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Abstract—Natural disasters has been causing an increasing
amount of economic losses in the past two decades. Natural
disasters, such as hurricanes, winter storms, and wildfires, can
cause severe damages to power systems, significantly impacting
industrial, commercial, and residential activities, leading to not
only economic losses but also inconveniences to people’s day-to-
day life. Improving the resilience of power systems can lead to a
reduced number of power outages during extreme events and is a
critical goal in today’s power system operations. This paper
presents a model for decentralized decision-making in power
systems based on distributed optimization and implemented it on
a modified RTS-96 test system, discusses the convergence of the
problem, and compares the impact of decision-making
mechanisms on power system resilience. Results show that a
decentralized decision-making algorithm can significantly reduce
power outages when part of the system is islanded during severe
transmission contingencies.

Keywords—Contingencies, distributed optimization, islanded
power systems, power system operations, power system resilience.

I.  NOMENCLATURE

Indices

b Bus.

g Generator.

k Iteration number.

l Transmission line.

seg Segments for piece-wise linear cost function.

Sets

oy Transmission lines with their “to” bus connected to
bus b.

oy Transmission lines with their “from” bus connected to
bus b.

Ib Generators connected to bus b.

Variables

o, Voltage angle of bus.
Ofr1 Voltage angle at the “from” bus of line [.
Oto, Voltage angle at the “to” bus of line (.

B Real power generation of generator g.
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Pgseg Real power generation of generator g in segment seg.

pke Flexible load curtailment of bus b.

F, Real power flow through transmission line [

Parameters

67" Minimum voltage angle difference at line [.

07***  Maximum voltage angle difference at line [.

04 Voltage angle at the slack bus at time ¢t.

B Total number of buses.

B, The set of indices for subproblems that include 6,,.

B, The set of indices for the buses that are connected to
tie lines in subproblem e.

B; The total number of buses in subproblem i.

b; Susceptance of transmission line .

G Total number of generators.

G; Total number of generators in area i.

Pt Load at bus b.

F™*  Upper real power flow limit of transmission line .

F™™  Lower real power flow limit of transmission line [.

N Number of piece-wise linear segments for the
generators.

Py"%*  Upper generation limit of generator g.

P™n  Lower generation limit of generator g.

P;*9™ Upper generation limit of generator g in segment
seg.

op The average value of 8, from all the distributed
optimization problems that include 6,,.

g™ Linear cost of generator g in segment seg.

= Flexible load curtailment compensation rate for bus b.
The ADMM step size.

X Penalty value for 6, at iteration k.

£ Optimality gap.

II. INTRODUCTION

Natural disasters have caused significant economic losses
throughout the history, and the power outages caused by natural
disasters is one of the leading causes of economic losses [1]. The
economic losses caused by power outages including the revenue
lost for utility companies, direct or indirect losses from
electricity customers, such as the interruption of industrial and
commercial activities, and inconvenience in the electricity



customer’s daily life [2]. In recent years, natural disasters have
caused significant power outages throughout the U.S. In 2017,
Hurricanes Harvey, Irma, and Maria caused significant damages
to power systems in multiple states, including Texas, Florida,
and Puerto Rico, and led to long-lasting power outages,
especially in Puerto Rico, which lasted for several months [3]-
[6]. In 2018, Hurricanes Florence and Michael made U.S.
landfalls and affected more than 1 million electricity customers
[7], [8]. In 2019, Hurricanes Dorian and Barry caused power
outages to at least half a million electricity customers [9], [10],
and in 2020, Hurricanes Isaias, Laura, Sally caused power
outages to millions of electricity customers in multiple states,
including New York, New Jersey, Connecticut, Louisiana,
Alabama, Georgia, and Florida [11]-[13]. In 2021, a winter
storm hit Texas, in which 4.5 million homes lost power, causing
billions of dollars of losses and the death of 57 people [14].
History has shown the significant impact of power outages on
the society, and, thus, it is critical to improve the resilience of
power systems.

