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Abstract—This work proposes an Adaptive Fuzzy Prediction
(AFP) method for the attenuation time series in Commercial Mi-
crowave links (CMLs). Time-series forecasting models regularly
rely on the assumption that the entire data set follows the same
Data Generating Process (DGP). However, the signals in wireless
microwave links are severely affected by the varying weather con-
ditions in the channel. Consequently, the attenuation time series
might change its characteristics significantly at different periods.
We suggest an adaptive framework to better employ the training
data by grouping sequences with related temporal patterns to
consider the non-stationary nature of the signals. The focus in
this work is two-folded. The first is to explore the integration of
static data of the CMLs as exogenous variables for the attenuation
time series models to adopt diverse link characteristics. This
extension allows to include various attenuation datasets obtained
from additional CMLs in the training process and dramatically
increasing available training data. The second is to develop an
adaptive framework for short-term attenuation forecasting by
employing an unsupervised fuzzy clustering procedure and super-
vised learning models. We empirically analyzed our framework
for model and data-driven approaches with Recurrent Neural
Network (RNN) and Autoregressive Integrated Moving Average
(ARIMA) variations. We evaluate the proposed extensions on
real-world measurements collected from 4G backhaul networks,
considering dataset availability and the accuracy for 60 seconds
prediction. We show that our framework can significantly im-
prove conventional models’ accuracy and that incorporating data
from various CMLs is essential to the AFP framework. The
proposed methods have been shown to enhance the forecasting
model’s performance by 30 − 40%, depending on the specific
model and the data availability.

Index Terms—Machine Learning, Microwave Links, RNN At-
tenuation Forecasting, Time Series Forecasting,RNN, ARIMAX

I. INTRODUCTION

Time-series is a sequence of observations {x1, x2, . . . , xt}
taken sequentially regularly in constant intervals. The time
series forecasting task aims to predict the future development
of an event based on the previous values. In practice, the
time-series measurements can be generated by many separate
sources, and the model structure might significantly change
during the time series. Model-driven time series forecasting
models typically assume the data follows an underlying model
and often require statistical assumptions. Data storage tools
and computation power development led to data-driven al-
gorithms with Artificial Neural Networks (ANN) and deep
learning algorithms that have shown remarkable performance
in the time series forecasting area [1], [2], without assuming
a specific model on the data. We focus on short-term fore-
casting of the attenuation in wireless communication links.
The attenuation of a wireless communication link refers to

the total loss in the signal’s power density as the signal
propagates through the channel from the transmitter to the
receiver. This attenuation is a significant factor in designing
and analyzing communication systems, and it’s highly affected
by environmental variations in the microwave link’s channel.
In particular, precipitation may cause significant attenuation
at the frequencies on which modern wireless communication
networks typically operate. Moreover, due to the growth in
wireless traffic and high data rate transmission, higher fre-
quency bandwidths are required, where the rain attenuation is
more critical in higher frequencies bands and significantly re-
duce the link’s performances. Therefore, the focus of this work
is primarily on attenuation during rainfall events. Many rain
attenuation models have been proposed based on the statistics
of the rainfall rates, such as the ITU-R model [3]. However, we
focus on models based only on the attenuation dataset available
for the Network Management System (NMS). This way, the
prediction method can be implemented without the need
for external information. Model-driven such as variation of
ARIMA models were suggested to predict the rain attenuation
time series in terrestrial and satellite links, operating at the Ku
and Ka-band frequencies [4]–[6]. Recently, learning-assisted
prediction models have shown notable advancement in this
area [7], and a recent work presented an RNN encoder-decoder
model to predict a future time window of the attenuation
values [8]. Yet, the DGP of the attenuation time series is
not consistent, while it is composed of various processes that
are not stationary. For example, while rain is present in the
link’s channel (wet periods), the measured attenuation rates
significantly differ from the non-rain (dry periods). Therefore,
without any additional pre-processing, a basic switching model
is needed to separate the two different scenarios. Furthermore,
rainfall is known as a non-stationary process [9]–[11] that
change its characteristics during distinctive time intervals.
With this motivation, a non-linear switching ARIMA/GARCH
model [12] and [13], and adaptive In situ Learning Algorithm
(ILA) has been suggested to enable tracking the non-stationary
nature to predict rain attenuation levels. These models were
implemented in Earth-To-Satelite links for specific frequen-
cies bands. This work focuses on developing an adaptive
framework for the attenuation time series terrestrial CMLs
operating in a wide range of frequencies and lengths. We
handle the variations between different attenuation patterns
by incorporating the physical parameters that characterize the
links in the forecasting models. The contributions of this paper
are two-folded:
(i) The APS framework: Developing adaptive models to
consider the non-stationary nature of the attenuation time-
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Figure 1: The adaptive fuzzy framework for the attenuation time series in CMLs.

