
Scene Editing as Teleoperation: A Case Study in 6DoF Kit Assembly

Yulong Li∗1, Shubham Agrawal∗1,2, Jen-Shuo Liu1, Steven K. Feiner1, Shuran Song1

1Columbia University 2Samsung AI Center NY

https://seat.cs.columbia.edu/

Abstract— Studies in robot teleoperation have been centered
around action specifications—from continuous joint control
to discrete end-effector pose control. However, these “robot-
centric” interfaces often require skilled operators with extensive
robotics expertise. To make teleoperation accessible to non-
expert users, we propose the framework “Scene Editing as
Teleoperation” (SEaT), where the key idea is to transform
the traditional “robot-centric” interface into a “scene-centric”
interface—instead of controlling the robot, users focus on
specifying the task’s goal by manipulating digital twins of the
real-world objects. As a result, a user can perform teleoperation
without any expert knowledge of the robot hardware. To achieve
this goal, we utilize a category-agnostic scene-completion algo-
rithm that translates the real-world workspace (with unknown
objects) into a manipulable virtual scene representation and
an action-snapping algorithm that refines the user input before
generating the robot’s action plan. To train the algorithms,
we procedurely generated a large-scale, diverse kit-assembly
dataset that contains object-kit pairs that mimic real-world
object-kitting tasks. Our experiments in simulation and on a
real-world system demonstrate that our framework improves
both the efficiency and success rate for 6DoF kit-assembly tasks.
A user study demonstrates that SEaT framework participants
achieve a higher task success rate and report a lower subjective
workload compared to an alternative robot-centric interface.

I. INTRODUCTION

The vast majority of robot-teleoperation research has fo-

cused on how to better specify robot actions: from continuous

joint control to discrete end-effector pose control. However,

most of these “robot-centric” interfaces require skilled opera-

tors (with robotics expertise), complex input devices, or low-

latency connections, which are hard to guarantee in practice.

To address these issues, we propose the framework of

“Scene Editing as Teleoperation” (SEaT), where the key

idea is to transform the traditional robot-centric interface

into a scene-centric interface—instead of specifying robot

actions, users focus on specifying task goals by manipulating

digital twins of real-world objects. As a result, non-expert

users, users who have a high-level understanding of the task

but no experience of working with the robot, can perform

teleoperation without knowledge of the robot hardware,

control mechanisms, or current state—users do not even see

the robot during teleoperation. In addition, by removing the

need of continuous control, the system is able to gracefully

handle variable network latency.

While SEaT is applicable for general “object rearrange-

ment” tasks, we use 6DoF unknown object kit assembly as

the case study in this paper. This task is selected because of

its high requirements in precision and flexibility. Through

∗ indicates equal contributions

Control robot end-effector to specify
low-level actions

Control the objects to define
the task independent of robot

Robot-Centric Teleop
(prior work)

Scene-Centric Teleop
(this work)

Robot Worksite Remote Operator

No Robot!

Fig. 1. Scene Editing as Teleoperation. With a scene-centric interface,
our framework allows the user to efficiently specify the task goal without
expert knowledge of the robot hardware or control, making this framework
accessible to non-expert users. By removing the need for continuous control,
the system is able to gracefully handle variable network latency.

this task, we hope to demonstrate the useful capabilities

of SEaT that could not be achieved by either a traditional

teleoperation system (struggles to produce precise actions

in 6DoF space [1]) or an automated system (struggles to

generalize to new objects and tasks [2]).

While there are many existing “scene editing” tools for

manipulating virtual objects [3]–[5], the decisive challenge

for our task is how to reliably translate between the real and

virtual scene representations, specifically:

• How to translate the realworld workspace filled with

unknown objects into an editable virtual scene.

• How to translate imprecise user edits (i.e., objects’ rear-

rangements) to the realworld with the robot’s actions.

To obtain the digital twins of unknown objects, we propose

a category-agnostic scene-completion algorithm that segment

and complete individual objects from depth images. To

handle imprecise user inputs, we propose a 6DoF action-

snapping algorithm that automatically refines user inputs and

corrects object-kit alignment using a 3D shape matching

network. Finally, virtual operations on object poses are

translated by a sequence of robot actions generated by

the robot planner. Learning from a large-scale kit-assembly

dataset, our framework (both scene-completion and action-

snapping algorithms) can generalize to unseen object-kit

pairs, allowing quick adaptation to new assembly tasks.

In summary, our primary contribution is the framework of

SEaT that allows non-expert end users to perform complex

and precise 6DoF kit-assembly tasks over a high-latency

a
rX

iv
:2

1
1
0
.0

4
4
5
0
v
4

[c

s.
R

O
]

 2
 D

e
c
 2

0
2
2

internet connection. This framework is enabled by the fol-

lowing technical contributions:

• A category-agnostic scene-completion algorithm that trans-

lates the real-world robot workspace (with unknown ob-

jects) into a virtual editable scene representation.

• An action-snapping algorithm that automatically refines

user inputs and improves object-kit alignment using a 3D

shape matching network.