Different natural disasters can cause damages to different
parts of power systems. Hurricanes can cause damages to
transmission and distribution lines and flooding in power plants
[3]-[13]. Winter storms can freeze transmission and distribution
lines, fuel pipes for power plants, or wind turbines [14].
Wildfires can damage power plants, transmission, and
distribution lines. Thus, different measures need to be taken to
cope with different natural disasters [15]. In this study, we
specifically focus on damages caused to transmission lines,
especially severe damages of transmission systems that island
part of the power system. This is because transmission lines can
be damaged by different types of natural disasters and are one of
the most commonly seen components damaged by natural
disasters, and unlike the damage of distribution lines, which
usually causes local power outages, the damage of transmission
systems can cause widespread outages in the system.

There are a number of methods that can be used to improve
power system resilience by addressing transmission system
failures. From a time-scope perspective, the methods can be
divided into three categories [16], [17]. The first category
includes preventive measures taken during the planning process,
which happens years before the system is committed. This
mainly includes system hardening, such as building strong
transmission poles or use underground lines [18]. The second
category is preventive operational decision-making, which
happens from months to minutes before the extreme events. This
includes preparing enough onsite fuel storage at certain power
plants, pre-allocating the maintenance crew to vulnerable
locations, and decide the unit commitment and generation
dispatch during the extreme event [16], [19]-[24]. The third
category of methods are for the restoration after the extreme
events. This mainly includes the dispatch of restoration crew,
the sequence of component restoration, etc. [25]-[30].

The U.S. has an aging transmission system and upgrading
the transmission system is an extremely capital-intensive and

time-consuming process. To reduce power outages during
natural disasters, the second category of methods, preventive
operation, plays an important role. Reference [19] proposes a
method to pre-allocate resources for restoration, which can be
considered as a preventive measure. Reference [16] proposed a
preventive operation method which considers possible
contingency scenarios based on weather forecast. This method
can reduce power outages and over generation without over
committing generation resources, and this method works well
for interconnected systems. However, some natural disasters
cause such severe damage that part of the power system is
islanded from the rest. In such cases, damaged were not only the
transmission lines but also the communication equipment. Due
to this reason, control signals cannot be sent from the control
center to the islanded area, and the control center cannot
remotely monitor the conditions of the components in the
islanded area, causing difficulties in operating system in
islanded area and resulting in severe power outages. To fill this
gap, this paper proposes a decentralized decision-making
method based on distributed optimization. This method enables
decentralized decision-making in different areas of power
systems. When the areas are interconnected, a consensus will be
achieved by all the participating areas. When one or more areas
are islanded, the islanded area will be able to make decisions on
their own while the remaining interconnected areas make
decisions by achieving a consensus. The method was
implemented on a modified RTS-96 test system, and results
show that the decentralized decision-making method can
significantly reduce power outages compared to a centralized
decision-making method.

The remaining sections of the paper are organized as follows.
Section III presents the distributed optimization model used in
this study. A case study is discussed in Section IV, and
conclusions are drawn in Section V.

III. MATHEMATICAL MODEL

In this paper, we used both the centralized and decentralized
decision-making methods to decide generation dispatch in case
of severe contingencies caused by natural disasters. The two
decision-making models are presented as follows.

A. Centralized Decision-Making

The centralized decision-making model is based on a
DCOPF model [31] and presented by Equations (1)-(10). Using
this model, only one control center is needed for a power system,
and control signals can be sent to different components in the
system that need to be operated. The advantage of this method
is that it is easy to implement, and the disadvantage of this
method is that, when one area in the power system is islanded
due to severe contingencies, the load in this area will be
completely lost because control signals cannot be sent to the area.
The model allows load loss, but the load loss is penalized with a
high cost in the objective function, as Equation (1) shows.
Besides the penalty for the load loss, the generation dispatch cost
is also included in the objective function, and a piece-wise linear



