) — h(wa; xk)Vh(wz;xk)] I

— (2(1 + @)1 = p)(Vh(w1;x") = Vh(wa; x*)ye_y) + (2(1 + a)p) (Vh(wW1;x") = Vh(wa; x*) ey

—2(1 — p)(a1 Vh(wi; x") — anh(wz;xk))]ka:1 — 2p(b1 Vh(w1;x") — bth(Wg;xk))]I[yk:q]

< 2(1 = p)||h(w1;x")Vh(w1;x*) — h(wa; x")Vh(wa; x*)|| + 2p[(w13 x*)Vh(wi; x") — h(wa2; x*) Vh(w2; x")|
11201 + @) (1 = p) [VA(w1;x*) — VA(wa; x°)[| + [|2(1 + a)p|| [VA(W1; x*) — Vh(wa; x")||
+2(1 = p)lar Vh(w1; x*) — aa Vh(wa; x™) || + 2p||b1 VA(w1; x*) — baVh(wa; x")||.

(44)
Denoting I'y (w; x*) = h(w; x*)Vh(w;x"),
VL1 (w:xP)|| = [[VA(w; x*)VA(w; x)T + h(w; x*)V2h(w; x")||
< [IVA(w; x*)Vh(w; x)T ||+ [|h(w; x*) V2 h(w; x")|| (45)
< G? + L.
Thus, [[T1(w1;x*) = Ty(wa;x*)|| = [[a(wis X)W (wisx*F) — h(wa; x*)h/ (wo; x*)|| < (G}, + Lp)[[w1 — w2 Define

To(w,a; xF) = aVh(w; x"*). By Lemma 8 and Assumption 1, we have

Vw.ala(w,a;x%) < || Vo Ta(w, a;2%)|| + || Vala2(w, a; 2°)|| = [|aVZh(w; x*)|| 4+ [|[Vh(w; x")|| < Ly + Gh. (46)

Therefore,

IDaw1,a15%x") —Tawa,a2:x")| = [|a1Vh(w1:x*) — asVh(waix")| < (L + GV w1 —wa| 2 +[|a1 —az||. (47)

Similarly, we can prove that

161 VR(wW1;x") = baVh(wo; xF)[| < (L + Gr)V/[[wi — w22 + [|b1 — o2 (48)

Then plugging (47), (48) and Assumption 1 into (44), we have
HVWF]C(VL (& Z) - vWFk(VQa & Z)”
< 2(Gh + Lp)||wi — w2 +2[1 + a|Gp[|wi — wa||
+ (L + Gu)VIl[wi — w2 + [lar — a2 + (Ln + Gr)V/ [w1 — wa| |2+ [|by — b2

< (2(G} + Lp) + 21+)|Gh + 2Ln + 2G)V/[[W1 — w22 + [lar — az[[? + [[b1 — b2 v
< (2Gi + 4Ly + <4+ w) Gh) [vi — val|.
p(1—p)
By (34), we also have
IVaFi(vi, a52) — VaFi (v, 2)[|* < 4(1 = p)* (| (w13 x*) = h(wa; x")|* + [|ar — az2?) 50)

<A1 = pP*(GRlwr = wall* + llar — az]|* + [[br = baf|*) < 4(1 = p)*(G}, + D[va — v2%,

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
and

[VoFk(vi, a;z) — Vo Fr(va, a;z)||? < 4(1 — p)?(||h(wi; xF)

— h(wa; x5)|2 4 [[by — ba?)
<4(1—p)*(Gr w1 —

(51
wal? + [lar — az|* + [|br — b2[|*) < 4(1 — p)* (G}, +1)[lv1 — va*.

HVVF]C(VLO‘;Z) - vVFk(V27O[;Z)H2 = ||VWFk(V17a;Z) - VWFk(V27O[;Z)|‘2

+ | VaFi(vi,052) — Vo Fi(va, 5 2)[|* + | Vo Fr(vi, a;2) — Vo Fr (v, a;2) |
2 1-—
§<Gi+Lh+4+—maX{p’ r}

p(1—p) 8(1 _p)Q(Gi + 1)> [vi — V2||2-
(52)

2 2max{p,1—p} 2 1/2
Thus, we get Ly = (Gh+Lh+4—|— #8(1— p)? (Gh—l-l)) .