• A large-scale kit-assembly dataset, KIT1000, that contains

a diverse set of procedurally generated object-kit pairs that

mimic real-world kitting tasks. This diverse training data

allows the algorithm to generalize to new objects.

Extensive experiments suggest that SEaT improves both

the efficiency and success rate of 6DoF kit-assembly tasks,

while achieving a lower subjective workload compared to

an alternative robot-centric interface. Please see our project

website for more system videos. Code and data will be made

publicly available.

II. RELATED WORK

Teleoperation. Early investigations in robot teleoperation

focused on specifying a continuous motion trajectory [6]–

[14], which often requires a low-latency connection between

the teleoperator and robot or a complex input device for the

operator. To reduce these requirements, other systems allow

the operator to specify only the robot end-effector target

poses [1], [15]–[17], and allow asynchronous execution to

mitigate high communication latency. However, regardless

of the levels of control, all these systems still focus on

specifying the robot’s action, requiring expert teleoperators

with knowledge and intuition of the robot embodiment. For

example, the user needs to understand the robot kinematics

to specify a reachable and collision-free arm trajectory or

understand the robot gripper mechanism to specify a valid

grasp pose. Training human operators with this expertise

can be expensive and difficult to scale. In contrast, our

system focus on specifying the task goal regardless of robot

hardware. This idea of task-driven teleoperation has been

studied in simple scenarios such as point-goal navigation [18]

or manipulation with known objects [19]. However, how to

enable precise and efficient task specification for a complex

assembly task with unknown object parts is still an open

research question, hence the focus of this paper.

Vision-based kit assembly. Traditional vision-based as-

sembly approaches require strong prior knowledge of target

objects (e.g., detailed CAD models) to perform object-pose

estimation and motion planning [2], [20]. As a result, these

approaches often cannot generalize to new objects without

extensive data collection. Recent methods explore the idea

of shape-informed assembly [2], [21], [22], where the task

of assembly is formulated as a shape-matching problem

between the object and its target location. This formulation

allows the algorithms to generalize toward unseen objects

by directly analyzing their 3D geometry. However, these

algorithms are still limited to simpler tasks, such as 3DoF as-

sembly [21], only predicting single object assembly [2], [22],

only rotation prediction [2] or require precise demonstrations

(b) Category-Agnostic
Scene Completion (f) Action Planning

R
ob

ot
 W

or
ks

ite
 (a) Robot + RGB-D camera

(d) User Input

(g) Action Execution

R
em

ot
e

R
em

ot
e

O
pe

ra
to

r

L
oc

al

(c) Scene-Editing UI

Object volumes as see in RGB-D image
With controls (rotation/translation)

Find one of the best results with realworld data

(c) Scene Editing UI

(b) Category-agnostic
scene completion

RGB-D image

(e) Action Snaping

(a) Robot Worksite

Robot +
Camera

Zoom in one object to
show the snapping
result

Overlay before and
after snap with
transparency. Outline
the final result

Object in their final
locations after user input,

some object may have
imprecise rotation/location

(d) User Input

Robot perform the pick and place action

(g) Task Execution

(f) Action Planning

Corrected Pose

(e) Action Snapping

before

after

Fig. 2. Overview. Given a depth image, the scene-completion algorithm
converts the workspace into a virtual scene (a–b §III-A). The user then
specifies a target object pose by editing the virtual scene using the 3D
UI (c–d, §III-B). Our action-snapping algorithm refines the object pose to
improve object-kit alignment (e, §III-C). Finally, the system computes and
executes the actions to assemble the objects (f–g, §III-D).

on the exact object-kit pair [22]. While top-down kits (3DoF

assembly) may seem ubiquitous, most do not have a flat

bottom and hence cannot stand vertically on their own on

an assembly belt. Handling multiple objects simultaneously

is required for kitting tasks involving packaging multiple

related objects together (e.g., toothpaste and toothbrush or

bundle of pens). Our approach is able to handle multi-

unknown-object 6DoF kitting from imprecise user input,

where user input helps reduce potential ambiguities and

reduce search space, and the 3D shape-matching network

further refines imprecise user input.

Creating digital twins of 3D scenes. Many 3D scene-

understanding algorithms have been developed to produce

high-quality digital models of real-world environments for

teleoperation. These include algorithms for 3D object detec-

tion [23]–[31] and shape completion [32]–[37]. Unlike tra-

ditional 3D scene-understanding tasks that focus on common

object categories (e.g., tables or chairs), in assembly tasks, a

system often encounters a large number of new objects and

parts that cannot be categorized into predefined categories.

To address this issue, we propose a category-agnostic scene-

completion algorithm that generalizes to unseen objects or

parts without their 3D CAD model, allowing quick adapta-

tion to new assembly tasks.

