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Abstract— Studies in robot teleoperation have been centered
around action specifications—from continuous joint control
to discrete end-effector pose control. However, these ‘“robot-
centric” interfaces often require skilled operators with extensive
robotics expertise. To make teleoperation accessible to non-
expert users, we propose the framework ‘“Scene Editing as
Teleoperation” (SEaT), where the key idea is to transform
the traditional “robot-centric” interface into a “scene-centric”
interface—instead of controlling the robot, users focus on
specifying the task’s goal by manipulating digital twins of the
real-world objects. As a result, a user can perform teleoperation
without any expert knowledge of the robot hardware. To achieve
this goal, we utilize a category-agnostic scene-completion algo-
rithm that translates the real-world workspace (with unknown
objects) into a manipulable virtual scene representation and
an action-snapping algorithm that refines the user input before
generating the robot’s action plan. To train the algorithms,
we procedurely generated a large-scale, diverse Kit-assembly
dataset that contains object-kit pairs that mimic real-world
object-kitting tasks. Our experiments in simulation and on a
real-world system demonstrate that our framework improves
both the efficiency and success rate for 6DoF kit-assembly tasks.
A user study demonstrates that SEaT framework participants
achieve a higher task success rate and report a lower subjective
workload compared to an alternative robot-centric interface.

I. INTRODUCTION

The vast majority of robot-teleoperation research has fo-
cused on how to better specify robot actions: from continuous
joint control to discrete end-effector pose control. However,
most of these “robot-centric” interfaces require skilled opera-
tors (with robotics expertise), complex input devices, or low-
latency connections, which are hard to guarantee in practice.

To address these issues, we propose the framework of
“Scene Editing as Teleoperation” (SEaT), where the key
idea is to transform the traditional robot-centric interface
into a scene-centric interface—instead of specifying robot
actions, users focus on specifying task goals by manipulating
digital twins of real-world objects. As a result, non-expert
users, users who have a high-level understanding of the task
but no experience of working with the robot, can perform
teleoperation without knowledge of the robot hardware,
control mechanisms, or current state—users do not even see
the robot during teleoperation. In addition, by removing the
need of continuous control, the system is able to gracefully
handle variable network latency.

While SEaT is applicable for general “object rearrange-
ment” tasks, we use 6DoF unknown object kit assembly as
the case study in this paper. This task is selected because of
its high requirements in precision and flexibility. Through
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Fig. 1. Scene Editing as Teleoperation. With a scene-centric interface,
our framework allows the user to efficiently specify the task goal without
expert knowledge of the robot hardware or control, making this framework
accessible to non-expert users. By removing the need for continuous control,
the system is able to gracefully handle variable network latency.

this task, we hope to demonstrate the useful capabilities
of SEaT that could not be achieved by either a traditional
teleoperation system (struggles to produce precise actions
in 6DoF space [1]) or an automated system (struggles to
generalize to new objects and tasks [2]).

While there are many existing “scene editing” tools for
manipulating virtual objects [3]-[5], the decisive challenge
for our task is how to reliably translate between the real and
virtual scene representations, specifically:

o How to translate the realworld workspace filled with
unknown objects into an editable virtual scene.

o How to translate imprecise user edits (i.e., objects’ rear-
rangements) to the realworld with the robot’s actions.

To obtain the digital twins of unknown objects, we propose
a category-agnostic scene-completion algorithm that segment
and complete individual objects from depth images. To
handle imprecise user inputs, we propose a 6DoF action-
snapping algorithm that automatically refines user inputs and
corrects object-kit alignment using a 3D shape matching
network. Finally, virtual operations on object poses are
translated by a sequence of robot actions generated by
the robot planner. Learning from a large-scale kit-assembly
dataset, our framework (both scene-completion and action-
snapping algorithms) can generalize to unseen object-kit
pairs, allowing quick adaptation to new assembly tasks.