generation cost is adopted. Equation (2) is the nodal power
balance constraint, which allows load loss. Equations (3)-(5) are
the generation constraints considering the piece-wise linear
segments. Equations (6) and (7) are the power flow constraints.
The maximum load loss cannot exceed the maximum load at the
bus, as Equation (8) shows. Since the DCOPF model can only
be applied when the differences between bus voltages angles are
small, Equation (9) sets a limit for the bus voltage angle
differences between the two ends of each transmission line, and
Equation (10) sets Bus 1 as the reference bus.
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B. Decentralized Decision-Making Based on ADMM

The decentralized decision-making algorithm is based on a
distributed DCOPF, which is developed using the alternating
direction method of multipliers (ADMM) [32], [33]. ADMM is
adopted in study because it is suitable for parallelize the power
system optimization problem based on sub-areas of the power
system. The decentralized decision-making algorithm allows us
to divide the power system into multiple areas and make
generation dispatch decisions in a decentralized manner based
on areas. Using this algorithm, each area needs to have a control
center, and the control centers communicate with each other to
reach a consensus on generation dispatch decisions. In this way,
globally optimal generation dispatch decisions can be made.
When one of the areas is islanded, the area will operate
independently and make locally optimal decisions for the area,
while the interconnected areas could still communicate and
make globally optimal decisions. When one area of the system
is islanded, the area could still make sure at least some of the
load in this area being met, thus reducing load loss caused by
such islanding events. To implement this algorithm, each area
needs to implement a distributed optimization problem, or
subproblem. For these subproblems, only the bus voltage angles
at the two ends of the tie lines between different areas need to
reach a consensus. Other variables in the optimization problems
are internal to each area and does not need to be agreed on by
other areas. The objective function of the distributed
optimization problem is shown in Equation (11). It minimizes
the total generation dispatch cost in the area, penalizes load loss
in the area, and includes two ADMM terms that facilitates the

consensus-reaching process of certain variables. Constraints (2)-
(10) will be included in each distributed optimization problem,
however, the constraints in each problem will only consider the
generators, transmission lines, and buses in each area. The
global optimal solution will be achieved in an iterative manner.
In each iteration, all the subproblems need to be solved, and then
the bus voltage angles at the ends of tie lines will be exchanged
between different subproblems. An average of each variable that
needs to be agreed on is calculated by Equation (12), and then
the Lagrangian multipliers will be updated using Equation (13).
A flow chart for the solution process is shown in Fig. 1.
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Fig. 1. Decentraliced Consensus-ADMM Algorithm Flowchart

IV. CASE STUDIES AND RESULTS DISCUSSION

A. Simulation Setup

A modified version of the RTS-96 test system [34] was used
to implement the case studies of the proposed simulations, and
each case study is implemented in single-period manner. For



case study purposes, the mentioned 24-bus system was divided
into three sub-regions or areas as presented in TABLE 1. In this
case study, the areas were divided in a way that minimizes the
number of tie-lines between regions and consequently reduce
the computational time for the decentralized model. The area
division and node clustering can be optimally performed with
assistance of graph theory clustering methods [35].

This case study was implemented assuming Area III is
islanded from the other areas due to the outage of all the tie lines
that connects Area III to other areas. The resilience study
evaluates load-loss results under this condition when the system
was operating in centralized and decentralized cases. In the
centralized case, the control center was assumed to be in Area I,
and in the decentralized case, there was a sub-control center in
each area.

TABLE L RTS-96 CASE STUDY AREAS
Available Generation
Buses Capacity (MW) Load (MW)
Area | 1-7,24 684 791
Area II 8§-13 591 1286
Area II1 14-23 2130 773

B. Centralized Decision-Making Results

The centralized decision making was implemented using the
model shown in Section III-A, when the control center was
located in Area I and Area III was islanded. When Area III was
islanded, no power lines or communication wires were
connecting Area I and Area II with Area III, and thus neither
power nor control signals could be delivered to Area III. Results
from the centralized decision-making algorithm are shown in
TABLEII.

