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Abstract

Efficient and automated design of optimizers plays a crucial role in full-stack
AutoML systems. However, prior methods in optimizer search are often limited by
their scalability, generalization, or sample efficiency. With the goal of democra-
tizing research and application of optimizer search, we present the first efficient,
scalable and generalizable framework that can directly search on the tasks of in-
terest. We first observe that optimizer updates are fundamentally mathematical
expressions applied to the gradient. Inspired by the innate tree structure of the un-
derlying math expressions, we re-arrange the space of optimizers into a super-tree,
where each path encodes an optimizer. This way, optimizer search can be naturally
formulated as a path-finding problem, allowing a variety of well-established tree
traversal methods to be used as the search algorithm. We adopt an adaptation
of the Monte Carlo method to tree search, equipped with rejection sampling and
equivalent-form detection that leverage the characteristics of optimizer update
rules to further boost the sample efficiency. We provide a diverse set of tasks to
benchmark our algorithm and demonstrate that, with only 128 evaluations, the
proposed framework can discover optimizers that surpass both human-designed
counterparts and prior optimizer search methods. Our code is publicly available at
https://github.com/ruocwang/enos.

1 Introductions

Motivated by a vision of democratizing machine learning, the central objective for automated machine
learning (AutoML), such as automated architecture [22, 26, 29, 40, 55, 60, 62, 65] / optimizer
[10, 12, 15, 17, 59, 68] / loss [36] / augmentation search [37, 39], lies in reducing the need for expert
design on a diverse set of tasks. To achieve this goal, it is critical for AutoML systems to exhibit a
high level of efficiency, so that they can be directly applied to a variety of tasks without consuming
a humongous amount of computing resources. A widely successful example of such an effort is
DARTS [40] in Neural Architecture Search (NAS), which reduces the search cost from thousands of
GPU days of early RL-based algorithms to a single digit, enabling direct application of NAS systems
to a wide range of tasks [32, 33, 38, 44, 50].

Inspired by the success of efficient NAS methods, we turn our attention to another important but
much less studied area of AutoML - Automated optimizer search, where an efficient, scalable
and generalizable framework is still absent. Optimizer search aims to automatically design
a suitable update function that takes gradients as inputs and produces update directions for the
optimizee’s parameters. Pioneering work in this area, coined Learning to Optimize (L2O), adopts
a data-driven approach by replacing human-designed update rules with a learnable parametric
function [10, 12, 17, 59]. However, parametric optimizers are fundamentally not scalable to large
models or datasets, as inferring its parameters typically requires expensive meta-learning steps such
as backpropagating through gradient descent [10, 15, 68]. Moreover, the learned optimizer often
generalizes poorly to even minor variants of its training task (Figure 3) [10, 68]. Poor scalability and
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generalization prevent L2O from being served as a general-purpose optimizer search framework that
can be directly applied to tasks of interest.
The aforementioned limitations of parametric optimizers bring our attention to another line of method
that searches over the discrete space of non-parametric update functions 1, which generally exhibit
the same level of scalability and generality as human-designed optimizers [15, 51]. NOS-RL [15]
extends early RL-based NAS framework [22] to optimizer search, proposing to learn a sequential
controller to produce optimizer update rules according to a predefined pattern. However, NOS-RL is
sample inefficient, requiring over 10k evaluations to find good candidates. More recently, AutoML-
Zero [51, 69] proposes to search over the vast space of computer codes for the entire ML pipeline
(including the optimizer). The excessive generality of its search space makes it even more costly to
run than RL-based method. The search cost of existing non-parametric optimizer search frameworks
makes them computationally prohibitive not only for practitioners to apply but also for researchers to
analyze.

With the goal of democratizing research and practical applications of automated optimizer design,
we introduce the first efficient, scalable, and generalizable optimizer search framework that can
be directly applied to a wide range of tasks. We observe that non-parametric update rules are
essentially mathematical expressions, with an innate tree structure where nodes are elementary math
operators and edges represent their I/Os. Consequently, generating an update rule can be viewed as
progressively appending nodes to the expression tree until it is complete. Inspired by this observation,
we re-imagine the optimizer search space as a super-tree of mathematical expressions. Each leaf node
on the super-tree contains an optimizer, and the path towards it represents the generation process
of that optimizer’s underlying expression. With the tree-structured search space, optimizer search
can be naturally formulated as a path-finding problem, allowing a wide range of well-established
tree-traversal methods to be used as the search algorithm. We show that a simple adaptation of
Monte Carlo Sampling [30, 53], equipped with our proposed rejection sampling and equivalent-form
detection, can already produce remarkable results on our search space within a fraction of budgets
compared with NOS-RL (⇠ 1%).

We extensively evaluate the proposed framework on a diverse set of learning tasks: digit clas-
sification with MNISTNET [10], image classification with ConvNet [15], graph learning with
(Cluster-)GAT [21, 28], norm-bounded adversarial attack on robustly trained models [20, 45, 46],
and BERT fine-tuning on NLP datasets [34, 56]. These tasks cover both constraint and unconstrained
optimizations and span over a large variety of models and datasets. Despite the simplicity, the pro-
posed framework is able to discover update rules that surpass human-designed optimizers and prior
optimizer search methods, with a budget of only 128 evaluations. We hope the proposed framework
could lower the barrier of entry to practical non-parametric optimizer search, thereby providing an
entry point for researchers and practitioners from ML community and beyond to study and utilize
automated optimizer search systems.

2 Efficient, scalable and generalizable framework for optimizer search

2.1 Optimizer design space

Notations and problem formulation Deep learning tasks are frequently expressed as optimizing a
loss function L(·) defined over parameter domain ✓ 2 ⇥. The minimizer of L can thus be obtained
by ✓⇤ = argmin✓2⇥ L(✓). For differentiable functions, a standard optimizer typically takes the
form of iterative gradient descent: ✓t+1 = ✓t � � ⇤ �(r✓L(✓t)), where t is the current iteration, �
is the learning rate and � denote the update function. Existing optimizers primarily differ in their
design of update function �; For example, vanilla gradient descent uses identity mapping �(x) = x
as the update function, whereas Adam adopts a momentum-based dynamic learning rate schema:
�(r✓L(✓t)) = m(r✓L(✓t))/

p
m((r✓L(✓t))2), where m(·) denotes the momentum function with

an internal state.

The goal of optimizer search is to automatically find a suitable update function � over some hypothesis
space �. The hypothesis spaces used in prior work can be divided into two categories: non-parametric
and parametric spaces. Most human-designed optimizers belong to the first category, where the update

1Sometime it is referred to as symbolic optimizers, which is a somewhat inaccurate categorization as
symbolic functions could also contain learnable parameters.
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function � is not trainable. Learnable optimizers, such as L2LGD2 [10] and SymbolicL2O [68], fall
into the second category. Our work mainly focuses on non-parametric optimizer search, with the goal
of providing an efficient, scalable and generalizable optimizer search framework that can be directly
apply to various tasks.

Optimizer update rules as expression trees The first step toward such a framework is to under-
stand the structure of non-parametric optimizers. We realize that, fundamentally, optimizers are
mathematical expressions consisting of elementary operators (+, �, sign(), inputs, e.t.c.). Math
expressions have an inherent tree structure that preserves its order of execution, where nodes are
operators and edges represent their I/Os. For instance, Diagram 1 shows the expression tree of
Adam [9]:
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Diagram 1: Adam optimizer
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Diagram 2: Our discovered Optimizer for adver-
sarial attack

where m1 and m2 denote the first and second order momentum (which can also be broken down into
their own expression trees).