In summary, our primary contribution is the framework of
SEaT that allows non-expert end users to perform complex
and precise 6DoF kit-assembly tasks over a high-latency



internet connection. This framework is enabled by the fol-

lowing technical contributions:

« A category-agnostic scene-completion algorithm that trans-
lates the real-world robot workspace (with unknown ob-
jects) into a virtual editable scene representation.

o An action-snapping algorithm that automatically refines
user inputs and improves object-kit alignment using a 3D
shape matching network.

o A large-scale kit-assembly dataset, KIT1000, that contains
a diverse set of procedurally generated object-kit pairs that
mimic real-world kitting tasks. This diverse training data
allows the algorithm to generalize to new objects.

Extensive experiments suggest that SEaT improves both
the efficiency and success rate of 6DoF kit-assembly tasks,
while achieving a lower subjective workload compared to
an alternative robot-centric interface. Please see our project
website for more system videos. Code and data will be made
publicly available.

II. RELATED WORK

Teleoperation. Early investigations in robot teleoperation
focused on specifying a continuous motion trajectory [6]—
[14], which often requires a low-latency connection between
the teleoperator and robot or a complex input device for the
operator. To reduce these requirements, other systems allow
the operator to specify only the robot end-effector target
poses [1], [15]-[17], and allow asynchronous execution to
mitigate high communication latency. However, regardless
of the levels of control, all these systems still focus on
specifying the robot’s action, requiring expert teleoperators
with knowledge and intuition of the robot embodiment. For
example, the user needs to understand the robot kinematics
to specify a reachable and collision-free arm trajectory or
understand the robot gripper mechanism to specify a valid
grasp pose. Training human operators with this expertise
can be expensive and difficult to scale. In contrast, our
system focus on specifying the task goal regardless of robot
hardware. This idea of task-driven teleoperation has been
studied in simple scenarios such as point-goal navigation [18]
or manipulation with known objects [19]. However, how to
enable precise and efficient task specification for a complex
assembly task with unknown object parts is still an open
research question, hence the focus of this paper.

Vision-based kit assembly. Traditional vision-based as-
sembly approaches require strong prior knowledge of target
objects (e.g., detailed CAD models) to perform object-pose
estimation and motion planning [2], [20]. As a result, these
approaches often cannot generalize to new objects without
extensive data collection. Recent methods explore the idea
of shape-informed assembly [2], [21], [22], where the task
of assembly is formulated as a shape-matching problem
between the object and its target location. This formulation
allows the algorithms to generalize toward unseen objects
by directly analyzing their 3D geometry. However, these
algorithms are still limited to simpler tasks, such as 3DoF as-
sembly [21], only predicting single object assembly [2], [22],
only rotation prediction [2] or require precise demonstrations
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Fig. 2. Overview. Given a depth image, the scene-completion algorithm
converts the workspace into a virtual scene (a—b §III-A). The user then
specifies a target object pose by editing the virtual scene using the 3D
UI (c—d, §III-B). Our action-snapping algorithm refines the object pose to
improve object-kit alignment (e, §III-C). Finally, the system computes and
executes the actions to assemble the objects (f-g, §III-D).

on the exact object-kit pair [22]. While top-down kits (3DoF
assembly) may seem ubiquitous, most do not have a flat
bottom and hence cannot stand vertically on their own on
an assembly belt. Handling multiple objects simultaneously
is required for kitting tasks involving packaging multiple
related objects together (e.g., toothpaste and toothbrush or
bundle of pens). Our approach is able to handle multi-
unknown-object 6DoF kitting from imprecise user input,
where user input helps reduce potential ambiguities and
reduce search space, and the 3D shape-matching network
further refines imprecise user input.