series in CMLs. Our approach adopts the FCM algorithm for
fuzzy clustering of subsequences based on similar temporal
patterns. The related subsequences are grouped into clusters,
representing the different states of the dynamic system. Then,
the attenuation is predicted by a fuzzy mixture of separate
forecasting models by the degree of membership of the current
temporal sequence.
(ii) To study the integration of static data of CMLs as exogen-
ous variables to time series forecasting models. This extension
allows a considerably larger training dataset for training a
time series foresting model. However, the complexity of such
models is higher and may lead to lower performance.
Figure 1 describes the framework suggested in this work
for the CML’s static and dynamic measurements, which are
detailed in Sec. II. The fuzzy partition methodology is detailed
in Sec. III. The framework is evaluated for a linear forecasting
model with ARIMAX and RNN for the data-driven method.
The models and the extensions are detailed in Sec. IV, and
Sec. VI provides the experiments and evaluates our proposed
method. Finally, Sec. refsec.final conclude our paper and
discuss future potential works.

II. DATASET DESCRIPTION

This section presents the dataset and the formulation of this
work. We train, validate, and evaluate the suggested models
using actual measurements from operational microwave net-
works in Sweden, provided by Ericsson AB. The dynamic
data includes time series of the power levels measurements
collected by the NMS. The CML measurements contain the
logged periodically Transmitted Signal Level (TSL), PTx,t,
and Received Signal Level (RSL), PRx,t in a sampling time of
10 seconds. The total attenuation level for each time-step t of a
the link link is calculated by the TSL and RSL measurements:
xt = PTx,t−PRx,t. The unviariate time series forecasting goal
is to predict the future values of the attenuation sequence based
on previous data x̂t+H = f (xt, xt−1, . . . , x1). However, we
focus on rain-induced attenuation. The number of rain events
occurrences on the specific CML’s channel is limited. The
problem of a limited dataset leads us to include the attenuation
time series from different CMLs in the model’s training
method. The trade-off of this is clear when the measured
attenuation is strongly affected by the physical parameters of
different CMLs. Although we can increase the training dataset

samples, the dissimilarity between the attenuation patterns
might cause converging problems in the training procedure and
lead to poor performance. Therefore, we suggest integrating
the physical parameters fed as exogenous variables to the
forecasting models to address the limited data issue. A feature
vector xs characterizes each CML contains the static data
utilized on our work.

xs = (L,F, a(h)) (1)

Where L is the effective distance in km between the trans-
mitter to the receiver stations, F is the transmission frequency
in GHz, and a(h) is a vector containing the antennas heights
above the sea level of the transmitter and receiver’s antennas
in meters. The polarization in all the CMLs in our dataset is
identical and therefore is not included in xs. We focus only on
data that is available for the NMS without side information.
The training dataset containing 21 CMLs with a total of 1.1
million attenuation measurements, obtained between 2015 to
2017 in the area of the city Gothenburg. The length, L range of
0.6 km to 7.7 km, The frequency range of 12 GHz to 41 GHz,
and heights between 10 to 60 meters. A detailed description
of the measurements data set and the data collection process
of the NMS for the dataset can be found in [14].

