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Abstract—Natural disasters has been causing an increasing 

amount of economic losses in the past two decades. Natural 

disasters, such as hurricanes, winter storms, and wildfires, can 

cause severe damages to power systems, significantly impacting 

industrial, commercial, and residential activities, leading to not 

only economic losses but also inconveniences to people’s day-to-

day life. Improving the resilience of power systems can lead to a 

reduced number of power outages during extreme events and is a 

critical goal in today’s power system operations. This paper 

presents a model for decentralized decision-making in power 

systems based on distributed optimization and implemented it on 

a modified RTS-96 test system, discusses the convergence of the 

problem, and compares the impact of decision-making 

mechanisms on power system resilience. Results show that a 

decentralized decision-making algorithm can significantly reduce 

power outages when part of the system is islanded during severe 

transmission contingencies. 

Keywords—Contingencies, distributed optimization, islanded 

power systems, power system operations, power system resilience.  

I. NOMENCLATURE 

Indices  Bus.  Generator.  Iteration number.  Transmission line.  Segments for piece-wise linear cost function. 

 

Sets  Transmission lines with their “to” bus connected to 

bus .  Transmission lines with their “from” bus connected to 

bus .  Generators connected to bus . 

 

Variables   Voltage angle of bus. 

, Voltage angle at the “from” bus of line . 
, Voltage angle at the “to” bus of line . 
 Real power generation of generator . 


 Real power generation of generator  in segment . 

  Flexible load curtailment of bus .  Real power flow through transmission line  
 

Parameters 

 Minimum voltage angle difference at line .  Maximum voltage angle difference at line .  Voltage angle at the slack bus at time .  Total number of buses.    The set of indices for subproblems that include .    The set of indices for the buses that are connected to 

tie lines in subproblem .    The total number of buses in subproblem .  Susceptance of transmission line .  Total number of generators.  Total number of generators in area . 
  Load at bus .   Upper real power flow limit of transmission line . 
 Lower real power flow limit of transmission line .  Number of piece-wise linear segments for the 

generators.  Upper generation limit of generator . 

 Lower generation limit of generator . 

,
 Upper generation limit of generator   in segment 

 .   The average value of   from all the distributed 

optimization problems that include . 


 Linear cost of generator  in segment . 

 Flexible load curtailment compensation rate for bus .  The ADMM step size. 

  Penalty value for   at iteration .  Optimality gap. 

II. INTRODUCTION 

Natural disasters have caused significant economic losses 

throughout the history, and the power outages caused by natural 

disasters is one of the leading causes of economic losses [1]. The 

economic losses caused by power outages including the revenue 

lost for utility companies, direct or indirect losses from 

electricity customers, such as the interruption of industrial and 

commercial activities, and inconvenience in the electricity 



customer’s daily life [2]. In recent years, natural disasters have 

caused significant power outages throughout the U.S. In 2017, 

Hurricanes Harvey, Irma, and Maria caused significant damages 

to power systems in multiple states, including Texas, Florida, 

and Puerto Rico, and led to long-lasting power outages, 

especially in Puerto Rico, which lasted for several months [3]-

[6]. In 2018, Hurricanes Florence and Michael made U.S. 

landfalls and affected more than 1 million electricity customers 

[7], [8]. In 2019, Hurricanes Dorian and Barry caused power 

outages to at least half a million electricity customers [9], [10], 

and in 2020, Hurricanes Isaias, Laura, Sally caused power 

outages to millions of electricity customers in multiple states, 

including New York, New Jersey, Connecticut, Louisiana, 

Alabama, Georgia, and Florida [11]-[13]. In 2021, a winter 

storm hit Texas, in which 4.5 million homes lost power, causing 

billions of dollars of losses and the death of 57 people [14]. 

History has shown the significant impact of power outages on 

the society, and, thus, it is critical to improve the resilience of 

power systems. 