Creating digital twins of 3D scenes. Many 3D scene-
understanding algorithms have been developed to produce
high-quality digital models of real-world environments for
teleoperation. These include algorithms for 3D object detec-
tion [23]-[31] and shape completion [32]-[37]. Unlike tra-
ditional 3D scene-understanding tasks that focus on common
object categories (e.g., tables or chairs), in assembly tasks, a
system often encounters a large number of new objects and
parts that cannot be categorized into predefined categories.
To address this issue, we propose a category-agnostic scene-
completion algorithm that generalizes to unseen objects or
parts without their 3D CAD model, allowing quick adapta-
tion to new assembly tasks.

III. METHOD: SCENE EDITING AS TELEOPERATION

We study the task of 6DoF Kkit-assembly with multiple
unknown objects. To perform the task, the robot need
to precisely place the object into their corresponding kit
location with correct 6DoF poses. This task presents a set of
unique challenges compared to general object rearrangement
tasks: 1) High precision requirement — making it particu-
larly challenging for human teleoperators with single view
observation, hence, motivates our action snapping network
with shape completed objects. 2) Ambiguities in object-kit
correspondence. The ambiguities can be caused by similar or
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6DoF Action Snapping with SnapNet. SnapNet uses 3D shape matching to refine the alignments between objects and their kits. Given the

user’s imprecise input (a), the algorithm first refines the object position by using a 3D cross-convolution network between the geometric features computed
from the object and kit volume (b). The cross-convolution is computed only in the local area around the user inputs (b). The algorithm then samples
point-clouds from the object volume and the cropped kit volume centered at the predicted position and predicts the refined rotation from 391 rotations
using a PointNet++ based classifier (c). Finally the algorithm outputs the refined position and rotation as the target pose.

symmetrical shapes, requiring human inputs to disambiguate.
3) Large search space — compared to top-down kit-assembly
tasks [21], the possible object poses in 6DoF is significantly
higher, making uniform search approach impractical. 4)
Despite the ubiquity of the kit-assembly applications, a large-
scale dataset is not yet available for this task, which is a
key bottleneck for enabling learning-based approaches. In the
following sections, we will discuss our approach to address
above challenges.

A. Category-Agnostic Scene Completion

Given a single depth image I of the workspace with objects
on one side and the kit on the other, the algorithm generates
shape-completed geometries for individual objects using the
following two steps:

Object-Instance Segmentation: The algorithm first detects
and segments all object instances using SD-MaskRCNN
[38]: a variant of MaskRCNN [39] using only depth for better
sim2real generalization. Since the assembly task involves a
large number of object parts that cannot be categorized into
predefined categories, we train this algorithm in a category-
agnostic manner with only a binary objectness label.

3D Shape Completion: Given an object’s instance mask M
and the depth image I, the algorithm estimates the object’s
full 3D geometry. This shape-completion step provides two
benefits: 1) it aids the user during teleoperation by better
visualization of the objects and provides more context for
successful kitting, and 2) it helps in achieving better action-
snapping results as shown in Tab. I.

To perform 3D shape completion, we first transform par-
tial object geometry information from masked depth image
MD =1 x M into a 1283 TSDF volume [40] representation
Vpartiar With voxel size 0.89 mm. This volume is then fed
into our shape-completion network SCyg to obtain the shape-
completed 3D volume Vpimpierea- SCo follows a 3D encoder—
decoder style architecture with skip connections [34]. The
network is trained to minimize voxel-wise MSE loss. We
train a separate network for kits with same architecture as
for object shape completion.

Both models are trained on the simulation data generated
from objects and kits from our dataset (see §I1I-E) and then
directly tested on unseen real world data.

B. Scene-Editing Interface

Given the 3D models for each object, the next step is
to specify the task goal by changing their 3D poses in a

virtual scene. This interface (Fig. 2 c) is implemented as a
3D Ul in a standard web browser using the three.js library
[41]. The user can observe the 3D scene from an arbitrary
viewpoint and select, translate, and rotate individual objects.
The user sends the target poses to the robot by clicking
the Upload Scene button. Our user study demonstrates that
being able to directly manipulate objects at their target kits
significantly reduces subjective workload as compared to
traditional methods. Moreover, our interface does not require
specialized hardware or a fast internet connection, making it
accessible to common users (see video for interface demo).