III. METHOD: SCENE EDITING AS TELEOPERATION

We study the task of 6DoF kit-assembly with multiple

unknown objects. To perform the task, the robot need

to precisely place the object into their corresponding kit

location with correct 6DoF poses. This task presents a set of

unique challenges compared to general object rearrangement

tasks: 1) High precision requirement – making it particu-

larly challenging for human teleoperators with single view

observation, hence, motivates our action snapping network

with shape completed objects. 2) Ambiguities in object-kit

correspondence. The ambiguities can be caused by similar or

(a) User provides imprecise position and orientation. (b) Position refinement: we use DCNs to get dense features of the kit volume and object volume, then use 3D cross-convolution with the
object volume’s feature as the kernel to get the predicted position. (c) Rotation refinement: We crop the kit volume around the predicted position, and sample point clouds from both the object
and kit volume. We then rotate the object point cloud with different rotations, each concatenated with the kit point cloud and passed through a Poinetnet++ based classifier to obtain the
predicted rotation.

PointN
et

++

(a) Imprecise
User Input

(b) Position Refinement (c) Rotation Refinement

Input Rotation
...

Input Position

Predicted
Position

Concatenate

Predicted
Rotation3D Cross-Convolution

Crop & Sample

Sample
Point Cloud

(d) After
Refinement

3D
Rotations

(391)

Before

Fig. 3. 6DoF Action Snapping with SnapNet. SnapNet uses 3D shape matching to refine the alignments between objects and their kits. Given the
user’s imprecise input (a), the algorithm first refines the object position by using a 3D cross-convolution network between the geometric features computed
from the object and kit volume (b). The cross-convolution is computed only in the local area around the user inputs (b). The algorithm then samples
point-clouds from the object volume and the cropped kit volume centered at the predicted position and predicts the refined rotation from 391 rotations
using a PointNet++ based classifier (c). Finally the algorithm outputs the refined position and rotation as the target pose.

symmetrical shapes, requiring human inputs to disambiguate.

3) Large search space — compared to top-down kit-assembly

tasks [21], the possible object poses in 6DoF is significantly

higher, making uniform search approach impractical. 4)

Despite the ubiquity of the kit-assembly applications, a large-

scale dataset is not yet available for this task, which is a

key bottleneck for enabling learning-based approaches. In the

following sections, we will discuss our approach to address

above challenges.

A. Category-Agnostic Scene Completion

Given a single depth image I of the workspace with objects

on one side and the kit on the other, the algorithm generates

shape-completed geometries for individual objects using the

following two steps:

Object-Instance Segmentation: The algorithm first detects

and segments all object instances using SD-MaskRCNN

[38]: a variant of MaskRCNN [39] using only depth for better

sim2real generalization. Since the assembly task involves a

large number of object parts that cannot be categorized into

predefined categories, we train this algorithm in a category-

agnostic manner with only a binary objectness label.

3D Shape Completion: Given an object’s instance mask M

and the depth image I, the algorithm estimates the object’s

full 3D geometry. This shape-completion step provides two

benefits: 1) it aids the user during teleoperation by better

visualization of the objects and provides more context for

successful kitting, and 2) it helps in achieving better action-

snapping results as shown in Tab. I.

To perform 3D shape completion, we first transform par-

tial object geometry information from masked depth image

MD = I ×M into a 1283 TSDF volume [40] representation

Vpartial with voxel size 0.89 mm. This volume is then fed

into our shape-completion network SCθ to obtain the shape-

completed 3D volume Vcompleted . SCθ follows a 3D encoder–

decoder style architecture with skip connections [34]. The

network is trained to minimize voxel-wise MSE loss. We

train a separate network for kits with same architecture as

for object shape completion.

Both models are trained on the simulation data generated

from objects and kits from our dataset (see §III-E) and then

directly tested on unseen real world data.

B. Scene-Editing Interface

Given the 3D models for each object, the next step is

to specify the task goal by changing their 3D poses in a

virtual scene. This interface (Fig. 2 c) is implemented as a

3D UI in a standard web browser using the three.js library

[41]. The user can observe the 3D scene from an arbitrary

viewpoint and select, translate, and rotate individual objects.

The user sends the target poses to the robot by clicking

the Upload Scene button. Our user study demonstrates that

being able to directly manipulate objects at their target kits

significantly reduces subjective workload as compared to

traditional methods. Moreover, our interface does not require

specialized hardware or a fast internet connection, making it

accessible to common users (see video for interface demo).

C. SnapNet: 6DoF Action-Snapping Network

Specifying perfect 6DoF kitting poses is challenging. As

supported by our study, allowing users to be imprecise

greatly reduces their mental burden and task time as they

can roughly align an object near its respective kit.

To make use of imprecise user inputs, we designed the

SnapNet algorithm (Fig. 3) that refines the objects’ pose

based on their 3D geometry. Concretely, the goal for SnapNet

is to predict correct relative pose Tgt between object and

kit given input volumes of object Vo, a kit Vkws
, and user

input Tuser ≡ (Puser,Quser) ∈ SE(3). Here, we assume user

input is within range: maxi∈{x,y,z}|Pi,user −Pi,gt |< δposition and

Quser.Q
−1
gt < δorientation where Tgt ≡ (Pgt ,Qgt) is the ground-

truth kitting pose. We train our system to handle poses up

to δposition = 2.8 cm error along each translational axis and

δorientation = 27.5◦ quaternion difference.