Different natural disasters can cause damages to different 

parts of power systems. Hurricanes can cause damages to 

transmission and distribution lines and flooding in power plants 

[3]-[13]. Winter storms can freeze transmission and distribution 

lines, fuel pipes for power plants, or wind turbines [14]. 

Wildfires can damage power plants, transmission, and 

distribution lines. Thus, different measures need to be taken to 

cope with different natural disasters [15]. In this study, we 

specifically focus on damages caused to transmission lines, 

especially severe damages of transmission systems that island 

part of the power system. This is because transmission lines can 

be damaged by different types of natural disasters and are one of 

the most commonly seen components damaged by natural 

disasters, and unlike the damage of distribution lines, which 

usually causes local power outages, the damage of transmission 

systems can cause widespread outages in the system.  

There are a number of methods that can be used to improve 

power system resilience by addressing transmission system 

failures. From a time-scope perspective, the methods can be 

divided into three categories [16], [17]. The first category 

includes preventive measures taken during the planning process, 

which happens years before the system is committed. This 

mainly includes system hardening, such as building strong 

transmission poles or use underground lines [18]. The second 

category is preventive operational decision-making, which 

happens from months to minutes before the extreme events. This 

includes preparing enough onsite fuel storage at certain power 

plants, pre-allocating the maintenance crew to vulnerable 

locations, and decide the unit commitment and generation 

dispatch during the extreme event [16], [19]-[24]. The third 

category of methods are for the restoration after the extreme 

events. This mainly includes the dispatch of restoration crew, 

the sequence of component restoration, etc. [25]-[30].  

The U.S. has an aging transmission system and upgrading 

the transmission system is an extremely capital-intensive and 

time-consuming process. To reduce power outages during 

natural disasters, the second category of methods, preventive 

operation, plays an important role. Reference [19] proposes a 

method to pre-allocate resources for restoration, which can be 

considered as a preventive measure. Reference [16] proposed a 

preventive operation method which considers possible 

contingency scenarios based on weather forecast. This method 

can reduce power outages and over generation without over 

committing generation resources, and this method works well 

for interconnected systems. However, some natural disasters 

cause such severe damage that part of the power system is 

islanded from the rest. In such cases, damaged were not only the 

transmission lines but also the communication equipment. Due 

to this reason, control signals cannot be sent from the control 

center to the islanded area, and the control center cannot 

remotely monitor the conditions of the components in the 

islanded area, causing difficulties in operating system in 

islanded area and resulting in severe power outages. To fill this 

gap, this paper proposes a decentralized decision-making 

method based on distributed optimization. This method enables 

decentralized decision-making in different areas of power 

systems. When the areas are interconnected, a consensus will be 

achieved by all the participating areas. When one or more areas 

are islanded, the islanded area will be able to make decisions on 

their own while the remaining interconnected areas make 

decisions by achieving a consensus. The method was 

implemented on a modified RTS-96 test system, and results 

show that the decentralized decision-making method can 

significantly reduce power outages compared to a centralized 

decision-making method. 

The remaining sections of the paper are organized as follows. 

Section III presents the distributed optimization model used in 

this study. A case study is discussed in Section IV, and 

conclusions are drawn in Section V.  

III. MATHEMATICAL MODEL 

In this paper, we used both the centralized and decentralized 

decision-making methods to decide generation dispatch in case 

of severe contingencies caused by natural disasters. The two 

decision-making models are presented as follows. 

A. Centralized Decision-Making 

The centralized decision-making model is based on a 

DCOPF model [31] and presented by Equations (1)-(10). Using 

this model, only one control center is needed for a power system, 

and control signals can be sent to different components in the 

system that need to be operated. The advantage of this method 

is that it is easy to implement, and the disadvantage of this 

method is that, when one area in the power system is islanded 

due to severe contingencies, the load in this area will be 

completely lost because control signals cannot be sent to the area. 

The model allows load loss, but the load loss is penalized with a 

high cost in the objective function, as Equation (1) shows. 

