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Abstract

In machine learning, stochastic gradient descent (SGD) is widely deployed to train
models using highly non-convex objectives with equally complex noise models.
Unfortunately, SGD theory often makes restrictive assumptions that fail to capture
the non-convexity of real problems, and almost entirely ignore the complex noise
models that exist in practice. In this work, we demonstrate the restrictiveness of
these assumptions using three canonical models in machine learning. Then, we
develop novel theory to address this shortcoming in two ways. First, we establish
that SGD’s iterates will either globally converge to a stationary point or diverge
under nearly arbitrary nonconvexity and noise models. Under a slightly more
restrictive assumption on the joint behavior of the non-convexity and noise model
that generalizes current assumptions in the literature, we show that the objective
function cannot diverge, even if the iterates diverge. As a consequence of our
results, SGD can be applied to a greater range of stochastic optimization problems
with confidence about its global convergence behavior and stability.

1 Introduction

Stochastic Gradient Descent (SGD) and its variants are dominant algorithms for solving stochastic
optimization problems arising in machine learning, and have expanded their reach to more complex
problems from estimating Gaussian Processes [Chen et al., 2020], covariance estimation in stochastic
filters [Kim et al., 2021], and systems identification [Hardt et al., 2016, Zhang and Patel, 2020].
Accordingly, understanding the behavior of SGD and its variants has been crucial to their reliable
application in machine learning and beyond. As a result, the theory of these methods has greatly
advanced, most notably for SGD as it is the basis for, and simplest of, these methods. Indeed, SGD
has been analyzed from many perspectives: global convergence analysis [Lei et al., 2019, Gower
et al., 2020, Khaled and Richtárik, 2020, Mertikopoulos et al., 2020, Patel, 2021], local convergence
analysis [Mertikopoulos et al., 2020], greedy and global complexity analysis [Gower et al., 2020,
Khaled and Richtárik, 2020], asymptotic weak convergence [Wang et al., 2021], and saddle point
analysis [Fang et al., 2019, Mertikopoulos et al., 2020, Jin et al., 2021].

While all of these perspectives add new dimensions to our understanding of SGD, the global conver-
gence analysis of SGD is the foundation as it dictates whether local analyses, complexity analyses
or saddle point analyses are even warranted. As surveyed in Patel [2021], these current global
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convergence analyses of SGD make a wide variety of assumptions, most commonly: (1) the objective
function is bounded from below, (2) the gradient function is globally Lipschitz continuous, (3) the
stochastic gradients are unbiased, and (4) the variance of the stochastic gradients are bounded. While
the first and third assumption are generally reasonable,1 the second and fourth assumptions and
their more recent generalizations are not usually applicable to machine learning problems as we
now demonstrate through three simple examples. Note, in the first two examples, we make use of a
penalty function, which can be removed without impacting the result.

Example 1: Feed Forward Neural Network. Consider the example (Y, Z) where Y is a binary
label and Z is a feature vector. We will attempt to predict Y from Z using a simple multi-layer feed
forward network as shown in Fig. 1. The next result states that for a simple distribution over the
example space and for a simple, archetype network, the gradient function is not globally Lipschitz
continuous, nor does it satisfy the (possibly) more general (L0, L1)-smooth assumption [Zhang et al.,
2019, Definition 1, Assumption 3]. Moreover, the variance of the stochastic gradients is unbounded.
See Appendix A.2 for a proof.
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Figure 1: A diagram of a simple feed forward network for binary classification.

Proposition 1. Consider the feed forward network in Fig. 1 with σ linear and ϕ sigmoid trained
with a binary cross-entropy loss with a Ridge penalty. There exists a finite, discrete distribution for
(Y, Z) such that the risk function’s gradient is not globally Lipschitz continuous, nor does it satisfy
the (L0, L1)-smooth assumption. Moreover, the variance of the stochastic gradients is not bounded.

Example 2: Recurrent Neural Network. Consider the example (Y,Z0, Z1, Z2, Z3) where Y is
a binary label and {Z0, Z1, Z2, Z3} are sequentially observed. We will attempt to predict Y from
Z using a simple recurrent network as shown in Fig. 2. The next result states that for a simple
distribution over the example space and for a simple, archetype network, the training function violates
the aforementioned assumptions. See Appendix A.3 for a proof.

Zi

σ

Hi

ϕ ŷ
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Figure 2: A diagram of a recurrent neural network for a binary classification task.

Proposition 2. Consider the recurrent network in Fig. 2 with σ linear and ϕ sigmoid trained with
a binary cross-entropy loss with a Ridge penalty. There exists a finite, discrete distribution for
(Y, Z0, Z1, Z2, Z3) such that the risk function’s gradient is not globally Lipschitz continuous, nor
does it satisfy the (L0, L1)-smooth assumption. Moreover, the variance of the stochastic gradients is
not bounded.

Example 3: Poisson Regression. Consider fitting a Poisson regression model by the standard
maximum likelihood framework using independent copies of the example (Y,Z), where Y is a count

1See Bottou et al. [2018] for a simple relaxation of unbiased stochastic gradients.
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response variable and Z is a predictor. The next result states that for a very nice Poisson regression
problem, the stochastic gradients violate the bounded variance assumption, its generalization [Bottou
et al., 2018, Assumption 4.3c], and, in turn, its generalization, expected smoothness [Khaled and
Richtárik, 2020, Assumption 2]. See Appendix A.4 for a proof.
Proposition 3. Let Y and Z be independent Poisson random variables with mean one. Consider
estimating a Poisson regression model of Y as a function of Z. Then, the gradient function is not
globally Lipschitz continuous, nor does it satisfy the (L0, L1)-smooth assumption. Moreover, the
variance of the stochastic gradients is not bounded, does not satisfy [Bottou et al., 2018, Assumption
4.3c], nor does it satisfy [Khaled and Richtárik, 2020, Assumption 2].

As these three examples show, global convergence analyses that make use of the aforementioned
assumptions do not apply to these canonical examples of machine learning problems. In fact, to our
knowledge and as summarized in Table 1, there are no global convergence analyses of SGD that
apply to these examples.

The Problem:
As a result, we do not have guarantees about how SGD behaves on these simple machine
learning problems, which calls into question what SGD and its variants are doing on more

complicated machine learning models.