To reduce the combinatorial search space, SnapNet pre-

dicts translation and rotation sequentially, which reduces the

search space from O(θxyz×θrpy) to O(θxyz+θrpy) where θxyz,

θrpy represents discretization of translational and rotational

search space.

Position prediction: Given Vo, Vkws
and Puser, the goal

of position prediction is to infer Psnap. We first crop kit

workspace volume Vkws
centered around Puser and of size

(2δposition)
3 to receive Vk. We then encode Vo and Vk via

object and kit encoders (fully convolutional neural networks)

to obtain deep feature embeddings φ(Vo) and ψ(Vk) re-

spectively. The algorithm then computes cross-convolution

between φ(Vo) and ψ(Vk) by treating φ(Vo) as convolution

kernel. The output shares the same size as kit features ψ(Vk).
Psnap is chosen as position that corresponds to maximum

feature correlation, i.e., argmax of cross convolution output.

Both encoders are trained jointly to minimize voxel-wise

BinaryCrossEntropy loss with label 1 at Pgt and 0 elsewhere.

Fig. 4. KIT1000 Dataset. Examples of objects and generated kits.

Rotation prediction: Given Vk, Vo, user orientation Quser,

and position prediction Psnap, the goal of the Rotation module

is to predict Qsnap. Directly regressing quaternions [2] fails to

generalize (see Tab. I) and volume-based representations are

susceptible to information loss under rotations. To address

these issues, we use a point-cloud–based representation for

rotation refinement. Using the refined position Psnap, Vk is

further cropped down at center with size (128)3. Both Vo

and Vk volumes are converted to point-cloud representation

(No = 2048 and Nk = 4096 points ∈ R
3 respectively) to

support rotation operations. We uniformly sample N − 1

rotations within δorientation from the user input Quser. Qgt

is added to the set of rotations (N = 391) during training.

For each rotation r in the set, we rotate the object point-

cloud by r and concatenate it with the kit point-cloud. An

additional fourth dimension is utilized to distinguish between

object (1) and kit (−1) points. A PointNet++ based encoder

[42] followed by fully connected layers is used to get binary

classification score. We train the network using cross-entropy

loss with 1 for Qgt rotation and 0 otherwise.

All the modules are trained on the simulation data gener-

ated from objects and kits from our dataset (see §III-E) and

then directly tested on unseen real world data.

D. Robot Planning and Execution

Picking and placing an object at specific goal pose is

a challenging problem as the object may not initially be

oriented such that the robot can grasp and then immediately

place them in specific goal pose. Such manipulation systems

are still an active research area [43], [44] and not the focus

of this work. To test our system in real-world, we make a

simplifying assumption that the object is top-down graspable,

and the grasping surface is opposite to the kit insertion

direction. No such assumptions are made for training and

evaluation of scene completion and 6DoF pose prediction

algorithms (Tab. I). To move the object from its current

location to kitting location robotTsnap, we pick the object via

a suction-gripper–based top-down immobilizing grasp. The

object is inserted into kit following a two-step primitive: (a)

The robot first “hovers” at some fixed height and final orien-

tation above the kitting location defined as robotThover =
robot

Tsnap ×
snap Thover, where snapThover ≡ (snapPhover = [0,0,0.1]

m, snapQhover = [0,0,0,1]). (b) The robot follows a straight-

line path from robotThover to final pose robotTsnap before releas-

ing the suction. More details on the grasp pose estimation

and trajectory computation can be found on the webpage.

E. Dataset and Automatic Kit-Generation Procedure

Despite the ubiquity of kits in the packaging and transport

industry, most kits are manually designed and no large-

scale object-kit dataset exists. Given a 3D object geometry,

a typical kit (a) maximally confirms the object geometry and

(b) allows the object to be inserted following a straight-line

path at least along one direction. Our method neatly accounts

for both of these: we capture an orthographic depth image of

the object, which removes any artifacts that are not parallel

to the insertion direction. The orthographic depth image is

then converted to an occupancy grid. To allow some margin

between kit and object geometry, the object 3D volume

is then merged with replicas of itself after translating by

margin distance along the horizontal direction. This creates

a scaled version of the object geometry while preserving the

centers of offset cavities. This scaled object geometry is then

subtracted from the kit block to produce kit geometry.

We use objects from ABC Dataset [45], a large-scale CAD

model dataset that contains a diverse set of mechanical parts.

Each object is scaled to fit a (5cm)3 box and a corresponding

kit is generated as described above (see Fig. 4). To create

6DoF kits, we arbitrarily link 2–5 kits together using angle

brackets with angles ∈ [10◦,45◦]. We call this KIT1000

dataset and it will be made available.

IV. EXPERIMENTS

We first evaluate the action-snapping module (§IV-A)

followed by a full system evaluation on a real-world platform

(§IV-B) and a real-world user study (§IV-C).