Besides the penalty for the load loss, the generation dispatch cost 

is also included in the objective function, and a piece-wise linear 



generation cost is adopted. Equation (2) is the nodal power 

balance constraint, which allows load loss. Equations (3)-(5) are 

the generation constraints considering the piece-wise linear 

segments. Equations (6) and (7) are the power flow constraints. 

The maximum load loss cannot exceed the maximum load at the 

bus, as Equation (8) shows. Since the DCOPF model can only 

be applied when the differences between bus voltages angles are 

small, Equation (9) sets a limit for the bus voltage angle 

differences between the two ends of each transmission line, and 

Equation (10) sets Bus 1 as the reference bus. 

min    ,



   

   (1) 

 ∈
  ∈

  ∈
     (2) 

,   ,
  (3) 

0  ,   (4) 

0  ,  ,
 (5) 

,  ,   (6) 

     (7) 

0     (8) 

  ,  ,   (9) 

  0 (10) 

B. Decentralized Decision-Making Based on ADMM 

The decentralized decision-making algorithm is based on a 

distributed DCOPF, which is developed using the alternating 

direction method of multipliers (ADMM) [32], [33]. ADMM is 

adopted in study because it is suitable for parallelize the power 

system optimization problem based on sub-areas of the power 

system. The decentralized decision-making algorithm allows us 

to divide the power system into multiple areas and make 

generation dispatch decisions in a decentralized manner based 

on areas. Using this algorithm, each area needs to have a control 

center, and the control centers communicate with each other to 

reach a consensus on generation dispatch decisions. In this way, 

globally optimal generation dispatch decisions can be made. 

When one of the areas is islanded, the area will operate 

independently and make locally optimal decisions for the area, 

while the interconnected areas could still communicate and 

make globally optimal decisions. When one area of the system 

is islanded, the area could still make sure at least some of the 

load in this area being met, thus reducing load loss caused by 

such islanding events. To implement this algorithm, each area 

needs to implement a distributed optimization problem, or 

subproblem. For these subproblems, only the bus voltage angles 

at the two ends of the tie lines between different areas need to 

reach a consensus. Other variables in the optimization problems 

are internal to each area and does not need to be agreed on by 

other areas. The objective function of the distributed 

optimization problem is shown in Equation (11). It minimizes 

the total generation dispatch cost in the area, penalizes load loss 

in the area, and includes two ADMM terms that facilitates the 

consensus-reaching process of certain variables. Constraints (2)-

(10) will be included in each distributed optimization problem, 

however, the constraints in each problem will only consider the 

generators, transmission lines, and buses in each area. The 

global optimal solution will be achieved in an iterative manner. 

In each iteration, all the subproblems need to be solved, and then 

the bus voltage angles at the ends of tie lines will be exchanged 

between different subproblems. An average of each variable that 

needs to be agreed on is calculated by Equation (12), and then 

the Lagrangian multipliers will be updated using Equation (13). 

A flow chart for the solution process is shown in Fig. 1. 

min,     ,,




  


    


  

2 ‖  ‖

   

(11) 

  1
  


  

(12) 

        (13) 

 

Fig. 1. Decentraliced Consensus-ADMM Algorithm Flowchart 

IV. CASE STUDIES AND RESULTS DISCUSSION 

A. Simulation Setup 

A modified version of the RTS-96 test system [34] was used 

to implement the case studies of the proposed simulations, and 

each case study is implemented in single-period manner. For 



case study purposes, the mentioned 24-bus system was divided 

into three sub-regions or areas as presented in TABLE I. In this 

case study, the areas were divided in a way that minimizes the 

number of tie-lines between regions and consequently reduce 

the computational time for the decentralized model. The area 

division and node clustering can be optimally performed with 

assistance of graph theory clustering methods [35].  

This case study was implemented assuming Area III is 

islanded from the other areas due to the outage of all the tie lines 

that connects Area III to other areas. The resilience study 

evaluates load-loss results under this condition when the system 

was operating in centralized and decentralized cases. In the 

centralized case, the control center was assumed to be in Area I, 

and in the decentralized case, there was a sub-control center in 

each area. 

