LeaFTL: A Learning-based Flash Translation Layer
for Solid-State Drives

Jinghan Sun Shaobo Li Yunxin Sun”
UluC UluC ETH Zurich
js39@illinois.edu shaobol2@illinois.edu yunsun@student.ethz.ch
Chao Sun Dejan Vucinic Jian Huang
Western Digital Research Western Digital Research UIuC
chao.sun@wdc.com dejan.vucinic@wdc.com jilanh@illinois.edu

ABSTRACT

In modern solid-state drives (SSDs), the indexing of flash pages is a
critical component in their storage controllers. It not only affects
the data access performance, but also determines the efficiency
of the precious in-device DRAM resource. A variety of address
mapping schemes and optimizations have been proposed. However,
most of them were developed with human-driven heuristics.

In this paper, we present a learning-based flash translation layer
(FTL), named LeaFTL, which learns the address mapping to tolerate
dynamic data access patterns via linear regression at runtime. By
grouping a large set of mapping entries into a learned segment, it
significantly reduces the memory footprint of the address mapping
table, which further benefits the data caching in SSD controllers.
LeaFTL also employs various optimization techniques, including
out-of-band metadata verification to tolerate mispredictions, opti-
mized flash allocation, and dynamic compaction of learned index
segments. We implement LeaFTL with both a validated SSD sim-
ulator and a real open-channel SSD board. Our evaluation with
various storage workloads demonstrates that LeaFTL saves the
memory consumption of the mapping table by 2.9x and improves
the storage performance by 1.4X on average, in comparison with
state-of-the-art FTL schemes.

CCS CONCEPTS

+ Hardware — External storage; « Computer systems orga-
nization — Architectures; - Computing methodologies —
Learning linear models.

KEYWORDS
Learning-Based Storage, Flash Translation Layer, Solid-State Drive

*Work done when visiting the Systems Platform Research Group at UIUC as a research
intern.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS °23, March 25-29, 2023, Vancouver, Canada

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian
Huang. 2023. LeaFTL: A Learning-based Flash Translation Layer for Solid-
State Drives. In Proceedings of Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS °23), March 25-29, 2023, Vancouver,
Canada. ACM, New York, NY, USA, 15 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION

Flash-based SSDs have become an indispensable part in modern
storage systems, as they outperform conventional hard-disk drives
(HDDs) by orders of magnitude, and their cost is close to that of
HDDs [22, 30, 51, 62]. The SSD capacity continues to boost by
increasing the number of flash channels and chips with the rapidly
shrinking process and manufacturing technology [22, 25, 41, 46].

The flash translation layer (FTL) is the core component of man-
aging flash memory in SSDs, including address translation, garbage
collection (GC), and wear leveling [20, 66]. The FTL maintains meta-
data structures for different functions such as address translation
and valid page tracking, and caches them in the in-device DRAM
(SSD DRAM) for improved performance [7, 12, 25].

Among these data structures, the address mapping table has
the largest memory footprint. In general, the address mapping
table can be categorized in three types: page-level mapping, block-
level mapping, and hybrid mapping. Modern SSDs usually use the
page-level mapping, as it offers the best performance for the flash
page lookup, and incurs minimal GC overhead, in comparison with
the other two mapping schemes [20, 66]. However, the page-level
mapping table size is large, as it stores the entry for the LPA-to-PPA
address translation for each flash page.

The address mapping table significantly affects the performance
of SSDs, as it not only determines the efficiency of indexing flash
pages, but also affects the utilization of SSD DRAM. Moreover, due
to the limitations of the cost and power budget in SSD controllers,
it is challenging for SSD vendors to scale the in-device DRAM
capacity [12, 41]. This challenge becomes even worse with the
increasing flash memory capacity in an SSD, as larger capacity
usually requires a larger address mapping table for indexing.

To improve the address mapping and translation for SSDs, vari-
ous optimization schemes have been developed [9, 25, 29, 38, 39, 66].
However, most of them were developed based on human-driven
heuristics [25], and cannot capture dynamic data access patterns
at runtime. Employing more semantic knowledge into the FTL,
such as GraphSSD [44], can improve the data indexing and address
translation, however, it is application specific and complicates the

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

Index Segment @

Index Segment @

LPA | |

A 4 \/ \4 \/ \ 2
+ 1200 [201 [203 [204 [205 |;

'

PPA ! |

'

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang

Index Segment @

N pPad

* 1 error bound

[S, 5+ L] LPA

Figure 1: An illustrative example of learning LPA-PPA mappings using piecewise linear regression in LeaFTL. It can learn
various patterns of LPA-PPA mappings with guaranteed error bound. Each learned index segment can be represented with
(S,L,K,I), where [S,S + L] denotes the interval of LPAs, K is the slope, and I is the intercept of the index segment.

management of address mappings [7], which does not scale for the
development of generic SSDs. In this work, we do not expect that
we can obtain application semantics from the host and the SSD con-
troller. Instead, we focus on utilizing simple yet effective machine
learning (ML) techniques to automate the address mapping table
management in the SSDs, with the capability of learning diverse
and dynamic data access patterns.

To this end, we propose a learning-based FTL, named LeaFTL, by
utilizing the piecewise linear regression technique to learn the LPA-
PPA mappings, and automatically exploiting the data locality of
various data access patterns at runtime. Unlike the state-of-the-art
page-level mapping, the key idea of LeaFTL is that it can learn the
correlation between a set of LPAs and their mapped PPAs, based
on which it can build a space-efficient index segment, as presented
in €)Y in Figure 1. Since the learned index segment can be simply
represented with (S, L, K, I), where [S, S + L] denotes the interval
of LPAs, K is the slope of the segment, and I is the intercept of the
segment (see the last diagram in Figure 1), each segment will take
only 8 bytes (1 byte for S and L, 2 bytes for K, and 4 bytes for I)
with our optimizations (see the details in §3). Compared to the on-
demand page-level mapping [20], the learned segment reduces the
mapping table size by a factor of m * avg(L) /8, where m is the size
(8 bytes) of each entry in the on-demand page-level mapping table,
and avg(L) is the average number of LPA-PPA mappings that can
be represented in a learned index segment, avg(L) is 20.3 according
to our study of various storage workloads.

Beyond learning contiguous LPA-PPA mappings, LeaFTL also
learns different correlation patterns, such as regular and irregular
strided data accesses as shown in @ and @, respectively. Unlike
existing indexing optimizations based on human-driven heuristics,
LeaFTL can learn more irregular patterns of LPA-PPA mappings
with guaranteed error bound, as shown in @. This enables LeaFTL
to further condense the address mapping table. Therefore, given a
limited DRAM capacity in the SSD controller, LeaFTL can maximally
utilize the DRAM caching and improve the storage performance.
For the worst case like random I/O accesses, LeaFTL will transfer
the mapping into single-point linear segments (L = 0, K = 0, and
I = PPA in Figure 1), and its memory consumption will be no more
than that of the page-level mapping.

With the learned index segments, LeaFTL may occasionally re-
turn an inaccurate PPA (i.e., address misprediction), which incurs

additional flash accesses until the correct PPA is identified. To over-
come this challenge, we develop an error-tolerant mechanism in
LeaFTL. For each flash page access, we use the reverse mapping
stored in the out-of-band (OOB) metadata of each flash page to
verify the correctness of the data access. Since the OOB usually has
64-256 bytes [20, 23], we use it to store the accurate LPAs mapped
to the neighbor PPAs. Thus, upon an address misprediction, we use
the stored reverse mappings to find the correct PPA, avoiding addi-
tional flash accesses. LeaFTL leverages the intrinsic OOB structure
to handle address mispredictions and make SSD perfectly-suited
for practical learned indexing.

Due to the intrinsic out-of-place write property of SSDs (see
§2), the learned index segments will be disrupted by writes and
GC, and the segments need to be relearned with new LPA-PPA
mappings. To tolerate these disruptions, the learned segments are
organized within multiple levels to maintain the temporal order
in a log-structured manner: the topmost level has the most recent
segments, and the lower level stores older segments. The segments
at the same level are sorted without overlapping. If the new segment
has a conflict with an existing segment, the old segment will be
moved to the lower level. Therefore, LeaFTL can always identify
the latest version of the corresponding LPA-PPA mapping in a top
level of learned index segments. LeaFTL will compact the learned
segments periodically to reduce its memory footprint.

To further maximize the efficiency of LeaFTL, we coordinate its
learning procedure with flash block allocation in the SSD. As flash
block allocation decides the distribution of mapped PPAs, LeaFTL
will allocate consecutive PPAs to contiguous LPAs at its best effort,
for increasing the possibility of learning a space-efficient index seg-
ment. Similar to existing page-level mapping [20, 23], LeaFTL stores
the learned index segments in flash blocks for recovery. Overall,
we make the following contributions:

e We present a learning-based FTL, it can learn various data access
patterns and turn them into index segments for reducing the
storage cost of the mapping table.

o We develop an error-tolerant address translation mechanism to
handle address mispredictions caused by the learned indexes,
with minimal extra flash accesses.

e We preserve the core FTL functions, and enable the coordination
between the learning procedure of the address mapping table

LeaFTL: A Learning-based Flash-Translation Layer for Solid-State Drives

SSD Controller/Firmware

Embedded

=T
@
T
e
< I
3 Processor ©
o |t =
= o} 5 I
x S %D 7
© | = Internal Bus o EM— ©
K=} o LS [T
© R N =
DRAM %
L Controller o
1 g —

Figure 2: The internal system architecture of SSDs.

with the flash block allocation and GC to maximize the efficiency
of the learned FTL.

o We manage the learned segments in an optimized log-structured
manner, and enable compaction to further improve the space
efficiency for the address mapping.

