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Abstract—Transmission switching is widely used in the electric
power industry for both preventive and corrective purposes.
Optimal transmission switching (OTS) problems are usually
formulated based on optimal power flow (OPF) problems. OTS
problems are originally nonlinear optimization problems with
binary integer variables indicating whether a transmission line is
in or out of service, however, they can be linearized into mixed-
integer linear programs (MILP) through the big-M method. In
such big-M-based MILP problems, the value of M can
significantly affect their computational efficiency. This paper
proposes a method to find the optimal big-M values for OTS
problems and studies the impact of big-M values on the
computational efficiency of OTS problems. The model was
implemented on a modified RTS-96 test system, and the results
show that the proposed model can effectively reduce the
computational time by finding an optimal big-M value which
ensures optimal switching solutions while maintaining numerical
stability.

Index Terms—Big-M method, economic dispatch, mixed-integer
programming, optimal power flow, optimal transmission

switching, stochastic optimization, unit commitment, wind energy.
I. NOMENCLATURE

Indices

b Bus.

g Generator.

k Transmission Line.

s Scenario.

seg Segments for piece-wise linear cost function.

t Time.

Sets

o Transmission lines with their “to” bus connected to
bus b.

oy, Transmission lines with their “from” bus connected to
bus b.

Ib Generators connected to bus b.

Variables

Opes  Voltage angle of bus b at time t in scenario s.

Ofr ks Voltage angle at the “from” bus of line k at time ¢ in
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scenario s.

Voltage angle at the “to” bus of line k at time t in
scenario s.

M, Big-M value at time ¢.

Py, Real power generation of generator g at time ¢t.

Py¢?  Real power generation of generator g at time t in
segment seg.

Pg‘_’t's Wind generation of wind farm at bus b at time ¢t in
scenario s.

P},’!’tg Wind curtailment of wind farm at bus b at time ¢t in
scenario s.

Plff's Flexible load curtailment of bus b at time t in scenario
s.

F.+s  Real power flow through transmission line k at time t
in scenario s.

S Rg,t Spinning down reserve available through generator
g attime t.

SRLg' ¢ Spinning up reserve available through generator g at
time t.

srf_t,s Spinning down reserve deployed by generator g at
time ¢ in scenario s.

srglft,S Spinning up reserve deployed by generator g at time ¢t
in scenario s.

Zy Transmission switching binary status (1: line k is on
at time t; O: line k is off at time t.

Parameters

Ves Probability of scenario s at time t.

6™ Minimum voltage angle difference at line k.

07***  Maximum voltage angle difference at line k.

0,+s  Voltage angle at the slack bus at time ¢ in scenario s.

B Total number of buses.

by, Susceptance of transmission line k.

G Total number of generators.

M0 The maximum value of the big M.

b e Load at bus b at time ¢.
F*%*  Upper real power flow limit of transmission line .



N Number of piece-wise linear segments for the
generators.

Bj***  Upper generation limit of generator g.

Pj"™  Lower generation limit of generator g.

P.ate  Rated output of the wind farm.

Pgseg M Upper generation limit of generator g in segment
seg.

R, Per minute ramp rate for generator g.

S Total number of scenarios.

T Length of investigated time period.

Ugt Generator binary status (1: generator g is on at time t;

0: generator g is off at time t.

us? Shutdown binary indicator (1: generator g shuts
down at time t; 0: generator g does not shut down at
time t).

ugg Startup binary indicator (1: generator g starts up at

time t; 0: generator g does not start up at time t).

zZE Transmission line failure at line k.

Z7**  Maximum lines permitted for transmission switching.

¥ Linear cost of generator g in segment seg.

uM M penalty cost.

rg* No load cost of generator g.

ug Spinning reserve deployment cost of generator g.

ugR Spinning reserve capacity cost of generator g.

[T Shutdown cost of generator g.

