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Abstract—Transmission switching is widely used in the electric 

power industry for both preventive and corrective purposes. 

Optimal transmission switching (OTS) problems are usually 

formulated based on optimal power flow (OPF) problems. OTS 

problems are originally nonlinear optimization problems with 

binary integer variables indicating whether a transmission line is 

in or out of service, however, they can be linearized into mixed-

integer linear programs (MILP) through the big-M method. In 

such big-M-based MILP problems, the value of M can 

significantly affect their computational efficiency. This paper 

proposes a method to find the optimal big-M values for OTS 

problems and studies the impact of big-M values on the 

computational efficiency of OTS problems. The model was 

implemented on a modified RTS-96 test system, and the results 

show that the proposed model can effectively reduce the 

computational time by finding an optimal big-M value which 

ensures optimal switching solutions while maintaining numerical 

stability.   

Index Terms—Big-M method, economic dispatch, mixed-integer 

programming, optimal power flow, optimal transmission 

switching, stochastic optimization, unit commitment, wind energy. 

I. NOMENCLATURE 

Indices  Bus.  Generator.  Transmission Line.  Scenario.  Segments for piece-wise linear cost function.  Time. 

Sets  Transmission lines with their “to” bus connected to 

bus .  Transmission lines with their “from” bus connected to 

bus .  Generators connected to bus . 

Variables ,, Voltage angle of bus  at time  in scenario . 

,,, Voltage angle at the “from” bus of line  at time  in 

scenario . 

,,, Voltage angle at the “to” bus of line   at time   in 

scenario . 

 Big-M value at time . 

, Real power generation of generator  at time . 

 

,
 Real power generation of generator  at time   in 

segment . ,,  Wind generation of wind farm at bus   at time  in 

scenario . ,,  Wind curtailment of wind farm at bus  at time  in 

scenario . ,,  Flexible load curtailment of bus  at time  in scenario 

. ,, Real power flow through transmission line  at time  

in scenario . ,  Spinning down reserve available through generator 

 at time . ,  Spinning up reserve available through generator  at 

time . ,,  Spinning down reserve deployed by generator  at 

time  in scenario . ,,  Spinning up reserve deployed by generator  at time  

in scenario . , Transmission switching binary status (1: line  is on 

at time ; 0: line  is off at time . 

Parameters , Probability of scenario  at time . 

 Minimum voltage angle difference at line .  Maximum voltage angle difference at line . ,, Voltage angle at the slack bus at time  in scenario .  Total number of buses.  Susceptance of transmission line .  Total number of generators.    The maximum value of the big M. ,  Load at bus  at time . 

  Upper real power flow limit of transmission line . 
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 Number of piece-wise linear segments for the 

generators.  Upper generation limit of generator . 

 Lower generation limit of generator . 

  Rated output of the wind farm. 

,
 Upper generation limit of generator   in segment 

 .  Per minute ramp rate for generator . 

 Total number of scenarios.  Length of investigated time period. , Generator binary status (1: generator  is on at time ; 

0: generator  is off at time . , Shutdown binary indicator (1: generator   shuts 

 down at time ; 0: generator  does not shut down at 

 time ). , Startup binary indicator (1: generator   starts up at 

time  ; 0: generator  does not start up at time ).   Transmission line failure at line .  Maximum lines permitted for transmission switching. 
 Linear cost of generator  in segment . 

  penalty cost.  No load cost of generator . 

 Spinning reserve deployment cost of generator . 

 Spinning reserve capacity cost of generator . 

 Shutdown cost of generator . 

 Startup cost of generator . 

  Wind curtailment compensation rate.   Flexible load curtailment compensation rate for bus .  Wind speed.        The frequency rate of wind speed.   The cut-in speed of the wind turbine.  The cut-out speed of the wind turbine.   The rated speed of the wind turbine. 

II. INTRODUCTION 

The rising environmental awareness has boosted the usage 

of renewable energy sources (RESs), which plays a crucial role 

in reducing the usage of fossil fuel-based electric power as well 

as providing economic benefits to the users. However, RESs 

introduces significant uncertainty to power systems, resulting in 

power system stability and reliability concerns, and various 

techniques are currently being used to improve system 

flexibility for increased RES penetration to improve the 

reliability and cost efficiency of power systems [1]-[3]. Among 

different techniques, appropriately adjusting the network 

topology of electric power transmission systems through 

optimal transmission switching (OTS) can result in great 

benefits such as reduced transmission congestion, improved 

voltage profiles, better system security, and reduced operating 

costs  [4]-[8].  

Currently, OTS problems are usually formulated based on 

optimal power flow (OPF) problems by modifying the power 

flow constraints with the introduction of binary integer 

variables that indicate whether the transmission line is in or out 

of service. The OTS problem is originally a nonlinear 

optimization problem, and the big-M method is usually used to 

linearize the problem, making the problem a mixed-integer 

linear program (MILP). Although the linearization helps 

improve the computational efficiency of the OTS problem, the 

MILP is still relatively computation, especially for large-scale, 

real-world power systems [9]. Thus, improving the 

computational efficiency of the OTS problem is paramount.  