TABLE IL LOAD LOSS IN CENTRALIZED DECISION-MAKING
Load (MW) | Generation (MW) Load Loss (MW)
Areal & 11 2,077 1,275 802
Area III 773 0 773
Total
Load Loss ) 1,575

As the results show, with no control signal from the
centralized control center and all the tie lines out, Area III could
neither generate power for itself nor receiving power from other
areas, and this resulted in a significant amount of load loss,
which totals 1,575 MW. Islanding Area III can be considered
as the worst islanding contingency scenario, due to the inability
of Area I and Area II to fulfill its demand. Areas I and II had a
total load loss of 802 MW because of a lack of generation
capacity. The importance of implementing distributed control
can be noted in this scenario, where although enough generation
was present to meet the local area demand in Area III, the
control signals could not be sent properly due to

communication failures, resulting in a complete load loss in
Area III.

C. Decentralized Decision-Making Results

To overcome the problems caused by a single centralized
control center, the distributed algorithm shown in section III-B
was implemented to simulate distributed control centers in each
area. This case allowed Area I and Area II to exchange power
and bus voltage angle information, with the advantage that the
islanded Area III could make its own generation dispatch
decisions. Area I and II shared bus voltage angle information to
reach a consensus, while Area III operates independently. The
results are provided in TABLE III.

TABLE III. LoAD LOSS IN DECENTRALIZED DECISION-MAKING
Load (MW) | Generation (MW) Load Loss (MW)
Area Il & 11 2,077 1,275 802
Area 111 773 773 0
Total
Load Loss ) 802

Results from Area I and Area II remain consistent with the
centralized algorithm, however, since Area III could perform
decision-making independently in this case, load loss in Area
IIT is eliminated since Area III has enough generation capacity.
Since Area III is able to meet its total load demand through
independent decision-making, the total load loss reduced by
51% compared to case with centralized decision-making.

D. Computational Efficiency

Both centralized and decentralized algorithms were
implemented using Python and Gurobipy on a Computer with
an Apple M1 Pro CPU and 16 GB of RAM. The computational
time for the centralized algorithm was 0.28 seconds, compared
to the decentralized algorithm taking 41.13 seconds to converge.
Although the decentralized version took considerably longer
than the centralized version, both solutions could be found
within an appropriate operational time frame.

V. CONCLUSIONS

This paper presents an ADMM-based distributed DCOPF
model which allows load loss during emergent conditions and
studies the importance of decentralized algorithms and the
positive effects of decentralized control when severe
contingencies island part of the power system. The ADMM-
based distributed DCOPF algorithm was implemented on a
modified RTS-96 test system when severe contingencies
islands one of the three areas. Results show that the
decentralized decision-making method can significantly reduce
the total load loss under extreme events in which
communication and power interconnections are interrupted. In
the future work, the decentralized decision-making algorithm
will be tuned to speed up its convergence and apply to large-
scale power systems with complex operating conditions and
different contingency scenarios.



(1

(2]

(3]
[4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[13]

[16]

[17]

REFERENCES

“2021 U.S. billion-dollar weather and climate disasters in historical
context,” NOAA [Online]. Available: https://www.climate.gov/news-
features/blogs/beyond-data/202 1 -us-billion-dollar-weather-and-climate-
disasters-historical

S. Mao, C. Wang, S. Yu, H. Gen, J. Yu, H. Hou, “Review on Economic
Loss Assessment of Power Outages,” Procedia Computer Science, vol.
130, pp. 1158-1163, 2018.

“Hurricane Harvey Event Analysis Report,” North American Electric
Reliability Corporation, Aug. 2018.

“Hurricane Irma Event Analysis Report,” North American Electric
Reliability Corporation, Aug. 2018.