#gu Startup cost of generator g.

uve Wind curtailment compensation rate.

ubt¢  Flexible load curtailment compensation rate for bus b.

v Wind speed.

f(v)  The frequency rate of wind speed.

Vei The cut-in speed of the wind turbine.

Veo The cut-out speed of the wind turbine.

Veatea  The rated speed of the wind turbine.

II. INTRODUCTION

The rising environmental awareness has boosted the usage
of renewable energy sources (RESs), which plays a crucial role
in reducing the usage of fossil fuel-based electric power as well
as providing economic benefits to the users. However, RESs
introduces significant uncertainty to power systems, resulting in
power system stability and reliability concerns, and various
techniques are currently being used to improve system
flexibility for increased RES penetration to improve the
reliability and cost efficiency of power systems [1]-[3]. Among
different techniques, appropriately adjusting the network
topology of electric power transmission systems through
optimal transmission switching (OTS) can result in great
benefits such as reduced transmission congestion, improved
voltage profiles, better system security, and reduced operating
costs [4]-[8].

Currently, OTS problems are usually formulated based on
optimal power flow (OPF) problems by modifying the power
flow constraints with the introduction of binary integer

variables that indicate whether the transmission line is in or out
of service. The OTS problem is originally a nonlinear
optimization problem, and the big-M method is usually used to
linearize the problem, making the problem a mixed-integer
linear program (MILP). Although the linearization helps
improve the computational efficiency of the OTS problem, the
MILP is still relatively computation, especially for large-scale,
real-world power systems [9]. Thus, improving the
computational efficiency of the OTS problem is paramount.

In the big-M method, binary variables are used to enable or
disable constrains, leading to big-M constraints in the form of
(1), where x represents a binary variable and M corresponds to a
“big constant” [10]:

ady+M(A—-x)=b €))

The selection of M has a significant impact on the
computational efficiency of MILP problems. A poorly selected
M value can lead to non-optimal solutions or an unnecessarily
long solution time [11], [13]. It is common in literature and
research to advocate selecting a very large number as the value
of M, however, an unnecessarily large value of M can expand
the feasible region of the MILP problem, resulting in an
increased number of iterations required to obtain the optimal
solution [11], [12] and thus negatively affect the computational
efficiency of the problem. Furthermore, an extremely large
value of M can even cause a loss of solver’s precision and
numerical instability [13], [14]. In additional to the previously
mentioned scenarios, a small M value limits the feasible region
space. Consequently, a small M does not guarantee the
convergence to a global optimum and can potentially lead to
infeasible models [13].

Real-world OTS problems are part of the power system
operations model, and the OTS problems have to be solved
within the operational time frame. Thus, computational
efficiency are extremely important for OTS problems. For
large-scale OTS problems, a moderate change in the value of
the big M can result in a considerable difference in the
computational efficiency. Although the big-M-based OTS
model has been widely used [15]-[18], there still lacks a method
to search for the optimal value for the big M-based OTS
problem.

To fill this gap, this paper aims to propose a model to find
the optimal big M values for the big M-based OTS problems.
The contributions of this paper are as follows. First, an
evaluation on the effects of different big M values on the
computational efficiency of OTS problems is presented.
Second, a model to find the optimal big M values is proposed.
The model was implemented on a modified RTS-96 test system
with different contingency scenarios, and results show that the
proposed model can effectively find the optimal big M values
for OTS problems, reducing the solution time of the big M-
based OTS problems while achieving optimality and
maintaining numerical stability.

The remainder of this paper is organized as follows. Section
IIT describes the proposed big M value optimization model for



OTS problems. Model setup, cases descriptions, and results
discussion is presented in Section IV. Finally, Section V
summarizes the main conclusions.