C. Proof of Lemma 2

Proof. Plugging Lemma 4 and Lemma 5 into Lemma 3, we get

v(®) V()
T
1 Ly +3G2 /e 1\, w2, (La+3G3/Ly 1\,
<72 (f—% R R e T
C1

1 a .~ 1 o _ . 2L 1 _ " 1 2L~ _ .

gt)@@ - (5 -) @@t (2 g e - il - (g + 2) e il
Ca Cs
1 - -

Cy

3G2 3L2 1 &
ﬂ) Z”Vt l—Vt 1” +<)Kkzat 1—at1

Cs
2

2
Vi1, Qt—13%¢— 1

K
Zv fe(Visa, afa) = Ve Fi(viy, af 15 2; 2
k:

Z Vt 170% 1) VaFk(: £ £)

Vi1, O¢—13%¢—1

Ce

K K
1 : : c A * : : 3 ~ ~
(e ST o) SR st e)+ e DT)i ot ot a0)|
k=1 k=1

Co

Cr

Cg

(53)

Since n < 1(1(111(1(LV+3G2 T La+3é¥2/Lv), thus in the RHS of (53), C; can be cancelled. C5, C'5 and Cy will be handled
by telescoping sum. C5 can be bounded by Lemma 6.

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

|

af 1) = VeFu(Viy,af ;25)]

Taking expectation over Cj,

K
1
I7a Z[vak(vitly affl) - Vka(foly ar_i; Zf—l)]

k=1

| |

(54)
=E s (vavfk (Vo1 af1) = Vo Fr(vioy, af_y; 7))
k=1

+QZ Z <vai(Vi71704i71) — VvE(Vio, b 1321 1), Vo f5(Vims ad_y) = Vv (v, ai1;211)>>]

i=1 j=i+1

< M9
- K

The last inequality holds because ||Vyfi(VF i,af 1) — VyFu(vi i, af ;28)2 < o2 for any k and
E vafi(vifp aj_y) = VoFi(vii af 1325 _1), Vo fi(Vii g 1) = Ve Ej(Vi_g, o _y; Z‘Z—l)ﬂ = 0 forany i # j
as each machine draws data independently. Similarly, we take expectation over C7 and have

3noa

X 2
3
E [777 < kzzl[vafk(vffuafﬂ) - VaFk(thO‘fl;Zfl)]) } < oK (55)

[=

K
Note E[<% k;[vvfk(vf,l, af)= VFu(vE ok 2k)]V — V;;JH =0and
K

K
k=1

taking expectation.

E [<—i SN Vafe(VE af) — Fe(vE o 1528)] a1 — dt> } = 0. Therefore, Cs and Cy will diminish after

Asn < W we have L, < 1 Plugglng (54) and (55) into (53), and taking expectation, it yields

Blo) - v < B 1 (5 + i) 90 =il + 7 (50 - 52) (a0 - @@y + %(&0 o @)
T

3 2 21 3
1 3G | 1 & 3G, S
+T e) Z”Vt 1- Vt 1||2 T <) ZHat—l—af—lHQ
t=1 =1 k=1
1 o2 1 <= 302
tTL R TLOK }
1 6G2 6G% 6L2 n(202 + 302)
< = o2 . R ()2 v 6Lv [e% [e% 2I2B2]I v [e%
< [vo — vy lI” + T (g — ™ (V)" + < o + + T, + e n I>1+ ok

where we use Lemma 6, vo = Vo, ag = &g and B? = max{B2, B2} in the last inequality. [J

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

D. Proof of Lemma 3

Proof. Define a* (V) = arg max f(v,a) and & = % f: % ak.
$(¥) — min é(v) = max [f<v @)+ 519 = volP| = minmax [7(v.e) + 5V - ol

L.
—max{ Vi,)+%|vw—v0|2}
(56)

IN
L —
=
<
Q

*
|
?
I
<
=

* o~ 1 «
2:| - |:f(V¢,a)+ %Hvlb —V0||2]

where the last inequality uses Jensen’s inequality and the fact that f (v,) + % ||[v — vol|? is convex w.r.t. v and concave
w.r.t. a.