Therefore, the generation of an update rule, as a mathematical expression, can also be conducted via
top-down node selection: Take Adam as an example, we first select division (/) as the root node. For
its left child, we pick m1, which is a leaf node and thus ends the branch. For the right child, we select
p

, and subsequently pick m2 to follow it. At this point, there is no empty branches left, and we
obtain the complete update rule for Adam.
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Figure 1: An illustration of traversing the super-
tree to discover Adam and SGD.

A tree-structured search space Inspired by
the completion process of update rules, we rear-
range all expressions into a super-tree, where
each leaf node contains an update rule and each
path represents its completion process. The
super-tree can be generated in a top-down man-
ner: Starting from the root node with an empty
update rule, we generate each of its child nodes
by inserting a different operator into the update
rule, and repeat this process for the generated
nodes. Consequently, an optimizer can be sam-
pled by traversing the super-tree until a leaf node
is reached. Since the super-tree can grow in-
finitely deep, it is often desirable to restrict the tree to a predefined depth N , where only the paths that
can be completed within depth N are included. Figure 1 provides an instantiation of our super-tree,
where the paths leading to Adam and SGD optimizers are displayed as an example.

The benefit of arranging the optimizer space into a tree is two folds. Firstly, the tree-based search
space is tight:

Proposition 1 Define the length of an update rule as the number of operators it includes, then the
above tree-based search space is tight: a super-tree with a maximum depth of N covers all update
rules of length no greater than N .

In a tight search space, all optimizers can be represented at the right level of complexity, allowing
them to be visited by the search algorithm without exploring unnecessarily deep into the super-tree.
Although tightness is a fairly obvious result for our space, it is not the case for the previous search
space defined in NOS-RL, as we will explain later. Secondly, with our super-tree, optimizer search
can be naturally formulated as a path-finding problem, allowing a variety of well-established tree
traversal methods to be deployed as search algorithms.
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Contents To concretize the content of the search space, we allow three types of operators in the
optimizer update rule:

• a set of p1 unary operators (e.g. log(| · |), exp(·),
p
| · |, sign(·), drop(·))

• a set of p2 binary operators (e.g. +, �, ⇥, /, pow(·, ·))

• a set of L leaf values (input operators) containing gradient-based terms (e.g. g, m1), decays
(e.g. cosine_decay), and constants (e.g. 1, 2)

This categorization of mathematical operators is not new, as it is also adopted in symbolic math
solver [35] and NOS-RL [15].

Comparison with NOS-RL’s search space Although both NOS-RL [15] and our framework use
elementary math operators as building blocks for optimizers, they have little in common in terms of
the arrangement of the search spaces. Optimizers in NOS-RL’s search space are formed by a chain of
predefined motifs: b(u(I), u(I)), where b, u, I denote binary, unary and input operators. Due to the
fixed structure of such motifs, NOS-RL’s search space is not tight: there exist many optimizers that
take extra longer sequences to express, potentially lowering their chance of being discovered by the
search algorithm. For instance, Diagram 2 shows an optimizer of length 5, but it takes (10� 1) nodes
(two chained motifs) to represent it under NOS-RL’s arrangement; Moreover, NOS-RL’s search space
also requires extra bypass operators (e.g. u(x) = x and b(x, y) = x) to cover even human-design
optimizers such as Adam and PGD, further increasing the complexity. In contrast, our representation
of optimizers is directly inspired by the innate structure of its underlying mathematical expressions,
resulting in a tight tree-based search space. In our search space, optimizer search can be naturally
formulated as a form of top-down path-finding problem. In the next sections, we will detail our
choice of algorithms for traversing the super-tree, as well as several techniques that leverage the
characteristics of optimizer update rules to boost the sample efficiency.

2.2 Monte Carlo Sampling for tree traversal

We adopt a simple adaptation of Monte Carlo Sampling to tree traversal [30, 53, 70] (MCT) as the
search algorithm. The idea is to assign scores to the nodes in the super-tree (Figure 1), and use these
scores to guide the tree traversal. We define the score of a node v as a Monte Carlo estimation over
unrolling steps from v: If v is an internal node, we randomly generate a set of unrolled paths from v
to the corresponding leaf nodes, and take the average score of the resulting optimizers as the score for
v; If v is a leaf node, we set its score to 0 as it cannot be expanded. The search can thus be conducted
as follows: 1). Starting from the root node v(0) at level 0, we generate all child nodes {v(1)} of v(0)

by inserting each operator from the candidate pool to the update rule in v(0); 2). From there, we select
the child node v⇤(1) with the highest MC score to expand, and move on to the next level; 3). The
process is repeated until a predefined maximum search level is reached. Algorithm 1 in the Appendix
provides a detailed summary of the complete search process.

Directly applying the MCT algorithm to optimizer search would not perform well under limited
search budgets, due to two unique characteristics of optimizer update rules that challenge the sample
efficiency of the Monte Carlo estimates. Firstly, the majority of mathematical expressions, when
deployed as optimizer update rules, perform poorly or even would not converge. This is usually not
the case for other AutoML tasks such as neural architecture search, as most networks in the search
space perform reasonably well. The large body of poor-performing optimizers not only consumes
precious search budget, but also causes the MC estimation to be unstable. Secondly, there exists
many mathematical redundancies in the expression space, for example: sign(sign(sign(x))) can
be reduced to sign(x), and m1+

p
m2p

m2
is equivalent to m1p

m2
+ 1. Identifying and eliminating these

redundancies would not only save budget, but also prevent the sampling distribution from biasing
toward mathematically simple and shallow update rules. To address these issues and further boost
the sample efficiency, we propose two sets of techniques - rejection sampling and equivalent-form
detection. When combined with these techniques, the simple MCT algorithm becomes particularly
effective for the optimizer search task. We will discuss them in detail in the following sections.

2.3 Rejection sampling
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Figure 2: Performance distribution of op-
timizers after applying descent test, under
�d = 0.15 and a batch size of 25.

Eliminating poor optimizers with a train-free task-
agnostic test Inspired by the characteristics of op-
timizer update rules, we develop a train-free task-
agnostic test to eliminate poor optimizers without
evaluating them. We propose a necessary condition
for a valid optimizer: it must produce an acute angle
with steepest descent direction (i.e. gradients). We
check the validity of optimizers against this condition
and only evaluate those that pass the test. For the
test to be task-agnostic, we feed the optimizer with a
batch of random Gaussian vectors in place of actual
gradients. Formally, the descent test can be written
as:

Eu⇠N (0,1)

⇥
cos(�(r✓L),r✓L)

⇤
> �d

where �d is a predefined threshold. Although our descent test is by-no-mean comprehensive, it
can effectively rule out a large chunk of poor optimizers with negligible false-negative rates, as
demonstrated in Figure 2.

Reducing the variance of MC estimates via score thresholding After applying the descent test,
there still remains a non-negligible portion of poor optimizers. When sampled during the unrolling
step, these optimizers would drastically lower the Monte Carlo score of the stem node, causing the
MC estimation to exhibit high variance and thus become unreliable. This adverse effect is especially
severe under the efficient setting when the sample size is small. Therefore, we propose to simply
reject candidates with scores lower than a predefined threshold, thereby removing them from the MC
scores of the corresponding stem nodes.

2.4 Detecting and handling redundancies in mathematically equivalent forms

On-the-fly constraint tree-traversal for redundant path pruning One benefit of formulating
the search problem as top-down path-finding is that we can easily apply constraints on-the-fly to
eliminate undesirable branches - those that lead to mathematically redundant expressions in our case.
We identify three main categories of such constraints:

• child operator that nullifies its parent’s operator. e.g. �(�x) = x, ln(ex) = x

• child operator that is redundant under its parent. e.g. clip(clip(x)) = clip(x)

• sequence of operators that reduces to a constant in the search space. e.g.
p
|sign(x)| = 1

The complete sets of constraints we used can be found in the Appendix. Enforcing these constraints
during the traversal can effectively trim down the search tree, allowing the algorithm to explore
branches that lead to more diverse and complex expressions.