III. THE BiIGM VALUE OPTIMIZATION MODEL

This section presents the proposed big M value optimization
model for OTS problems, and the model is presented in
equations (2)-(26). The model is based on a multi-hour OTS
model, with M being a variable, while allowing different
transmission contingency scenarios to be considered. To better
observe the detrimental consequences of an erroneous big M
selection, load shedding and wind power curtailment are
allowed with a penalty in the model.
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The objective function (2) has the goal of minimizing the
total cost. Equation (2) considers big M as an hourly variable
instead of a constant predetermined value. Furthermore, a minor
penalty cost is added to the big-M variable to avoid
unnecessarily large M values while keeping the generation
dispatch cost the dominant objective. Additionally, (2)
considers the piece-wise linear generation cost, spinning reserve
cost, start-up, shutdown, and no-load cost, as well as the load
curtailment and wind power curtailment penalties. Generation
limits are modeled in (3) and the generation piece-wise linear
segments constraints are described in (4) and (5). Equation (6)
describes the transmission capacity limits considering
transmission contingencies and transmission switching.
Additionally, Equations (7) and (8) represent the DC power
flow constraints considering a big-M formulation and the
maximum permitted transmission line switching is modeled in
(9). Equation (10) describes the nodal power balance constraint
and (11) sets an upper limit for M. The start-up and shutdown
constraints are modeled in Equations (12) and (13), while
Equations (14) and (15) model the minimum up and down time
for the generators. The hourly generation ramp constraint is
modeled in (16), Equations (17) and (18) describe the spinning
up and down reserves correspondingly. The reserve energy
deployment time is described in Equations (19) and (20), while
the energy deployment limits are shown in Equations (21) and
(22). The wind power curtailment and load curtailment
constraints are modeled in Equations (23) and (24),
respectively, and Equations (25) and (26) are the constraints for
the bus voltage angle.



IV. CASE STUDY RESULTS AND DISCUSSION

A. Case Studies and Model Setup

The proposed model was implemented on the RTS-96 test
system with a minor modification; two wind energy farms
located at bus 3 and bus 24, each with a 200-MW rated power
similar to the model in [19]. Two different conditions were used
to evaluate the effects of different big M values in the OTS
model: (1) One wind power output scenario was considered,
and (2) 25 wind power output scenarios were considered. Under
each condition, two sub-conditions are considered: (a) No
transmission contingency exists in the system; (b) Three highly
utilized transmission lines fail in the system. Furthermore,
under each sub-condition, three cases were carried out, allowing
a maximum of 1, 2, and 3 transmission lines to be switched out,
respectively. In total, 12 test cases were carried out. A small
penalty cost of $1E-7/unit was added to the M variable in the
objective function. Additionally, the load curtailment and wind
power curtailment penalties were set at $10,000/MW and
$30/MW, respectively. The model proposed in Section III was
implemented using a two-step approach. In the first step, the
unit commitment variable was solved without considering
transmission switching. In the second step, the model was
solved with predetermined values for the unit commitment
variables, start-up and shut-down variables.

B. The Impact of the Big M Value on the Objective Value

Choosing an extremely large or a small value of M can have
undesirable consequences to the optimization problem [9]. To
study the impact of the big M value on the objective value, the
OTS model in Section III was solved using predetermined
values of M without the penalty for the big M. The M values
used in this study ranged from 1E2 to 1E12 for the 1-scenario
cases and from 1E2 to 1E9 for the 25-scenario cases. The big M
values in the latter cases were smaller because the problem
became very computationally burdensome with such large M
values, and we only chose cases that could be solved within
7200 seconds. The objective values of different cases obtained
with different big M values are shown in Fig. 1 and Fig. 2.

From the two figures, it can be seen that, with a small value
of M (less than 10E3), the search space for the solution was
limited, thus the OTS problem could not converge to the global
optimum. With an excessively large M value (greater than
10E7), unreasonable objective values were produced because of
the numerical instability. Thus, the values of the big M have to
be chosen properly to avoid instability in the optimization
model [20].