By L -weakly convexity of f(-) w.r.t. v, we have

Ly, _ . . -
fVi-1, Q1) + (Vo f(Vie1, Ge-1), vy, — V1) — 7||Vt—1 —vill? < f(vy, 1), (57)
and by L -smoothness of f(-) w.r.t. v, we have
- _ . _ Wiy - Ly,_ _
Fe,07(9)) < f(Ve-1,07(9)) + (Vv f(Vi-1,07(9)), V2 = V1) + 192 — via?
- _ Wiy Ly, _
= f(Vi—1,a" (V) + (Vv f(Vi-1,0"(V)), Ve — V1) + 7||Vt —vi_1|?
+ (Vo f(Vic1,@—1), Ve = Vie1) — (Vo f(Vim1, 1), Ve — Vi—1)
- _ _ o Ly,_ _
= f(‘_’t—la a*(v)) + <va(Vt—1, Oét—l), Vi — Vt—1> + 7”% - Vt—1H2
+ (Vo f(Vic1,0"(V)) = Vo f(Vio1,@-1), Ve — Vi) (58)
(@) . I Ly,
< f(Vim1, " (V) + (Vo f(Vem1, @p—1), Ve — Vi) + 7”% — Vt—1||2
+ Galti—1 — " (V)|[[Ve — Vi1

(b) ~ B B B B Ly,
< f(Vim1, (V) + (Vo f(Vie1, Q1) Ve — V1) + 7”"1& - thlHQ

3G2
gl =)P+ g v = v,

where (a) holds because we know that V f(+) is G, = 2 max{p, 1 — p}-Lipshitz w.r.t. & by the definition of f(-), and (b)
holds by Young’s inequality.

By —-strong convexity of 5- SV — vo||? w.r.t. v, we have
1, 1, . Lo Loy
%HW —vol*+ ;<Vt = Vo0, Vy — Vi) + %HW —vif* < %Hvlp - vol%. (59)
Adding (57), (58), (59), and rearranging terms, we have

1 1
F(-1, @) + f(91,07 (V) + -V = vol* — 3 Ve~ vo[?

* = - * (= — = ¥ LV+3G2¢ @ - - Vil *
<f(vy, @—1) + f(Vie1, 0" (V) + (Vo [(Vio1, Qt—1), Ve — Vi) + f/u?fﬂvt —vea|?+ 7”th1 - VwH?

o - 1 1
+ %(dt—l - O(*(V)) - Z”VZJ — VtH2 + ;<‘_’t — Vo, V¢ — V:;)

(60)

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

By definition, we know that f(-) is p := 2p(1 — p)-strong concavity w.r.t. « (—f(+) is p,-strong convexity w.r.t. «).
Thus, we have

- Ha

—f(Vi1,011) = Vaf (Vi a0) (@ (¥) — @) + 7(04*(\7) — ;1) < —f(Vie1,0*(¥)) (61)
By definition, we know that f(-) is smooth in « (with coefficient L,, := 2p(1 — p)), we get

* = _ _ La _ _
= f(vy, o) < —f(vy, a-1) — (Vaf(vy, @-1), 0 — 1) + 7(0415 —ay1)?
Lo, _
=—f(vy,a-1) = (Vaf(vy, 1), 0 — ap-1) + 7(0415 —a1)?
—(Vaf(Vicrt,ap-1), 00 — 1) + (Vaf(Vic1, u1), 0 — 1)

(a) . B B B B L., B . B B
< —fvi, 1) = (Vaf(Vie1, @-1), 00 — Gy—1) + 7(0415 — 1)’ + GV, = Vi1, 0 — G|