C. SnapNet: 6DoF Action-Snapping Network

Specifying perfect 6DoF kitting poses is challenging. As
supported by our study, allowing users to be imprecise
greatly reduces their mental burden and task time as they
can roughly align an object near its respective Kkit.

To make use of imprecise user inputs, we designed the
SnapNet algorithm (Fig. 3 ) that refines the objects’ pose
based on their 3D geometry. Concretely, the goal for SnapNet
is to predict correct relative pose Ty between object and
kit given input volumes of object V,, a kit Vi, and user
input Tyser = (Puser, Quser) € SE(3). Here, we assume user
input is within range: max;c (. y -\ |P; user — P gt| < Oposition and
QuserEzl < Sorientation Where Tgt = (Pgant) is the ground-
truth kitting pose. We train our system to handle poses up
to 5posm~0n = 2.8 cm error along each translational axis and
Oorientation = 27.5° quaternion difference.

To reduce the combinatorial search space, SnapNet pre-
dicts translation and rotation sequentially, which reduces the
search space from O(Oxy; X 0,py) to O(Oxy; + 6,py) Where Oy,
0.,y represents discretization of translational and rotational
search space.

Position prediction: Given V,, V= and P, the goal
of position prediction is to infer Py,,,. We first crop kit
workspace volume Vi, centered around P, and of size
(28,,0“,,-0,1)3 to receive V. We then encode V, and V} via
object and kit encoders (fully convolutional neural networks)
to obtain deep feature embeddings ¢(V,) and (Vi) re-
spectively. The algorithm then computes cross-convolution
between ¢(V,) and y(Vy) by treating ¢(V,) as convolution
kernel. The output shares the same size as kit features (V).
Pyuap 1s chosen as position that corresponds to maximum
feature correlation, i.e., argmax of cross convolution output.
Both encoders are trained jointly to minimize voxel-wise
BinaryCrossEntropy loss with label 1 at Py, and O elsewhere.




Fig. 4. KIT1000 Dataset. Examples of objects and generated Kits.

Rotation prediction: Given Vj, V,, user orientation Qyger,
and position prediction Py, the goal of the Rotation module
is to predict Qypqp. Directly regressing quaternions [2] fails to
generalize (see Tab. I) and volume-based representations are
susceptible to information loss under rotations. To address
these issues, we use a point-cloud-based representation for
rotation refinement. Using the refined position Py, Vi is
further cropped down at center with size (128)%. Both V,
and V; volumes are converted to point-cloud representation
(N, = 2048 and N, = 4096 points € R? respectively) to
support rotation operations. We uniformly sample N — 1
rotations within Orienrarion from the user input Queer. Qg
is added to the set of rotations (N = 391) during training.
For each rotation r in the set, we rotate the object point-
cloud by r and concatenate it with the kit point-cloud. An
additional fourth dimension is utilized to distinguish between
object (1) and kit (—1) points. A PointNet++ based encoder
[42] followed by fully connected layers is used to get binary
classification score. We train the network using cross-entropy
loss with 1 for Q,, rotation and 0 otherwise.

All the modules are trained on the simulation data gener-
ated from objects and kits from our dataset (see §III-E) and
then directly tested on unseen real world data.

D. Robot Planning and Execution

Picking and placing an object at specific goal pose is
a challenging problem as the object may not initially be
oriented such that the robot can grasp and then immediately
place them in specific goal pose. Such manipulation systems
are still an active research area [43], [44] and not the focus
of this work. To test our system in real-world, we make a
simplifying assumption that the object is top-down graspable,
and the grasping surface is opposite to the kit insertion
direction. No such assumptions are made for training and
evaluation of scene completion and 6DoF pose prediction
algorithms (Tab. I). To move the object from its current
location to kitting location robot Tnap, we pick the object via
a suction-gripper—based top-down immobilizing grasp. The
object is inserted into kit following a two-step primitive: (a)
The robot first “hovers” at some fixed height and final orien-
tation above the kitting location defined as "*%' T}, ="'
Tsnap X Thover, Where P Thoper = (mapphover = [0,0701]
m, P Qpover = [0,0,0,1]). (b) The robot follows a straight-
line path from 7%’ Tj,,,...,. to final pose "*°* Tinap before releas-
ing the suction. More details on the grasp pose estimation
and trajectory computation can be found on the webpage.