A. Action-Snapping Evaluation

Metrics: We evaluate 6DoF pose prediction Tsnap ≡
(Psnap,Qsnap) using two metrics: positional error δpos =
||Psnap − Pgt ||2. Rotational error δrot is computed as the

geodesic distance arccos(2(Qsnap ·Qgt)
2 −1).

Comparison with alternative approaches: We compare

our algorithm with TransporterNet [22] and KitNet [2]. Since

both algorithms are trained without user input, we modify our

algorithm to also work without user input: For position pre-

diction, instead of cropping Vkws
around user input Puser, we

directly use Vkws
as Vk. For rotation prediction, we uniformly

sample roll, pitch ∈ [−15◦,15◦], and yaw ∈ [−180◦,180◦].
TransporterNet [22] consists of a pick and a place module.

In our evaluation, we use the groundtruth pick position and

retrain its place module with extensions to 6DoF actions.

When user input is available, we filter out predictions that

is far from provided pose, i.e., Tuser ± (δposition,δorientation).
KitNet [2] predicts only the rotation of the object via

regression, so there is no straightforward way to incorporate

user inputs. Thus, we only evaluate the rotation predictions

of KitNet without user input.

Tab. I shows that both baselines fail to give accurate

predictions. We hypothesize that without full geometry

estimation, they do not have enough information to infer

a 3D pose. By leveraging full 3D geometry and efficiently

searching the SE(3) space, our model outperforms the

baselines both with and without user input.

Effects of shape completion: To study the effect of shape

completion on action snapping, we compare our approach

without this step. SnapNet-PartialVol uses partial volume

Vpartial to perform shape matching. Tab. I shows that our

Input Observation Scene Completion OursSnapnet-PartialVolTransporternet User Input Groundtruth

No User Input

Segmentation (color: object id)

No User Input

No User Input

Fig. 5. Comparisons to Alternative Approaches We compare SEaT with 6DoF kitting baselines on novel object and kit geometries. TransporterNet
fails to generalize to unseen object and kit geometries. SnapNet-PartialVol works for simple objects (row 2) but fails for objects with complex geometries
(rows 3–4). When given no user input, both baselines frequently place objects at the wrong kits (row 5). In the last five columns, we use ground truth
meshes to visualize poses. For more results, see the project webpage.

TABLE I

ACTION-SNAPPING RESULTS AND COMPARISON

With user input Without user input
δpos(mm) δrot(deg) δpos(mm) δrot(deg)

KitNet [2] - - - 49.2
TransporterNet [22] 15.3 18.3 41.5 45.1

SnapNet-PartialVol 5.1 5.7 49.4 53.2
SnapNet (Ours) 3.9 4.9 10.8 29.6

SnapNet-GTVol 3.7 4.61 8.1 28.9

Median Error with GT Position
Median Error with Position Error = 17 mm

Position: User Error vs. Prediction Error

Error of User Position (mm)

E
rr

or
 o

f P
re

di
ct

ed
 P

os
iti

on

(m
m

)

Error of User Orientation (deg)

E
rr

or
 o

f P
re

di
ct

ed
 O

rie
nt

at
io

n

(d
eg

)

Orientation: User Error vs. Prediction Error
Median Error with GT Orientation
Median Error with Orientation Error = 9 deg

25

20

15

10

5

0

14

12

10

8

6

4

2

0
5 10 15 20 25 10 15 20 25 30 35 40

Fig. 6. Robustness to User Input with [20,80] percentile region shaded.
The left graph shows an analysis of error in position prediction, keeping
error in user orientation fixed. As user position error increases, SnapNet
maintains its low prediction error. Moreover, even with a large error in
user orientation (dotted-red), SnapNet can predict position with low error.
Similar results for predicted orientation, keeping the error in user position
fixed, are shown on the right.

model SnapNet achieves better performance than SnapNet-

PartialVol. We believe that this is because partial volumes

lack of clear and precise object boundaries that shape match-

ing crucially depends on. With ground-truth shape, SnapNet-

GTVol can further improve action-snapping performance.

This result indicates that the scene-completion module is

essential for achieving accurate action snapping.

Robustness against user errors: We also test the algo-

rithm’s robustness to different levels of user-input error. For

a controlled experiment, we analyze error in position and

TABLE II

SYSTEM EVALUATION ON THE REAL-WORLD DATASET

Segmentation Obj. Completion Kit Completion Action Snapping
mIoU mIoU Chamfer mIoU Chamfer pos rot

69.1% 92.4% 6.3 mm 99.1 % 8.0 mm 7.2 mm 6.0◦

rotation prediction one-by-one by keeping the error in user

orientation and user position fixed respectively. Fig. 6 breaks

down the performance of our model by plotting prediction

errors δpos,δrot against user-input errors. The plot shows that

as user error increases, the model error remains roughly

constant, demonstrating the robustness of the algorithm.