III. DYNAMIC FUZZY CLUSTERING

Clustering time-series data is different from general clas-
sification algorithms, where the dynamic changes over the
time dimension have to be considered during the cluster-
ing process. Our approach includes converting a univari-
ate time-series {x1, x2, . . . , xn} into a raw feature vectors
{s1, s2, . . . , sN−W}, where si ∈ Rd and applying a fuzzy
clustering algorithm over the extracted features. Then, the
most related temporal patterns are grouped into clusters, and a
separate model is fitted for each cluster of similar patterns. The
last step includes forecasting by a fuzzy mixture of the above
prediction models weighted by the degree of membership of
the current feature vector. The procedure is described in Figure
1. Consider a time series {x1, x2, . . . , xn} that describes an
interval of attenuation measurements of a CML, the following
steps detail the adaptive methodology:
1. Sliding-Window: Constructing subsequences using the
sliding window method over the time series. Each win-
dow contains the W previous measurements Wt =
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{xt−W+1, . . . , xt−1, xt}. The sliding window over attenuation
time series interval is demonstrated in Figure 3.

2. Feature Extraction: Each window is converted to a fea-
ture vector st ∈ Rd that characterizes the recent samples. The
purpose is to describe the current samples by an informative
representation, which serves as the clustering algorithm inputs.
We use a feature vector based on the weighted second-order
statistics of the current window:

µ̂Wt
=

t∑
i=t−W+1

wixi (2a)

σ̂Wt =

√√√√√√√√
t∑

i=t−W+1

wi(xi − µ̂Wt
)2

1−
t∑

i=t−W+1

w2
i

(2b)

Where µ̂Wt and σ̂Wt represents the emperical weighted mean

and standard devation for normalized weights
t∑

i=t−W+1

wi =

1., ∀t ∈ {W,W + 1, . . . , N}. The weights allow a greater
influence on recent data points than the previous samples
by assigning a decreasing weighting factor to each sample.
We use exponentially decreasing weights, where w̃t−k =
(1−α)k. Each observation in the window Wt is multiplied by

wk = (1 − α)k/
t∑

k=t−W+1

w̃k, where the denominator is the

normalization factor.
3. Fuzzy C-Means (FCM): We use a dynamic fuzzy

clustering model for the feature vectors in the training dataset
si = (µ̂Wi

, σ̂Wi
), ∀i ∈ D. D represent all available the atten-

uation time series dataset. The FCM [15] is an unsupervised
clustering algorithm that assigns groups to related elements
in respect to some distance criteria to the cluster centers’
point. The algorithm attempts to find a fuzzy partition of
the dataset by minimizing a distance metric with respect to
fuzzy memberships and centers. Formally, for a given a finite
collection of N data points {s1, s2, . . . , sN}, the objective
is the partition into C fuzzy clusters. The FCM generates
C cluster centers {v1,v2, . . . ,vC} ∈ RCXd and a partition
matrix U ∈ RNXC , such that uij ∈ [0, 1] such that within the
cluster the distance between elements to the cluster center is
minimized with respect to a given criterion The FCM aims to
minimize an objective function:

J∗ = arg min
U,V

N∑
i=1

C∑
j=1

(uij)
m||si − vj||2 (3a)

under the constrains:
C∑
j=1

uij = 1, uij ∈ [0, 1], 1 ≤ j ≤ C, 1 ≤ i ≤ N (3b)

Where uij is the membership degree of object si to cluster
cj . || · || is the euclidean distance between the elements and
the cluster’s centers (3a). 1 ≤ m < ∞ is the parameter
that controls the fuzziness of the partition. Large values of
m correspond to fuzzier clusters, where for m = 1, the fuzzy
memberships, uij , converge to {0, 1}, lead to hard partitioning

where each element belongs to one cluster. The minimization
problem is solved by iteratively calculating cluster centers vj

and fuzzy membership matrix elements uij ∈ U . The optimal
choice is received by differentiating the objective function (3a)
with respect to vj and uij under the constraints in (3b), for
1 ≤ j ≤ C , and 1 ≤ i ≤ N :

vj =

∑N
i=1(uij)

msj∑N
i=1(uij)m

(4a)

uij =
1∑C

k=1(
||si−vj||
||si−vk|| )

2
m−1

(4b)

The general framework of the FCM includes the setting of the
algorithm’s parameters: The number of clusters C, stopping
criteria for the iterative procedure, and m. The initialization of
the coefficients matrix U , that randomly assigns a membership
degree to each data point si for being in the clusters. Then,
we repeat (4) until the change between two iterations is less
than the stopping criteria.