We implement LeaFTL with a validated SSD simulator Wisc-
Sim [27] and evaluate its efficiency with a variety of popular storage
workloads. We also develop a system prototype with a real 1TB
open-channel SSD to verify the functions of LeaFTL and validate
its efficiency with real data-intensive applications, such as the key-
value store and transactional database. Our evaluation with the
real SSD shows similar benefits as that of the SSD simulator imple-
mentation. We demonstrate that LeaFTL reduces the storage cost
of the address mapping in the FTL by 2.9 on average. The saved
memory space benefits the utilization of the precious SSD DRAM,
and further improves the storage performance by 1.4X on average.
We also show that LeaFTL does not affect the SSD lifetime, and its
learning procedure introduces negligible performance overhead
to the storage processor in the SSD controllers. The codebase of
LeaFTL is available at https://github.com/platformxlab/LeaFTL.

2 BACKGROUND AND MOTIVATION

Flash-Based Solid-State Drive. An SSD has three major parts
(see Figure 2): a set of flash memory packages, an SSD controller
with embedded processors, and a set of flash controllers. With the
nature of NAND Flash, when a free page is written, the page cannot
be written again until that page is erased. However, erase operation
is performed only at a block granularity. As the erase operation is
expensive, writes are issued to free flash pages erased in advance
(i.e., out-of-place write). GC will be performed to clean the stale
data. As each flash block has limited endurance, it is important for
them to age uniformly (i.e., wear leveling). SSDs have a logical-
to-physical address mapping table to index flash pages. All these
functions are managed by the FTL in the SSD firmware.

Modern SSD controllers have general-purpose embedded pro-
cessors (e.g., ARM processors). The processors help with issuing
I/O requests, translating LPAs to PPAs, and handling GC and wear-
leveling. SSDs also have limited DRAM capacities to cache the
mapping table and the application data.

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

/ | Data Structures in the FTL of Modern SSDs | \

G Address Mapping e Global Mapping e Block Validity o Page Validity
Cache (AMC) Directory (GMD) Counter (BVC) Table (PVT)

LPA PPA LPA PPA PBA |Counter| | PBA |[Bitmap

X P [w [Pz P
fFIash Memory \

\ Data Blocks Address Mapping Blocks Validity Blocksj

Figure 3: The common data structures in the FTL of SSDs.

Address Mapping Table in the FTL. The address mapping table
in FTL generally has three types: page-level mapping, block-level
mapping, and hybrid mapping. The page-level mapping enables di-
rect LPA-PPA mapping for fast lookup. However, each entry usually
takes 8 bytes (4 bytes for LPA, 4 bytes for PPA), and the entire map-
ping table requires large storage space. The block-level mapping
significantly reduces the mapping table size. However, it introduces
additional overhead for the page lookup in the flash block. The hy-
brid mapping takes advantages of both page-level and block-level
mapping. It uses log blocks to store new writes, and index them
with the page-level mapping. The log blocks will be moved into
data blocks that are indexed with block-level mapping. This incurs
significant GC overhead. Therefore, modern SSDs commonly use
the page-level mapping scheme.
Metadata Structures for Flash Management. The FTL usually
employs four metadata structures (see Figure 3): (1) the address
mapping cache (@ AMC) for caching the address mapping table
in the SSD DRAM,; (2) the global mapping directory (@ GMD) for
tracking the locations of the address mapping table pages in the
SSD; (3) the block validity counter (@ BVC) for tracking the number
of valid pages for each flash block for assisting the GC in the SSD;
and (4) the page validity table (@ PVT), which uses bitmaps to
track the valid pages in each flash block. During the GC, the FTL
will check the @ BVC to select candidate flash blocks, and migrate
their valid pages to free flash blocks. After that, it will erase these
selected flash blocks, and mark them as free blocks.
Limited DRAM Capacity in SSD Controllers. It is hard to provi-
sion large DRAM inside SSD controllers, due to their hardware con-
straints and limited budgets for power and hardware cost [12, 41, 60].
Thus, SSD controllers often use on-demand caching to maintain
the recently accessed metadata and data in the SSD DRAM.
Among all the metadata structures, the address mapping table
has the largest memory footprint. As discussed, @ AMC caches the
recently accessed mapping table entries. If a mapping entry is not
cached, the FTL will locate the corresponding address mapping ta-
ble pages stored in the flash blocks, and place the mapping entry in
the @ AMC. As we scale the SSD capacity, the DRAM challenge will
become even worse. To overcome this challenge, various optimiza-
tions on the mapping table have been proposed [9, 25, 29, 31, 38, 39]
to improve the utilization of the SSD DRAM. However, most of

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

<

a8

a8

Il] _ > IPA

Srpa L
(a) Precise Linear Approximation

<

a8

Ay

» LPA
(b) Inaccurate Linear Approximation

Figure 4: Visualization of learned index segments.

them cannot automatically capture diverse data access patterns at
runtime, leaving a large room for improvement.

3 DESIGN AND IMPLEMENTATION

To develop LeaFTL in the SSD controller, we have to overcome the
following research challenges.

o LeaFTL should be able to automatically capture diverse data
access patterns, and generate memory-efficient address mapping
(§3.1, §3.2, §3.3, and §3.4).

o LeaFTL may incur address mispredictions, which could incur
additional flash accesses. LeaFTL should be tolerant of errors and
have low misprediction penalty (§3.5).

e LeaFTL should work coordinately with other core FTL functions
that include GC and wear leveling (§3.6).

e LeaFTL should be lightweight and not incur much extra overhead
to storage operations (§3.7, §3.8 and §3.9).

3.1 Key Ideas of LeaFTL

Instead of using the space-consuming one-to-one mapping in the
page-level mapping, the key idea of LeaFTL is to exploit learning
techniques to identify various LPA-PPA mapping patterns and build
efficient learned address mapping entries. Modern SSD controllers
usually have a data buffer for grouping writes and write the large

data chunk at once for exploiting the internal flash parallelisms.

LeaFTL utilizes this data buffer to collect LPA-to-PPA mappings for
learning index segments for free, and does not introduce extra data
collection overhead (see the details in §3.3).

As shown in Figure 4 (a), the PPA of an LPA can be obtained
with the expression: PPA = f(LPA) = [K * LPA+ 1], LPA €
[SLpa,SLpa + L], where [Sipa, Sppa + L] denotes the interval (L)
of LPAs, K is the slope, and I is the intercept. As discussed in §1,
each learned index segment can be represented in 8 bytes: 1 byte for
Srpa and L, respectively; 2 bytes for K, and 4 bytes for I. The size
of Sy pa is reduced from 4 bytes to 1 byte with our optimizations
on the segment management (see §3.4).

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang

9z 100 R — - |
S

UEJDE 80 7

'g oq.: 60 -- y=0, #Segments=5540

§ a 40 y=4, #Segments=4267

& % 23 = y=8, #Segments=3718

1 2 4 8 16 32 64 128 256 512 1024 2048
Length of Learned Segments

Figure 5: Aggregated distribution of learned segments.

1B 1B 2B 4B
Segment |SLPA| L | K | i |

Type LPAs PPAs Index Segment

Accurate | [0,1,2,3] |[32,33,34,35| | 0 | 3 [1.00[32|

Approximate| [0, 1,4,5] |[64,65,66,67] | | 0 | 5 [0.56] 64 |

Figure 6: Types of learned segments in LeaFTL.

We can relax the linear regression to capture more flash access
patterns, which further reduces the learned address mapping table
size. As shown in Figure 4 (b), the linear regression can learn a
pattern with guaranteed error bound [—y, y]. As we increase y, we
can cover more flash access patterns. We applied the relaxed linear
regression with different y values to a variety of storage workloads
(see §4.1), our experimental results demonstrate that the number
of learned index segments is gradually decreased, as we increase y.
Figure 5 shows that 98.2-99.2% of the learned index segments cover
up to 128 LPA-PPA mapping entries, demonstrating the potential
advantages of the learning-based approach.

As for random access patterns, LeaFTL will transfer the learned
segments into single-point segments. And these linear segments
do not require more storage space than the page-level mapping.

3.2 Learned Index Segment

Types of Learned Index Segment. The mapping table of LeaFTL
is built with learned index segments. It has two types of segments:
accurate and approximate segments, as shown in Figure 6. Both of
them are learned with piecewise linear regression technique [64].

As for the accurate index segments, given an LPA, we can pre-
cisely get the corresponding PPA with f(LPA) = [K % LPA +I.
For example, when the LPA is 2 in Figure 6, we can directly get the
PPA value of 34 with [1.00 * 2 + 32]. In this example, the learned
segment has L = 3 and it indexes 4 LPA-PPA mappings. If L = 0,
the learned segment will become a single-point segment, the slope
K =0, and we will get its PPA with PPA = 1.

As for approximate index segments, we use the same formula
f(LPA) = [K+LPA+I] to calculate the PPA. However, the returned
PPA may not be the exact corresponding PPA. It has an error bound
[—y, y] guaranteed by the linear regression, and y is configurable.
For example, given LPA = 4 in Figure 6, the value of the PPA is
67, according to the calculation [4 * 0.56 + 64]. However, the real
PPA should be 66. We define this as address misprediction. We will

LeaFTL: A Learning-based Flash-Translation Layer for Solid-State Drives

Flash Block
e

Data Buffer 78
Flush 32

’LPA‘78‘32‘33‘76‘115‘34‘38}_—) 32

115
Learned Segments ”

?_?

(a) Unoptimized learned segments

Flash Block
—
Data Buffer 32

Flush 33

’LPA‘ 78‘32‘33‘76‘115‘34 ‘38H 34
38

Learned Segments ZZ

32 33 34 3876 78 |

(b) Optimized learned segments with sorting

Figure 7: An example of reducing the number of learned seg-
ments via exploiting the flash block allocation.

discuss how we handle the address misprediction with reduced
miss penalty in §3.5.