In the big-M method, binary variables are used to enable or 

disable constrains, leading to big-M constraints in the form of 

(1), where x represents a binary variable and  corresponds to a 

“big constant” [10]: 

 + 1 −  ≥  (1) 

The selection of   has a significant impact on the 

computational efficiency of MILP problems. A poorly selected  value can lead to non-optimal solutions or an unnecessarily 

long solution time  [11], [13]. It is common in literature and 

research to advocate selecting a very large number as the value 

of M, however, an  unnecessarily large value of M can expand 

the feasible region of the MILP problem, resulting in an 

increased number of iterations required to obtain the optimal 

solution [11], [12] and thus negatively affect the computational 

efficiency of the problem. Furthermore, an extremely large 

value of M can even cause a loss of solver’s precision and 

numerical instability [13], [14]. In additional to the previously 

mentioned scenarios, a small M value limits the feasible region 

space. Consequently, a small M does not guarantee the 

convergence to a global optimum and can potentially lead to 

infeasible models [13]. 

Real-world OTS problems are part of the power system 

operations model, and the OTS problems have to be solved 

within the operational time frame. Thus, computational 

efficiency are extremely important for OTS problems. For 

large-scale OTS problems, a moderate change in the value of 

the big M can result in a considerable difference in the 

computational efficiency. Although the big-M-based OTS 

model has been widely used [15]-[18], there still lacks a method 

to search for the optimal value for the big M-based OTS 

problem.  

To fill this gap, this paper aims to propose a model to find 

the optimal big M values for the big M-based OTS problems.  

The contributions of this paper are as follows. First, an 

evaluation on the effects of different big M values on the 

computational efficiency of OTS problems is presented. 

Second, a model to find the optimal big M values is proposed. 

The model was implemented on a modified RTS-96 test system 

with different contingency scenarios, and results show that the 

proposed model can effectively find the optimal big M values 

for OTS problems, reducing the solution time of the big M-

based OTS problems while achieving optimality and 

maintaining numerical stability. 

The remainder of this paper is organized as follows. Section 

III describes the proposed big M value optimization model for 



 

 

OTS problems. Model setup, cases descriptions, and results 

discussion is presented in Section IV. Finally, Section V 

summarizes the main conclusions. 

III. THE BIG M VALUE OPTIMIZATION MODEL 

This section presents the proposed big M value optimization 

model for OTS problems, and the model is presented in 

equations (2)-(26). The model is based on a multi-hour OTS 

model, with M being a variable, while allowing different 

transmission contingency scenarios to be considered. To better 

observe the detrimental consequences of an erroneous big M 

selection, load shedding and wind power curtailment are 

allowed with a penalty in the model.  

                             



+  , + ,
+ , + , + , 

+  ,


+  ,,, + ,, 
 

+   ,,,
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(2) 

, ≤ , ≤ , (3) 

0 ≤ , ≤ ,
 (4) 

, =  ,
  

(5) 

−, ≤ ,, ≤ , (6) 

−,,, − ,,, − 1 − , ≤ ,, (7) 

−,,, − ,,, + 1 − , ≥ ,, (8) 

 1 − , ≤ 
  

 

(9) 

 , + ,, − ,, ∈
+  ,,∈

−  ,,∈+ ,, − ,, + ,, = ,  

 

 

 

(10) 

0 ≤  ≤  (11) 

, − , = , − , (12) 

, + , ≤ 1 (13) 

 , ≥ , − ,,

  
 

2 ≤  ≤  −  + 1 (14) 

 1 − , ≥ , − ,,

  
 

2 ≤  ≤  −  + 1 (15) 

−60, ≤ , − , ≤ 60, (16) 

, − , ≥ , (17) 

, + , ≤ , (18) 

0 ≤ , ≤ 10 (19) 

0 ≤ , ≤ 10 (20) 

0 ≤ ,, ≤ ,  (21) 

0 ≤ ,, ≤ ,  (22) 

0 ≤ ,, ≤ ,,  (23) 

0 ≤ ,, ≤   (24) 

 ≤ ,,, − ,,, ≤  (25) 

,, = 0 (26) 

The objective function (2) has the goal of minimizing the 

total cost. Equation (2) considers big M as an hourly variable 

instead of a constant predetermined value. Furthermore, a minor 

penalty cost is added to the big-M variable to avoid 

unnecessarily large   values while keeping the generation 

dispatch cost the dominant objective. Additionally, (2) 

considers the piece-wise linear generation cost, spinning reserve 

cost, start-up, shutdown, and no-load cost, as well as the load 

curtailment and wind power curtailment penalties. Generation 

limits are modeled in (3) and the generation piece-wise linear 

segments constraints are described in (4) and (5). Equation (6) 

describes the transmission capacity limits considering 

transmission contingencies and transmission switching. 