Hashing mathematically equivalent expressions Besides enforcing constraints during the traver-
sal, it is also important to detect mathematically equivalent optimizers to avoid duplicated evaluations.
One can always apply off-the-shelf symbolic solvers to identify the equivalence of two expressions, �
and �0, by checking if (�� �0) can be reduced to 0. However, it could become extremely slow as the
pool of evaluated optimizers {�i}

N
1 gets larger and larger, since we need to solve N pair of equations

every time a new update rule is sampled. Instead, we apply hashing to efficiently query the evaluated
candidate pool for mathematically equivalent optimizers. Concretely, we assign each optimizer a hash
code, obtained by feeding a fixed probing vector as input to the optimizer and recording its output.
The probing vector is pre-sampled from Gaussian distribution. When a newly sampled optimizer
arrives, we only need to compare its code with the hash table to check the existence of its equivalent
form. Empirically, it is much faster to run the proposed hashing-based checker than symbolic solvers.

3 Discussions and relationship to prior work

Automated optimizer design Optimization plays a crucial role in training deep learning models.
Generally, there does not exist one optimizer that aces all scenarios, as different tasks (dataset,
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architecture, loss, parameterization, e.t.c.) might favor different optimization methods [2, 10]. The
demand for task-specific optimizers stimulates research interest in developing automated systems
for optimizer design [10, 12, 15, 17, 41, 51, 59, 66, 68]. Early work adopts a data-driven method by
modeling the optimizer update with a parametric function [10, 12, 59]. L2LGD2 [10] deploys an
LSTM model as the update function that takes historical gradients as input and produces the update
direction. However, parametric optimizer search methods are fundamentally limited by its scalability,
as inferring its parameters requires expensive meta-learning steps such as back-propagation through
optimization [10, 59, 68]. Although SymbolicL2O [68] improves the scalability of the learned
LSTM optimizer by distilling it into a lightly-parameterized symbolic optimizer, it still requires a
pretrained LSTM model to begin with. Instead of learning a parametric optimizer, NOS-RL [15]
directly searches over a discrete space of non-parametric update functions comprised of mathematical
operators. It extends early RL-based NAS method [22] to optimizer search, by training a sequential
controller to produce the optimizer update rule according to a predefined pattern. However, similar to
its NAS counterpart, NOS-RL is also computationally expensive, requiring over 10k evaluations to
find good candidates.

Symbolic optimization and differential program synthesis Symbolic optimization (SO) [1, 13,
53, 61, 63, 64] aims at optimizing an objective over a symbolic hypothesis space of functions (or more
broadly, programs). One line of work attempts to recover the unknown equation from its generated
data, with great potential in automating scientific discoveries [54, 64]. Another line of methods
aims at finding a more interpretable and generalizable symbolic model to replace the black-box
neural networks [53, 61, 63]; Applications that witnessed some success include learning symbolic
policy networks for RL [63] and sequential classification models [53, 61]. The latter is often studied
under the concept of Program Synthesis [24], where a model is extended to include programmatic
rules such as if-else clause, indexing, e.t.c. SO is closely connected to AutoML at a high level, as
both fields frame their problems as discrete optimization. Indeed, many existing optimizer search
methods can find their counterparts in symbolic optimization. Our method is also inspired by the
rich body of literature in deep symbolic mathematics and program synthesis, which also explores
tree-based expression spaces for differential equations and programs [30, 35, 53, 61, 64]. However,
due to significant differences in taskonomy, SO and AutoML methods are often developed separately,
converging into different branches of techniques. Symbolic optimization often studies tasks where
candidates are cheap to evaluate but finding the global optimal is desired [1, 54, 64]; As a result,
sample efficiency is often not the primary concern. Much to the opposite, in AutoML tasks, candidate
evaluations are extremely expensive; Therefore, it is more beneficial to identify a good-enough
candidate within a limited amount of budget.

4 Empirical evaluations on a diverse set of tasks

We extensively evaluate the proposed framework on a suite of tasks, covering a variety of models
and datasets. On standard benchmark tasks for optimizer search, our method is able to discover
optimizers that outperform its human-designed and automatically searched counterparts. In addition,
we also show that the proposed framework enables automated optimizer design for many other
popular learning tasks, such as adversarial attack, GNN training, and BERT finetuning. Due to the
space limits, we will include detailed descriptions, search settings, and discovered optimizers for
each task in the Appendix.

4.1 General setting

MCT algorithm Across all experiments, we limit the maximum level of MCT traversal to 4, and
set the number of Monte Carlo samples to 32 (a multiple of 8 for parallelism on 8-GPU servers)
for each level. This amounts to a fixed total budget of 128 evaluations. The maximum depth for
the super-tree is set to 10, which already covers many top-performing optimizers for various tasks.
We use a similar set of elementary operations as NOS-RL to build the optimizers, with only minor
adjustments for some tasks (see Appendix for more details).

Optimizer evaluation We follow the default settings and hyperparameters for each task, and only
swap out the optimizer; This potentially puts our algorithm at a disadvantage, as the hyperparameters
are usually tuned around the default optimizers. Before optimizer evaluation, we perform grid search
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on a small proxy task (fewer steps) to find a proper learning rate. During the grid search, we also
aggressively terminate optimizers if their performance falls under a certain threshold. Since early
stopped optimizers consume fewer resources than a full evaluation, we do not count them into the
budget (number of evaluations).

4.2 Hand-written digit classification

Figure 3: Training loss trajectory on hand-written digit classification task (log scaled). Each optimizer
is evaluated for 4 random seeds. Our method is marked in red.

We first compare our method with the LSTM-based optimizer (L2LGD2) on hand-written digit
classification. Following L2LGD2 [10], the goal is to minimize the cumulative training loss of a
single-hidden-layer MLP with Sigmoid activation (MNISTNET) on the MNIST dataset; The search
is conducted on MNISTNET for 100 steps with a batch size of 128, and the discovered optimizers
are subsequently transferred to three variants of MNISTNET with different activations (MNISTNET-
ReLU), number of hidden layers (MNISTNET-2Layer), and dimensions (MNISTNET-Big). Under
this setting, our method finishes in 0.92h on RTX 2080ti, much faster than L2LGD2 (2.62h).

As shown in Figure 3, our discovered optimizer achieves the lowest training loss under both direct
search and transfer settings. Notable, the LSTM-based parametric update function indeed converges
faster when the number of steps is close to the search phase (black-dotted vertical line on Figure
3). However, it extrapolates poorly to longer trajectories. As the training proceeds, all other non-
parametric optimizers eventually catch-up, achieving much lower training loss. Moreover, LSTM-
based optimizer also generalizes poorly to other model variants (most noticeably MNISTNET-ReLU),
revealing its tendency to overfit the search task.

4.3 Image classification with ConvNet

We proceed to evaluate our method on the CIFAR-10 [8] classification task proposed in NOS-RL
[15]. The model of choice is a 2-layer ConvNet. Each layer of this network contains a 32-filter 3x3
convolution with ReLU activation and batch normalization. Following NOS-RL’s setting, for every
optimizer, the best learning rate is searched over a grid of {1e�5, 1e�4, 1e�3, 1e�2, 1e�1, 1} with
1 epoch of training, and the discovered learning rate is subsequently used to train the model for a
longer period of time (5 epochs). Since NOS-RL’s implementation is not open-sourced, we reproduce
and compare with the two families of discovered optimizers described in NOS-RL paper: AddSign
and PowSign.