4. Training Procedure : A forecasting model is fitted
for the maximal members according to the fuzzy clusters,
detailed in IV. The training dataset for each model,Ij , is
composed of the measurements associated with the maximal
membership elements of each cluster. First we include xi in
the Ij = {xi| j = argmaxj′ (uij′ )}. Then, inputs and outputs
pairs are formed by the previous and future values associated
with xi according to the forecasting model formulation.

5. Weighted Forecasting: The fitted trained forecasting
models are used to predict xt+H . The FCM model is trained
over all the attenuation time series in the training data. For
new measurement xt, the existing FCM model is used to
assign the membership degrees {ut1, . . . , utC} of the current
window according to steps (1-2) and (4b). The final step is the
forecasting of xt+H using the membership degrees as weights:
x̂t+H =

∑C
j=1 utj x̂t+H(utj), where x̂t+H(utj) represent the

prediction of the fitted model associated with cluster j.
The dynamic fuzzy clustering steps are a general framework

for the attenuation time series data. Note that steps 1-2
describe the framework for a specific attenuation time-series
interval, {x1, x2, . . . , xn}, where the clustering process is
applied for xi in steps 3-5 refer to the available training dataset
for all the CMLs, after the pre-processing steps detailed in
Section VI.

IV. ATTENUATION FORECASTING MODELS

This section presents the attenuation forecasting methods,
the implementation details, and the required pre-processing
steps. The ARIMA model as a model-driven and an RNN as
a data-driven model are state-of-art forecasting models. Both
are popular methods in the time series forecasting area, and
were proved their efficiency for the short-term rain attenuation
forecasting task in particular [7], [8], [16].

A. Model-Driven: ARIMA(X) Models

Autoregressive models express the following values using
the previous steps of variables to predict their future values.
ARIMA refers to a class of models that aim to capture a
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Figure 2: Integrating static data and dynamic inputs in RNN
to forecast sequential attenuation outputs

sequence of different standard temporal structures in time
series data. The time series model using the Box-Jenkins
approach [17] has been widely used in the literature because
of its simplicity and high performance. In Autoregressive
Moving Average (ARMA) modeling, a stationary time series
is described as a combination of an Auto-Regressive (AR)
and a Moving Average (MA) model, which uses past forecast
errors in a regression model rather than using past values of
the forecast variable in a regression. The ARMA modeling
assumes the data was created from a stationary process and
requires that the statistical properties not change over time.
The ’I’ corresponds to the Integrated component, which
implies the time series values may have been replaced with the
differenced series, applying a differencing operator ∇(d)xt. In
first order differencing (d = 1), the time series is replaced
by ∇xt = xt − xt−1, and d refers the number of times that
we perform the operator. The outcome is stabilizing the mean
and the variance of the time series and other non-stationary
components such as trend and seasonality. While ARIMA
assumes that previous values carry all the information to
predict the future, ARIMAX extends the model to exogenous
input through the addition of variables that are not explained
by the model. Let xs be the a vector of exogenous input and
a time series {x1, x2, . . . , xt}, the ARIMAX(p,d,q) process is
described by the following equation:

∇(d)xt =

p∑
k=1

φi∇(d)xt−k+

q∑
m=1

θmεt−m+
S∑
l=1

βixs,l+εt (5)

εt represents a white noise error term. The parameters p and
q are non-negative integers indicating the order of the AR and
MA terms, which are the maximal previous measurements
and error terms included in the model, respectively. The
differencing (d) order is the minimum required to get near-
stationary time-series data (also called difference-stationary).
In the general model form, the exogenous variables may vary
along with the time series values. However, in our case, the
static data aims to capture the differences between the CMLs
and is modeled by a linear combination with the vector β. The
ARIMA formulation do not include the static data inputs.