U.S. Department of Energy, Infrastructure Security and Energy
Restoration, Hurricanes Maria, Irma, and Harvey September 22
Afternoon Event Summary (Report 43).

“Energy Resilience Solutions for the Puerto Rico Grid,” The U.S.
Department of Energy, June 2018 [Online]. Available:
https://www.energy.gov/sites/prod/files/2018/06/f53/DOE%20Report E
nergy%20Resilience%20Solutions%20for%20the%20PR%20Grid%20F
inal%20June%202018.pdf

“Hurricane Florence power outages top 890,000, could hit 3 million as
storm  unleashes fury,” USA Today [Online]. Available:
https://www.usatoday.com/story/news/nation/2018/09/14/hurricane-
florence-power-outages/1301060002/

“Hurricane Michael caused 1.7 million electricity outages in the Southeast
United States,” The U.S. Energy Information Administration (EIA)
[Online]. Available:
https://www.eia.gov/todayinenergy/detail.php?id=37332

“Hurricane Barry Situation Reports,” The U.S. Department of Energy
(DOE) [Online]. Available: https://www.energy.gov/ceser/hurricane-
barry-situation-reports-0

“Hurricane Dorian: More than 230000 without power in SC,” Charlotte
Observer [Online]. Available:
https://www.charlotteobserver.com/article234733197

“Power outages after Tropical Storm Isaias were a warning to utilities,”
The Verge [Online]. Available:
https://www.theverge.com/21361751/tropical-storm-isaias-power-
outages-tristate-utilities-energy-grid

“Power Outage Repairs in Louisiana After Hurricane Laura Cost Up to
$1.4 Billion,” The Weather Channel [Onine]. Available:
https://weather.com/news/news/2020-09-24-hurricane-laura-power-
outages-billion-dollars-entergy

“Hurricane Sally power outages top 540,000 in Alabama, Florida and
Georgia,” Fox Business [Online]. Available:
https://www.foxbusiness.com/energy/hurricane-sally-power-outage-
alabama-florida-georgia-storm-flooding-weather

Carey W. King et. al., “The Timeline and Events of the February 2021
Texas Electric Grid Blackouts,” The University of Texas at Austin Energy
Institute,  Austin, TX, July 2021 [Online].  Available:
https://energy.utexas.edu/ercot-blackout-2021

M. Nazemi and P. Dehghanian, "Powering Through Wildfires: An
Integrated Solution for Enhanced Safety and Resilience in Power Grids,"
IEEE Transactions on Industry Applications, vol. 58, no. 3, pp. 4192-
4202, May-June 2022.

Y. Sang, J. Xue, M. Sahraei-Ardakani and G. Ou, "An Integrated
Preventive Operation Framework for Power Systems During Hurricanes,"
IEEE Systems Journal, vol. 14, no. 3, pp. 3245-3255, Sept. 2020.

M. Mahzarnia, M. P. Moghaddam, P. T. Baboli and P. Siano, "A Review
of the Measures to Enhance Power Systems Resilience," IEEE Systems
Journal, vol. 14, no. 3, pp. 4059-4070, Sept. 2020.

(18]

[19]

[20]

[21]

[22]

(23]

(24]

(23]

[26]

[27]

[28]

[29]

(30]

(31

[32]

[33]

[34]

[33]

A. Arab, E. Tekin, A. Khodaei, S. K. Khator, and Z. Han, “System
Hardening and Condition-Based Maintenance for Electric Power
Infrastructure Under Hurricane Effects,” IEEE Trans. Reliab., vol. 65, no.
3, pp. 1457-1470, Sep. 2016.

E. Byon, L. Ntaimo, and Y. Ding, “Optimal Maintenance Strategies for
Wind Turbine Systems Under Stochastic Weather Conditions,” IEEE
Trans. Reliab., vol. 59, no. 2, pp. 393—404, Jun. 2010.