The results are summarized in Table 1. For NOS-RL, we display the performance of the top 4
variants of PowSign and AddSign, which are obtained after training the controller for over 10k
evaluations (Figure 4 in the NOS-RL paper [15]). With only a fraction (⇠1%) of the search budget,
our framework is able to discover optimizers that reach a test accuracy of 77.02%, topping both
PowSign and AddSign optimizers and also human-designed ones by a sizable margin. The sheer
reduction in search cost and the improvement in search performance evince the efficiency and
effectiveness of the proposed framework for discovering better optimizers.

4.4 Adversarial attack

Next, we apply our framework to discover optimizers for constraint optimization. We select adver-
sarial attack, which aims at finding norm-bounded perturbations in the input space that alter the
model’s predictions. The de facto optimizer used in adversarial attack is Projected Gradient Descent
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Table 1: Performance of automated search algorithms on CIFAR-10.
Optimizer Test Accuracy

(%)
Search
Method

Search Budget
(#evaluations)

SGD 70.99% ± 2.12 manual -
SGD + Momentum 74.12% ± 0.44 manual -
Nesterov 74.15% ± 0.52 manual -
Adam 73.42% ± 0.56 manual -
RMSprop 71.42% ± 1.42 manual -
PowSign-ld 75.48% ± 0.45 RL on hand-crafted patterns >10,000
PowSign-cd 76.21% ± 0.16 RL on hand-crafted patterns >10,000
AddSign-ld 75.54% ± 0.39 RL on hand-crafted pattern space >10,000
AddSign-cd 76.07% ± 0.59 RL on hand-crafted pattern space >10,000
Ours 77.02% ± 0.19 MCT on super-tree space 128

(PGD) [20]. We consider the most popular l1-norm setting. For l1-norm bounded attack, PGD
takes the form of: x = ProjB1

✏ (xo)(x + �sign(rxL(x)))), where B1
✏ (xo) represents a ✏ ball

around the original image xo w.r.t. l1-norm. The models of choice come from the AutoAttack
library [46], which holds a leaderboard of top defense methods. Following their settings, we set
✏ = 8/255, and run each optimizer once for 100 steps on every image from the test split [46].

Table 2: Attack success rate of different optimizers
on top defense methods on CIFAR-10.

Defense Models PGD APGD Ours
Carmon2019 (WRN-28-10) [27] 37.83% 38.22% 38.35%
Gowal2020‡ (WRN-70-16) [48] 31.10% 32.00% 32.00%
Gowal2020‡ (WRN-34-20) [48] 40.05% 40.46% 40.50%
Gowal2020‡ (WRN-28-10) [48] 33.65% 34.33% 34.34%
Sehwag2020‡ (WRN-28-10) [52] 40.00% 40.43% 40.46%
Wu2020‡ (WRN-28-10) [58] 36.41% 36.70% 36.78%
Wang2020‡ (WRN-28-10) [42] 37.78% 38.16% 38.27%
Engstrom2019 (RN-50) [31] 47.76% 48.25% 48.32%
Wong2020Fast (RN-18) [57] 53.69% 54.11% 54.19%
‡ Methods that explore extra data during robust training.

On this task, we mainly search for the update
rule inside the projection operator (e.g. sign()
for PGD). The search is conducted on the pre-
trained Carmon2019 model [27], and the pro-
posed optimizer is subsequently evaluated on
other top defense methods for WideResNet [14]
(WRN-<depth>-<width>) and ResNet [11] (RN-
<depth>). As shown in Table 2, our discov-
ered optimizer consistently outperforms PGD
by a sizable margin. Surprisingly, we found that
the algorithm tends to pick log(| · |) rather than
sign(·) as the first operator, resulting in many
log-based optimizers that surpass sign-based PGD.

In addition to PGD, we also compare our log-based optimizer with the best handcrafted and tuned
optimizer for adversarial attack: Adaptive PGD (APGD) [46]; The design of APGD is packed with
domain expertise: it combines a well-tuned momentum update rule with a conditional learning rate
decay based on a handcrafted schedule and sophisticated decay conditions (see Appendix for details).
However, the performance of our automatically discovered optimizer rivals APGD across various
defense methods, despite of having a much simpler form (see Appendix for details). This result
demonstrates the potential of applying our framework to reduce the need of human expertise in
designing optimizers for diverse tasks.

4.5 Node classification on graphs

Table 3: Performance of our discovered optimizers
against Adam on GATs on five commonly used
Graph datasets of diverse size. Results that use the
same GAT implementations are grouped together.

Dataset Adam Ours
Products 77.49% ± 0.56† 80.15% ± 0.16
Cora 84.72% ± 0.32 85.20% ± 0.19
Citeseer 71.70% ± 1.03 73.10% ± 0.43
PubMed 78.20% ± 0.22 79.25% ± 0.70
PPI 97.53% ± 0.45‡ 98.13% ± 0.10‡

† Our reproduced accuracy using ogbn-
leaderboard’s implementation is lower than
the displayed number (79.23% ± 0.78).

‡ F1 Score

We next test our framework for optimizing graph
neural networks to classify nodes on graphs. The
model of interest is Graph Attention Network
(GAT) [21], one of the most widely used ar-
chitectures in graph learning tasks. We com-
pare our method against Adam [9] - the standard
optimizer for optimizing GATs - on five com-
monly used graph datasets: OGBN-Product [49],
Cora [4], Citeseer [3], PubMed [6], and PPI [18].
Among them, OGBN-Product is the largest in
scale, consisting of 2,449,029 nodes. Since stan-
dard GATs cannot scale to this dataset, we in-
stead adopt an adaptation of cluster-GCN [28]
to GAT as the testbed, termed Cluster-GAT.
Cluster-GAT trains standard GAT on smaller
partitions of the original graph, thereby allow-
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ing the model to be applied to large-scale graphs. We refer the reader to the Appendix for detailed
descriptions of all GAT implementations and experimental setups.

The results are summarized in Table 3. On all datasets, our search algorithm is able to discover
optimizers that outperform Adam. An interesting observation is that the top-performing optimizers
discovered for this task almost always contain sign(·) operators, revealing the potential of adopting
sign-based optimizers to improve the training of graph neural networks.

4.6 BERT fine-tuning on NLP datasets

Table 4: Performance of our discovered opti-
mizers for BERT finetuning on GLUE tasks.

Dataset AdamW Ours
Cola 59.56 ± 2.04? 60.89 ± 1.33?

MRPC 82.84 ± 0.57‡ 86.64 ± 0.94‡

STS-B 87.80 ± 1.14† 88.91 ± 0.30†

RTE 65.97 ± 1.56‡ 68.50 ± 1.93‡

WNLI 53.17 ± 5.49‡ 56.34 ± 0.00‡

? Mathews Correlation.
† Spearman Correlation.
‡ Accuracy (%).

We also evaluate the proposed framework on BERT
finetuning task on GLUE benchmark [25]. For this
task, we follow all configurations of the Hugging-
Face [56] implementations: we finetune a pretrained
BERT (base cased) model for 3 epochs on Cola [43],
STS-B [16] and RTE [7] dataset, and 5 epochs on
MRPC [5] and WNLI [25] dataset. The batch size
is set to 32. We compare our discovered optimizers
with the default AdamW [19]. As shown in Table 4,
our automatically discovered optimizers outperform
AdamW on all datasets.