Size of Learned Index Segment. As discussed in §3.1, each seg-
ment can be expressed in (Sppa, L, K, I). The starting LPA will take
4 bytes. We can further reduce this size by partitioning a range of
LPAs into small groups, and each LPA group represents a certain
number of contiguous LPAs. Therefore, we can index an LPA with
its offset in a corresponding group. In LeaFTL, each group repre-
sents 256 contiguous LPAs. Thus, Sy pa can be indexed by the offset
(2% = 256) in the group, which takes only 1 byte. We use 256 as the
group size, because the length of the learned segments is usually
less than 256 (see Figure 5).

Given an LPA, we can get its offset in the group with (LPA mod
256). In LeaFTL, we set the L as 1 byte. Thus, each segment can
index 256 LPA-PPA mappings. We use a 16-bit floating point to
store the value of the slope K. And the intercept I of a segment
can be represented in 4 bytes. Therefore, in combination with Sy pa,
both accurate and approximate segments can be encoded with 8
bytes (see Figure 6), which are memory aligned.

LeaFTL uses the least significant bit of the K to indicate segment
types (0 for accurate segments, 1 for approximate segments). This
has negligible impact on the address translation accuracy, because
K € [0, 1], which will only affect the tenth digit after decimal point.

3.3 Improve the Learning Efficiency

To further reduce the number of learned segments, LeaFTL performs
optimizations to improve its learning efficiency of address mappings
by exploiting the flash block allocation in SSD controllers, as shown
in Figure 7. Flash pages are usually buffered in the SSD controller
and written to flash chips at a flash block granularity, for utilizing
the internal bandwidth and avoiding the open-block problem [6,
22,37, 48]. This allows LeaFTL to learn more space-efficient index
segments (i.e., index segments can cover more LPA-PPA mappings)
by reordering the flash pages with their LPAs in the data buffer.
As shown in Figure 7 (a), LeaFTL learns 5 index segments (78), (32,
33), (76), (115), and (34, 38) with y = 4. After sorting the pages in

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

A\ 4

..................................

Level0 || 0 63 |[100 200[[230 255|; nNon-overlapping
. ' at each level

i segments can overlap !
! across levels]

Level 1 16 127 [[206 240

Figure 8: The learned index segments are managed in a log-
structured manner in LeaFTL.

the data buffer shown in Figure 7 (b), LeaFTL generates 3 index
segments (32, 33, 34, 38), (76, 78), and (115).

To develop the optimized learned segments, LeaFTL sorts the
flash pages in ascending order of their LPAs in the data buffer (MB
by default). When pages in the data buffer is flushed to the flash
chips, their PPAs are in ascending order. This ensures a mono-
tonic address mapping between LPAs and PPAs, which reduces the
number of index segments.

3.4 Manage Learned Index Segments

Upon new data updates or GC in the SSD, the learned index seg-
ments need to be updated, due to the intrinsic property (i.e., out-of-
place update) of SSDs. Unfortunately, the direct updates to learned
index segments are expensive, since we have to relearn the in-
dex segments with new PPAs. This relearning procedure not only
consumes extra compute cycles, but also involves additional flash
accesses, since we have to access the corresponding flash pages to
obtain accurate PPAs for some of the LPAs in the index segment
being updated. For instance, for in-place update to an approximate
segment, it can incur 21 flash accesses on average when relearn-
ing. In-place update also breaks the existing LPA-to-PPA mapping
patterns, which results in 1.2X additional segments and memory
footprint, according to our experiments with various workloads.
To address this challenge, we manage the learned index segments
in a log-structured manner, as shown in Figure 8. Therefore, the
newly learned index segments will be appended to the log structure
(level 0 in Figure 8) and used to index the updated LPA-PPA map-
pings, while the existing learned segments (level 1 and lower levels
in Figure 8) can still serve address translations for LPAs whose map-
pings have not been updated. Such a structure supports concurrent
lookups as enabled in the traditional log-structured merge tree. As
we insert the newly learned index segments at the top level of the
log-structured tree, this minimizes the impact on other segments.
Log-Structured Mapping Table. The log-structured mapping ta-
ble has multiple levels to maintain the temporal order of index seg-
ments. As discussed, the topmost level has the most recent learned
index segments, and the lower level stores the older segments. For
the segments on the same level, LeaFTL ensures that they are sorted
and do not have overlapped LPAs. This is for fast location of the
corresponding learned index segments in each level. For the seg-
ments across the levels, they may have overlapped LPAs, due to the
nature of the log-structured organization. And the segments with
overlapped LPA-PPA mappings will be compacted periodically for
space reclamation (see its detailed procedure in §3.7).
Manage Two Types of Index Segments. LeaFTL manages the ac-
curate and approximate index segments in the same log-structured

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

Lookup (LPA = 105)
v LPAs

| = 1100, 101, 103, 104, 106]

Lo [100] 6 [Ki]

[102] 6 [Ko | I2 | = [102, 105, 107, 108]

(a) Approximate index segments that index overlapped LPAs.

Lookup (LPA = 105)

[102] 6 [Ko | 1o

| 100 | 101 | 103 |104 | 106 | null | 102 | 105 |107 | 108 | null | |

Conflict Resolution Buffer

(b) Resolve the conflict between approximate segments with CRB

Figure 9: A case study of conflict resolution buffer for ap-
proximate learned index segments.

mapping table, as they can be encoded in the same format. For each
accurate segment, we can directly infer its indexed LPAs with the
Srpa, K, and L, since it has a regular pattern. However, for approx-
imate index segments, we only have the knowledge of the starting
LPA and the end LPA with Sy pa + L. Its encoded LPAs cannot be
directly inferred from their metadata (Sypa, L, K, I), since they are
learned from irregular access patterns and may have mispredictions.

If two approximate segments have overlapping LPA ranges, we
could obtain inaccurate PPAs from the learned index segments.
As shown in Figure 9 (a), given an LPA with the value 105, we
will check the segment at Level 0 and may get an inaccurate PPA.
This will also affect the efficiency of the segment compaction, with
which we eliminate duplicated entries between segments.

To address this challenge, LeaFTL uses a Conflict Resolution
Buffer (CRB) for each LPA group to store the LPAs indexed by each
approximate segment. The main purpose of CRB is to help LeaFTL
check whether a given LPA belongs to one approximate segment.

The CRB is a nearly-sorted list [10] by the starting LPAs of its ap-
proximate segments. To be specific, the CRB ensures the following
properties: (1) the LPAs belong to the same approximate segment
are stored contiguously; (2) different approximate segments are
sorted by their starting LPA, and CRB uses a null byte to separate
these segments; (3) it does not have redundant LPAs, which means
an LPA will appear at most once in the CRB. This is achieved by
removing existing same LPAs when we insert new approximate
segments into the CRB.

However, if the S pa of a new approximate segment is the same
as any starting LPAs that have been stored in the CRB, LeaFTL will
update the Sypa of the old segment with the adjacent LPA. Take
Figure 9 (b) as an example, upon a new approximate segment with
Srpa = 100, we will update the Sy pa of the existing segment to 101,
and then insert the new segment into the CRB. In this case, LeaFTL
will ensure each approximate segment will have its unique Sppa.
This will facilitate the approximate LPA-PPA address translation
with high accuracy confidence.

Since CRB is nearly sorted, its insertion, deletion, and lookup
operations are fast. The CRB is also space efficient, as each LPA

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang

2 300 .
£ [Average EZ3 99 Percentile
m

Ag 200 1

3

& 100 1

2

O O

MSRY MS?‘ -Ss1Q Ms?\ Ms?\ P MR “%Y‘U Jnoog FIU- i

Figure 10: The distribution of CRB sizes for different storage
workloads, when we set y = 4 in LeaFTL.

(the offset in its corresponding LPA group) will take only one byte,
and it guarantees that there are no redundant LPAs. Therefore, the
CRB will maximally store 256 LPAs. Our experiments with a variety
of storage workloads show that the CRB will take 13.9 bytes on
average, as shown in Figure 10.

Given an LPA, in order to identify which approximate index
segment it belongs to, LeaFTL will check the CRB with binary
search. Once the LPA is found, LeaFTL will search to its left until
identifying the Srpa, and this Sy p4 will be the starting LPA of
the corresponding approximate segment, as shown in Figure 9 (b).
Therefore, CRB can assist LeaFTL to resolve the LPA lookups.

3.5 Handle Address Misprediction

As discussed in §3.2, the mapping table entries encoded with ap-
proximate segments may occasionally incur mispredictions and
return an approximated PPA. These approximate segments have a
guaranteed error bound [—y, y], where y is a constant value that
can be specified in the linear regression algorithm. To verify the
correctness of the address translation, a simple method is to access
the flash page with the predicted PPA, and use the reverse mapping
(its corresponding LPA) stored in the OOB metadata of the flash
page to check whether the LPA matches or not. In this case, upon
a PPA misprediction, we need log(y) flash accesses on average to
identify the correct PPA.

To avoid extra flash accesses for address mispredictions, LeaFTL
leverages the OOB of the flash page to store the reverse mappings
of its neighbor PPAs. This is developed based on the insight that:
with a PPAj,4rneq Obtained from an approximate segment, its er-
ror bound [y, y] guarantees that the correct PPA is in the range
of [PPAjearned — Vs PPAlearned + Y], as discussed in Figure 4 (b).
Thus, upon a misprediction, LeaFTL will read the flash page with
PPAjcarned> and use its OOB to find the correct PPA. In this case,
LeaFTL ensures that it will incur only one extra flash access for
address mispredictions.

This is a feasible approach, as the OOB size is usually 128-256
bytes in modern SSDs. As each LPA takes 4 bytes, we can store
32-64 reverse mapping entries in the OOB. We show the OOB
organization of LeaFTL in Figure 11. For the flash page PPAx, the
first 2y + 1 entries in its OOB correspond to the LPAs for the flash
pages [PPAx — y, PPAx + y]. For the flash pages at the beginning
and end of a flash block, we may not be able to obtain the reverse
mapping of their neighbor PPAs. We place the null bytes in the
corresponding entry of the OOB.