Contributions. To address this problem,

1. We relax the global Lipschitz continuous gradient assumption, the bounded variance assumption,
and their aforementioned generalizations to assumptions that are applicable to the examples
above. Specifically, we relax the global Lipschitz continuity assumption and the (L0, L1)-smooth
assumption to local α-Hölder continuity of the gradient for α ∈ (0, 1] (see Assumption 2),
which is even a relaxation even for deterministic gradient algorithms (c.f. Nocedal and Wright
[2006],Theorems 3.2, 3.8, 4.5, 4.6). For the α in the local Hölder assumption, we also relax the
bounded variance assumption to only require that the (1 + α)-moment of the stochastic gradient
is bounded by an arbitrary upper semi-continuous function (see Assumption 4). Our assumption
allows stochastic gradients whose noise may not have a variance. Moreover, our assumption
generalizes the noise assumption of Bottou et al. [2018], the expected smoothness assumption
of Gower et al. [2020] and Khaled and Richtárik [2020], and the noise assumption of Asi and
Duchi [2019]. We also point out that we do not require the coercivity or asymptotic flatness
assumptions that are commonly considered in the analysis of SGD (e.g., Mertikopoulos et al.
[2020], Assumptions 2 and 3).

2. Owing to the relaxation in the assumptions, we cannot apply the standard analysis as the local
Hölder constant and the iterate difference are conditionally dependent random variables (see the
discussion after Lemma 1). As a result, by generalizing our previous techniques in Patel [2021],
Patel and Zhang [2021] to the α-Hölder continuous setting, we innovate a new analysis strategy
(see Section 4.1) to prove that, with probability one, either SGD’s iterates will converge to a
stationary point or they diverge (see Theorem 2). Importantly, our new analysis strategy can be
broadly applied even to deterministic algorithms to relax the assumptions found in the literature.

3. The divergence component of our Theorem 2 is somewhat disconcerting as we cannot say exactly
what happens if the iterates diverge. To ameliorate this concern, we add an additional assumption
(see Assumption 5) and introduce another analysis strategy (see Section 4.2) to prove, even if the
iterates are diverging, the objective function converges to a finite random variable with probability
one (see Theorem 3).

Our results do not supply a rate of convergence as this is impossible for the broad class of nonconvex
functions and the generality of the noise models studied in this work [Wolpert and Macready, 1997];
in other words, we can always construct a nonconvex objective function, a noise process, and choose
an initialization such that any rate of convergence statement will be violated. Indeed, we find it
remarkable that it is even possible to provide a global convergence statement for such a broad class
of nonconvex functions and general noise models.

2In Majewski et al. [2018], this is implied by their third assumption.
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Ta bl e 1: A s ur v e y of i n fl u e nti al, r e c e nt gl o b al a n al ys es of S G D a n d t h eir d e p e n d e n c e o n t h e t w o
ass u m pti o ns t h at ar e eit h er i n di vi d u all y or b ot h vi ol at e d b y t h e si m pl e e x a m pl es dis c uss e d i n S e cti o n 1 .

Ass u m pti o n  W o r ks D e p e n di n g o n t h e Ass u m pti o n

Gl o b al Li ps c hit z or
H öl d er C o nti n uit y of
Gr a di e nt

R e d di et al. [2 0 1 6 a ], M a a n d Kl a bj a n [2 0 1 7 ], Z h o u et al. [2 0 1 8 ],
B assil y et al. [2 0 1 8 ], L ei et al. [2 0 1 9 ], Li a n d Or a b o n a [2 0 1 9 ],
G o w er et al. [2 0 2 0 ], K h al e d a n d Ri c ht ári k [2 0 2 0 ], M erti k o p o ul os
et al. [2 0 2 0 ], P at el [2 0 2 1 ], Ji n et al. [2 0 2 1 ], Wa n g et al. [2 0 2 1 ].

B o u n d e d Vari a n c e of
St o c h asti c Gr a di e nts

R e d di et al. [2 0 1 6 b ], M a a n d Kl a bj a n [2 0 1 7 ], M aj e ws ki et al.
[2 0 1 8 ], H u et al. [2 0 1 9 ], Bi a n d G u n n [2 0 1 9 ], Z o u et al. [2 0 1 9 ],
M erti k o p o ul os et al. [2 0 2 0 ].2

Li mit ati o ns. We m a k e n ot e of t w o i m p ort a nt li mit ati o ns i n o ur w or k. First, w e d o n ot c o nsi d er
t h e i m p ort a nt c as e of n o ns m o ot h n ess i n t his w or k as w e r e q uir e t h at t h e gr a di e nts of t h e st o c h asti c
o pti mi z ati o n f u n cti o n ar e c o nti n u o us. H o w e v er, w e n ot e t h at if t h e r es ults of Bi a n c hi et al. [2 0 2 2 ] ar e
br o a dl y a p pli c a bl e, t h e n S G D n e v er o bs er v es a p oi nt of n o ns m o ot h n ess a n d o ur r es ults w o ul d t h e n
b e a p pli c a bl e. S e c o n d, w e d o n ot h a v e a si m pl e i nt er pr et ati o n of Ass u m pti o n 5 —t h o u g h it s e e ms
t o h a v e a cl os e r el ati v e i n a n ot h er a n al ysis (s e e Wa n g a n d W u [2 0 2 0 ]) —, n or h a v e w e b e e n a bl e t o
c o nstr u ct a r el e v a nt c o u nt er e x a m pl e t h at c a n ill u mi n at e t h e li mit ati o ns of t his ass u m pti o n.

2 St o c h asti c O pti mi z ati o n

We c o nsi d er s ol vi n g t h e o pti mi z ati o n pr o bl e m

mi n
θ ∈ R p

{ F (θ ) : = E [f (θ, X )]} , ( 1)

w h er e F m a ps R p i nt o R ; f m a ps R p a n d t h e c o- d o m ai n of t h e r a n d o m v ari a bl e X i nt o R ; a n d E is
t h e e x p e ct ati o n o p er at or. As w e r e q uir e gr a di e nts, w e t a k e F a n d f t o diff er e nti a bl e i n θ , a n d d e n ot e
its d eri v ati v es wit h r es p e ct t o θ b y ˙F (θ ) a n d ˙f (θ, X ). Wit h t his n ot ati o n, w e m a k e t h e f oll o wi n g
g e n er al ass u m pti o ns a b o ut t h e d et er mi nisti c p orti o n of t h e o bj e cti v e f u n cti o n.

Ass u m pti o n 1. T h er e e xists F l. b. ∈ R s u c h t h at ∀ θ ∈ R p , F l. b. ≤ F (θ ).

Ass u m pti o n 2. T h er e e xists α ∈ ( 0, 1] s u c h t h at ˙F (θ ) is l o c all y α - H öl d er c o nti n u o us.