E. Dataset and Automatic Kit-Generation Procedure

Despite the ubiquity of kits in the packaging and transport
industry, most kits are manually designed and no large-
scale object-kit dataset exists. Given a 3D object geometry,

a typical kit (a) maximally confirms the object geometry and
(b) allows the object to be inserted following a straight-line
path at least along one direction. Our method neatly accounts
for both of these: we capture an orthographic depth image of
the object, which removes any artifacts that are not parallel
to the insertion direction. The orthographic depth image is
then converted to an occupancy grid. To allow some margin
between kit and object geometry, the object 3D volume
is then merged with replicas of itself after translating by
margin distance along the horizontal direction. This creates
a scaled version of the object geometry while preserving the
centers of offset cavities. This scaled object geometry is then
subtracted from the kit block to produce kit geometry.

We use objects from ABC Dataset [45], a large-scale CAD
model dataset that contains a diverse set of mechanical parts.
Each object is scaled to fit a (Scm)* box and a corresponding
kit is generated as described above (see Fig. 4). To create
6DoF kits, we arbitrarily link 2-5 kits together using angle
brackets with angles € [10°,45°]. We call this KIT1000
dataset and it will be made available.

IV. EXPERIMENTS

We first evaluate the action-snapping module (§IV-A)
followed by a full system evaluation on a real-world platform
(§IV-B) and a real-world user study (§IV-C).

A. Action-Snapping Evaluation

Metrics: We evaluate 6DoF pose prediction Ty, =
(Psnap> Osnap) using two metrics: positional error &pos =
||Psnap — Per||2. Rotational error &y is computed as the
geodesic distance arccos(2(Qgnap - Qgt)2 —1).

Comparison with alternative approaches: We compare
our algorithm with TransporterNet [22] and KitNet [2]. Since
both algorithms are trained without user input, we modify our
algorithm to also work without user input: For position pre-
diction, instead of cropping Vj, . around user input P, We
directly use Vi, as Vj. For rotation prediction, we uniformly
sample roll, pitch € [—15°,15°], and yaw € [—180°,180°].
TransporterNet [22] consists of a pick and a place module.
In our evaluation, we use the groundtruth pick position and
retrain its place module with extensions to 6DoF actions.
When user input is available, we filter out predictions that
is far from provided pose, i.e., Tyer = (Sposition Oorientation)-
KitNet [2] predicts only the rotation of the object via
regression, so there is no straightforward way to incorporate
user inputs. Thus, we only evaluate the rotation predictions
of KitNet without user input.

Tab. 1 shows that both baselines fail to give accurate
predictions. We hypothesize that without full geometry
estimation, they do not have enough information to infer
a 3D pose. By leveraging full 3D geometry and efficiently
searching the SE(3) space, our model outperforms the
baselines both with and without user input.

Effects of shape completion: To study the effect of shape
completion on action snapping, we compare our approach
without this step. SnapNet-PartialVol uses partial volume
Vpartiar to perform shape matching. Tab. I shows that our
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Comparisons to Alternative Approaches We compare SEaT with 6DoF kitting baselines on novel object and kit geometries. TransporterNet

fails to generalize to unseen object and kit geometries. SnapNet-Partial Vol works for simple objects (row 2) but fails for objects with complex geometries
(rows 3—4). When given no user input, both baselines frequently place objects at the wrong kits (row 5). In the last five columns, we use ground truth

meshes to visualize poses. For more results, see the project webpage.