LeaFTL: A Learning-based Flash-Translation Layer for Solid-State Drives

Flash Page
I:|'>| Data

Reverse Mapping

oo |

Data Blocks
[[LPa; [LPA [LPa, | |

=2

Figure 11: The out-of-band (OOB) metadata organization. It
stores the reverse mapping for its neighbor PPAs.

3.6 Preserve Other Core FTL Functions

LeaFTL preserves the core functions such as GC and wear leveling
in an FTL. It follows the same GC and wear leveling policies in
modern SSDs. When the number of free blocks in an SSD is below
a threshold (usually 15-40% of the total flash blocks), the SSD con-
troller will trigger the GC execution. LeaFTL employs the greedy
algorithm [5] to select the candidate blocks which have the minimal
number of valid pages, for reducing the data movement overhead
at GC. As the GC move the valid pages from the candidate blocks
to the free blocks, LeaFTL places these valid pages into the DRAM
buffer, sort them by their LPAs, and learn a new index segment.
The learning procedure is the same as we build index segments for
new flash writes/updates. Thus, the address mapping of the valid
pages is updated after the GC.

LeaFTL also ensures all the flash blocks age at the same rate
(i.e., wear leveling). It uses the throttling and swapping mechanism
developed in existing GC, in which the cold data blocks (i.e., blocks
not frequently accessed) will be migrated to hot blocks (i.e., blocks
that experience more wear). LeaFTL will learn new indexes for
these swapped blocks and insert them into the mapping table to
update their address mappings.

3.7 LeaFTL Operations

Now we describe the LeaFTL operations, including segment cre-
ation, insert/update, LPA lookup, and compaction. We discuss their
procedures, and use examples to illustrate each of them, respec-
tively. We present their detailed procedures in Algorithm 1 and 2.
Creation of Learned Segments. Once the data buffer of the SSD
controller is filled, LeaFTL takes the LPAs and PPAs of the flash
pages in the buffer as the input. It sorts the LPA-PPA mappings
by reordering the flash pages with their LPAs (see §3.3), and uses
greedy piecewise linear regression [64] to learn the index segment.

Insert/Update of Learned Segments. When we insert or update
a new learned index segment, we will place it in the topmost level
of the log-structured mapping table. Since each level of the map-
ping table is sorted, we can quickly identify its insert location via
a binary search (line 2 in Algorithm 1). If the new segment is ap-
proximate, LeaFTL will update the CRB for future lookups (line
4-7 in Algorithm 1). After that, LeaFTL will check whether the
new segment overlaps with existing segments. If yes, LeaFTL will
identify the overlapped LPAs. The overlap detection is performed
by the comparison between the LPA range of the new segment and

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

ALGORITHM 1: LEAFTL OPERATIONS
Input: groups < LeaFTL group partitions
// Insert/Update Segment in the LeaFTL

1 Function seg_update(segment, level):

2 seg_pos = binary_search(level, segment.Sppa)
3 level.insert(segment, seg_pos)
4 if not segment.accurate then
5 Insert LPAs into CRB and remove redundant LPAs
6 if segment.Sppa exists in CRB then
7 Update the Sppa of the old segment
8 victim_segments « All segments that overlap the segment
starting with seg_pos
9 foreach victim € victim_segments do
10 seg_merge(segment, victim)
// if marked as removable by seg_merge()
1 if victim.L = —1 then
12 ‘ level.remove(victim)
13 if segment.overlaps(victim) then
14 Pop victim to the next level
15 if victim has overlaps in the next level then
16 ‘ Create level for victim to avoid recursion

// Lookup LPA in the LeaFTL
17 Function lookup (Ipa):
18 foreach level € groups[lpa mod 256] do

19 seg_pos = binary_search(level, Ipa)

20 segment = level.get_segment (seg_pos)
21 if has_lpa(segment, Ipa) then

22 ‘ return segment.translatePPA(lpa)

// LeaFTL Compaction
23 Function seg_compact ():

24 foreach group € groups do

25 foreach upper_level, lower_level € group do
26 foreach segment € upper_level do

27 ‘ seg_update(segment,lower_level)

28 if upper_level is empty then

29 ‘ group.remove(upper_level)

[SLpa, SLpa +L] of the adjacent segments. We group these overlap-
ping segments as a list of victim segments (line 8 in Algorithm 1).
LeaFTL will merge segments to remove outdated LPAs (line 10 in
Algorithm 1 and line 14-25 in Algorithm 2).

To fulfill the segment merge, LeaFTL will use the Syp4, L, and K
to reconstruct the list of the encoded LPAs in the victim segment.
And it will create a bitmap to index these encoded LPAs (line 6-13
in Algorithm 2). Given an accurate segment with Syps = 100,K =
0.5, L = 6, we can infer that its encoded LPAs are [100, 102, 104, 106].
We can transfer the LPA list to the bitmap [1010101]. If the victim
segment is an approximate segment, LeaFTL will leverage the S pa,
L, and the LPAs stored in the CRB to reconstruct the encoded LPAs.
Afterwards, LeaFTL will conduct a comparison between the bitmaps
to identify the overlapped LPAs (line 15-19 in Algorithm 2).

During the segment merge, LeaFTL will update the Spp4 and L
of the old segments accordingly, remove the outdated LPAs from
CRB for approximate segments. Note that we do not update the K
and I for the victim segments during the merge.

After the merge, (1) if the victim segment does not contain any
valid LPA (L is negative), it will be removed from the mapping
table (line 11-12 in Algorithm 1). (2) If the victim segment has

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

ALGORITHM 2: SEGMENT MERGE
// Check if Segment Contains LPA

1 Function has_Ipa(seg, Ipa):

2 acc < seg.accurate

3 if Ipa ¢ [seq.SLpa,seqg.Sppa + seg.L] or

(not acc & check(CRB) failed) or

(acc & (Ipa — seqg.Sppa) mod [ﬁ‘l # 0) then
4 ‘ return False

5 return True

// Convert Segment into a Temporary Bitmap

6 Function get_bitmap (seg, start, end):

7 bm « bitmap of length (end — start + 1)

8 foreach Ipa € [start,end] do

9 if has_Ipa(seg, Ipa) then
10 ‘ bm[lpa —start] =1
11 else

12 ‘ bm[lpa — start] =0
13 return bm

// Merge a New Segment with an 0ld Segment
14 Function seg_merge(new, old):

15 start «— min(new.Sppa, old.Srpa)
16 end «— max(new.Srpa +new.L, old.Sppa +o0ld.L)
17 bMmpery < get_bitmap(new, start, end)
18 bmeyg «— get_bitmap(old, start, end)
19 bmorg «— bmojg & “bmyeqy
20 first, last « the first and last valid bit of b4
21 old.Sppa, old.L « first + start, last — first
22 if no valid bits in old then
23 ‘ old.L « -1 // mark it as removable
24 if not old.accurate then
25 ‘ Remove outdated LPAs in CRB
20

[Average EZZ 99 Percentile

%%ﬂﬂﬂﬁﬂ

MS?\ MS SY%%S?\ P MS?\ 9 MS “%%U _‘nom E‘U _mal\

Jun
(S}
!

of Levels
in Each Group
—_

(=]

[

Figure 12: A study of the number of levels in the log-
structured mapping table for different storage workloads.

valid LPAs but their range still overlaps with the new segment,
the victim segment will be moved to the next level in the log-
structured mapping table (line 13-16 in Algorithm 1). To avoid
recursive updates across the levels, we create a new level for the
victim segment if it also overlaps with segments in the next level.
According to our study of diverse workloads, this will not create
many levels in the mapping table (see Figure 12). (3) If the victim
segment has valid LPAs and they do not overlap with the new
segment, we do not need to perform further operations. This is
because the victim segment is updated with new Sy p4 and L during
segment merge (line 20-25 in Algorithm 2), and the new segment
insertion keeps each level sorted (line 3 in Algorithm 1).

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang

Accurate Segment |Start End Approximate Segment |Start End

Timeline Segments CRB

To
Initial Snapshot

T
Update LPAS 200 - 255 10

Update LPAs 16 - 31 1 m

Ts Lo [16 31] [r5 82 [200 255]
Update [75, 78, 82]

Lo (0 63

rsl78]e2]

L1 0 63

Lo [16 31] [72 80| [200 255]
v
;

v
o [16 31] [z2_ 80| [200 255]

Ta
Update [72, 73, 80]

72|73180| / [75|78 |82

A - Al el
T L [16 31] [72‘1'80] [200 255] -
B O W
. Lo [16 31] 32 90] [200 255]
Update LPAS 32-90 |
Cgm::(;tion Lo o 15][16 a1][s2 0200 255]

Figure 13: Examples that involve update/insert, lookup, and
compaction operations in LeaFTL.

To facilitate our discussion, we present a few examples in Fig-
ure 13. At the initial stage, the mapping table has one segment that
indexes the LPA range [0, 63]. At T, the new segment [200, 255] is
directly inserted into the topmost level, as it does not overlap with
existing segments. At Ty, we insert a new segment [16, 31] that has
overlaps with the old segment [0, 63], LeaFTL conducts the segment
merge procedure. After that, the old segment still has valid LPAs.
Thus, it moves to level 1. At T3 and Ty, we insert two approximate
segments [75, 82] and [72, 80], LeaFTL will also insert their encoded
LPAs into the CRB. The segment [75, 82] will be moved to the next
level as it overlaps with the new segment [72, 80].