* = = ~ = = LOt = = 2 LV = * 12 3G%/ = =~ 2
< —f(vip@—1) = (Vaf(Vie1, 1), 00 — @y—1) + 7(% — Q1) + F”Vt—l —vpll® + oL (v — a-1)7,
(62)
where (a) holds because V, f(+) is Lipshitz in o with coefficient Gy = 2max{p, 1 — p}G, by definition of f(-).
Adding (61), (62) and arranging terms, we have
- . - _ _ _ . Loy
—f(Vier,) — f(v, o) < —f(Vie1,07(V) = f(vy, qem1) = (Vaf(Vie1, Geo1), G — o (V) + 7”0% —aa?
Lv — * G2 _ « * [~ _
Ve = Vi + S = ae)? = et (¥) — @),
(63)
Adding (60) and (63), we get
e 1,
o0t @) + 5w = voll | = [1w + IV = woll?] <
(Vv f(Vie1,ae-1),vi = vy) = (Vaf(Vie1,a4-1), a0 — a*(V))
Lv+3Gi/,UJa 20— _ 2 Lv Lv _ * 12 1 * 2
TR g, v P (S)9 VP = Ve - vl (64)
Lo+3G2/Ly 5, _ o .
g Lot 3 ey, a2 - B 6, - 0 (9))°
2 3
(Vo v~ V)
— (V¢ — Vo, Vi — V).
v t 0, Vit P
Applying v = ﬁ to (64) and then plugging it into (56), we get
T
(V) — min (v Z { (Vo f(Vim1,60-1), Ve — Vi) + 2Ly (¥ — Vo, Vi — V) + (Va f(Veo1, G—1), @ (V) — ay)
L +3G2/ pa _ L, +3G%/Ly
vt 3altte g, g2 4 Lot 3 e 6, g, 2
2 2
2Ly X o .
+ 1 = Vi = Lol = v I = B @ — o (@) O
E. Proof of Lemma 4
Proof. According to the update rule of v and taking v = 57— L , we have

1
2Ly (v —vo) = =V Fi(Viy,af 12) — 5(vf - Vi) (65)

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Taking average over K machines, we have

K
_ 1 1,
2Ly (v — vg) = % ;V‘,Fk(vil,afﬁl;zﬁl) — ;(vt —Vio1). (66)
It follows that
(Vo f(Vie1,@-1), Ve = vy,) + 2Ly (Ve — Vo, Ve — V)
1 & 1« 1
= <? ;vvfk(‘_’t—luat—l)u‘_’t — V;’L> — <? ;vka(Vt—laaf_l;Zf_l)a‘_’t - Vi;}> + ;<_’t —Vi—1,V¢ — pr)
1 & _ _ k
< Ve (Vo fr(Vi1,00-1) = Vo fe(Vie1, a5_1)], Ve — vy, @
k=1
K
1 _ _ *
+ <E Z[vvfk(vt—laaffl) - vvfk(vf—la aitl)]a Vi — V¢> @
k=1
1K
+ <E Z[Vka(Vf—lao‘f—l) = VFg(vi-1, af—l;zf—l)]a Vi — V;Z> ©)

1 _ N _ _ _ "
+ 2_77(”VH = vill? = 19em1 = %l = 9 = Vi II?).
(67)
Then we will bound (1), 2) and (3) separately,
2
(@ 3 S k 2
D < 51 Zv Fe(Vio1,6u—1) = Vo fu(Vim, af)] +—||vt—vw|\

(b) K _ k 2 Lv — * (12
< L Z: Volk(Vi—1,00-1) = Vo fe(Ve—1, 04 _1) || +?||Vt_V¢H (68)
(© 3G2 1 <~ Ly, o .
I L R L |2

where (a) follows from Young’s inequality and (b) follows from Jensen’s inequality. (c) holds because Vy fi(v, @) is
Lipschitz in a with coefficient G, = 2max(p, 1 — p) for any v by definition of fj(-). By similar techniques, we have

K
3 1 _ Ly, _ *
@< K Z [V fi(Viet, af—l) - vak(Vf—laaf—l)HQ + ?Hvt - Vw”2
V7 k=1
K (69)
3Ly 1 _ Ly «
S5 Do lVe =i+ < Ve =il
k=1
X T
Let v; = argmin (% > va(vfl,afl)) v+ ||v —vi1|*+ Hv — vo||?. Then we have
v k=1

vt—vt=%<v FOVF ek) Zv FeVF ok ik 1)> (70)

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Hence we get

K
1 _ .
Y A)
k=1
1 K
+ <? Z[vak(vitu 04?71) - Vka(qua 04571; Zitl)]v‘}t - V:L>
k=1