R e m ar k 1 . F or ˙F t o b e l o c all y α - H öl d er c o nti n u o us f or s o m e α ∈ ( 0, 1] , f or e v er y c o m p a ct s et
K ⊂ R p t h er e e xists a c o nst a nt L ≥ 0 s u c h t h at f or e v er y θ, ψ ∈ K ,

˙F (θ ) − ˙F (ψ )
2

≤ L θ − ψ
α
2 . ( 2)

R e m ar k 2 . As a n e x a m pl e, a n e m piri c al ris k mi ni mi z ati o n pr o bl e m f or a d e e p n e ur al n et w or k wit h
t wi c e c o nti n u o usl y diff er e nti a bl e a cti v ati o n f u n cti o ns wit h a t wi c e c o nti n u o usl y diff er e nti a bl e l oss
f u n cti o n will r e a dil y s atisf y t h e a b o v e c o n diti o ns.

Ass u m pti o ns 1 a n d 2 w o ul d e v e n b e c o nsi d er e d mil d i n t h e c o nt e xt of n o n- c o n v e x d et er mi nisti c
o pti mi z ati o n, i n w hi c h it is als o c o m m o n t o ass u m e t h at t h e o bj e cti v e f u n cti o n h as w ell- b e h a v e d l e v el
s ets [ e. g., N o c e d al a n d Wri g ht , 2 0 0 6 , T h e or e ms 3. 2, 3. 8, 4. 5, 4. 6]. I m p ort a ntl y, Ass u m pti o n 2 r el a x es
t h e c o m m o n r estri cti v e ass u m pti o n of gl o b all y H öl d er c o nti n u o us gr a di e nt f u n cti o ns t h at is c o m m o n
i n ot h er a n al ys es (s e e Ta bl e 1 ).

O ur fi n al st e p is t o m a k e s o m e ass u m pti o ns a b o ut t h e st o c h asti c p orti o n of t h e o bj e cti v e f u n cti o n. T h e
first ass u m pti o n r e q uir es t h e st o c h asti c gr a di e nts t o b e u n bi as e d, w hi c h c a n r e a dil y b e r el a x e d [ B ott o u
et al. , 2 0 1 8 ]. T h e s e c o n d ass u m pti o n all o ws f or a g e n eri c n ois e m o d el f or a n α - H öl d er c o nti n u o us
gr a di e nt f u n cti o n, a n d e v e n all o ws f or t h e s e c o n d m o m e nt t o n ot e xist w h e n α < 1 [ c.f. Wa n g et al. ,
2 0 2 1 , w hi c h r e q uir es a d e c o m p ositi o n of t h e n ois e t er m t h at w e d o n ot r e q uir e].

Ass u m pti o n 3. F or all θ ∈ R p , ˙F (θ ) = E [ ˙f (θ, X )].

Ass u m pti o n 4. L et α ∈ ( 0, 1] b e as i n Ass u m pti o n 2 . T h er e e xists a n u p p er s e mi- c o nti n u o us f u n cti o n

G (θ ) s u c h t h at E [ ˙f (θ, X ) 1 + α
2 ] ≤ G (θ ).
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R e m ar k 3 . F or G (θ ) t o b e u p p er s e mi- c o nti n u o us, t h e n f or all g > 0 , { θ ∈ R p : G (θ ) < g } ar e o p e n
i n R p .

W e will s h o w t h at Ass u m pti o ns 1 t o 4 ar e s uf fi ci e nt f or a gl o b al c o n v er g e n c e r es ult (s e e
T h e or e m 2 ).

R e m ar k 4 . As s h o w n i n § A , o ur e x a m pl es fr o m §1 s atisf y Ass u m pti o ns 1 t o 4 .

R e m ar k 5 . It is e ntir el y p ossi bl e t h at E [ ˙f (θ, X ) 1 + α
2 ] is ( at l e ast) u p p er s e mi- c o nti n u o us, a n d t o

s et G (θ ) e q u al t o t his f u n cti o n. I n t h e c as e t h at E [ ˙f (θ, X ) 1 + α
2 ] is n ot u p p er s e mi- c o nti n u o us,

it is p ossi bl e t o s p e cif y G (θ ) as t h e u p p er e n v el o p e of E [ ˙f (θ, X ) 1 + α
2 ] (i. e., its li mit s u pr e m u m

f u n cti o n). H o w e v er, it is u nli k el y t h at E [ ˙f (θ, X ) 1 + α
2 ] n or its u p p er e n v el o p e ar e e as y t o s p e cif y

e x pli citl y, a n d it is m or e li k el y t o b e a bl e t o fi n d a n u p p er b o u n d.
R e m ar k 6 . We us e Ass u m pti o n 4 t o c o n cl u d e t h at o n a n y c o m p a ct s et, t h e 1 + α m o m e nt of t h e
st o c h asti c gr a di e nt is b o u n d e d. Of c o urs e, w e c a n ass u m e t his dir e ctl y (i. e., o n a n y c o m p a ct s et, t h e
1 + α m o m e nt is b o u n d e d), w hi c h, at first gl a n c e, a p p e ars t o b e a r el a x ati o n. H o w e v er, if w e ass u m e
t h at o n a n y c o m p a ct s et, t h e 1 + α m o m e nt is b o u n d e d, w e c a n us e t his t o c o nstr u ct a G (θ ) t h at is
u p p er s e mi- c o nti n u o us. T h us, t h e t w o ass u m pti o ns ar e e q ui v al e nt.
R e m ar k 7 . A si m pl e e x a m pl e t h at s h o ws t h e utilit y of Ass u m pti o n 4 is t o o pti mi z e E [θ X ] w h er e X
is a n e x p o n e nti al r a n d o m v ari a bl e wit h p ar a m et er 1 a n d θ ∈ [ 1, u] w h er e u < e x p( 1) . First, it is
e as y t o c o n fir m t h at t h e o bj e cti v e f u n cti o n is diff er e nti a bl e a n d its d eri v ati v e is gl o b all y Li ps c hit z
c o nti n u o us. M or e o v er, gi v e n t h at w e ar e o n a b o u n d e d i nt er v al, w e c o n cl u d e t h at t h e d eri v ati v e is
gl o b all y α - H öl d er c o nti n u o us f or a n y α ∈ ( 0, 1] ; t h er ef or e, w e ar e fr e e t o c h o os e t h e α as w e s e e fit.
N o w, w h e n u < e x p( 1 / 2) , w e h a v e t h at s e c o n d m o m e nt of t h e st o c h asti c gr a di e nt f u n cti o n e xists.
H o w e v er, w h e n e x p( 1 / 2) < u < e x p( 1) , o nl y s m all er m o m e nts of t h e st o c h asti c gr a di e nt will e xist.
S p e ci fi c all y, o nl y f or u < e x p( 1 / ( 1 + )) wit h ∈ ( 0, 1) will t h e 1 + m o m e nt of t h e st o c h asti c
gr a di e nt will e xist. T h us, d e p e n di n g o n t h e si z e of o ur i nt er v al, w e m a y n ot h a v e t h e e xist e n c e of t h e
s e c o n d m o m e nt, a n d, c o ns e q u e ntl y, w e m a y n ot h a v e t h e e xist e n c e of t h e v ari a n c e.