LPA Lookup. LeaFTL conducts an LPA lookup from the top-
most level of the mapping table with binary searches (line 19 in
Algorithm 1). We will check whether the LPA is represented by the
matched segment (line 21 in Algorithm 1, line 1-5 in Algorithm 2). If
the LPA € [Sppa,Sppa + L] of the segment, LeaFTL will check the
least bit of its K. If the least bit of K is 0, it is an accurate segment,
and LeaFTL will use f(LPA) = [K % LPA + I to get the accurate
PPA (see §3.2). Otherwise, it is an approximate segment. LeaFTL
will check the CRB to identify the Sy p4 of the segment, following
the approach described in Figure 9 and §3.4. LeaFTL will use the
same f(LPA) formula to obtain the PPA. If the LPA is not found in
the top level of the mapping table, LeaFTL will search the lower
levels until a segment is identified.

LeaFTL: A Learning-based Flash-Translation Layer for Solid-State Drives

Key Data Structures in LeaFTL

Log-Structured Conflict Resolution

Mapping Table Buffer (CRB)
iLoftea] .. | ..]i [Grou] CRB
iL1]0 63] .. : o |[[TTTT]
L2 (64 95 '

Figure 14: Key data structures used in LeaFTL.

We use Figure 13 to illustrate the lookup procedure. At Ts, we
conduct the address translation for LPA = 50. However, none of
the segments in the level 0 covers this LPA, LeaFTL will continue
the search in the level 1 and find the accurate segment [0, 63]. At
Ts, we do the address translation for LPA = 78. LeaFTL finds that
the LPA 78 is in the LPA range of the segment [72, 80]. Since this
is an approximate segment, LeaFTL checks the CRB and finds this
LPA is actually indexed by the segment [75, 82].

With the PPA, LeaFTL will read the corresponding flash page and
use the reversed mapping (its corresponding LPA) in its OOB to ver-
ify the correctness of the address translation. Upon mispredictions,
we will use the approach discussed in §3.5 to handle it.

Segment Compaction. The purpose of the compaction is to
merge segments with overlapped LPAs across different levels, which
further saves memory space. LeaFTL will iteratively move the upper-
level segments into the lower level, until the mapping table is fully
compacted (line 27 in Algorithm 1). When an approximate segment
is removed, its corresponding CRB entries will also be deleted. As
shown in T7 of Figure 13, we insert a new segment [32, 90] which
fully covers the LPA range of the segment [72, 80]. After merge,
LeaFTL removes the old segment [72, 80]. However, some segments
in the level 0 still overlap with the segments in the level 1. After Ts,
LeaFTL will remove outdated segments and LPAs.

LeaFTL performs segment compaction after each 1 million writes
by default. According to our experiments with various storage work-
loads, the segment compaction of the entire mapping table will take
4.1 milliseconds (the time of 20-40 flash writes) on average. Consider
the low frequency (i.e., once per 1 million writes), the compaction
incurs trivial performance overhead to storage operations.

3.8 PutIt All Together

LeaFTL is compatible with existing FTL implementations. As shown
in Figure 14, it uses the log-structured mapping table (@) to replace
the address mapping cache (@ in Figure 3), and employs CRB (@)
for assisting the address translation of approximate segments. The
CRB requires trivial storage space in the SSD DRAM (see Figure 10).
Read Operation. For a read request, LeaFTL will first check the
data cache. For a cache hit, LeaFTL serves the read request with
the cached flash page. Otherwise, LeaFTL will perform address
translation with @ (see §3.7). If there is a misprediction of PPA,
LeaFTL checks the OOB of the mispredicted flash page, read the
correct page (§3.5), and updates the data cache with the page.
Write Operation. For a write request, LeaFTL buffers it in the
data cache. Once the buffered writes reach the size of a flash block,
LeaFTL will allocate a free block. It will sort the writes in the buffer
based on their LPAs, and learn new index segments with the PPAs

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

of the allocated flash block. This enables LeaFTL to group more LPA-
PPA mappings in the same index segment. After that, LeaFTL will
insert the new index segment in the mapping table, and flush the
buffered data to the flash blocks. For those writes, LeaFTL will also
check whether their LPAs exist in the mapping table. If yes, LeaFTL
will update their corresponding entries in @ BVC and @ PVT to
indicate that they become invalid and can be garbage collected in
the future. Otherwise, the new learned segments will have their
LPA-PPA mappings for future address translations.

LeaFTL caches the mapping table in SSD DRAM for fast lookup.
The table will also be stored in the flash blocks. LeaFTL utilizes the
existing @ GMD to index the translation pages. If a segment is not
found in the cached mapping table, LeaFTL will fetch it from the
translation blocks and place it in the cached mapping table.
Crash Consistency and Recovery. Upon system crashes or power
failures, LeaFTL guarantees the crash consistency of learned in-
dexes. In order to ensure the data durability of DRAM buffer in
SSD controllers, modern SSDs today have employed battery-backed
DRAM and power loss protection mechanisms [1, 2]. With battery-
backed DRAM, LeaFTL has sufficient time to persist the up-to-date
mapping table to the flash blocks and record their PPAs in the GMD
(@ in Figure 3). During the data recovery, LeaFTL reads the GMD
to locate its mapping table and place it into the DRAM.

Without battery-backed DRAM, LeaFTL periodically flushes the
learned mapping table and the Block Validity Counter (@ BVC in
Figure 3) into the flash blocks. When GC is triggered, LeaFTL also
flushes the updated mapping table and BVC into the flash blocks.
Upon crashes, LeaFTL will scan all the flash blocks at the channel-
level parallelism, and reconstruct an up-to-date BVC. LeaFTL is able
to identify the flash blocks allocated since the last mapping table
flush, by comparing the up-to-date BVC with the stored BVC in the
SSD. Therefore, LeaFTL only needs to relearn the index segments
for these recently allocated flash blocks and add them into the
mapping table (see §3.4).

3.9 Implementation Details

SSD Simulator. We implement LeaFTL based on a trace-driven
simulator WiscSim [27], which has provided an event simulation
environment for the end-to-end performance analysis of SSDs. We
extend WiscSim by implementing an LRU-based read-write cache.
LeaFTL also preserves the functions of existing FTL, such as GC and
wear-leveling. To support the learned indexing, LeaFTL employs
a simple linear regression algorithm [65], which incurs negligible
computation overhead with modern storage processors (see §4.5).
The error bound y for learned segments is configurable, and we set
it to 0 by default in LeaFTL.

SSD Prototype. We also develop a real system prototype with
an open-channel SSD to validate the functions and efficiency of
LeaFTL. The SSD has 1TB storage capacity with 16 KB flash page
size. It has 16 channels, each channel has 16K flash blocks, and each
flash block has 256 pages. It enables developers to implement their
own FTL in the host by providing basic I/O commands such as read,
write, and erase. We implement LeaFTL with 4,016 lines of code
using C programming language with the SDK library of the device.

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

Table 1: SSD configurations in our simulator.

Parameter Value Parameter Value
Capacity 2TB #Channels 16
Page size 4KB OOB size 128B

DRAM size 1GB Pages/block 256

Read latency 20ps Write latency 200ps
Erase 1.5 millisecs | Overprovisioning ratio 20%

Table 2: Real workloads used in our real SSD evaluation.

Workload Description

OLTP [59] Transactional benchmark in the FileBench.
CompFlow (CompF) [59] File accesses in a computation flow.

TPCC [13] Online transaction queries in warehouses.
AuctionMark (AMark) [13] | Activity queries in an auction site.

SEATS [13] Airline ticketing system queries.

4 EVALUATION

Our evaluation shows that: (1) LeaFTL significantly reduces the
address mapping table size, and the saved memory brings perfor-
mance benefits (§4.2); (2) the benefits of LeaFTL are validated on a
real SSD device (§4.3); (3) LeaFTL can achieve additional memory
savings and performance benefits with larger error-tolerance, and
it demonstrate generality for different SSD configurations (§4.4);
(4) Its learning procedure does not introduce much extra overhead
to the SSD controller (§4.5); (5) It has minimal negative impact on
the SSD lifetime (§4.6).

4.1 Experiment Setup

We examine the efficiency of LeaFTL with both the SSD simula-
tor and real SSD prototype. As for the evaluation with the SSD
simulator, we configure a 2TB SSD with 4KB flash pages and 1GB
DRAM in the SSD controller. We list the core SSD parameters in
Table 1. For other parameters, we use the default setting in the
WiscSim. We use a variety of storage workloads that include the
block I/O traces from enterprise servers from Microsoft Research
Cambridge [45] and workload traces from computers at FIU [16].
As for the evaluation with the real SSD prototype (see §3.9), we
validate the benefits of LeaFTL using a set of real-world file system
benchmarks and data intensive applications as shown in Table 2.
Before we measure the performance, we run a set of workloads
consisting of various real-world and synthetic storage workload
traces to warm up the SSD and make sure the GC will be executed
during the experiments.

We compare LeaFTL with state-of-the-art page-level mapping
schemes described as follows .

e DFTL (Demand-based FTL) [20]: it uses a page-level mapping
scheme, and caches the most recently used address translation
entries in the SSD DRAM.

e SFTL (Spatial-locality-aware FTL) [25]: it is a page-level map-
ping that exploits the spatial locality and strictly sequential access
patterns of workloads to condense mapping table entries.

!We do not compare LeaFTL with block-level and hybrid-level mappings, as they
perform dramatically worse than the page-level mapping [20, 25].

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang

= DFTL E—3 SFTL [N LeaFTL

1x 4
2x 4
5x 1
0x 3
0x 4

N e
o
>
!

Memory Footprint
Reduction

MSRID (R 72 (R PP (SR G RUSE 1y 0w gy et

Figure 15: The reduction on the mapping table size of
LeaFTL, in comparison with DFTL and SFTL.

= DFTL EA SFTL [LeaFTL

1.0 A
0.0
MS?\“MS?\ seck S?\?ﬁ SR ?‘“SY\\) oS xU—“‘a‘\

¥

(a) SSD performance when using its DRAM mainly for the address
mapping table (lower is better).

Normalized Perf.

= DFTL EA SFTL [LeaFTL

-k b AL R

MSRPT o7 R oY (R R om0y et

Normalized Perf.