% 2
+ EZ vk Vt lao‘t Y Fk(Vt 1704? 17ZiC 1]
K (71)
< Z Vf 1aaz]eC) - Vka(Vf—laaf—lﬂf—l)]aW_VZZ>
K7 2
= EZ[V fk(Vt 1aaz]eC) - vka(Vf—lvaf—l;zf—l)]
k=1
1K
+ <E Z[vfk(Vf—lvO‘f—l)—Vka(Vf—laaf—ﬁZf—ﬂ]v‘A’t—V:L>
k=1
Plugging (68), (69) and (71) into (67), we get
1
<va(‘7t71765t71)7‘7t - VZ,> + ;<\7t — Vo,V — VZ’>
3G% 1 3L, 1
<5 KZnat N e i —an L=V e - 2
. 2
iz Z[vak(Vf—lv O‘f—l) - Vka(Vf—laaf—ﬁ Zf—l)] 72)
=1

K
1 - *
+ <? Z[vak(folv 04571) - vVFk(folv affﬁzfq)]a Vi — V¢>
k=1
1, . _ _ _ ‘
+ 2—n(|\VH =V = ¥emr = Ve = (|9 = v |%).0

F. Proof of Lemma 5

Proof.

(Vaf(Vic1,04-1),a" (V) — ay) =

x| =
M=

Vo fu(Ft1, Ge1), 0" (¥) — at>

E
Il
—

I
N T
==

]~

(Ve Fu(Ft1,G1-1) = Ve fu(F11, 01, 0 (¥) = at> @

Il
A

==
M=

[Vafi(¥e-1,0f 1) = Vafu(viy,af)] o (V) = @t> ©)

>
Il
—

[vafk(vitl?affl) - vafk(vfflvO‘ffl;szl)]va*({’) - 0<t> ®

E
Il
—

|

+
P U
==
]~

x| =
M=

vaFk<vf_1,af_l;zf_lxa*(v)—at> @

k=1

(73)

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

@ 3 /1 & 2
@ < ﬂ(} D [Vafe@e-1,@-1) _vafk(‘_’t—laafl)]> + NG (G — a*(v))?
« k=1
® 3 1 & N
< M—QE (Vafk(f’t—l,@t71) ~ Valk(Vio1,af 1)) + %(Oét —a*(v))? (74)
(c) 3L2 1 _
2,u/a K (at 1 at 1)2+ (at -« (v))27

where (a) follows from Young’s inequality, (b) follows from Jensen’s inequality, and (c) holds because f(v,) is smooth
in o with coefficient L, = 2p(1 — p) for any v by definition of f(-).

K 2

“ 3 Mo, s pm _
L oo TSt o) = Vsl + e -
k=
K 2
¢ iiz o, 0 1) = Vafi (v 1o)|+ B2t (3) — an)? (75)
2 K a y (-1 « t—1>"t—1 6

=1

(C> 3G2 1
< %KZ”“ =i P+ @) - an?

where (a) follows from Young’s inequality, (b) follows from Jensen’s inequality. (c) holds because V,, f. (v,) is Lipschitz
in v with coefficient Gy, = 2max(p, 1 — p)G}, by definition of f(-).

Let &y = qy—1 + Z Vo fe(vE |, af |). Then we have
K=

K
. 1
Gy — = 77<E > VaFk(viiy, ol 12) = Vafu(visy, afl)). (76)

And for the auxiliary sequence &y, we can verify that

K T
- . 1 . . 1 -
Gy = arg min (E (VaFu(vt Lok it 1) — Vafk(vf,hoz?,l))) a+ %(a — at,1)2 = A—1(a). (77)
k=1

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Since A¢—1 () is %-strongly convex, we have

(@ (¥) = @)* < Me—1(a”(9)) = Ae—1(6n)

:C

N —

M=

bl

5o (@"(¥) = @)?