C. Optimal M Model

Using the model proposed in Section III, the optimal values
of the big M were solved for 24 hours in the 12 cases described
in section IV.A, and the optimal big M values are shown in Fig.
3 and Fig. 4. It can be observed that the optimal big M values
vary with time, the maximum number of lines to be switched,
and transmission contingencies.
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Fig. 2. Objective Value for the 25-Scenario Cases under different M values

D. Computational Efficiency

To study the impact of big M values on the computational
efficiency of the OTS model, the solution time of the OTS cases
were obtained with the M values being 1000, 5000, 10000, and
the obtained optimal M values for each of the 12 cases. The
solution times for the 1-scenario and 25-scenario cases are
listed in Table I and Table II, respectively. The cases were
implemented using Python and Gurobipy on a computer with an
Intel Core i17-1065G7 CPU and 16GB of RAM.

From Table I and Table II it can be observed that in most of
the cases the computational time increased with the increase of
the M values. With the optimal M values, the solution time was
always the shortest among the cases where the global optimum
could be reached under each condition. This verifies the



effectiveness of the proposed model in obtaining optimal big M
values for OTS problems.
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V. CONCLUSIONS

This paper proposes a big M value optimization model for
big M-based OTS problems and evaluates the impact of the big
M values on the optimality and computational efficiency of the
OTS problems. The model was implemented on a modified
RTS-96 test system under 12 conditions. The results show that
properly chosen big M values are critical to the computational
efficiency, optimality, and stability of the OTS problems, and
the proposed model can effectively find a set of optimal values
for the big M, allowing the OTS problem to be solved fast while
converging to the global optimum.

TABLE |

COMPUTATIONAL TIMES FOR 1-SCENARIO OTS

M 1000 5000 10000 Optimal M
1 Transmission Switch Allowed — No failures
Time (s) 3.157 3.355 3.376 3.063
Objective (3) 1,595,271 1,584,756 1,584,756 1,584,756
1 Transmission Switch Allowed — 3 failures
Time(s) 2.266 2.567 2.703 2.008
Objective (3) 5,964,818 5,911,480 5,911,480 5,911,480
2 Transmission Switch Allowed — No failures
Time(s) 4.235 4.579 5.547 4.207
Objective ($) 1,530,968 1,506,473 1,506,473 1,506,473
2 Transmission Switch Allowed — 3 failures
Time(s) 2.938 3.360 3.579 2.859
Objective (3) 3,569,559 3,564,907 3,564,907 3,564,907
3 Transmission Switch Allowed — No failures
Time(s) 7.097 6.646 7.754 5.709
Objective (3) 1,501,527 1,470,217 1,470,217 1,470,217
3 Transmission Switch Allowed — 3 failures
Time(s) 3.391 4.016 4.126 3.193
Objective (3) 2,465,004 2,464,802 2,464,802 2,464,802
TABLE II
COMPUTATIONAL TIMES FOR 1-SCENARIO OTS
M 1000 5000 10000 Optimal M
1 Transmission Switch Allowed — No failures
Time(s) 162.617 260.895 249.264 158.593
Objective (3) 1,801,245 2,464,802 2,464,802 2,464,802
1 Transmission Switch Allowed — 3 failures
Time(s) 63.322 132.663 135.299 52.653
Objective (3) 7,489,953 7,399,367 7,399,367 7,399,367

2 Transmission Switch Allowed — No failures

Time(s) 149.566 195.236 203.369 192.162
Objective (3) 1,728,716 1,725,476 1,725,476 1,725,476
2 Transmission Switch Allowed — 3 failures
Time(s) 106.641 113.697 130.817 85.121817
Objective (3) 4,489,102 4488312 4,488,312 4,488,312
3 Transmission Switch Allowed — No failures
Time(s) 186.261 252.698 266.511 216.309
Objective (3) 1,690,485 1,682,310 1,682,310 1,682,310
3 Transmission Switch Allowed — 3 failures
Time(s) 112.588 125.534 139.057 121.698
Objective (3) 2,739,361 2,739,222 2,739,222 2,739,222
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