(b) SSD performance when using its DRAM partially (up to 80%) for
the address mapping table (lower is better).

Figure 16: Performance improvement with LeaFTL.

4.2 Memory Saving and Performance

We first evaluate the benefits of LeaFTL on the memory saving
and storage performance with the SSD simulator. As shown in
Figure 15, LeaFTL reduces the mapping table size by 7.5-37.7X,
compared to the page-level mapping scheme DFTL. This is because
LeaFTL can group a set of page-level mapping entries into an 8-
byte segment. In comparison with SFTL, LeaFTL achieves up to
5.3% (2.9% on average) reduction on the address mapping table for
different storage workloads, when we set its y = 0 (i.e., the learned
segments are 100% accurate). This is because LeaFTL captures more
LPA-PPA mapping patterns.

We now evaluate the performance benefit of LeaFTL from its
saved memory space. We evaluate LeaFTL with two experimental
settings: (1) the SSD DRAM is mainly used (as much as possible)
for the mapping table; (2) the SSD DRAM is partially used for the
mapping table, in which we ensure at least 20% of the DRAM will
be used for the data caching.

In the first setting, DRAM is almost used for mapping table in
DFTL. As shown in Figure 16 (a), LeaFTL reduces the storage access
latency by 1.6X on average (up to 2.7X), compared to SFTL. This
is because LeaFTL saves more memory from the mapping table
than SFTL. SFTL slightly outperforms DFTL, because it reduces the

LeaFTL: A Learning-based Flash-Translation Layer for Solid-State Drives

= DFTL [ZJ SFTL KN LeaFTL

VAALALA

AMark TPCC OLTP CompF

coocoom
ochvho®O

Normalized Perf.

Figure 17: Performance on the real SSD prototype.

= DFTL SFTL = = LeaFTL

)
2103 A
I
2102 A
2 10

1
E 10

100 T
0%30% 60% 90% 99% 99.9%

Percentage of Storage Accesses

Figure 18: The latency distribution of storage accesses when
running OLTP workload on the real SSD prototype.

mapping table size by compressing mapping entries with grouping
strictly sequential data accesses. In the second setting, as shown in
Figure 16 (b), LeaFTL obtains 1.4X (up to 3.4x) and 1.6X (up to 4.9x)
performance speedup, compared to SFTL and DFTL, respectively.

4.3 Benefits on the Real SSD Prototype

We validate the benefits of LeaFTL on the real SSD prototype with
real workloads (see Table 2). They include filesystem benchmark
suite FileBench [59], and transactional database workloads from
BenchBase [13, 61]. All these workloads run on the ext4 file system.
With FileBench, we run OLTP and CompFlow (CompF) workloads
to read/write 10GB files. With BenchBase, we run TPCC, Auction-
Mark (AMark), and SEATS workloads on MySQL, and their data-
base sizes are 10-30GB. These database workloads will generate
37-230GB read traffic and 26-59GB write traffic to the SSD. We allo-
cate 256MB DRAM to host the mapping table (for different DRAM
sizes, see our sensitivity analysis in §4.4).

We present the performance benefit of LeaFTL in Figure 17.
Across all workloads, LeaFTL obtains 1.4X performance speedup
on average (up to 1.5X), compared to SFTL and DFTL. Similar to
our evaluation with the SSD simulator implementation, the per-
formance benefit of LeaFTL comes from the memory saving from
the address mapping table. And LeaFTL demonstrates comparable
performance improvement on real SSD devices, in comparison with
the SSD simulator in §4.2. We also show the latency distribution of
storage accesses in Figure 18, when running the OLTP workload on
the real SSD prototype. In comparison with existing FTL schemes,
LeaFTL does not increase the tail latency of storage accesses. And
the higher cache hit ratio of LeaFTL brings latency reduction for
many storage accesses.

4.4 Sensitivity Analysis

Vary the value of y. As we increase the value of y from 0 to
16, the size of the learned mapping table is reduced, as shown in
Figure 19. LeaFTL achieves 1.3X reduction on average (1.2X on
the real SSD) with y = 16, compared to that of y = 0. The saved

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

= v=0 =AMvy=1 [x3Jv=4 [v=16
SSD Simulator Real SSD

il

@\5&,\ @ @s‘&@s \3\\0\0‘“ 5‘3?’1

coooor

Memory Footprint
Reduction

?06 \:‘? @QQ

Figure 19: The reduction of the mapping table size of LeaFTL
with different y (lower is better).

[Accurate [Approximate

100% -
80% A
60% -
40% -
20% -
0% T T T T
y=0 y=1 y=4 y=16

Figure 20: The distribution of learned segments.

Percentage of
Segments

| vy=0 =Z@my=1 [Xdvy=4 BE3 =16

G
5 SSD Simulator 1 Real SSD
A 1.0 1 1
g 0.8 1 !
% 0.6 !
0.4 !
g 0.2 1 1
Z 0.0 L {Hid
‘5 C
NEE y\s%%s‘*‘érﬁ?% “°§ : “@ 2R e Oﬁgo‘“‘ﬁ

Figure 21: Performance with various y (lower is better).

memory with a larger y is achieved by learning a wider range
of LPAs into approximate segments. To further understand this,
we profile the distribution of segments learned by LeaFTL with
different values of y, as shown in Figure 20. When y = 0, all the
segments are accurate. When y = 16, 26.5% of the learned segments
are approximate on average, and LeaFTL delivers 1.3X improvement
on storage performance (1.2x with workloads on the real SSD), in
comparison with the case of y = 0 (see Figure 21).

Vary the SSD DRAM capacity. We now conduct the sensitivity
analysis of SSD DRAM by varying its capacity from 256MB to 1GB
on the real SSD prototype. As shown in Figure 22 (a), LeaFTL always
outperforms DFTL and SFTL as we vary the SSD DRAM capacity.
As we increase the DRAM capacity, the storage workloads are still
bottlenecked by the available memory space for the data caching.
LeaFTL can learn various data access patterns and significantly
reduce the address mapping table size, the saved memory further
benefits data caching.

Vary the flash page size. In this experiment, we fix the number
of flash pages, and vary the flash page size from 4KB to 16KB in the
SSD simulator, as SSD vendors usually use larger flash pages for
increased SSD capacity. We use the simulator for this study, since
the flash page size of the real SSD is fixed. As shown in Figure 22
(b), LeaFTL always performs the best in comparison with DFTL and
SFTL. As we increase the flash page size to 16KB, we can cache less
number of flash pages with limited DRAM capacity. Thus, LeaFTL

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

. = DFTL [Z32 SFTL XN LeaFTL

=i

£ 1.0 |

° N

8

=5 0.5 A

g

3

z 0.0 T f T
256MB 512MB 1024MB

(a) Various DRAM size

ks

&£ 1.0

°

3

< 0.5 1

£

3

z 0.0 T £ T

4KB 8KB 16KB
(b) Various flash page size

Figure 22: SSD performance with different DRAM capacity
and flash page size (lower is better).

0%
90%
99%

99.9%

== MSR-prn
MSR-usr

== + MSR-src2
= MSR-hm
e MSR-prXYy
=+ FIU-home
FIU-mail

: ~
‘5:\ N

T T T T T
5 10 15 20 25 30 35
(a) Number of Levels

Percentage of
Lookups

99.99%
1

0%
m— SEATS
CompF
==« OLTP
=== TPCC
=== AMark

90%
99%

99.9%

S

99.99% T s T
0.0 0.5 1.0 1.5

(b) LPA Lookup Overhead (%)

Percentage of
Lookups

Figure 23: Performance overhead of the LPA lookup.

experiences a slight performance drop. As we fix the total SSD
capacity and vary the page size, LeaFTL outperforms SFTL by 1.2X
and 1.1x for the page size of 8KB and 16KB, respectively.

4.5 Overhead Source in LeaFTL

We evaluate the overhead sources in LeaFTL in three aspects: (1)
the performance overhead of the learning procedure in LeaFTL;
(2) the LPA lookup overhead in the learned segments; and (3) the
overhead caused by the address misprediction in LeaFTL.

We evaluate the performance of segment learning and address
lookup on an ARM Cortex-A72 core. This core is similar to the
storage processor used in modern SSDs. The learning time for a
batch of 256 mapping entries is 9.8-10.8 us (see Table 3). As we
learn one batch of index segments for every 256 flash writes, the
learning overhead is only 0.02% of their flash write latency.

In LeaFTL, the LPA lookup is 40.2-67.5 ns, as the binary search of
segments is fast and some segments can be cached in the processor
cache. The lookup time is slightly higher as we increase y, due to the
additional CRB accesses. We also profile the cumulative distribution
function (CDF) of the number of levels to lookup for each LPA
lookup, and present the results in Figure 23 (a). For most of the
tested workloads, 90% of the mapping table lookup can be fulfilled
at the topmost level, and 99% of the lookups are within 10 levels.

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang

EEvy=0 =Avy=l x3vy=4 E3v=16
SSD Simulator Real SSD

0 f@:@ﬁﬁuuﬁ . ﬂﬁﬁﬁ%ﬁ

2 X 0@ o S (af® ocC (2 oF
SRR R YT RS e e e o

o

- =N
I

(2} o 4]
!

Misprediction (%)

Figure 24: Misprediction ratio of flash pages access.

Table 3: Overhead source of LeaFTL with an ARM core.
% 0 1 4

Learning (256 LPAs) | 9.8 us | 10.8 us | 10.8 us

Lookup (per LPA) 40.2ns | 60.5ns | 67.5ns

Although MSR-prn workload requires more lookups than other
workloads, it only checks 1.4 levels on average. We also evaluate
the performance overhead of the LPA lookup on the real SSD, and
show the results in Figure 23 (b). The extra lookup overhead for each
flash read is 0.21% on average. And for 99.99% of all the lookups,
the additional overhead is less than 1% of the flash access latency.