T
.~ 1
(VaFi(vhralsiat) = Vaf(vinob)) o' @)+ 5

=1
K T 1
Z VaFi(Vt 17ch 1,Zf 1) — Vafk(fouaf—l))) Qp — (G — au 1)2

k:

-

K T
1 .~ - | -
<F E " VaFk Vt 1704§ 1,Z§ 1) Vafk(VithOéitl))) (Oé (V) _Oltfl) + %(Oé (V) - at71)2 (78)
1 & r 1
- (F Z(VaFk(folvafq;qu) - Vafk(fo17aff1))> (Gp — 1) — %(at — Q1)
k=1

| =

s<

k=1

K T
* ~ ~ 1
Z(VaFk(Vﬁflyafq;fol) - Vafk(fouaffl))) (@™ (V) — du—1)

wls
N|H

i

K 2
> (Vv afrizhn) = Vafi(visabn))
k=1

Hence we get

K
1 O
©® = <? Z[Vafk(vf—laaf—l) - VaFk(Vf—laaf—ﬁ zf—l)]v at — at>

K
+ <E Z[Vafk(vf—laaf—l) - Vosz(Vf—laO‘f—ﬁ Zf—1)]a o (V) — dt>

" , (79)
1
= n(E Z[vafk(vfflvaffl) - VaFk(thafl;Zfl)])
k=1
1 X
(G LTahilvt 10) = VaRu(vh b gk)L’ (®) -).
k=1
Combining (78) and (79), we get
@<3n<li[v fe(Viii,af 1) = VaFr(vi, 04 1;2 1)]>2
=79 Kk:l @ t y KLt—1 @ t y Lt—1y 4t
1\ 80
+<E > (Ve fulvior,afr) = VaPh(vioy ofsiaf). & l—at> =0
1, . . ~ 2 1, .. -
+%(a (V) — 1) 277((V) —)
(D) can be bounded as
- 1 .~ _ ./~
@ = (@ = ar1,0"(¥) = Gu) = 5= (1 = " (9))* = (@1 = @) = (& — @™ (¥))7). (81)

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Adding (74), (75), (80) and (81), we get

o L _ 3Gy 1 X 312 1)
(Vaf(Vi—1,qu-1), 07 (V) —ZHVt 1= Vi 1||2+—— (@1 —ayy)”

K
% S W ale(VErsb)~ Vo ok yz), G —ag
k=1
+ (G =" (@) = (@11 = a0 = (@ = 0" () + 52 @ — 0" ()
1 N -
+50((07(9) = 81) = (0" (¥) =). O

G. Proof of Lemma 6

Proof. If I = 1, || vk —v¥|| = 0 and |af — &¥| = 0 for any iteration ¢ and any machine & since v and « are averaged across
machines at each iteration.

We prove the case when I > 1 in the following. For any iteration ¢, there must be an iteration with index ¢, before ¢ such
thatt mod I = 0 and ¢t — o < I. Since v and « are averaged across machines at ¢y, we have v, = Vfo.

(1) For v, according to the update rule,

ny Y U
vy = —vaFk(Vfﬂaafﬁl;Zfﬁﬂ + mefl + —77_‘_7"07 (82)
and hence
{’t:——_zv Fy(Vt 1704115C 17Z1I:c 1)+ ! Vi1 + 7 vo- (83)
n+vy K 4 N+ n+
Thus,
190 = vE[| < T ||y Fi(vE 1, of 1 28) — Zv Fi(Vi_y,0f_;7i_y) 1961 — Vi |
n+ P + (84)
o
2B, + Viog —VF
e e vl

Since vy, = v} (for any k), we can see ||Vy,+1 — vE 4| < 21 By < 2By, Assuming ||V, — vE <20t -1~
to)n By, then ||, —vF|| < 2(t —to)nBy by (84). Thus, by induction, we know that for any ¢, || v, — vF|| < 2(t—to)nBy <
2nI By.. Hence proved.

(i)
af = o+ Ve Fi(vi, of 7)), (85)

and

| X
ap =1+ U ;VQFk(fol,affl;szl). (86)
Thus,
K

ay —ar| <lay —of 4|+ |VaFk(viy,af 52z) _E F(vi_y,0p 1326 4) 87)

< a1 — at—1| + 2nBa.

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Since ay, = af, (for any k), we can see that ||ay1 — of ||| < 2nBa. Assuming |1 — of ;| < 2(t — 1 — to)nBa,
then |a; — af| < 2(t — to)nB,. Thus, by induction, we know that for any ¢, ||G; — a¥|| < 2(t —to)nBa < 211 B,. Hence
proved. [

H. More Experiments

In this section, we include more experimental results. Most of the settings are the same as in the Experiments section in
the main paper, except that in Figure 10, we set I = I * 3(*~1), other than set I to be a constant. This means that a later
stage will communicate less frequently since the step size is decreased after each stage (see the first remark of Theorem 1).