B. System Evaluation on Real-World Platform

Finally, we evaluate our algorithm on a real-world platform

using a UR5 robot, an XYZ Robotics suction gripper [46],

and a calibrated Intel RealSense D415 RGB-D camera. To

account for RealSense camera precision (5 mm depth error

[47], for pick-place task, the error would be 10 mm), we

3D-printed the kits from our test set with a larger object-kit

margin of 1 cm as compared to 2.5 mm margin in simulation.

For systematic evaluation, we collect and label 23 scenes

(7 of 1-kit, 7 of 2-kit, 4 of 3-kit, and 5 of 4-kit tasks),

with ground-truth object target poses. We directly tested

all our models (trained on simulation) with this real-world

benchmark. To eliminate small holes in shape completed

object volumes Vcompleted due to sensor noise in input Vpartial ,

we extend all the object voxels till the ground plane. To

mimic user input, we randomly sample position and ori-

entation in the vicinity (δposition,δorientation) of the ground-

truth pose. Fig. 5 shows qualitative results on this real-

world benchmark. Tab. II shows quantitative results for each

individual component. The resulting average position and ro-

(f)
(f)

Resting pose Resting pose

Fig. 7. Kits for real-world experiments. Top: 3D-printed kits from test
dataset are connected at arbitrary angles to create 6DoF kits. Bottom: real-
world kits. Arrows show the resting pose for a few kits which require non
top-down object insertion.

tation error are comparable with the algorithm’s performance

in simulation (Tab. I). Moreover, our model has similar level

performance on training and test dataset with unseen shapes,

which shows that our model is generalizable by leveraging

a large simulated dataset.

In addition to 3D printed objects, we also evaluate the

system on real-world object-kits (Fig. 7-bottom). Since these

kits have a tighter object-kit margin, we use Photoneo Scan-

ner with higher depth precision of 0.5 mm [48]. Fig. 8 shows

the qualitative evaluation. We refer readers to supplementary

video for real-world demonstration of our system.

C. User Study on Real-World Platform

Our user study aims to test the hypothesis that the SEaT

interface would be easier to use than traditional teleoperation

interfaces. We conducted a user study, approved by our

institution’s IRB with 10 non-expert users.

Task and Procedure: Participants completed four kit-

assembly tasks per interface (two 2-kit and two 3-kit tasks).

For each n-kit task, we randomly attached n kits from a set

of six unseen 3D-printed kits using randomly chosen angle

brackets {10◦,20◦,30◦} (see Fig 7). The study used a within-

subjects design, where all participants performed both tasks

using both interfaces in random order. Participants performed

the 2-kit tasks first and then the 3-kit tasks for each interface.

Comparisons: We compared with EE-Control, a represen-

tative teleoperation interface where a user can specify 6DoF

pick-and-place pose of the end-effector on the point-cloud

representation of the scene. In the EE-Control interface, the

user specifies a single pick-and-place pose followed by robot

execution. Once the robot executes, the user scene is updated

with the new scene and the user repeats the process. In SEaT,

the user specifies the goal poses of all objects at once.

Dependent Measures: Our objective dependent measures

were a. Success rate: the number of kits successfully as-

sembled over the total number of kits, b. specification time:

the time the user spent interacting with the interface for

specifying goals, and c. execution time: the total system

time minus the specification time. We also had a subjective

dependent measure d. unweighted NASA Task Load Index

Input Depth Image Segmentation+Completion User Input SnapNetTask

Fig. 8. Qualitative results on real-world kits. See video for more results.

(NASA-TLX) [49], which includes values for MentalDe-

mand, PhysicalDemand, TemporalDemand, Performance, Ef-

fort, and Frustration. Since a user is allowed to operate on the

updated scene in the EE-Control interface, in theory they can

always assemble all the objects given infinite time. Therefore,

for both interfaces, a user can only start an update for an n-kit

task if the time already spent is less than n minutes. Users are

informed about this time limit beforehand. We hypothesized

that each of these dependent measures would differ between

the SEaT and EE-Control interfaces.

Results: We evaluated the hypotheses for significance with

α = .05. While the execution time of SEaT is longer (+12s)

due to model inference, the users spent significantly shorter

specification time (−27s, p < .001), and achieved signifi-

cantly higher task success rate (+33.1%, p < .001). For sub-

jective measures (NASA-TLX), the participants reported sig-

nificantly lower MentalDemand (−39.2%, p = .003), lower

TemporalDemand (−43.1%, p < .001), lower Effort (

−32.0%, p = .002), and lower Frustration (−40.7%, p =
.024). The reported differences in PhysicalDemand and Per-

formance are not significant between these two methods.

The shorter specification time and lower mental load

of SEaT indicates a potential possibility of using SEaT

to simultaneously operate multiple robots. In this case, a

user can continue specify tasks (for another robot) during

model inference and robot execution time, which will further

improve the system’s overall efficiency.

V. CONCLUSION

We introduced “Scene Editing as Teleoperation”, which

allows non-expert end users to perform precise multi-

unknown-object 6DoF kitting tasks. Experiments demon-

strated that SEaT improves efficiency, success rate, and

subjective workload for 6DoF kit-assembly tasks.