LeaFTL also has low misprediction ratios with approximate seg-
ments. This is because LeaFTL can still learn accurate segments
even if y > 0, and not all entries in the approximate segments
will result in misprediction. As shown in Figure 24, most of the
workloads achieve less than 10% misprediction ratio when y = 16.
We obtain similar misprediction ratio on the real SSD prototype.
Note that each misprediction only incurs one flash read access with
the help of our proposed OOB verification.

4.6 Impact on SSD Lifetime

The flash blocks of an SSD can only undergo a certain amount of
writes. In this experiment, we use the write amplification factor
(WATF, the ratio between the actual and requested flash writes) to
evaluate the SSD lifetime. The SSD will age faster if the WAF is
larger. As shown Figure 25, the WAF of LeaFTL is comparable to
DFTL and SFTL. DFTL has larger WAF in most workloads. SFTL
and LeaFTL occasionally flush translation pages to the flash blocks,
but the cost is negligible.

5 DISCUSSION

Why Linear Regression. Unlike deep neural networks, the lin-
ear regression used in LeaFTL is simple and lightweight, which
takes only a few microseconds to learn an index segment with
embedded ARM processors available in modern SSD controllers.
In addition, the linear regression algorithm has been well studied,
and offers guaranteed error bounds for its learned results. LeaFTL
is the first work that uses learning techniques to solve a critical
system problem (i.e., address mapping) in SSDs.

Adaptivity of LeaFTL. LeaFTL focuses on the page-level address
translation, its design and implementation will not be affected by
the low-level flash memory organization (i.e., TLC/QLC). As we
use TLC/QLC technique to further increase the SSD capacity, the
address mapping issue will become more critical, since the SSD

LeaFTL: A Learning-based Flash-Translation Layer for Solid-State Drives

= DFTL B3 SFTL [LeaFTL

[
)]
!

g SSD Simulator i Real SSD
28 1.0 - i
=g 1
g i
0.0 e LA A S S S o Sy
X\‘“, {cﬂ»’) «9{“ oSt 592 . ‘03'\,\ PS‘S s ?(‘JC- \:QQ 109?
\},\5?;!\5335?\%5‘2\,&5%&\3»?\\3 EP e (RO o

Figure 25: Write amplification factor of LeaFTL.

DRAM capacity does not scale well and becomes the bottleneck for
caching address mappings and user data.

Recovery of Learned Index Segments. As discussed in §3.8, us-
ing a battery or large capacitor to preserve and persist the cached
segments upon failures or crashes will simplify the recovery pro-
cedure significantly. In our real SSD prototype, we do not assume
the battery-backed DRAM is available. Thus, we follow the conven-
tional recovery approach in modern SSDs [20, 23], and scan flash
blocks in parallel by utilizing the channel-level parallelism.

When we run real workloads like TPCC on the SSD prototype,
we intentionally reboot the system after running the workload for
a period of time (0.5-3 hours). We find that the system can recover
in 15.8 minutes on average whenever the reboot happens. This
is similar to the time of recovering the conventional page-level
mapping table in DFTL [20]. This is mostly caused by scanning the
blocks in a channel (70MB/s per channel in our SSD prototype),
and the time for reconstructing recently learned segments is rela-
tively low (101.3 milliseconds on average). We believe the recovery
time is not much of a concern as the recovery does not happen
frequently in reality. And the recovery can be accelerated as we
increase the channel-level bandwidth. In addition, if an SSD can
tolerate more data losses, we can still ensure the crash consistency
by only loading the stored index segments from flash chips, which
requires minimum recovery time.

6 RELATED WORK

Address Translation for SSDs. A variety of FTL optimizations
have been proposed [8, 12, 20, 25, 28, 34, 49, 50]. These works ex-
ploited the data locality of flash accesses to improve the cache
efficiency of the mapping table. However, most of them were devel-
oped with human-driven heuristics. An alternative approach is to
integrate application semantics into the FTL, such as content-aware
FTL [7]. However, they were application specific and required signif-
icant changes to the FTL. LeaFTL is a generic solution and does not
require application semantics in its learning. Researchers proposed
to integrate the FTL mapping table into the host [18, 23, 26, 66]. Typi-
cal examples include DFS [26], Nameless writes [66], FlashMap [23],
and FlatFlash [4]. LeaFTL is orthogonal to them and can be applied
to further reduce their memory footprint.

Machine Learning for Storage. Recent studies have been using
learning techniques to build indexes such as B-trees, log-structured
merge tree, hashmaps, and bloom filters [11, 14, 15, 32, 33, 42]
for in-memory datasets, identify optimal cache replacement and
prefetching policies [40, 53, 56, 57], facilitate efficient storage har-
vesting [52], and drive the development of software-defined stor-
age [24]. LeaFTL applies learning techniques to optimize the address

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

mapping. However, unlike existing optimizations [43, 63] such as
learned page table for virtual memory that used deep neural net-
works to learn the patterns, LeaFTL provides a lightweight solution.
SSD Hardware Development. For the recent SSD innovations [3,
17, 19, 47] like Z-SSD [55], KVSSD [35], and ZNS SSD [21], DRAM
capacity and storage processor are still the main constraints in SSD
controllers. As we scale the storage capacity, the challenge with
the address translation becomes only worse. Researchers recently
deployed hardware accelerators inside SSD controllers for near-
data computing [36, 41, 54, 58]. We wish to extend LeaFTL with
in-storage accelerators to deploy more powerful learning models
as the future work.

7 CONCLUSION

We present a learning-based flash translation layer, named LeaFTL
for SSDs. LeaFTL can automatically learn different flash access
patterns and build space-efficient indexes, which reduces the ad-
dress mapping size and improves the caching efficiency in the SSD
controller. Our evaluation shows that LeaFTL improves the SSD
performance by 1.4X on average for a variety of storage workloads.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments
and feedback. This work is partially supported by the NSF CAREER
Award 2144796, CCF-1919044, and CNS-1850317.

REFERENCES

[1] 2019. A Closer Look At SSD Power Loss Protection. https://www.kingston.com/

en/blog/servers-and-data-centers/ssd-power-loss-protection.

2020. Harnessing Microcontrollers to Deliver Intelligent SSD Power Management

and PLP Capabilities. https://www.atpinc.com/de/about/stories/microcontroller-

SSD-power-loss-protection.

[3] 3D NAND - An Overview. 2022.
https://www.simms.co.uk/tech-talk/3d-nand-overview/.

[4] Ahmed Abulila, Vikram Sharma Mailthoday, Zaid Qureshi, Jian Huang, Nam Sung
Kim, Jin jun Xiong, and Wen mei Hwu. 2019. FlatFlash: Exploiting the Byte-
Accessibility of SSDs within A Unified Memory-Storage Hierarchy. In Proceedings
of the 24th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19). Providence, RI.

[5] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse,
and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance. In Proceedings
of the USENIX 2008 Annual Technical Conference (ATC’08). Boston, Massachusetts.

[6] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. 2017. Error
characterization, mitigation, and recovery in flash-memory-based solid-state
drives. Proc. IEEE 105, 9 (2017), 1666—-1704.

[7] Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: A Content-Aware
Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid
State Drives. In Proceedings of the 9th USENIX Conference on File and Storage
Technologies (FAST’11). San Jose, CA.

[8] Renhai Chen, Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, and Yong Guan. 2014. On-
demand block-level address mapping in large-scale NAND flash storage systems.
IEEE Trans. Comput. 64, 6 (2014), 1729-1741.

[9] Tae-Sun Chung, Dong-Joo Park, and Jongik Kim. 2011. LSTAFF*: An Efficient
Flash Translation Layer for Large Block Flash Memory. In Proceedings of the 2011
ACM Symposium on Applied Computing (SAC’11). TaiChung Taiwan.

[10] Curtis R Cook and Do Jin Kim. 1980. Best sorting algorithm for nearly sorted
lists. Commun. ACM 23, 11 (1980), 620-624.

[11] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2020. From WiscKey to
Bourbon: A Learned Index for Log-Structured Merge Trees. In Proceedings of
the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’20). Virtual Event.

[12] Niv Dayan, Philippe Bonnet, and Stratos Idreos. 2016. GeckoFTL: Scalable Flash
Translation Techniques For Very Large Flash Devices. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD’16). San Francisco, CA.

[2

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

(13

[14

[15]

[16
[17]
[18]

[19

[20]

[21]

[22

[23]

[24]

[25]

[26]

[27

[28]

[29]

[30]

[31]

[32

[33

[34]

[35]

[36]

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. PVLDB 7, 4 (2013).

Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2020. Why Are Learned
Indexes So Effective?. In Proceedings of the 37th International Conference on
Machine Learning (ICML’20). Virtual Event.

Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-Index: A Fully-Dynamic
Compressed Learned Index with Provable Worst-Case Bounds. Proceedings of
the VLDB Endowment 13, 8 (April 2020).

FIU. 2009. FIU Server Traces.

Flash Memory. 2022. https://en.wikipedia.org/wiki/Flash_memory.

Fusion-io Directcache: Transparent Storage Accelerator. 2011.
http://www.fusionio.com/systems/directcache/.

Gartner. 2017. Forecast Overview: NAND Flash, Worldwide, 2017. https:
/Iwww.gartner.com/doc/3745121/forecast-overview-nand-flash-worldwide
Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A Flash
Translation Layer Employing Demand-based Selective Caching of Page-level
Address Mappings. In Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’09).
Washington, DC.

Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Joo-Young Hwang. 2021. ZNS+:
Advanced Zoned Namespace Interface for Supporting In-Storage Zone Com-
paction. In 15th {USENIX} Symposium on Operating Systems Design and Imple-
mentation (OSDI'21). 147-162.

Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sengupta,
Bikash Sharma, and Moinuddin K. Qureshi. 2017. FlashBlox: Achieving Both
Performance Isolation and Uniform Lifetime for Virtualized SSDs. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies (FAST’17). Santa
clara, CA.

Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten Schwan. 2015.
Unified Address Translation for Memory-mapped SSDs with FlashMap. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture
(ISCA’15). Portland, OR.

Jian Huang, Daixuan Li, and Jinghan Sun. 2022. Learning to Drive Software-
Defined Storage. Workshop on Machine Learning for Systems at NIPS’22 (2022).
Song Jiang, Lei Zhang, XinHao Yuan, Hao Hu, and Yu Chen. 2011. S-FTL: An
Efficient Address Translation for Flash Memory by Exploiting Spatial Locality.
In Proceedings of the 2011 IEEE 27th Symposium on Mass Storage Systems and
Technologies (MSST’11). IEEE Computer Society.

William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. 2010. DFS: A
File System for Virtualized Flash Storage. ACM Trans. on Storage 6, 3 (2010),
14:1-14:25.

Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau.
2017. The Unwritten Contract of Solid State Drives. In Proceedings of the Twelfth
European Conference on Computer Systems (EuroSys’17). Belgrade, Serbia.
Dawoon Jung, Jeong-UK Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee.
2010. Superblock FTL: A superblock-based flash translation layer with a hybrid
address translation scheme. ACM Transactions on Embedded Computing Systems
(TECS) 9, 4 (2010), 1-41.

Jeong-Uk Kang, Heeseung Jo, Jinsoo Kim, and Joonwon Lee. 2006. A Superblock-
Based Flash Translation Layer for NAND Flash Memory. In Proceedings of the
6th International Conference on Embedded Software (EMSOFT 06). Seoul, South
Korea.

Luyi Kang, Yuqi Xie, Weiwei Jia, Xiaohao Wang, Jongryool Kim, Changhwan
Youn, Myeong Joon Kang, Jin Lim, Bruce Jacob, and Jian Huang. 2021. IceClave: A
Trusted Execution Environment for In-Storage Computing. In Proceedings of the
54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’21).
Virtual Event.

Jesung Kim, Jong Min Kim, S.H. Noh, Sang Lyul Min, and Yookun Cho. 2002. A
space-efficient flash translation layer for CompactFlash systems. IEEE Transac-
tions on Consumer Electronics 48, 2 (2002).

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: A Single-Pass Learned
Index. In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management (aiDM °20). Portland, Oregon.
Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD’18). Houston, TX, USA.

Hunki Kwon, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H Noh. 2010.
Janus-FTL: Finding the optimal point on the spectrum between page and block
mapping schemes. In Proceedings of the tenth ACM international conference on
Embedded software. 169-178.

Samsung Memory Solutions Lab. 2017. Samsung Key Value SSD enables High Per-
formance Scaling. https://www.samsung.com/semiconductor/global.semi.static/
Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf (2017).
Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xi-
aodong Zhao, and Yang Seok Ki. 2020. SmartSSD: FPGA accelerated near-storage

[37

[38

[39

[40

[41

[42

[47

[48

[50

(51

]

Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang

data analytics on SSD. IEEE Computer architecture letters 19, 2 (2020), 110-113.
Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, and Arvind. 2016.

Application-managed flash. In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST’16). 339-353.

Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. 2008. LAST: Locality-
Aware Sector Translation for NAND Flash Memory-Based Storage Systems. In
Proceedings of the SIGOPS Operating Systems Review (2008).

Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park,
and Ha-Joo Song. 2007. A Log Buffer-Based Flash Translation Layer Using
Fully-Associative Sector Translation. ACM Transactions on Embedded Computing
Systems 6, 3 (2007), 18:1-18:27.

Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Jun-
whan Ahn. 2020. An imitation learning approach for cache replacement. In
International Conference on Machine Learning. PMLR, 6237-6247.

Vikram Sharma Mailthoday, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Gar-
cia de Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang, and Wen
mei Hwu. 2019. DeepStore: In-Storage Acceleration for Intelligent Queries. In
Proceedings of the 52nd IEEE/ACM International Symposium on Microarchitecture
(MICRO’19). Columbus, OH.

Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and
Optimizing Learned Index Structures. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD20). Portland, OR, USA.
https://doi.org/10.1145/3318464.3384706

Artemiy Margaritov, Dmitri Ustiugov, Edouard Bugnion, and Boris Grot. 2018.
Virtual Address Translation via Learned Page Table Indexes. In Proceedings of
the Workshop on ML for Systems at NeurIPS. Montreal, Canada.

Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali
Annavaram. 2019. GraphSSD: Graph Semantics Aware SSD. In Proceedings of
the 46th International Symposium on Computer Architecture (ISCA’19). Phoenix,
Arizona.

Microsoft. 2007. MSR Cambridge Traces.

Jian Ouyang, Shiding Lin, Song Jiang, Yong Wang, Wei Qi, Jason Cong, and
Yuanzheng Wang. 2014. SDF: Software-Defined Flash for Web-Scale Internet
Storage Systems. In Proceedings of 19th International Conference on Architectural
Support for Programming Language and Operating Systems (ASPLOS’14). Salt Lake
City, UT.

Over 50 years of development history of Flash Memory Technology. 2019.
https://www.elinfor.com/knowledge/over-50-years- of-development- history-
of-flash-memory-technology-p-11271.

Nikolaos Papandreou, Haralampos Pozidis, Nikolas Ioannou, Thomas Parnell,
Roman Pletka, Milos Stanisavljevic, Radu Stoica, Sasa Tomic, Patrick Breen, Gary
Tressler, et al. 2020. Open block characterization and read voltage calibration of
3D QLC NAND flash. In 2020 IEEE International Reliability Physics Symposium
(IRPS). IEEE, 1-6.

Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho Roh, Wonhee Cho, and
Jin-Soo Kim. 2008. A reconfigurable FTL (flash translation layer) architecture
for NAND flash-based applications. ACM Transactions on Embedded Computing
Systems (TECS) 7, 4 (2008), 1-23.

Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. 2010. Demand-based block-level
address mapping in large-scale NAND flash storage systems. In Proceedings of
the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis.

Benjamin Reidys, Peng Liu, and Jian Huang. 2022. RSSD: Defend against Ran-
somware with Hardware-Isolated Network-Storage Codesign and Post-Attack
Analysis. In Proceedings of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS 22).
Lausanne, Switzerland.

Benjamin Reidys, Jinghan Sun, Anirudh Badam, Shadi Noghabi, and Jian Huang.
2022. BlockFlex: Enabling Storage Harvesting with Software-Defined Flash
in Modern Cloud Platforms. In Proceedings of the 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’22). Carlsbad, CA.

Liana V Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami,
Jason Liu, Ming Zhao, and Giri Narasimhan. 2021. Learning Cache Replacement
with CACHEUS. In 19th USENIX Conference on File and Storage Technologies
(FAST’21). 341-354.

Zhenyuan Ruan, Tong He, and Jason Cong. 2019. INSIDER: Designing In-Storage
Computing System for Emerging High-Performance Drive. In Proceedings of the
2019 USENIX Annual Technical Conference (USENIX ATC’19). Renton, WA.
Samsung Z-NAND. 2019. https://www.samsung.com/semiconductor/ssd/z-ssd/.
Subhash Sethumurugan, Jieming Yin, and John Sartori. 2021. Designing a Cost-
Effective Cache Replacement Policy using Machine Learning. In 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE,
291-303.

Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Applying deep
learning to the cache replacement problem. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 413-425.

smartssd 2018. SmartSSD Computational Storage Drive. https://www.xilinx.com/
applications/data- center/computational-storage/smartssd.html.

LeaFTL: A Learning-based Flash-Translation Layer for Solid-State Drives

[59]
[60]

[61]

[62

[63]

Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A flexible
framework for file system benchmarking. The USENIX Magazine 41, 1 (2016).
Usman Saleem, Advanced SSD Buying Guide - NAND Types, DRAM Cache, HMB
Explained. 2022. https://appuals.com/ssd-buying-guide/.

Dana Van Aken, Djellel E. Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudré-Mauroux. 2015. BenchPress: Dynamic Workload Control in the OLTP-
Bench Testbed. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD’15).

Xiaohao Wang, Yifan Yuan, You Zhou, Chance C. Coats, and Jian Huang. 2019.
Project Almanac: A Time-Traveling Solid-State Drive. In Proceedings of the 14th
European Conference on Computer Systems (EuroSys’19). Dresden, Germany.
Nan Wu and Yuan Xie. 2021. A Survey of Machine Learning for Computer
Architecture and Systems. CoRR abs/2102.07952 (2021). https://arxiv.org/abs/

[64

[65

[66

ASPLOS ’23, March 25-29, 2023, Vancouver, Canada

2102.07952

Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. 2014.
Maximum Error-Bounded Piecewise Linear Representation for Online Stream
Approximation. Proceedings of the VLDB Journal 23, 6 (Dec. 2014).

Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. 2014.
Maximum error-bounded piecewise linear representation for online stream ap-
proximation. The VLDB journal 23, 6 (2014), 915-937.

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2012. De-indirection for Flash-based SSDs with Nameless Writes.
In Proceedings of the 10th USENIX Conference on File and Storage Technologies
(FAST’12). San Jose, CA.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design and Implementation
	3.1 Key Ideas of LeaFTL
	3.2 Learned Index Segment
	3.3 Improve the Learning Efficiency
	3.4 Manage Learned Index Segments
	3.5 Handle Address Misprediction
	3.6 Preserve Other Core FTL Functions
	3.7 LeaFTL Operations
	3.8 Put It All Together
	3.9 Implementation Details

	4 Evaluation
	4.1 Experiment Setup
	4.2 Memory Saving and Performance
	4.3 Benefits on the Real SSD Prototype
	4.4 Sensitivity Analysis
	4.5 Overhead Source in LeaFTL
	4.6 Impact on SSD Lifetime

	5 Discussion
	6 Related Work
	7 Conclusion
	References