5 Ablation study

In this section, we ablate the proposed framework using the MNISTNET task. All experiments are
repeated over 4 random seeds to account for randomness in the search phase.

Table 5: Performance comparison of
Random Search and MCT.

Method Training Loss (sum) Test Accuracy
Random 60.25 ± 2.99 88.02% ± 1.53
MCT 59.25 ± 2.50 89.43% ± 0.85

Random search baseline We study the effectiveness of
our MCT algorithm alone by comparing it with random
sampling. Concretely, instead of traversing the tree based
on MC scores, we randomly generate all optimizers from
the root. Everything else in our framework remains un-
changed, including our rejection sampling and equivalent-
form detection techniques. This is equivalent to Random Search on our search space. As shown in
Table 5, MCT algorithm outperforms Random Search baseline by a sizable margin, showing that the
Monte Carlo node scoring schema can indeed guide the traversal towards promising branches of the
tree.

Score thresholding As discussed in prior sections, score thresholding is important to the perfor-
mance of the MCT algorithm. To verify this, we ablate this technique by disabling it in our framework
while keeping everything else the same. Without score thresholding, the cumulative training loss of
the proposed optimizers raises from 59.25 ± 2.50 to 60.25 ± 2.87, similar to that of random search.

6 Conclusion

Despite the recent advancement of practical AutoML systems in automatizing the design of architec-
tures, data augmentation policies, and hyperparameters, progress in automated discovery of optimizers
is still inadequate due to the limitations of prior methods in terms of 1). efficiency, 2). generalization,
and 3). scalability. In this paper, we introduce the first optimizer search framework that meets all
these criteria, allowing it to be directly applied to the tasks of interest. The proposed framework
demonstrates promising results across a variety of tasks, from image classification, adversarial attack,
to graph learning and BERT finetuning. Our method by-no-mean solves the optimizer search problem,
as there is plenty of room for improvement on the algorithm and search space; Rather, our goal is to
open up a new possibility for future development in non-parametric optimizer search methods. We
hope the proposed framework could democratize research and applications of automated optimizer
search, and stimulate interest among researchers and practitioners.
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7 Limitations

Our view of this work is as a starting point of an efficient, scalable, and generalizable framework for
optimizer search. And we expect plenty of room for improvement for future works. For instance, we
identify the following concrete limitations of the method:

1. We use pre-computed momentum terms as input to our search space. This is a practice
borrowed from NOS-RL. Adding commonly used terms ease the job of the search algorithm
because it does not have to rediscover them from scratch every time. However, searching for
novel momentum update rules could potentially help to find even stronger optimizers. In
principle, our framework allows it: one can do this by inserting an operator with its own
internal state. This would serve as a direction for future explorations.

2. Identifying proper hyperparameters for an optimizer is essentially for evaluation. In the
current work, we use a simple grid search to discover the best learning rate for an optimizer.
While it works fine for our tasks, this could potentially be suboptimal as it might underes-
timate some optimizers. Leveraging advanced fast HPO during the search phase could be
another direction to explore.

3. Although our framework is 100x faster than the comparable method (NOS-RL), it still
requires 128 evaluations in the search phase. These evaluations can be largely parallelized.
But potentially, the efficiency can be improved further with better search algorithms, more
train-free tests, knowledge transfer, e.t.c.

Reproducibility & ethics statements

Reproducibility We have specified the setup for ours experiments in the main paper and Appendix,
including settings for each task and hyperparameters for our method. The code and the optimizers
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development. Before then, a copy of our code is included in the supplementary material for reference.
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A Appendix

A.1 Pseudocode for our search algorithm

Our framework follows a standard search pipeline:

1. Candidate proposal: the search algorithm samples an optimizer from the search space.

2. Candidate evaluation: The optimizer is evaluated from scratch, by using it to optimize a
model and obtaining the performance of the model.

3. Search: The optimizer score is used to guide the search algorithm to propose new optimizers.

4. Loop: Repeat step 1 - 3 until a predefined search budget is reached.

5. Finally, the Top optimizers visited by the search algorithm will be returned.

This procedure is commonly used in other AutoML domains, such as Neural Architecture Search [47,
67] and Hyperparameter Optimization [23]. Algorithm 1 and 2 summarize the complete search
process.

Algorithm 1: MCT algorithm
1 Input: Candidate set A, constraints C, operator set O, maximum super-tree depth D, maximum

traversal level L, MC sample size M for each level, score threshold ⇢, proposal size K.
2 Main search:
3 for level in 1 to L do
4 current node vc = root node ; // root node hosts an empty update rule
5 score dict S = ; ; // scores of optimizers generated from stem nodes
6 number of samples m = 1

7 while m <= M do
8 u = randomly pick a child of vc, by inserting an operator o 2 O to vc under constraint C;
9 � = unroll(u, C,O, D);

10 if not descent_test(�) then
11 continue;
12 s� = evaluate(�) ; // the score for early stopped � are set to ⇢

13 if s� > ⇢ then
14 register (u, s�) in S;
15 register (�, s�) in A;
16 m += 1;

17 for each node u in S do
18 if u is a non-leaf node then
19 compute the average score of u;
20 else
21 set the score of u to 0;

22 vc = node with the best score as computed above ; // move on to the next level
23 return: TopK(A);

B Set of operators used for constructing the search space

Inspired by NOS-RL, we adopt the following set of mathematical operators in our experiments:

• Unary operators: �(·), exp(·), log(| · |),
p
| · |, clip0.003(·), drop0.1(·), sign(·)

• Binary operators: +, �, ⇥, /, pow(·, ·)
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Algorithm 2: Pseudocode for the unrolling step
1 Input: Stem node v, constraint C, operator set O, maximum super-tree depth D

2 Unroll:
3 set current node vc = v

4 while True do
5 vc = randomly pick a child of vc, by inserting an operator o 2 O to vc under constraint C;
6 if �vc is a complete update rule then
7 break;
8 else if length(�vc ) == D then
9 vc = v ; // restart unrolling

10 continue;

11 return: �vc

• Input Operators: g, g2, g3, m1, m2, m3, sign(g), sign(m1), Adam, RMSprop, 1, 2, ld,
cd, rd

Here, m1, m2, m3 denote the first, second and third order momentum respectively, and ld, cd, rd
denote linear decay, cosine decay, and restart decay [15]:

linear decay : 1�
t

T

cosine decay : 0.5 ⇤ (1 + cos(2⇡n
t

T
))

restart decay : 0.5 ⇤ (1 + cos(⇡
(tn)%T

T
))

where t and T are the current and maximum step. Following NOS-RL, we use n = 0.5 for cosine
decay and n = 20 for restart decay. We set the bound for clip operator to 0.003, and the dropout
ratio to 0.1 for drop operator. Note that one can always include more options of these values by
adding new operator variants to the space (e.g. drop0.3() with dropout ratio set to 0.3). For all input
operators, we use their default PyTorch implementations and hyper-parameters. The only exception
is the learning rates for Adam and RMSprop. We found that under the default learning rate, the norm
of Adam and RMSprop is sometimes quite small compared with other operands such as sign(g),
making them potentially less effective as a submodule of some optimizers. Therefore, we raise their
default learning rate by 3⇥ in our experiment. Note that we make one minor adjustment to the set for
the ConvNet task: g3, m3, Adam, and RMSprop are removed as they rarely show up on the tops
optimizers.

Our set of operators is a subset of the full operator set presented in Section 4.1 of the NOS-RL paper.
However, note that NOS-RL also uses much smaller subsets rather than the full set to conduct the
search. We refer the readers to "Further discussions on NOS-RL baseline" in Appendix D.3 for more
details.