Since our teleoperation interface assumes rigid objects,

it cannot be directly applied to tasks involving articulated

objects (e.g., opening a drawer). It would be interesting

to discover articulation via RGB-D images [50], [51] and

integrate it with our system. Planning the grasp and a set of

sequential 6DoF robot actions for general 6DoF kitting tasks

would also be an interesting future direction, where the robot

might need to plan a place-driven grasp [52] or reorient the

object before kitting [53].

REFERENCES

[1] D. Kent, C. Saldanha, and S. Chernova, “Leveraging depth data in
remote robot teleoperation interfaces for general object manipulation,”
The International Journal of Robotics Research, vol. 39, no. 1, pp. 39–
53, 2020.

[2] S. Devgon, J. Ichnowski, M. Danielczuk, D. S. Brown, A. Balakrishna,
S. Joshi, E. Rocha, E. Solowjow, and K. Goldberg, “Kit-Net: Self-
supervised learning to kit novel 3D objects into novel 3D cavities,”
arXiv preprint arXiv:2107.05789, 2021.

[3] C. Reinhart and P.-F. Breton, “Experimental validation of 3ds Max
Design 2009 and Daysim 3.0,” in Proceedings 11th International

IBPSA Conference, 2009, pp. 1514–1521.

[4] “Unity character animation,” http://video.unity3d.com/video/4655480/
unity-character-animation-gdc.

[5] “https://www.solidworks.com/,” 2021.

[6] e. a. Billard, Aude, “Robot programming by demonstration.” 2008.

[7] T. Ren, Y. Dong, and K. C. Dan Wu, “Design of direct teaching
behavior of collaborative robot based on force interaction.”

[8] S. Hayati and S. Venkataraman, “Design and implementation of
a robot control system with traded and shared control capability,”
in ICRA, 1989. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=100161

[9] M. Oda, N. Inaba, Y. Takano, S. Nishida, M. Kayashi, and
Y. Sugano, “Onboard local compensation on ETS-W space robot
teleoperation,” in IEEE/ASME Intl. Conf. on Advanced Intelligent

Mechatronics, 1999. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=803253

[10] P. Michelman and P. Allen, “Shared autonomy in a robot hand
teleoperation system,” in IROS, 1994. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=407383

[11] A. E. Leeper, K. Hsiao, M. Ciocarlie, L. Takayama, and D. Gossow,
“Strategies for human-in-the-loop robotic grasping,” in Proceedings of

the seventh annual ACM/IEEE international conference on Human-

Robot Interaction, 2012, pp. 1–8.

[12] D. Kent, C. Saldanha, and S. Chernova, “Leveraging depth data in
remote robot teleoperation interfaces for general object manipulation,”
The International Journal of Robotics Research, vol. 39, no. 1, pp. 39–
53, 2020.

[13] M. Ciocarlie, K. Hsiao, A. Leeper, and D. Gossow, “Mobile manipula-
tion through an assistive home robot,” in 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 5313–
5320.

[14] M. Gualtieri, A. Ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter,” in 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2016,
pp. 598–605.

[15] S. Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and
G. Konidaris, “End-user robot programming using mixed reality,” in
2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 2707–2713.

[16] D. Gossow, A. Leeper, D. Hershberger, and M. Ciocarlie, “Interactive
markers: 3-D user interfaces for ROS applications [ROS topics],” IEEE

Robotics & Automation Magazine, vol. 18, no. 4, pp. 14–15, 2011.

[17] H.-I. Lin and Y.-H. Lin, “A novel teaching system for industrial
robots.” in Sensors, 2014.

[18] J. K. Lee and O. C. Jenkins, “Goal-based teleoperation for robot
manipulation,” in Artificial Intelligence for Human-Robot Interaction:

Papers from the 2014 AAAI Fall Symposium., 2014.

[19] M. Ciocarlie, K. Hsiao, A. Leeper, and D. Gossow, “Mobile manipula-
tion through an assistive home robot,” in 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 5313–
5320.

[20] A. B. Y. Litvak and A. Bar-Hillel, “Learning pose estimation for high-
precision robotic assembly using simulated depth images.” 2018.

[21] K. Zakka, A. Zeng, J. Lee, and S. Song, “Form2Fit: Learning shape
priors for generalizable assembly from disassembly,” in International

Conference on Robotics and Automation (OCRA), 2020.

[22] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, and J. Lee,
“Transporter networks: Rearranging the visual world for robotic ma-
nipulation,” Conference on Robot Learning (CoRL), 2020.

[23] S. Song and J. Xiao, “Deep sliding shapes for amodal 3D object
detection in RGB-D images,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 808–816.

[24] M. Schwarz, A. Milan, A. S. Periyasamy, and S. Behnke, “RGB-D
object detection and semantic segmentation for autonomous manip-
ulation in clutter,” The International Journal of Robotics Research,
vol. 37, no. 4-5, pp. 437–451, 2018.

[25] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon, “The vitruvian
manifold: Inferring dense correspondences for one-shot human pose
estimation,” in Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on. IEEE, 2012, pp. 103–110.