I n or d er t o s h o w t h at t h e o bj e cti v e f u n cti o n c a n n ot di v er g e (i. e., t o pr o v e st a bilit y), w e will n e e d a n
a d diti o n al ass u m pti o n. T his ass u m pti o n will r el at e t h e gr a di e nt f u n cti o n, n ois e m o d el a n d v ari ati o n
o n t h e l o c al H öl d er c o nst a nt. T o b e gi n, w e d e fi n e t h e v ari ati o n o n t h e l o c al H öl d er c o nst a nt. L et
α ∈ ( 0, 1] b e as i n Ass u m pti o n 2 a n d > 0 b e ar bitr ar y, a n d d e fi n e

L (θ ) =






s u p ϕ

˙F ( ϕ ) − ˙F ( θ )
2

ϕ − θ α
2

: ϕ − θ 2 ≤ (G (θ ) ∨ )
1

1 + α if t his q u a ntit y is n o n z er o

ot h er wis e ,
( 3)

w h er e ∨ i n di c at es t h e m a xi m u m b et w e e n t w o q u a ntiti es. N ot e, t h e c h oi c e of is irr el e v a nt, a n d t h e y
c a n b e disti n ct f or t h e t w o c as es i n t h e d e fi niti o n of L , b ut w e fi x t h e m t o b e t h e s a m e f or si m pli cit y.
I m p ort a ntl y, t h e q u a ntit y, L , is d e fi n e d at e v er y p ar a m et er θ u n d er Ass u m pti o n 2 .

Wit h t his q u a ntit y, w e c a n st at e a n o ni nt uiti v e, t e c h ni c al ass u m pti o n t h at is n e e d e d t o pr o v e st a bilit y.

Ass u m pti o n 5. T h er e e xists C 1 , C2 , C3 ≥ 0 s u c h t h at, ∀ θ ∈ R p ,

L (θ )G (θ ) + α






˙F (θ )
1 + α

2

L (θ )






1 / α

≤ C 1 + C 2 (F (θ ) − F l. b. ) + C 3
˙F (θ )

2

2
. ( 4)

Ass u m pti o n 5 g e n er ali z es Ass u m pti o n 4. 3( c) of B ott o u et al. [2 0 1 8 ], w hi c h is s atis fi e d f or a l ar g e
s w at h of st atisti c al m o d els. M or e o v er, Ass u m pti o n 5 g e n er ali z es t h e n oti o n of e x p e ct e d s m o ot h n ess
[s e e K h al e d a n d Ri c ht ári k , 2 0 2 0 , f or a hist or y of t h e ass u m pti o n], w hi c h e x p a n d e d t h e o pti mi z ati o n
pr o bl e ms c o v er e d b y t h e t h e or y of B ott o u et al. [2 0 1 8 ]. N ot e, Ass u m pti o n 5 is a b o ut t h e as y m pt oti c
pr o p erti es of t h e st o c h asti c o pti mi z ati o n pr o bl e m as t h e l eft h a n d si d e of t h e i n e q u alit y i n Ass u m p-
ti o n 5 c a n b e b o u n d e d i nsi d e of a n y c o m p a ct s et. T h us, Ass u m pti o n 5 c o v ers a v ari et y of as y m pt oti c
b e h a vi ors, s u c h as e x p( θ 2

2 ), e x p( θ 2 ), θ r
2 f or r ∈ R , l o g ( θ 2 + 1) , a n d l o g (l o g ( θ 2 + 1) + 1) .

T h er ef or e, Ass u m pti o n 5 h ol ds f or f u n cti o ns wit h a v ari et y of diff er e nt as y m pt oti c b e h a vi ors.

W e will s h o w t h at Ass u m pti o ns 1 t o 5 ar e s uf fi ci e nt f or a st a bilit y r es ult (s e e T h e or e m 3 ).
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N o w t h at w e h a v e s p e ci fi e d t h e n at ur e of t h e st o c h asti c o pti mi z ati o n pr o bl e m, w e t ur n o ur att e nti o n
t o t h e al g orit h m us e d t o s ol v e t h e pr o bl e m, n a m el y, st o c h asti c gr a di e nt d es c e nt ( S G D).

3 St o c h asti c G r a di e nt D es c e nt

S G D st arts wit h a n ar bitr ar y i niti al v al u e, θ 0 ∈ R p , a n d g e n er at es a s e q u e n c e of it er at es { θ k : k ∈ N }
a c c or di n g t o t h e r ul e

θ k + 1 = θ k − M k
˙f (θ k , Xk + 1 ), ( 5)

w h er e { M k : k + 1 ∈ N } ⊂ R p × p ; a n d { X k : k ∈ N } ar e i n d e p e n d e nt a n d i d e nti c all y distri b ut e d
c o pi es of X . I m p ort a ntl y, { M k } c a n n ot b e ar bitr ar y, a n d t h e f oll o wi n g pr o p erti es s p e cif y a g e n er-
ali z ati o n of t h e R o b bi ns a n d M o nr o [1 9 5 1 ] c o n diti o ns f or m atri x- v al u e d l e ar ni n g r at es [ c.f. P at el ,
2 0 2 1 ].

T h e first c o n diti o n r e q uir es a p ositi v e l e ar ni n g r at e, a n d i m p os es s y m m etr y t o e ns ur e t h e e xist e n c e of
r e al ei g e n v al u es.

P r o p e rt y 1. { M k : k + 1 ∈ N } ar e s y m m etri c, p ositi v e d e fi nit e m atri c es.

T h e n e xt t w o pr o p erti es ar e a n at ur al g e n er ali z ati o n of t h e R o b bi ns- M o nr o c o n diti o ns. L et α ∈ ( 0, 1]
b e as i n Ass u m pti o n 2 .

P r o p e rt y 2. L et λ m a x (·) d e n ot e t h e l ar g est ei g e n v al u e of a s y m m etri c, p ositi v e d e fi nit e m atri x. T h e n,
∞
k = 0 λ m a x (M k ) 1 + α =: S < ∞ .