TABLE I
ACTION-SNAPPING RESULTS AND COMPARISON

TABLE I
SYSTEM EVALUATION ON THE REAL-WORLD DATASET

With user input Without user input Segmentation | Obj. Completion | Kit Completion | Action Snapping
Spos(mm)  Sro(deg) | Spos(mm)  Groi(deg) mloU mloU Chamfer | mloU Chamfer | pos rot
KitNet [2] - - - 49.2 69.1% ‘ 92.4% 6.3 mm ‘ 99.1 % 8.0 mm ‘ 72 mm  6.0°
TransporterNet [22] 15.3 18.3 41.5 45.1
SnapNet-Partial Vol 5.1 5.7 ‘ 49.4 532 rotation prediction one-by-one by keeping the error in user
SnapNet (Ours) 39 49 108 29.6 orientation and user position fixed respectively. Fig. 6 breaks
SnapNet-GTVol | 37 461 | 8.1 28.9 down the performance of our model by plotting prediction

Position: User Error vs. Prediction Error Orientation: User Error vs. Prediction Error

141 — Median Error with GT Position
== Median Error with Position Error = 17 mm

—— Median Error with GT Orientation
== Median Error with Orientation Error = 9 deg

Error of Predicted Position

Error of Predicted Orientation
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Fig. 6. Robustness to User Input with [20,80] percentile region shaded.
The left graph shows an analysis of error in position prediction, keeping
error in user orientation fixed. As user position error increases, SnapNet
maintains its low prediction error. Moreover, even with a large error in
user orientation (dotted-red), SnapNet can predict position with low error.
Similar results for predicted orientation, keeping the error in user position
fixed, are shown on the right.
model SnapNet achieves better performance than SnapNet-
PartialVol. We believe that this is because partial volumes
lack of clear and precise object boundaries that shape match-
ing crucially depends on. With ground-truth shape, SnapNet-
GTVol can further improve action-snapping performance.
This result indicates that the scene-completion module is
essential for achieving accurate action snapping.
Robustness against user errors: We also test the algo-
rithm’s robustness to different levels of user-input error. For
a controlled experiment, we analyze error in position and

errors Spos, Sror against user-input errors. The plot shows that
as user error increases, the model error remains roughly
constant, demonstrating the robustness of the algorithm.

B. System Evaluation on Real-World Platform

Finally, we evaluate our algorithm on a real-world platform
using a URS robot, an XYZ Robotics suction gripper [46],
and a calibrated Intel RealSense D415 RGB-D camera. To
account for RealSense camera precision (5 mm depth error
[47], for pick-place task, the error would be 10 mm), we
3D-printed the kits from our test set with a larger object-kit
margin of 1 cm as compared to 2.5 mm margin in simulation.

For systematic evaluation, we collect and label 23 scenes
(7 of 1-kit, 7 of 2-kit, 4 of 3-kit, and 5 of 4-kit tasks),
with ground-truth object target poses. We directly tested
all our models (trained on simulation) with this real-world
benchmark. To eliminate small holes in shape completed
object volumes V.o pierea due to sensor noise in input Vpurriar,
we extend all the object voxels till the ground plane. To
mimic user input, we randomly sample position and ori-
entation in the vicinity (Oposition, Oorientarion) Of the ground-
truth pose. Fig. 5 shows qualitative results on this real-
world benchmark. Tab. II shows quantitative results for each
individual component. The resulting average position and ro-



Fig. 7. Kits for real-world experiments. Top: 3D-printed kits from test
dataset are connected at arbitrary angles to create 6DoF kits. Bottom: real-
world kits. Arrows show the resting pose for a few kits which require non
top-down object insertion.

tation error are comparable with the algorithm’s performance
in simulation (Tab. I). Moreover, our model has similar level
performance on training and test dataset with unseen shapes,
which shows that our model is generalizable by leveraging
a large simulated dataset.