[26] R. A. Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human
pose estimation in the wild,” arXiv preprint arXiv:1802.00434, 2018.

[27] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6D object pose estimation using 3D object
coordinates,” in European conference on computer vision. Springer,
2014, pp. 536–551.

[28] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik, “Aligning 3D models
to RGB-D images of cluttered scenes,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015, pp.
4731–4740.

[29] R. Guo, Scene understanding with complete scenes and structured

representations. University of Illinois at Urbana-Champaign, 2014.

[30] J. Papon and M. Schoeler, “Semantic pose using deep networks
trained on synthetic RGB-D,” in Computer Vision (ICCV), 2015 IEEE

International Conference on. IEEE, 2015, pp. 774–782.

[31] M. Braun, Q. Rao, Y. Wang, and F. Flohr, “Pose-RCNN: Joint object
detection and pose estimation using 3D object proposals,” in Intel-

ligent Transportation Systems (ITSC), 2016 IEEE 19th International

Conference on. IEEE, 2016, pp. 1546–1551.

[32] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 1746–1754.

[33] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner,
“ScanComplete: Large-scale scene completion and semantic segmen-
tation for 3D scans,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 4578–4587.

[34] Z. Xu, Z. He, J. Wu, and S. Song, “Learning 3d dynamic scene
representations for robot manipulation,” in Conference on Robotic

Learning (CoRL), 2020.

[35] Y. Liang, B. Chen, and S. Song, “Sscnav: Confidence-aware semantic
scene completion for visual semantic navigation,” in Proc. of The

International Conference in Robotics and Automation (ICRA), 2021.

[36] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for
depth estimation from a single image,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015, pp.
5162–5170.

[37] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3D Vision (3DV), 2016 Fourth International Conference on. IEEE,
2016, pp. 239–248.

[38] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and
K. Goldberg, “Segmenting unknown 3D objects from real depth
images using Mask R-CNN trained on synthetic data,” in 2019

International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 7283–7290.

[39] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[40] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
2011 10th IEEE international symposium on mixed and augmented

reality. IEEE, 2011, pp. 127–136.

[41] B. Danchilla, “Three. js framework,” in Beginning WebGL for HTML5.
Springer, 2012, pp. 173–203.

[42] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
hierarchical feature learning on point sets in a metric space,” arXiv

preprint arXiv:1706.02413, 2017.

[43] K. Wada, S. James, and A. J. Davison, “Reorientbot: Learning
object reorientation for specific-posed placement,” arXiv preprint

arXiv:2202.11092, 2022.

[44] N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “In-hand manipula-
tion via motion cones,” arXiv preprint arXiv:1810.00219, 2018.

[45] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, and D. Panozzo, “ABC: A big CAD model
dataset for geometric deep learning,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp.
9601–9611.

[46] “XYZ Robotics,” https://en.xyzrobotics.ai/, accessed: 2021-09-13.
[47] “Depth Resolution of Intel® RealSense™ Depth Camera

D435 and Intel® RealSense™ Camera SR300,” https:
//www.intel.com/content/www/us/en/support/articles/000026260/
emerging-technologies/intel-realsense-technology.html, accessed:
2021-09-13.

[48] “Datasheet for Photoneo PhoXi 3D Scanner M,” https://www.
photoneo.com/products/phoxi-scan-m/, accessed: 2022-02-28.

[49] S. G. Hart, “NASA-task load index (NASA-TLX); 20 years later,”
in Proceedings of the human factors and ergonomics society annual

meeting, vol. 50, no. 9. Sage publications Sage CA: Los Angeles,
CA, 2006, pp. 904–908.

[50] S. Y. Gadre, K. Ehsani, and S. Song, “Act the part: Learning interaction
strategies for articulated object part discovery,” ICCV, 2021.

[51] Z. Xu, Z. He, and S. Song, “UMPNet: Universal manipulation policy
network for articulated objects,” 2021.

[52] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, F.-F. Li, and
S. Savarese, “Learning task-oriented grasping for tool manipula-
tion from simulated self-supervision,” The International Journal of

Robotics Research, vol. 39, no. 2-3, pp. 202–216, 2020.
[53] N. Chavan-Dafle, M. T. Mason, H. Staab, G. Rossano, and A. Ro-

driguez, “A two-phase gripper to reorient and grasp,” in 2015 IEEE

International Conference on Automation Science and Engineering

(CASE). IEEE, 2015, pp. 1249–1255.

	I Introduction
	II Related Work
	III Method: Scene Editing as Teleoperation
	III-A Category-Agnostic Scene Completion
	III-B Scene-Editing Interface
	III-C SnapNet: 6DoF Action-Snapping Network
	III-D Robot Planning and Execution
	III-E Dataset and Automatic Kit-Generation Procedure

	IV Experiments
	IV-A Action-Snapping Evaluation
	IV-B System Evaluation on Real-World Platform
	IV-C User Study on Real-World Platform

	V Conclusion
	References