P r o p e rt y 3. L et λ mi n (·) d e n ot e t h e s m all est ei g e n v al u e of a s y m m etri c, p ositi v e d e fi nit e m atri x.
T h e n,

∞
k = 0 λ mi n (M k ) = ∞ .

W e will s h o w t h at Pr o p erti es 1 t o 3 ar e s uf fi ci e nt f or a gl o b al c o n v er g e n c e r es ult (s e e
T h e or e m 2 ).

T h e fi n al pr o p ert y e ns ur es t h e st a bilit y of t h e c o n diti o n n u m b er of { M k } . N ot e, t his pr o p ert y is
r e a dil y s atis fi e d f or s c al ar l e ar ni n g r at es s atisf yi n g t h e R o b bi ns- M o nr o c o n diti o ns.

P r o p e rt y 4. L et κ (·) d e n ot e t h e r ati o of t h e l ar g est a n d s m all est ei g e n v al u es of a s y m m etri c, p ositi v e
d e fi nit e m atri x. T h e n, li mk → ∞ λ m a x (M k ) α κ (M k ) = 0 .

W e will s h o w t h at Pr o p erti es 1 t o 4 ar e s uf fi ci e nt f or st a bilit y (s e e T h e or e m 3 ).

4 Gl o b al C o n v e r g e n c e & St a bilit y

Wit h t h e st o c h asti c o pti mi z ati o n pr o bl e m a n d wit h st o c h asti c gr a di e nt d es c e nt ( S G D) s p e ci fi e d, w e
n o w t ur n o ur att e nti o n t o w h at h a p p e ns w h e n S G D is a p pli e d t o a st o c h asti c o pti mi z ati o n pr o bl e m.
T h e k e y st e p i n t h e a n al ysis of S G D o n a n y o bj e cti v e f u n cti o n is t o est a blis h a b o u n d b et w e e n t h e
o pti m alit y g a p at θ k + 1 wit h t h at of θ k . T his st e p is a c hi e v e d b y usi n g t h e l o c al H öl d er c o nti n uit y of
t h e gr a di e nt f u n cti o n a n d t h e f u n d a m e nt al t h e or e m of c al c ul us. Usi n g Ass u m pti o n 2 , w e first s p e cif y
t h e l o c al H öl d er c o nst a nt.

D e fi niti o n 1. F or a n y θ, ϕ ∈ R p , d e fi n e

L (θ, ϕ ) = s u p
ψ






˙F (ψ ) − ˙F (θ )
2

ψ − θ
α
2

: ψ ∈ B (θ, ϕ − θ 2 )





, ( 6)

w h er e B (θ, r ) is a n o p e n b all ar o u n d θ of r a di us r > 0 , a n d B (θ, r ) is its cl os ur e. M or e o v er, f or a n y

R ≥ 0 , l et L R b e t h e s u pr e m u m of L (θ, ϕ ) f or a n y disti n ct θ, ϕ ∈ B ( 0, R).

R e m ar k 8 . N ot e, w h e n t h e gr a di e nt is l o c all y H öl d er c o nti n u o us, L R is fi nit e f or a n y R ≥ 0 .

Wit h t his d e fi niti o n, w e c a n n o w r el at e t h e o pti m alit y g a p of θ k + 1 wit h t h at of θ k b y usi n g t h e
f oll o wi n g r es ult a n d pr o v e d i n A p p e n di x B .
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L e m m a 1. S u p p os e Ass u m pti o ns 1 a n d 2 h ol d. T h e n, f or a n y θ, ϕ ∈ R p ,

F (ϕ ) − F l. b. ≤ F (θ ) − F l. b. + ˙F (θ ) (ϕ − θ ) +
L (θ, ϕ )

1 + α
ϕ − θ

1 + α
2 . ( 7)

N o w, if w e si m pl y s et ϕ = θ k + 1 a n d θ = θ k i n L e m m a 1 a n d tr y t o t a k e e x p e ct ati o ns t o m a n-
a g e t h e r a n d o m n ess of t h e st o c h asti c gr a di e nt, w e will r u n i nt o t h e pr o bl e m t h at L (θ k , θk + 1 ) a n d
θ k + 1 − θ k 2 ar e p ot e nti all y d e p e n d e nt, 3 a n d w e c a n n ot c o m p ut e its e x p e ct ati o n. I n pr e vi o us w or k,

t his t e c h ni c al c h all e n g e is w ai v e d a w a y b y usi n g a gl o b al H öl d er c o nst a nt t o u p p er b o u n d L (θ k , θk + 1 ),
w hi c h is u nr e alisti c e v e n f or si m pl e pr o bl e ms (s e e S e cti o n 1 ).

T o a d dr ess t his t e c h ni c al c h all e n g e, w e i n n o v at e t w o n e w str at e gi es f or h a n dli n g t h e d e p e n d e n c e
b et w e e n L (θ k , θk + 1 ) a n d θ k + 1 − θ k 2 . I n b ot h str at e gi es, w e f oll o w t h e s a m e g e n er al a p pr o a c h:

1. We b e gi n b y r estri cti n g o ur a n al ysis t o s p e ci fi c e v e nts, w hi c h will all o w us t o d e c o u pl e
L (θ k , θk + 1 ) a n d θ k + 1 − θ k 2 .

2. Wit h t h es e t w o q u a ntiti es d e c o u pl e d, w e will d e v el o p a r e c urr e n c e r el ati o ns hi p b et w e e n t h e
o pti m alit y g a p at θ k + 1 a n d t h at of θ k .

3. We a p pl y t his r e c urr e n c e r el ati o ns hi p wit h r e fi n e m e nts of st a n d ar d ar g u m e nts or n e w o n es
t o d eri v e t h e d esir e d pr o p ert y a b o ut t h e o bj e cti v e f u n cti o n.

4. Fi n all y, w e st at e t h e g e n er alit y of t h e s p e ci fi c e v e nts o n w hi c h w e h a v e st u di e d S G D’s
it er at es.

T h us, it f oll o ws, w e will d e fi n e t w o disti n ct s eri es of e v e nts f or t h e t w o str at e gi es. T h e first str at e g y,
w hi c h w e r ef er t o as t h e ps e u d o- gl o b al str at e g y, will pr o vi d e t h e gl o b al c o n v er g e n c e a n al ysis. T h e
s e c o n d str at e g y, w hi c h w e r ef er t o as t h e l o c al str at e g y, will pr o vi d e t h e st a bilit y r es ult.