B. Data Driven: RNN

Recurrent Neural Networks (RNNs) are a class of artificial
neural networks for processing sequential data. They can
handle the time dependence of the input variables, unlike other
learning regression predictive models. It is done by performing
a hidden state that allows storing and memorizing information
and non-linear dynamics to update their hidden state. The
purpose RNN cell is to update state ht using previous state
ht−1 and current input xt, i.e, ht = fW (ht−1, xt; Θ). The
computation process of updating the hidden state depends
on the RNN cell architecture. The simple RNN architecture
suffers from a vanishing gradient problem [18] when trying to
handle long sequences. The information from the beginning
of the sequence has a negligible influence in updating the
model’s weights by performing Back Propagation Through
Time (BPTT). Therefore, various variants of RNN architec-
tures were suggested, including LSTM [18] and GRU [19]
units to address the vanishing gradient problem. Both include
internal mechanisms called gates that can regulate the flow
of input information and control the memorization process.
In this work, we implement an RNN with a gating mech-
anism of GRU cells to reduce the model’s complexity and
yield comparable performance to LSTM. The main distinction
between vanilla RNNs and GRUs is that the latter supports a
gating mechanism of the hidden state. It includes controlling
the flow of information by employing two internal gates: An
update gate and a rest gate. The update gate, zt, would allow
us to control how much of the current state changes with
new information. It determines which and the previous time
steps are passed to the next state. The reset gate, rt, allows
controlling how much of the previous state we might still want
to remember. The following equations describe the update of
the GRUs:

zt = σg(Azxxt +Azhht−1 + bz) (6)

rt = σg(Arxxt +Arhht−1 + br) (7)

h̃t = tanh(Axgxt +Agh(rt � ht−1) + bh) (8)

ht = (1− zt)� ht−1 + zt � h̃t (9)

where A are weight parameters matrices and br, bz are bias
vectors. We use the sigmoid activation function, σg(x) =

1
1+exp−x for the internal gates to transform input values to the

interval (0, 1), and the hyperbolic tangent, tanh(x) = ex−e−x

ex−e−x

to ensure that the candidate hidden state result, h̃t, is in the
interval (−1, 1). The output hidden state updates by incorpor-
ating the outcome of h̃t and the update gate zt, described
in equation (9), where � denotes the Hadamard product
operator. To extract the static information from the CMLs, we
concatenated the dynamic attenuation time series and the static
features and fed them into the RNN. The modified architecture
is depicted in Figure 2. Notice, we process the static and
dynamic data as an input vector Xt = (xt,xs) to the GRU
cell to train the recurrent network to adopt the change between
the CMLs. This Integrated RNN (I-RNN) architecture got
better performance than an architecture that the concatenate
layer appears after the RNN, and a fully connected layer
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calculates the output, such as suggested in previous works
[20], [21]. The RNN is trained to generate an output vector
{x̂t+1, x̂t+2, . . . , x̂t+H}, with l2 loss between the outputs and
the following time steps.

V. EXPERIMENTAL ANALYSIS

This section details the experiments in this work. It includes
the experimental setup, implementation details of the sug-
gested models, and the empirical evaluation of the proposed
and the baseline methods. The analysis includes the two
suggested extensions for the models: the forecasting based on
the fuzzy partition and the static information integration of
the CMLs. The test data contains 6 hours of measurements
from an operating CML with xs = (2.9, 37.2, 46, 35). The
train-test split for this CML is according to 70− 30 division.
While this split is used for the benchmark models, the models
described in Sec. IV allow us to integrate time series from
separate CMLs, and by that, to increase the available training
data dramatically. Furthermore, it demonstrates a real scenario
when only a limited amount of data that includes rain events
is available from a specific CML.