C. M. Rocco, J. E. Ramirez-Marquez, D. E. Salazar, and C. Yajure,
“Assessing the Vulnerability of a Power System Through a Multiple
Objective Contingency Screening Approach,” IEEE Trans. Reliab., vol.
60, no. 2, pp. 394403, Jun. 2011.

C. Wang, Y. Hou, F. Qiu, S. Lei, and K. Liu, “Resilience Enhancement
With Sequentially Proactive Operation Strategies,” IEEE Trans. Power
Syst., vol. 32, no. 4, pp. 2847-2857, 2017.

N. Yodo, P. Wang, and Z. Zhou, “Predictive Resilience Analysis of
Complex Systems Using Dynamic Bayesian Networks,” IEEE Trans.
Reliab., vol. 66, no. 3, pp. 761-770, Sep. 2017.

M. Sahraei-Ardakani and G. Ou, “Day-Ahead Preventive Scheduling of
Power Systems During Natuaral Hazards via Stochastic Optimization,” in
Proc. IEEE PES General Meeting, Chicago, IL, 2017, pp. 1-5.

Y. Sang, M. Sahraei-Ardakani, J. Xue, and G. Ou, “Effective Scenario
Selection for Preventive Stochastic Unit Commitment during
Hurricanes,” in Proc. 2018 IEEE International Conference on
Probabilistic Methods Applied to Power Systems (PMAPS), 2018, pp. 1—
6.

A. Arab, A. Khodaei, Z. Han, and S. K. Khator, “Proactive recovery of
electric power assets for resiliency enhancement,” /EEE Access, vol. 3,
pp. 99-109, 2015.

A. Arab, A. Khodaei, S. K. Khator, K. Ding, V. A. Emesih, and Z. Han,
“Stochastic pre-hurricane restoration planning for electric power systems
infrastructure,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 1046-1054,
2015.

P. Van Hentenryck and C. Coffrin, “Transmission system repair and
restoration,” Math. Program., vol. 151, no. 1, pp. 347-373, 2015.

C. Coffrin and P. Van Hentenryck, “Transmission system restoration with
co-optimization of repairs, load pickups, and generation dispatch,” Int. J.
Electr. Power Energy Syst., vol. 72, pp. 144-154,2015.

A. Golshani, W. Sun, Q. Zhou, Q. P. Zheng, and J. Tong, “Two-Stage
Adaptive Restoration Decision Support System for a Self-Healing Power
Grid,” IEEE Trans. Ind. Inform., vol. 13, no. 6, pp. 2802-2812, Dec.
2017.

Y. Fang, N. Pedroni, and E. Zio, “Resilience-Based Component
Importance Measures for Critical Infrastructure Network Systems,” I[EEE
Trans. Reliab., vol. 65, no. 2, pp. 502-512, Jun. 2016.

B. Stott, J. Jardim and O. Alsac, "DC Power Flow Revisited," IEEE
Transactions on Power Systems, vol. 24, no. 3, pp. 1290-1300, Aug. 2009.

M. Javadi, A. E. Nezhad, M. Gough, M. Lotfi and J. P. S. Cataldo,
"Implementation of Consensus-ADMM Approach for Fast DC-OPF
Studies," in Proc. 2019 International Conference on Smart Energy
Systems and Technologies (SEST), 2019, pp. 1-5.

D. Biagioni, P. Graf, X. Zhang, A. S. Zamzam, K. Baker and J. King,
"Learning-Accelerated ADMM for Distributed DC Optimal Power
Flow," IEEE Control Systems Letters, vol. 6, pp. 1-6, 2022.

Y. Sang, M. Sahraei-Ardakani and M. Parvania, "Stochastic Transmission
Impedance Control for Enhanced Wind Energy Integration," [EEE
Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1108-1117, July
2018.

I. Gammoudi, M.A. Mahjoub, F. Guerdelli, “Unsupervised Image
Segmentation based Graph Clustering Methods,” Computacion y
Sistemas, vol. 24, no. 3, pp. 969-987, Sep. 2020.