4. 1  Ps e u d o- Gl o b al St r at e g y a n d Gl o b al C o n v e r g e n c e A n al ysis

F or t h e first str at e g y, w hi c h s u p pli es t h e gl o b al c o n v er g e n c e r es ult, w e st u d y S G D o n t h e e v e nts

B k (R ) : =

k

j = 0

θ j 2 ≤ R , k + 1 ∈ N , ( 8)

f or e v er y R ≥ 0 . We n o w tr y t o c o ntr ol t h e o pti m alit y g a p at it er ati o n k + 1 wit h t h at of it er ati o n k ,
w hi c h will r es ult i n t w o c as es.

1. ( C as e 1) B k + 1 (R ) h ol ds. We c a n b o u n d L (θ k , θk + 1 ) b y L R , a n d G (θ ) is als o b o u n d e d i n
t h e b all of r a di us R a b o ut t h e ori gi n ( w hi c h f oll o ws fr o m G b ei n g u p p er s e mi- c o nti n u o us
i n Ass u m pti o n 4 ). As a r es ult, w e c o ul d t h e n pr o c e e d wit h t h e a n al ysis i n a m a n n er t h at is
si mil ar t o h a vi n g a gl o b al H öl d er c o nst a nt.

2. ( C as e 2) θ k + 1 2 > R a n d B k (R ) h ol ds. I n t his c as e, c o ntr olli n g L (θ k , θk + 1 ) is v er y
c h all e n gi n g a n d, t o o ur k n o wl e d g e, w as n ot s ol v e d b ef or e o ur w or k.

O ur a p pr o a c h f or c o ntr olli n g t h e o pti m alit y g a p i n b ot h c as es is s u p pli e d i n t h e n e xt l e m m a, w h os e
pr o of is i n A p p e n di x C .

L e m m a 2. L et { M k } s atisf y Pr o p ert y 1 . S u p p os e Ass u m pti o ns 1 t o 4 h ol d. L et { θ k } s atisf y ( 5).
T h e n, ∀ R ≥ 0 ,

E [ [F (θ k + 1 ) − F l. b. ]1 [B k + 1 (R )]| Fk ] ≤ [F (θ k ) − F l. b. ]1 [B k (R )]

− λ mi n (M k ) ˙F (θ k )
2

2
1 [B k (R )] +

L R + 1 + ∂ F R

1 + α
λ m a x (M k ) 1 + α G R ,

( 9)

w h er e G R = s u p
θ ∈ B ( 0 , R)

G (θ ) < ∞ wit h G (θ ); a n d ∂ F R = s u p
θ ∈ B ( 0 , R)

˙F (θ ) 2 ( 1 + α ) < ∞ .

Wit h t his r e c ursi o n a n d st a n d ar d m arti n g al e r es ults [ R o b bi ns a n d Si e g m u n d , 1 9 7 1 , N e v e u a n d S p e e d ,
1 9 7 5 , E x er cis e II. 4], t h e li mit of [F (θ k ) − F l. b. ]1 [B k (R )] e xists wit h pr o b a bilit y o n e a n d is fi nit e f or

3 W hil e it is p ossi bl e t h at t h es e t w o t er ms ar e i n d e p e n d e nt, w e w o ul d r e q uir e a l ot m or e i nf or m ati o n t o
d et er mi n e t his a n d it w o ul d li k el y b e o n a n it er at e- b y-it er at e b asis f or t h e g e n er al cl ass of pr o bl e ms c o nsi d er e d
i n t his w or k. T h us, i n t his g e n er al s etti n g, w e c a n n ot ass u m e i n d e p e n d e n c e a n d n e e d t o d ef a ult t o tr e ati n g t h es e
t er ms as d e p e n d e nt.
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e v er y R ≥ 0 . As a r es ult, t h e li mit of F (θ k ) − F l. b. e xists a n d is fi nit e o n t h e e v e nt { s u p k θ k 2 < ∞ }
(s e e C or oll ar y 1 ).

We c a n als o us e L e m m a 2 t o m a k e a st at e m e nt a b o ut t h e gr a di e nt. S p e ci fi c all y, w e c a n s h o w t h at
t h e li mit i n fi m u m of E [ ˙F (θ k ) 2

2 1 [B k (R )]] m ust b e z er o, w hi c h is n o w a st a n d ar d ar g u m e nt t h at
mi mi cs Z o ut e n dij k’s t h e or e m [ N o c e d al a n d Wri g ht , 2 0 0 6 , T h e or e m 3. 2]. B y M ar k o v’s i n e q u alit y,
t his r es ult i m pli es t h at ˙F (θ k ) 2 1 [B k (R )] g ets ar bitr aril y cl os e t o 0 i n fi nit el y oft e n (s e e L e m m a 9 ).
T o s h o w c o n v er g e n c e t o z er o, h o w e v er, is n ot st a n d ar d. S e v er al str at e gi es h a v e b e e n d e v el o p e d,
n a m el y t h os e of Li a n d Or a b o n a [2 0 1 9 ], L ei et al. [2 0 1 9 ], M erti k o p o ul os et al. [2 0 2 0 ], P at el [2 0 2 1 ],
P at el a n d Z h a n g [2 0 2 1 ]. U nf ort u n at el y, t h e a p pr o a c h es of Li a n d Or a b o n a [2 0 1 9 ], L ei et al. [2 0 1 9 ]
r el y i nti m at el y o n t h e e xist e n c e of a gl o b al H öl d er c o nst a nt, w hil e t h at of M erti k o p o ul os et al. [2 0 2 0 ]
r e q uir es e v e n m or e r estri cti v e ass u m pti o ns. F ort u n at el y, t h e a p pr o a c h of P at el [2 0 2 1 ], P at el a n d
Z h a n g [2 0 2 1 ] c a n b e i m pr o v e d a n d g e n er ali z e d t o t h e c urr e nt c o nt e xt (s e e L e m m a 1 0 ). T h us, w e
s h o w t h at li mk → ∞

˙F (θ k ) 2 = 0 o n { s u p k θ k 2 < ∞ } (s e e C or oll ar y 2 ).