Suggestions on constructing operator sets for future tasks Our provided set of operators and
heuristics are quite generic. Empirically, we found that the operator set is good enough for construct-
ing high-performant optimizers for all tasks used in this paper, including MNIST, CNN training,
BERT finetuning, GNN training, and adversarial attacks. And we use the same on-the-fly constraints,
train-free test, and score threshold for all experiments.

For future tasks, we recommend starting with the provided set and incorporating new operators when
necessary. For inspiration on what to add, the user might look into 1). what extra mathematical
operations are used in existing optimizers for this task 2). the nature of the task (e.g. some might
require max or sinusoid functions).

With an augmented operator set, other components in our algorithm can largely remain the same. 1).
our train-free test, score thresholding, and math equivalent detection are generic and independent
of the operator set 2). It could be beneficial to augment the on-the-fly constraints slightly when the
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new operators are added. It is because the on-the-fly constraints are mainly used for eliminating
mathematical redundancies, and new redundancies might surface when new operators are included.
But this should be an extra gain. We encourage the users to follow our general guidelines in Section
2.4 for spotting these redundancies.

C Choice of hyperparamters for the search algorithm

We will elaborate more on our choice of hyperparameters for the search phase. Note that our search
hyperparameters are held fixed throughout all our experiments, across all the tasks.

Score threshold The purpose of score thresholding is mainly to reject apparently poor optimizers -
those that lead to near-random-guess accuracy or exploding loss. So we simply set it (20%) to be
slightly higher than random guessing accuracy and used it for all our experiments.

Number of samples in Monte Carlo estimation We set and fix the number of total samples in
Monte Carlo estimation to 32 - a multiple of 8 for parallelization. If this number is too small, then
the MC scores for each branch would be of high variance; Setting this number too big does not hurt
performance, but also might not be necessary as it consumes extra budget.

Super Tree Depth We choose ten because we found that most top optimizers are within this range.
We also experiment with increased depth (15, 20) but only find marginal gains sometimes. The
discovered longer optimizers are also less interpretable.

The number of traversal levels We use a fixed number to fix the same budget for all experiments
(recall that num_mc_samples * num_levels = total budget) (line 267). But in practice, this hyperpa-
rameter needs not to be preset or tuned; One can just progressively increase it and stop when there is
no further gain in terms of the proposed optimizer’s performance.

Learning rates for optimizer evaluation We perform simple grid search to identify a suitable
learning rate for each optimizer. We use one main grid for our experiments, without tuning it just to
get more favorable results. However, we adjust the grid slightly for different tasks for the following
reasons:

1. We use {1e�5, 1e�4, 1e�3, 1e�2, 1e�1, 1} for ConvNet task proposed in NOS-RL. This
grid is too sparse, but it is adopted in NOS-RL (Sec 4.3). So we have to use the same grid
for a fair comparison with NOS-RL.

2. For all other tasks, we use this grid: {0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03
, 0.06, 0.1, 0.3, 1.0}. One can always use the full grid. However, this grid is sometimes
unnecessarily long for some tasks - the first or the last few rates are never selected. Due to
the sheer size of experiments in this paper and limited resources, we often shrink this grid
mildly to speed up the runs a little. The exact truncated grids for each task are reported in
the following section.

3. We always want to ensure that the grid covers the provided learning rate of our baseline
optimizers for a fair comparison. For the BERT task, since the baseline (AdamW)’s learning
rate is set to 2e�5 (outside this grid), we extend our grid to cover it, avoiding underestimating
AdamW.

D More details on experimental settings

D.1 General settings for our search algorithm

Search configurations For all experiment, we allow 4 levels of traversal and set the number of
Monte Carlo samples for each level to 32. This amounts to a total budget of 128 evaluations. The
maximum depth for the super-tree is set to 10. The evaluation of Monte Carlo samples for each level
of traversal are completely independent, and therefore can be easily parallelized onto multiple GPUs.
As mentioned in the main text, we also apply score thresholding during the Monte Carlo estimation.
We use a universal threshold of 10 for losses, 20% for accuracy and correlations. After the search
phase, top 5 optimizers are usually proposed for further evaluations.
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Early stopping We also early stop poor optimizers to speedup the search process. We use the
following standard procedure for deciding whether to terminate the training of an optimizer: If the
search signal is training loss, we track if the moving average of the training loss keeps increasing for
certain amount of consecutive steps. If the search signal is accuracy or correlations, we check if the
accuracy fails to reach the score threshold after 10% of training.

Constraints We use the following constraints during tree traversal: 1). log(exp(·)) and �(�(·))
are prohibited. 2). sign(·) must not be followed by sign(·), sign(m1), sign(g), clip0.003(·), 1, 2,
ld, cd, and rd. 3).

p
| · | must not be followed by sign and 1. 4). clip0.003(·) must not be followed

by clip0.003(·), 1, 2, ld, cd, and rd.

D.2 Hand-digit classification with MNISTNET

Table 6: Performance of different optimizers on MNISTNET models.
Method MNISTNET MNISTNET-2Layer MNISTNET-Big MNISTNET-ReLU

Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc
SGD 364.96 ± 3.32 93.09% ± 0.17 638.23 ± 12.91 92.27% ± 0.44 334.72 ± 1.90 93.88% ± 0.08 317.33 ± 7.47 93.56% ± 0.37
SGD + Mom 276.26 ± 10.78 93.07% ± 0.46 358.61 ± 8.96 93.05% ± 0.32 207.54 ± 5.12 95.29% ± 0.25 265.15 ± 9.58 94.03% ± 0.53
Nesterov 248.96 ± 6.51 93.53% ± 0.32 317.86 ± 6.38 93.32% ± 0.32 192.03 ± 13.13 95.35% ± 0.31 283.50 ± 41.82 92.95% ± 0.83
Adam 327.15 ± 11.55 91.54% ± 0.53 403.07 ± 31.20 90.69% ± 0.54 219.25 ± 4.43 94.29% ± 0.33 273.02 ± 15.47 92.56% ± 0.72
RMSprop 269.48 ± 5.74 93.72% ± 0.17 336.99 ± 13.33 93.44% ± 0.37 230.69 ± 4.30 95.01% ± 0.20 280.28 ± 11.59 93.61% ± 0.33
L2LGD2 300.94 ± 12.49 90.63% ± 0.14 338.18 ± 11.69 90.11% ± 0.30 286.63 ± 8.33 90.94% ± 0.32 791.35 ± 55.13 84.24% ± 1.49
Ours 237.76 ± 5.34 93.86% ± 0.23 291.90 ± 7.89 93.75% ± 0.38 186.17 ± 6.68 95.42% ± 0.16 238.19 ± 8.37 94.29% ± 0.30

Task setting In this task, the goal is to minimize the cumulative training loss of a simple MLP
(MNISTNET). All experimental setups (including model variants) and the LSTM-based optimizer
baseline are borrowed from the open-sourced PyTorch implementation of L2LGD22 The default
MNISTNET has one 20-dimensional hidden layers with Sigmoid activation. In addition, we also
consider three other variants of MNISTNET: 1). MNISTNET-2Layer, which doubles the number of
layers in MNISTNET; 2). MNISTNET-Big, which doubles the hidden layer dimension of MNIST-
NET; 3). MNISTNET-ReLU, which replaces the Sigmoid activation in MNISTNET with ReLU. All
models are trained for 1000 steps with a batch size of 128 on the MNIST dataset. We use a fixed
50/50 split of training and testing set for MNIST.

Optimizer evaluation For each optimizer, the best learning rate is obtained from
{0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 1.0}. During the grid search, we train the
network for 100 steps. After that, the network is retrained for 1000 steps with the best learning rate.
We record the cumulative training loss and test accuracy of each optimizer for comparison. Note that
following the L2LGD2 implementation, the grid search for the LSTM-based optimizer is applied at
training time rather than test time.