In addition to 3D printed objects, we also evaluate the
system on real-world object-kits (Fig. 7-bottom). Since these
kits have a tighter object-kit margin, we use Photoneo Scan-
ner with higher depth precision of 0.5 mm [48]. Fig. 8 shows
the qualitative evaluation. We refer readers to supplementary
video for real-world demonstration of our system.

C. User Study on Real-World Platform

Our user study aims to test the hypothesis that the SEaT
interface would be easier to use than traditional teleoperation
interfaces. We conducted a user study, approved by our
institution’s IRB with 10 non-expert users.

Task and Procedure: Participants completed four kit-
assembly tasks per interface (two 2-kit and two 3-kit tasks).
For each n-kit task, we randomly attached »n kits from a set
of six unseen 3D-printed kits using randomly chosen angle
brackets {10°,20°,30°} (see Fig 7). The study used a within-
subjects design, where all participants performed both tasks
using both interfaces in random order. Participants performed
the 2-kit tasks first and then the 3-kit tasks for each interface.

Comparisons: We compared with EE-Control, a represen-
tative teleoperation interface where a user can specify 6DoF
pick-and-place pose of the end-effector on the point-cloud
representation of the scene. In the EE-Control interface, the
user specifies a single pick-and-place pose followed by robot
execution. Once the robot executes, the user scene is updated
with the new scene and the user repeats the process. In SEaT,
the user specifies the goal poses of all objects at once.

Dependent Measures: Our objective dependent measures
were a. Success rate: the number of kits successfully as-
sembled over the total number of kits, b. specification time:
the time the user spent interacting with the interface for
specifying goals, and c. execution time: the total system
time minus the specification time. We also had a subjective
dependent measure d. unweighted NASA Task Load Index

Segmentation+Completion ‘ User Input

Input Depth Image SnapNet

CAD R

Fig. 8. Qualitative results on real-world kits. See video for more results.

(NASA-TLX) [49], which includes values for MentalDe-
mand, PhysicalDemand, TemporalDemand, Performance, Ef-
fort, and Frustration. Since a user is allowed to operate on the
updated scene in the EE-Control interface, in theory they can
always assemble all the objects given infinite time. Therefore,
for both interfaces, a user can only start an update for an n-kit
task if the time already spent is less than n minutes. Users are
informed about this time limit beforehand. We hypothesized
that each of these dependent measures would differ between
the SEaT and EE-Control interfaces.

Results: We evaluated the hypotheses for significance with
a = .05. While the execution time of SEaT is longer (412s)
due to model inference, the users spent significantly shorter
specification time (—27s,p < .001), and achieved signifi-
cantly higher task success rate (+33.1%, p < .001). For sub-
jective measures (NASA-TLX), the participants reported sig-
nificantly lower MentalDemand (—39.2%, p = .003), lower
TemporalDemand ( —43.1%,p < .001), lower Effort (
—32.0%,p = .002), and lower Frustration (—40.7%,p =
.024). The reported differences in PhysicalDemand and Per-
formance are not significant between these two methods.

The shorter specification time and lower mental load
of SEaT indicates a potential possibility of using SEaT
to simultaneously operate multiple robots. In this case, a
user can continue specify tasks (for another robot) during
model inference and robot execution time, which will further
improve the system’s overall efficiency.

V. CONCLUSION

We introduced “Scene Editing as Teleoperation”, which
allows non-expert end users to perform precise multi-
unknown-object 6DoF kitting tasks. Experiments demon-
strated that SEaT improves efficiency, success rate, and
subjective workload for 6DoF Kkit-assembly tasks.

Since our teleoperation interface assumes rigid objects,
it cannot be directly applied to tasks involving articulated
objects (e.g., opening a drawer). It would be interesting
to discover articulation via RGB-D images [50], [51] and
integrate it with our system. Planning the grasp and a set of
sequential 6DoF robot actions for general 6DoF Kkitting tasks
would also be an interesting future direction, where the robot
might need to plan a place-driven grasp [52] or reorient the
object before kitting [53].
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