A. Implementation Details

For both the model-driven and data-driven analysis, we use
the baseline models as the ARIMA model and the data-driven
an RNN without incorporating the static information. The
AFP is proposed and performed for the baseline models with
and without the static information extensions. For the model-
driven, the model minimized the AIC criterion [22] over the
training data was selected. Notice that we perform multi-step
forecasting of the time series, where H = 6, concerning the
data sampling time. However, we apply a smoothing moving-
average filter followed by downsampling in a factor of 2
to remove noise, and better fit the models to the multi-step
forecasting task. In this case, the ARIMA modeling is fitted
to the sampled time series and performs iterative forecasting
to generate the predictions for x̂t+3. The values for x̂t+2 and
x̂t+3 are computed using the fitted model with the former
predictions as input to the model equation (5). For the RNN
models, we use one hidden layer with 128 units in each GRU
cell and a batch size of 120. We use a l2 weight regularization
with constant λ = 1e−4 to improve the model performance by
reduce overfitting. All the hyperparameters were tuned using
a grid search over a validation set. We assigned 20% from
the training dataset of each CML as a validation data set for
the RNN. We use Adam [23] as an optimization algorithm
of stochastic gradient descent. All models were implemented
using Keras 2.5.0 with the Tensorflow backend in Python 3.7.1.
Pre-Processing: Utilizing datasets obtained from different
CMLs requires scaling steps to the inputs for the AFP frame-
work. The first pre-processing step is to subtract the baseline
attenuation from each time series data of the CML. This con-
stant is commonly different for distinct CMLs and was set to
the median of the minimal 200 samples. This step assigns the
observed attenuation that will be affected by the environmental
changes in the channel. Then, the dynamic and static datasets
were scaled separately according to the z-score standardization

Table I: The datasets balance and RMSE values for model and
data-driven methods according to each cluster

Cluster Data Percentage RMSE
Training Test ARIMAX I-RNN

1 45.5 % 27.1% 0.27 0.31
2 38.2% 42.3 % 0.64 0.55
3 16.3% 31.6 % 0.96 0.83

x̃ = x−µ̂
σ̂ , where µ̂ and σ̂ represents the empirical mean and

standard deviation of all the available training dataset of each
CML. For the static dataset, the standardization performed for
each feature separately: x̃s = x(s)−µ̂(s)

σ̂(s) . In addition, for the
ARIMA models, we use a logarithmic transformation after the
fuzzy clusters were determined. Several parameters influence
the adaptive forecasting algorithm performance described in
III. The feature vector values are determined according to
the sliding window length W , and the α, the rate of the
exponential decrease of the weights within the window. The
number of fuzzy clusters C = 3 for both methods, α = 0.3
and the window lengths are 4 and 6 for the model and data-
driven models correspondingly. The values were obtained by
optimizing over the validation set.

B. Results

We conduct an empirical evaluation of the result by com-
paring the two proposed methods (AFP framework and static
data integration) for the baseline methods. The adaptive fuzzy
clustering algorithm is demonstrated in Figure 3 over attenu-
ation time-series interval. We observe periods with increased
attenuation levels on the LHS figure due to heavy and weak
rainfall patterns in different time intervals. On RHS, a data
point represents the features of the current window, where
(µ̃Wt

, σ̃Wt
) refers to the normalized attenuation values after

the pre-processing step for W = 6. The different clusters refer
to the maximal membership degrees of each data point. As can
be seen, high standard deviation values are often associated
with high attenuation values. Table I presents the split of the
total training and test data set for clusters and the RMSE
values obtained for each set for the test data measurement for
each model. The imbalance in training and test data is due to
choosing the test as intervals that contain rainfall events. The
purpose is to evaluate our method primarily for rain-induced
attenuation. However, the training set may also include longer
dry periods within the interval of measurements. The FCM
algorithm will classify those dry periods to cluster 1 with
high probability. Low volatility levels characterize the signal in
cluster 1. Therefore, the adaptive forecasting model achieves
the lowest RMSE values for this cluster. Moreover, the
ARIMAX as the model-driven method outperforms only in
this cluster, suggest that ARIMAX can achieve comparable
and more beneficial results for moderate attenuation values.
However, the I-RNN performs better for the other clusters. The
total RMSE values are 0.63 and 0.54 correspondingly, which
signifies that the adaptive I-RNN outperforms the ARIMAX
model in the attenuation time series forecasting task. To
evaluate the adaptive fuzzy mechanism and integration of the
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Figure 3: The FCM partition of the attenuation time series
measurements. An increase attenuation due to rain is evident
during an interval rain-event.