Search setting Again, we follow the search settings implemented in the L2LGD2 codebase for our
experiment. The search is conducted on the default MNISTNET by training it for 100 steps on the
training split. Standard early stopping procedure is enabled for this task. Empirically, we found that
roughly 7.2% optimizers are terminated.

Discovered optimizers We represent some of the discovered optimizer down below. Note that the
forms of these optimizers are already simplified using the Sympy library.

mnist1: m1 +RMSprop ⇤ exp(Adam)

mnist2: m1 ⇤ (exp(Adam) + exp(exp(Adam))) +RMSprop

mnist3: m1 +RMSprop ⇤ rdg
3

Interestingly, the pattern m1 +RMSprop shows up quite frequently in the discovered optimizers for
this task.

2https://github.com/chenwydj/learning-to-learn-by-gradient-descent-by-gradient-
descent
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More experimental results In addition to the convergence figures in the main text, we also present
the results in tabular form. Table 6 summarizes both the cumulative training loss and test accuracy of
the optimizers on four MNISTNET models. All models are trained for 1000 steps. Our discovered
optimizer achieves the best cumulative training loss and test accuracy for all cases.

D.3 Image classification with ConvNet

Task setting The goal of this task is to train a ConvNet on CIFAR-10 dataset. Following NOS-RL,
the ConvNet has two 32-filter 3x3 convolution layers, each followed by ReLU activation and batch
normalization [15]. We use a fixed held-out validation set of 5000 images for grid search. Note
that the held-out validation set is used throughout the search phase, and it will be added back to the
training set during final evaluation of the proposed optimizers.

Optimizer evaluation The grid search is performed over {1e�5, 1e�4, 1e�3, 1e�2, 1e�1, 1} for 1
epoch of training, and the best learning rate is selected based on the accuracy on held-out validation
set. After that, the optimizers are trained for a longer period of time (5 epochs). The batch size is set
to 100.

Search setting For this task, we disable early stopping (i.e. all optimizers will be counted into
the budget.), to establish fair comparisons with NOS-RL’s search budget; The reason is as follows:
Although NOS-RL also aggressively early stops poor optimizers, the authors added them back when
plotting Figure 4 in their paper; And since our estimation of NOS-RL’s search budget comes from
Figure 4, it would be rational to also disable it in our experiment. Each evaluation takes about 3
minutes to finish. And the duration for the entire search phase is around 7 hours on a single RTX
2080ti.

Discovered optimizers Some of the discovered optimizers are shown below. Note that the forms of
these optimizers are already simplified using Sympy library.

conv1: cd ⇤ drop0.1(g)/ld

conv2: cd ⇤ sign(m1) ⇤ |m2|

p
|ld|/2

conv3: drop1(cd ⇤m1)

conv4: m1 ⇤ (rd+ |g|) ⇤ exp(cd)

Further discussions on NOS-RL baseline NOS-RL applies Reinforcement Learning to train
a LSTM controller to generate optimizer update rules according to a predefined pattern. Due to
the training difficulty, NOS-RL adopts a multi-config-multi-run search strategy: It conducts the
search multiple times with different subset of operators (unknown) and different optimizer length
(5,10,15,20). Out of all search runs with different configurations, two families of best optimizers
are reported in the paper. This leads to several challenges that prevent us from obtaining exact
comparisons with NOS-RL: 1). It is difficult to know or measure the exact search cost of NOS-RL
due to its multi-config-multi-run strategy. The paper only mentions that a single search run can finish
in one-day with heavily parallelism on Google’s infrastructures. Therefore, the best we can do is
to make an estimation based on Figure 4 in their paper, where it shows that the controller begins to
converge at least after 10k evaluations. 2). The particular subsets of operators used during each search
run is also unknown; The paper only mentions that the search spaces generated by these subsets
typically contains 106 to 1011 update rules. As a result, we have to pick our own operator set to run
the search on.

We conjecture that the main purpose of NOS-RL paper is to offer the discovered optimizer for
practitioners to use, rather than providing a baseline to stimulate further developments of non-
parametric optimizer search methods. This can be evidenced by its prohibitive search cost, and also
by the fact that the source code is not released. The nature of NOS-RL, combined with aforementioned
challenges, necessitate an open-sourced resource-friendly non-parametric optimizer search framework
for the community, which we hope to provide in this work.
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D.4 Adversarial Attack

Task setting Adversarial attack aims at finding a norm-bounded perturbation to the input space
that misleads the model predictions. In this case, the parameter to be optimized is the data itself. We
use the AutoAttack library3 to implement our experiments for this task. The library contains a set of
defense methods, as well as an implementation of the APGD optimizer that we used as the baseline.
The attack is conducted on the default test split of CIFAR-10 dataset, which contains 10000 images.
Our metric of choice is attack success rate. Concretely, if the perturbed image successfully mislead
the model’s prediction into a wrong class, then the attack is successful for that image. The success
rate is thus the percentage of images that the optimizer successfully attacked.

Optimizer evaluation The search is conducted on the Carmon2019 method. We use
{0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 1} to search for the best learning rate. The grid search
is conducted on only 1000 test images. After that, the optimizers will be evaluated by training for
100 steps.

Search setting During the search phase, all optimizers are evaluated with only 20 steps, as it is
usually enough to identify top optimizers. To further reduce the search cost, we use only 400 images
for grid search and 4800 (400 * 12) images for evaluation. The search takes around one GPU day to
finish on a single RTX 2080ti.

Discovered optimizers We present some of the discovered optimizers for adversarial attack down
below.

attack1: log(|cd+ sign(g)|)

attack2: log(|cd+ exp(g3) ⇤ sign(g)|)

attack3: log(|ld+ sign(RMSprop)|)

As mentioned in the main text, we found that many top optimizers are log-based. More specifically,
these optimizers often have the form of log(|decay+ sign(·)|). The discovered log-based optimizers
are also highly effective when transferred to other defense models, as showing in Table 2.

Discussion on Adaptive Projected Gradient Descent (APGD) optimizer APGD is currently the
strongest manually design and tuned optimizer for adversarial attack. It consists of two parts: 1). a
momentum update rule and 2). a dynamic learning rate decay schema. The momentum update rule
takes the following form:

z(k+1) = ProjB1
✏ (xo)(x

(k) + �(k)sign(rxL(x
(k))))) (1)

x(k+1) = ProjB1
✏ (xo)(x

(k) + (1� µ)(z(k+1)
� x(k)) + µ(x(k)

� x(k�1))) (2)

where k is the current step and µ is the momentum ratio. The µ is tuned to be 0.25, much lower than
the default momentum ratio for standard optimizers such as SGD and PGD. The dynamic learning
rate decay schema halves the learning rate if a set of two conditions are satisfied at some predefined
steps {wj}

100
j=1:

wj�1X

i=wj�1

L(x(i+1))<L(x(i)) < ⇢ ⇤ (wj � wj�1) (3)

�(wj) ⌘ �(wj�1) and L
(wj)
min ⌘ L

(wj�1)
min (4)

where ⇢ is a threshold term and L denotes the loss function. The steps (wj) to check for these
conditions are set to {23, 42, 58, 71, 81, 88, 94, 100}. As we can see, APGD has a quite complicated
form, and its design also packs a lot of human expertise. On the other hand, our automatically
discovered optimizers are much simpler, while also rivaling the performance of APGD.