O ur fi n al st e p is t o cl arif y t h e r ol e of { s u p k θ k 2 < ∞ } i n t h e as y m pt oti cs of S G D’s it er at es. At
first gl a n c e, t his e v e nt s e e ms t o i m pl y t h at t h e it er at es c o n v er g e t o a p oi nt. H o w e v er, o wi n g t o t h e
g e n er al n at ur e of t h e n ois e, it is als o p ossi bl e, s a y, t h at t h e it er at es a p pr o a c h a li mit c y cl e or os cill at e
b et w e e n p oi nts wit h t h e s a m e n or m. E v e n b e y o n d t his e v e nt, t h e g e n er alit y of t h e n ois e m o d el m a y
all o w f or s u bst a nti al e x c ursi o ns b et w e e n F l. b. a n d i n fi nit y ( c.f., a si m pl e r a n d o m w al k, w hi c h h as a
li mit s u pr e m u m of i n fi nit y a n d a li mit i n fi ni m u m of n e g ati v e i n fi nit y). T h a n kf ull y, w e c a n pr o v e t h at
eit h er t h e it er at es c o n v er g e t o a p oi nt or t h e y m ust di v er g e — a r es ult t h at w e r ef er t o as t h e C a pt ur e
T h e or e m (s e e A p p e n di x C ).

T h e o r e m 1 ( C a pt ur e T h e or e m). L et { θ k } b e d e fi n e d as i n ( 5), a n d l et { M k } s atisf y Pr o p erti es 1
a n d 2 . If Ass u m pti o n 4 h ol ds, t h e n eit h er { li mk → ∞ θ k e xi st s } or { li m i nfk → ∞ θ k 2 = ∞ } m ust
o c c ur.

B y p utti n g t o g et h er t h e a b o v e ar g u m e nts a n d r es ults, w e c a n c o n cl u d e t h at eit h er S G D’s it er at es
di v er g e or S G D’s it er at es c o n v er g e t o a st ati o n ar y p oi nt.

T h e o r e m 2 ( Gl o b al C o n v er g e n c e). L et θ 0 b e ar bitr ar y, a n d l et { θ k : k ∈ N } b e d e fi n e d a c c or di n g
t o ( 5) wit h { M k : k + 1 } s atisf yi n g Pr o p erti es 1 t o 3 . S u p p os e Ass u m pti o ns 1 t o 4 h ol d. L et
A 1 = { li m i nfk → ∞ θ k 2 = ∞ } a n d A 2 = { li mk → ∞ θ k e xi st s } . T h e n, t h e f oll o wi n g st at e m e nts
h ol d.

1. P [A 1 ] + P [A 2 ] = 1.
2. O n A 2 , t h er e e xists a fi nit e r a n d o m v ari a bl e, F li m, s u c h t h at li mk → ∞ F (θ k ) = F li m a n d

li mk → ∞
˙F (θ k ) = 0 wit h pr o b a bilit y o n e.

Pr o of. B y T h e or e m 1 , w e h a v e t h at P [A 1 ] + P [A 2 ] = 1. T h e n, o n A 2 , C or oll ari es 1 a n d 2 i m pl y t h at

F (θ k ) → F li m, w hi c h is fi nit e, a n d ˙F (θ k ) → 0 .

We p a us e t o str ess t o a f a ct a b o ut T h e or e m 2 : it is n o n o b vi o us. T o b e s p e ci fi c, u n d er s u c h g e n er al
n o n c o n v e xit y a n d n ois e, w e s h o ul d a nti ci p at e a n y n u m b er of as y m pt oti c b e h a vi ors f or t h e it er at es:
c o n v er g e n c e t o a st ati o n ar y p oi nt, c o n v er g e n c e t o a n o nst ati o n ar y p oi nt, b ei n g tr a p p e d i n a c y cl e,
c o n v er g e n c e t o a li mit c y cl e, a n d di v er g e n c e t o i n fi nit y. H o w e v er a n d v er y s ur prisi n gl y, w e ar e
a bl e t o s h o w t h at o nl y t w o p ossi bl e o ut c o m es c a n o c c ur: c o n v er g e n c e t o a st ati o n ar y p oi nt or
di v er g e n c e. I n d e e d, i n pr e vi o us r es ults [ e. g., M erti k o p o ul os et al. , 2 0 2 0 , P at el , 2 0 2 1 ], o nl y l ess
s p e ci fi c d et er mi n ati o ns c o ul d b e m a d e u n d er m u c h m or e li mit e d s etti n gs.

4. 2  L o c al St r at e g y a n d St a bilit y A n al ysis

W hil e T h e or e m 2 pr o vi d es a c o m pl et e gl o b al c o n v er g e n c e r es ult, it all o ws f or t h e p ossi bilit y of
di v er gi n g it er at es. T h e p ossi bilit y of di v er g e nt it er at es r ais es t h e s p e ctr e of w h et h er t h e o bj e cti v e
f u n cti o n c a n als o di v er g e al o n g t his s e q u e n c e. T h at is, t h er e is a p ossi bilit y t h at S G D m a y b e u nst a bl e,
w hi c h w o ul d b e hi g hl y u n e x p e ct e d a n d u n d esir a bl e, es p e ci all y w h e n t h e o bj e cti v e f u n cti o n is c o er ci v e
( e. g., h as a n 1 p e n alt y o n t h e p ar a m et ers). T o f or m ali z e t his c o n c e pt, w e d e fi n e a r el e v a nt n oti o n of
st a bilit y.
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D e fi niti o n 2. St o c h asti c Gr a di e nt D es c e nt is st a bl e if

P li m s u p
k → ∞

F (θ k ) = ∞ = 0 , ( 1 0)

w h er e { θ k } s atisf y ( 5).

We n o w st at e t h e st o p pi n g ti m es t h at w e will us e t o d e c o u pl e t h e r el ati o ns hi p b et w e e n L (θ k , θk + 1 )
a n d θ k + 1 − θ k 2 . F or e v er y j + 1 ∈ N , d e fi n e

τ j = mi n





k :

F (θ k + 1 ) − F l. b. > F (θ k ) − F l. b. + ˙F (θ k ) (θ k + 1 − θ k )

+
L (θ k )

1 + α
θ k + 1 − θ k

1 + α
2 , a n d k ≥ j





. ( 1 1)

N o w, w e will us e ( 1 1) t o est a blis h t h e st a bilit y of t h e o bj e cti v e f u n cti o n. J ust as w e di d wit h B k (R ),
w e will d eri v e a r e c ursi o n o n t h e o pti m alit y g a p o v er t h e e v e nts { { τ j > k } : k + 1 ∈ N } . Of c o urs e,
j ust as b ef or e, t h e m ai n c h all e n g e i n d eri vi n g a r e c ursi v e f or m ul a is t o a d dr ess { τ j = k } . O ur s ol uti o n
is s u p pli e d i n t h e f oll o wi n g l e m m a, w h os e pr o of is i n A p p e n di x D .