Positive Ratio=50% IMAGENET Positive Ratio=50% IMAGENET Positive Ratio=50% IMAGENET Positive Ratio=50% IMAGENET

S ossif - K=t
K=16, I=1

— 3 0.80 —— K=16, =8
—— K=16, =64 —— K=16, I=64

0.75 —— K=16, 1=512 0.75 — K=16, I=512
—— K=16, 1=1024 —— K=16, 1=1024

0705 5 10 15 20 25 0705 500 1000 1500 0705 5 10 15 20 25 0.70 500 1000 1500 2000 2500 3000
Iter (*1600) Time(sec) Iter (*1600) Time(sec)
(a) Fix I, vary K (b) Fix K, vary I

Positive Ratio=50% CIFAR100

Figure 6. ImageNet, positive ratio = 50%.

Positive Ratio=50% CIFAR100 Positive Ratio=50% CIFAR100

Positive Ratio=50% CIFAR100

0.85 0.85 — 0.85 =
0.80 0.80 0.80
g 0.75 g 0.75 ,r' g 0.75 == K=
< < 1 < =16, I=1
0.70 o70f |1 0.70 —— K=16, I=8 —_
| —— K=16, I=64 —
065 0650 |f 065 — K=16, 1=512 —
1 —— K=16, 1=1024 — K=16, 1=1024
060 10 15 2 25 060535560 750 1000 1250 1500 060 5 10 15 20 25 0.60 500 1000 1500 2000 2500 3000
Iter (*1600) Time(sec) Iter (*1600) Time(sec)

(a) Fix I, vary K (b) Fix K, vary 1

Figure 7. Cifar100, positive ratio = 50%.

Positive Ratio=50% CIFAR10

Positive Ratio=50% CIFAR10

Positive Ratio=50% CIFAR10

Positive Ratio=50% CIFAR10

095 095
0.90 0.90
Soss K=1 Soss - K=1
< K=16, I=1 < K=16, I=1
0.80 -== K=1 0.80 —— K=16, I=8 0.80 —— K=16, =8
K=2, I=64 —— K=16, =64 —— K=16, I=64
0.75 K=4,1=64 0.75 —— K=16, 1=512 0.75 —— K=16, I=512
—— K=16, =64 —— K=16, 1=1024 — K=16, [=1024
0705 10 15 20 25 07075350 500 750 1000 1250 150 0705 B 10 15 20 25 0709560 1000 1500 2000 2500 3000
Iter (*1600) Time(sec) Iter (*1600) Time(sec)

(a) Fix I, vary K

(b) Fix K, vary I

Figure 8. Cifar10, positive ratio = 50%.

Positive Ratio=71% IMAGENET

Positive Ratio=71% IMAGENET

10
Iter (*1600)

1000 2000 3000 2000

Time(sec)

Figure 9. ImageNet, postive ratio=71%, K=4.

Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Positive Ratio=71% IMAGENET Positive Ratio=71% IMAGENET Positive Ratio=71% CIFAR100 Positive Ratio=71% CIFAR100
0.85 0.85
0.80 0.80
K=1 Qors Qors K=1
))
K=4, lo=1 =4 =4 K=16, lo=1
K=4, 1p=8 0.70 0.70 K=16, 1p=8
K=4, 1o=64 K=16, lp=64
K=4, 15=512 0.65 =16, 1p=512 0.65 K=16, 1o=512
K=4, 15=1024 =16, 1p=1024 K=16, 1,=1024
0705 B 10 15 20 25 0705 1000 2000 3000 4000 0605 5 0 15 20 25 06075560 1000 1500 2000 2500
Iter (*1600) Time(sec) Iter (*1600) Time(sec)
(a) ImageNet (b) Cifar100
Positive Ratio=71% CIFAR10 Positive Ratio=71% CIFAR10

0.75 —— K=16, 1p=512
—— K=16, 1p=1024
0705 5 10 15 20 25 07075560 1000 1500 2000 2500 3000
Iter (*1600) Time(sec)
(¢) Cifar10

Figure 10. I, = I3~V positive ratio = 71%.