3https://github.com/fra31/auto-attack
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D.5 Node classification on graphs

Task Setting We consider node classification task on graphs. The model of choice is Graph
Attention Network (GAT). There exists many PyTorch implementations of GAT and its variants, each
covers only some datasets. As a result, we have to use more than one codebase for this experiment.
For training cluster-GAT on OGBN-Products dataset, we use the official implementation from OGBN
library4. For training vanilla GAT on Cora dataset, we use pyGAT 5. For training vanilla GAT on
Citeseer, PubMed, and PPI dataset, we use the implementations from DGL library6. We follow the
instructions provided in their README.md files to run all of our experiments. The only except is for
Cora dataset, where we disable early stopping in the original implementation. The reason is that the
default criteria often terminate training prematurely for our optimizers.

Optimizer evaluation The grid search is conducted over {0.0003, 0.0006, 0.001, 0.003, 0.006,
0.01, 0.03, 0.06}, as we found that most of the optimizers’ best learning rates (including Adam)
fall into this range. After the grid search, all optimizers are evaluated under 4 random seeds. As
mentioned above, all other hyperparameters, including the total number of epochs, batch size, weight
decay, e.t.c., are set to their default values as in the original codebases.

Search setting We deploy standard early stopping schema for this task. The percentage of early
terminated optimizers is around 10% to 17% for vanilla GATs. We found that Cluster-GAT is much
harder to optimize: roughly 25% of the optimizers are early terminated. The search is conducted on
each dataset separately, and we will discuss the transferability of the discovered optimizers in the
next paragraph. For Products dataset, we parallelize the search over 8 RTX 2080ti GPUs. All other
datasets are ran on a single device. The search takes about 2 GPU days to finish for Products dataset,
1 GPU day for PPI and Cora, and 3 hours for PubMed and Citeseer.

Discovered optimizers We present some of the discovered optimizers on each dataset down below.
Interestingly, we found that sign-based optimizers dominate the graph learning task.

products1: ld ⇤ sign(m1)�Adam

products2: ld ⇤ (sign(m1)�RMSprop)

cora: sign(m1) +m3

citeseer: drop0.1((sign(g)�m1)/cd)

pubmed: sign(m1) + sign(m1 � drop0.1(g
3))

ppi: drop0.1(rd
2) ⇤ sign(m1)

Table 7: Performance of our discovered optimizers
against Adam on GATs on five commonly used
Graph datasets of diverse size. Results that use the
same GAT implementations are grouped together.

Dataset Adam products2
Products 77.49% ± 0.56† 79.98% ± 0.17
Cora 84.72% ± 0.32 84.87% ± 0.29
Citeseer 71.70% ± 1.03 71.78% ± 0.51
PubMed 78.20% ± 0.22 77.12% ± 0.53
PPI 97.53% ± 0.45‡ 98.38% ± 0.07‡
† Our reproduced accuracy using ogbn-

leaderboard’s implementation is lower than
the displayed number (79.23% ± 0.78).

‡ F1 Score

More experimental results on the transfer
setting Among the optimizers listed above,
we found that "product2" optimizer exhibits the
highest level of transferability. As shown in
Table 7, it outperforms Adam on all but the
citeseer dataset. Note that for graph learning
task, there exists a non-negligible performance
gap between transfer and direct search settings.
We conjecture that it is because different graph
dataset might indeed require different optimiz-
ers. The reason is as follows: Most graph neu-
ral networks, including GATs, adopt the mes-
sage passing framework, where the features of
neighboring nodes are passed to the target node
through their edges in the forward pass. Since
the connectivity of nodes are defined by the ad-
jacency matrix in the dataset, the computation graph (and thus the learning process) is inherently

4https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/cluster-gat
5https://github.com/Diego999/pyGAT
6https://github.com/dmlc/dgl/tree/master/examples/pytorch/gat
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encoded in the dataset itself. Moreover, some of the datasets and models we considered are inherently
heterogeneous. For example, PPI is designed for inductive learning, whereas all other dataset are
for transductive setting; and also the Cluster-GAT model we used for OGBN-Products dataset is
inherently different from vanilla GATs.

D.6 BERT fine-tunning on NLP datasets

Task setting We use Hugging Face’s official implementation of BERT finetuning task for our
experiment7. The goal of this task is to finetune a pretrained BERT (base cased) model on a set of
NLP datasets. Following the instructions on the official repo, we set the number of epochs to 5 for
MRPC and WNLI, and 3 for CoLA, STS-B, and RTE dataset. We also observe that finetuning for
more epochs generally harms the performance of all optimizers. The model is trained with a batch
size of 32 on a single GPU. We refer the reader to Hugging Face’s offical repo (link in the footnote)
for more details on this task.

Optimizer evaluation We use {2e�5, 0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01} for learn-
ing rate grid search. Note that this grid is intentionally shifted to cover Hugging Face’s default
learning rate for AdamW (2e�5). After the grid search, the optimizers are trained for 4 random seeds
with the best learning rate.

Search setting Similar to GAT task, our search is conducted on each dataset separately, and we
will discuss the transferability of discovered optimizers later. We early stop optimizers if their
performance (accuracy, Matthew’s correlation, or Spearman’s correlation) fall below the default
threshold (0.2) during the grid search. Empirically, we found that roughly 13.5% optimizers are
terminated. This rate is slightly higher than that of MNISTNET task (7.2%), because we are using the
same threshold as MNISTNET task even though the accuracies (or correlations) on BERT fine-tuning
tasks are much lower. For this task, we parallelize the search over 8 RTX A6000 GPUs. The search
can be finished in less than 10 hours on all dataset.

Discovered optimizers We present some of the discovered optimizers on each dataset down below.
Similar to those found on the GAT tasks, many optimizers are sign-based. Note that the power
operator in cola2 optimizer might return NaN, which will be mapped to 0 by the sign function.

cola1: drop0.1(Adam+ g3)

cola2: sign(mclip0.003(rd)+clip0.003(sign(g))�sign(m1)
1 )

mrpc: drop0.1(clip0.003(sign(g) + sign(RMSprop) ⇤ rd))

stsb: sign(RMSprop+ 2/(g +m3))

rte: drop0.1(clip0.003(m1 �
p

|drop0.1(g3)| ⇤ sign(m1)))

wnli: sign(m1)�m3

Table 8: Performance of our discovered
"cola2" optimizer for BERT finetuning task.
Results above baseline are bolded.

Dataset AdamW cola2 optimizer rte optimizer
Cola 59.56 ± 2.04? 60.05 ± 2.38? 59.91 ± 1.54?
MRPC 82.84 ± 0.57‡ 85.48 ± 0.74‡ 85.60 ± 0.68‡
STS-B 87.80 ± 1.14† 87.90 ± 0.28† 87.91 ± 0.98†
RTE 65.97 ± 1.56‡ 66.52 ± 1.83‡ 68.50 ± 1.93‡
WNLI 53.17 ± 5.49‡ 56.34 ± 0.00‡ 55.28 ± 1.83‡
? Mathews Correlation.
† Spearman Correlation.
‡ Accuracy (%).

More experimental results on the transfer setting
We found that both "cola2" and "rte" optimizer ex-
hibits high level of transferability. Although they
perform slightly worse than the optimizers directly
searched on the target dataset, it still consistently out-
performs AdamW by a sizable margin. The results
are summarized in Table 8. Note that some of our
reproduced results for AdamW is a bit different than
the reported numbers on the Hugging Face repository.
The reason is that we run each optimizer for 4 seeds
and report the average results, whereas the official
repository only records the number after a single run.

7https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-clas
sification
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D.7 License

The Hugging Face libary we used is licensed under Apache License 2.0. All other public repositories
are licensed under MIT License.
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