L e m m a 3. L et { M k } s atisf y Pr o p ert y 1 . S u p p os e Ass u m pti o ns 1 t o 4 h ol d. L et { θ k } s atisf y ( 5).
T h e n, f or a n y j + 1 ∈ N a n d k > j ,

E [ (F (θ k + 1 ) − F l. b. ) 1 [τ j > k ]| Fk ] ≤ F (θ k ) − F l. b. − ˙F (θ k ) M k
˙F (θ k ) 1 [τ j > k − 1]

+
λ m a x (M k ) 1 + α

1 + α





 L (θ k )G (θ k ) + α






˙F (θ k )
1 + α

2

L (θ k )






1 / α




 1 [τ j > k − 1] .

( 1 2)

Fr o m L e m m a 3 , t h er e is a cl e ar m oti v ati o n f or Ass u m pti o n 5 . I n d e e d, if w e a p pl y Ass u m pti o n 5 ,
L e m m a 3 pr o d u c es t h e f oll o wi n g si m pl e r e c ursi v e r el ati o ns hi p.

L e m m a 4. If Ass u m pti o ns 1 t o 5 , a n d Pr o p erti es 1 a n d 4 h ol d, a n d { θ k } s atisf y ( 5), t h e n t h er e e xists
a K ∈ N s u c h t h at f or a n y j + 1 ∈ N a n d a n y k ≥ mi n { K, j + 1 } ,

E [ (F (θ k + 1 ) − F l. b. )1 [τ j > k ]| Fk ]

≤ 1 + λ m a x (M k ) 1 + α C 2

1 + α
(F (θ k ) − F l. b. )1 [τ j > k − 1]

−
1

2
λ mi n (M k ) ˙F (θ k )

2

2
1 [τ j > k − 1] + λ m a x (M k ) 1 + α C 1

1 + α
.

( 1 3)

J ust as i n t h e ps e u d o- gl o b al str at e g y, L e m m a 4 c a n b e c o m bi n e d wit h st a n d ar d m arti n g al e r es ults
[R o b bi ns a n d Si e g m u n d , 1 9 7 1 , N e v e u a n d S p e e d , 1 9 7 5 , E x er cis e II. 4] t o c o n cl u d e t h at t h e li mit of
F (θ k ) e xists a n d is fi nit e o n t h e e v e nt ∪ ∞

j = 0 { τ j = ∞ } (s e e C or oll ar y 3 ). Als o as i n t h e ps e u d o- gl o b al
str at e g y, b y i m pr o vi n g o n t h e ar g u m e nts i n P at el [2 0 2 1 ], P at el a n d Z h a n g [2 0 2 1 ], w e s h o w t h at
li m i nfk

˙F (θ k ) = 0 o n t h e e v e nt ∪ ∞
j = 0 { τ j = ∞ } (s e e L e m m a 1 4 ).

Fi n all y, w e s h o w t h at ∪ ∞
j = 0 { τ j = ∞ } is a pr o b a bilit y o n e e v e nt (s e e T h e or e m 5 ). T his st at e m e nt

s h o ul d n ot c o m e as a s ur pris e o n t h e e v e nt { li mk θ k e xi st s } , b ut is sli g htl y s ur prisi n g t h at it m ust
als o h ol d o n { li mk θ k 2 = ∞ } . B y c o m bi ni n g t h es e r es ults, w e c a n c o n cl u d e as f oll o ws.

T h e o r e m 3 ( St a bilit y). L et θ 0 b e ar bitr ar y, a n d l et { θ k : k ∈ N } b e d e fi n e d a c c or di n g t o ( 5) wit h
{ M k : k + 1 } s atisf yi n g Pr o p erti es 1 t o 4 . S u p p os e Ass u m pti o ns 1 t o 5 h ol d. T h e n,

1. T h er e e xists a fi nit e r a n d o m v ari a bl e, F li m, s u c h t h at li mk → ∞ F (θ k ) = F li m wit h pr o b a bil-
it y o n e;

2. li m i nfk → ∞
˙F (θ k ) = 0 wit h pr o b a bilit y o n e.

Pr o of. Usi n g C or oll ar y 3 , w e c o n cl u d e t h at ∃ F li m t h at is fi nit e s u c h t h at li mk F (θ k ) = F li m o n

∪ ∞
j = 0 { τ j = ∞ } . Usi n g L e m m a 1 4 , w e c o n cl u d e t h at li m i nfk

˙F (θ k ) = 0 o n ∪ ∞
j = 0 { τ j = ∞ } . Fi n all y,

w e a p pl y T h e or e m 5 t o c o n cl u d e t h at P [∪ ∞
j = 0 { τ j = ∞ } ] = 1.
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We would like to demonstrate a simple example of how we would use Theorem 3. Consider applying
SGD to linear regression as specified in Appendix A.1. For this example, it is straightforward to
verify that the assumptions of Theorem 3 are satisfied. Therefore, if we are to apply SGD to linear
regression, we know that with probability one, F (θk)→ Flim which is finite. Since F (θ)→∞ as
θ → ∞, we know that {θk} cannot diverge. Hence, {θk} must remain finite with probability one.
By Theorem 2, {θk} must converge to a stationary point. Since this stationary point is unique in our
specific example of linear regression, we know that SGD must converge to the global minimizer of
the linear regression problem. Note, we can follow this outline to draw similar conclusions in more
complex situations.

5 Conclusion

In this work, we studied the global convergence analysis of Stochastic Gradient Descent with
diminishing step size. We began our discussion by producing three simple problems for which the
common assumptions (i.e., global Hölder continuity, bounded variance) and their generalizations in
the SGD literature are violated. Indeed, to our knowledge, there does not exist theory that covers these
problems. For example, prior to our work, it was unknown what SGD with arbitrary initialization and
diminishing step sizes will do on simple neural network problems, which raised the question of what
SGD is doing on more complicated learning problems.

Motivated by our example problems, we considered a more general set of assumptions (see Assump-
tions 2 and 4). Given the generality of our assumptions, we developed a new analysis technique that
is of interest beyond this work, and we proved that SGD’s iterates either converge to a stationary
point or diverge. Thus, we now know how SGD with arbitrary initialization and diminishing step
sizes will behave on a much larger class of learning problems.

We note that we do not provide rate of convergence results mainly because it is impossible for the
broad class of functions admitted by our assumptions [Wolpert and Macready, 1997]. We stress that
global rates of convergence (e.g., complexity statements) results that exist do not apply to the two
simple neural network problems that we supplied at the beginning of this work.

We also studied what happens when SGD’s iterates diverge. To this end, we required an additional
assumption under which we developed another novel analysis technique and showed that, regardless
of SGD’s iterates’ behavior, the objective function will converge to a finite random variable with
probability one. Unfortunately, we make an assumption that we were not able to interpret, but we
will leave this to future work.
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