TABLE I.  RTS-96 CASE STUDY AREAS 

 
Buses 

Available Generation 

Capacity (MW) 
Load (MW) 

Area I 1 – 7, 24 684 791 

Area II 8 – 13 591 1286 

Area III 14 – 23 2130 773 

B. Centralized Decision-Making Results 

The centralized decision making was implemented using the 

model shown in Section III-A, when the control center was 

located in Area I and Area III was islanded. When Area III was 

islanded, no power lines or communication wires were 

connecting Area I and Area II with Area III, and thus neither 

power nor control signals could be delivered to Area III. Results 

from the centralized decision-making algorithm are shown in 

TABLE II.   

TABLE II.  LOAD LOSS IN CENTRALIZED DECISION-MAKING  

 Load (MW) Generation (MW) Load Loss (MW) 

Area I & II 2,077 1,275 802 

Area III 773 0 773 

Total 

Load Loss 
 - 1,575 

 

As the results show, with no control signal from the 

centralized control center and all the tie lines out, Area III could 

neither generate power for itself nor receiving power from other 

areas, and this resulted in a significant amount of load loss, 

which totals 1,575 MW. Islanding Area III can be considered 

as the worst islanding contingency scenario, due to the inability 

of Area I and Area II to fulfill its demand. Areas I and II had a 

total load loss of 802 MW because of a lack of generation 

capacity. The importance of implementing distributed control 

can be noted in this scenario, where although enough generation 

was present to meet the local area demand in Area III, the 

control signals could not be sent properly due to 

communication failures, resulting in a complete load loss in 

Area III. 

C. Decentralized Decision-Making Results 

To overcome the problems caused by a single centralized 

control center, the distributed algorithm shown in section III-B 

was implemented to simulate distributed control centers in each 

area. This case allowed Area I and Area II to exchange power 

and bus voltage angle information, with the advantage that the 

islanded Area III could make its own generation dispatch 

decisions. Area I and II shared bus voltage angle information to 

reach a consensus, while Area III operates independently. The 

results are provided in TABLE III.  

TABLE III.  LOAD LOSS IN DECENTRALIZED DECISION-MAKING  

 Load (MW) Generation (MW) Load Loss (MW) 

Area I & II 2,077 1,275 802 

Area III 773 773 0 

Total 

Load Loss 
 - 802 

 

Results from Area I and Area II remain consistent with the 

centralized algorithm, however, since Area III could perform 

decision-making independently in this case, load loss in Area 

III is eliminated since Area III has enough generation capacity. 

Since Area III is able to meet its total load demand through 

independent decision-making, the total load loss reduced by 

51% compared to case with centralized decision-making. 

D. Computational Efficiency 

Both centralized and decentralized algorithms were 

implemented using Python and Gurobipy on a Computer with 

an Apple M1 Pro CPU and 16 GB of RAM. The computational 

time for the centralized algorithm was 0.28 seconds, compared 

to the decentralized algorithm taking 41.13 seconds to converge. 

Although the decentralized version took considerably longer 

than the centralized version, both solutions could be found 

within an appropriate operational time frame. 

V. CONCLUSIONS 

This paper presents an ADMM-based distributed DCOPF 

model which allows load loss during emergent conditions and 

studies the importance of decentralized algorithms and the 

positive effects of decentralized control when severe 

contingencies island part of the power system. The ADMM-

based distributed DCOPF algorithm was implemented on a 

modified RTS-96 test system when severe contingencies 

islands one of the three areas. Results show that the 

decentralized decision-making method can significantly reduce 

the total load loss under extreme events in which 

communication and power interconnections are interrupted. In 

the future work, the decentralized decision-making algorithm 

will be tuned to speed up its convergence and apply to large-

scale power systems with complex operating conditions and 

different contingency scenarios. 
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