static data of the CMLs in forecasting models, we compare
our two proposed methods to the baseline methods. The results
are summarized in in Table II. The baseline methods are the
ARIMA and RNN models without incorporating the static
data of the links. The training dataset in the first two rows
is restricted for the tested CML without utilizing the static
and AFP framework, containing 35k measurements. The last
two rows combine datasets from all the CMLs. The RMSE
values obtained are presented in the first row as the baselines
for each model. The suggested extensions’ performances are
evaluated in the following rows, compared to the baseline
results as a reference. In the second raw, we apply the AFP
method with the same training data as the baseline. The AFP
led to undesirable effects with a reduction in performance
for the RNN. As can be seen, the RNN is sensitive to the
available dataset for model training. The AFP reduces the
training dataset for each model and therefore leads to poor
results. However, the AFP improves the ARIMA performance
by 20%. The last two rows (Multi-Link training) signify the
suggested improvements of this work and includes all the
available training datasets from all the CMLs in the training
process. The third row evaluates the integration of the link’s
physical features in the models, where the last raw uses the
AFP method. The results in the third raw imply that the
extensions for the models (ARIMAX and I-RNN) are essential
when using time series data obtained from other CMLs, where
the most significant improvement is for the RNN with 39%
better from the benchmark. The last raw indicates that the
AFP method improved all model’s performance when using
a sufficient training dataset, where the most notable (15%) is
for the model-driven.

VI. CONCLUSIONS AND FUTURE WORK

This work proposes a framework to predict the attenuation
time series in CMLs, considering the different characteristics
of the data generating process. Our approach includes two dis-
tinct extensions to traditional short-term attenuation forecast-
ing models and is implemented and evaluated for model and
data-driven methods. The motivation is to consider the non-
stationarity of the signals and the rainfall patterns, which might
cause poor performance in training forecasting models. The
clustering allows increasing the similarity between sequences
in the training set. Moreover, we present the integration of
the physical parameters that characterize the CML in the
forecasting models. We show that incorporating the static data

Table II: Performance of the Adaptive Fuzzy Prediction
method and the static-data

Training
Method

Model-Driven Data-Driven
ARIMA ARIMAX RNN I-RNN

One-Link1 0.93 - 0.98 -

One-Link
AFP

19.3% - -27.5 % -

Multi-Link -17.4% 13.1% 9.1 % 39.0%
Multi-Link
AFP

-5.1% 28.4% 12.9% 41.2%

improves the model’s performance by including attenuation
time series from multiple CMLs and increasing the available
training dataset. This extension is essential for the proposed
AFP method, which split the total training dataset. The results
indicate that the two proposed approaches, the AFP and the
static data extensions, outperform the baseline in both model
and data-driven models. The data-driven model includes an
RNN with GRU units using the architecture that receives
dynamic and static features as an input. The result shows
that the RNN is more sensitive to the training dataset. The
more significant gains than the baseline were achieved by
incorporating the static dataset and increasing the total training
dataset. Deep learning algorithms can learn and adopt the non-
stationary temporal changes between different regions in the
time series with sufficient training data. The model-driven
models include ARIMA variations, which require learning
specific model parameters. The non-stationary variations in the
time series, leading to unsatisfactory performances. Therefore,
applying the AFP method is essential for the attenuation
time series to achieve better performance. We suggested the
fuzzy framework in this work and proved its efficiency on
the attenuation time-series datasets. In future studies, we will
evaluate the robustness of our method to different dynamic
clustering algorithms by applying recent time series clustering
methods. Moreover, the evaluation can be extended to include
more CMLs in the test dataset to more link lengths and
frequencies. Another concern with the AFP framework is the
reduction of the dataset for each forecasting model. We will
address this matter by extending the algorithm to include
fuzzy partition of the training datasets, allowing the models
to employ all the available data.
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