Additionally, Equations (7) and (8) represent the DC power 

flow constraints considering a big-M formulation and the 

maximum permitted transmission line switching is modeled in 

(9). Equation (10) describes the nodal power balance constraint 

and (11) sets an upper limit for . The start-up and shutdown 

constraints are modeled in Equations (12) and (13), while 

Equations (14) and (15) model the minimum up and down time 

for the generators. The hourly generation ramp constraint is 

modeled in (16), Equations (17) and (18) describe the spinning 

up and down reserves correspondingly. The reserve energy 

deployment time is described in Equations (19) and (20), while 

the energy deployment limits are shown in Equations (21) and 

(22). The wind power curtailment and load curtailment 

constraints are modeled in Equations (23) and (24), 

respectively, and Equations (25) and (26) are the constraints for 

the bus voltage angle. 



 

 

IV. CASE STUDY RESULTS AND DISCUSSION 

A. Case Studies and Model Setup 

The proposed model was implemented on the RTS-96 test 

system with a minor modification; two wind energy farms 

located at bus 3 and bus 24, each with a 200-MW rated power 

similar to the model in [19]. Two different conditions were used 

to evaluate the effects of different big M values in the OTS 

model: (1) One wind power output scenario was considered, 

and (2) 25 wind power output scenarios were considered. Under 

each condition, two sub-conditions are considered: (a) No 

transmission contingency exists in the system; (b) Three highly 

utilized transmission lines fail in the system. Furthermore, 

under each sub-condition, three cases were carried out, allowing 

a maximum of 1, 2, and 3 transmission lines to be switched out, 

respectively. In total, 12 test cases were carried out. A small 

penalty cost of $1E-7/unit was added to the M variable in the 

objective function. Additionally, the load curtailment and wind 

power curtailment penalties were set at $10,000/MW and 

$30/MW, respectively. The model proposed in Section III was 

implemented using a two-step approach. In the first step, the 

unit commitment variable was solved without considering 

transmission switching. In the second step, the model was 

solved with predetermined values for the unit commitment 

variables, start-up and shut-down variables. 

B. The Impact of the Big M Value on the Objective Value 

Choosing an extremely large or a small value of  can have 

undesirable consequences to the optimization problem [9]. To 

study the impact of the big M value on the objective value, the 

OTS model in Section III was solved using predetermined 

values of  without the penalty for the big M. The M values 

used in this study ranged from 1E2 to 1E12 for the 1-scenario 

cases and from 1E2 to 1E9 for the 25-scenario cases. The big M 

values in the latter cases were smaller because the problem 

became very computationally burdensome with such large M 

values, and we only chose cases that could be solved within 

7200 seconds. The objective values of different cases obtained 

with different big M values are shown in  Fig. 1 and Fig. 2.  

From the two figures, it can be seen that, with a small value 

of   (less than 10E3), the search space for the solution was 

limited, thus the OTS problem could not converge to the global 

optimum. With an excessively large   value (greater than 

10E7), unreasonable objective values were produced because of 

the numerical instability. Thus, the values of the big M have to 

be chosen properly to avoid instability in the optimization 

model [20]. 

C. Optimal M Model 

Using the model proposed in Section III, the optimal values 

of the big M were solved for 24 hours in the 12 cases described 

in section IV.A, and the optimal big M values are shown in Fig. 

3 and Fig. 4. It can be observed that the optimal big M values 

vary with time, the maximum number of lines to be switched, 

and transmission contingencies. 

 

 

Fig. 1. Objective Value for the 1-Scenario Cases under different M values 

 

Fig. 2. Objective Value for the 25-Scenario Cases under different M values 

D. Computational Efficiency 

To study the impact of big M values on the computational 

efficiency of the OTS model, the solution time of the OTS cases 

were obtained with the  values being 1000, 5000, 10000, and 

the obtained optimal   values for each of the 12 cases. The 

solution times for the 1-scenario and 25-scenario cases are 

listed in Table I and Table II, respectively. The cases were 

implemented using Python and Gurobipy on a computer with an 

Intel Core i7-1065G7 CPU and 16GB of RAM. 

From Table I and Table II it can be observed that in most of 

the cases the computational time increased with the increase of 

the M values. With the optimal M values, the solution time was 

always the shortest among the cases where the global optimum 

could be reached under each condition. This verifies the 
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effectiveness of the proposed model in obtaining optimal big M 

values for OTS problems. 

 

 

Fig. 3. Optimal M Values for the 1-Scenario Cases 

 

Fig. 4. Optimal M Values for the 25-Scenario Cases 

V. CONCLUSIONS 

This paper proposes a big M value optimization model for 

big M-based OTS problems and evaluates the impact of the big 

M values on the optimality and computational efficiency of the 

OTS problems. The model was implemented on a modified 

RTS-96 test system under 12 conditions. The results show that 

properly chosen big M values are critical to the computational 

efficiency, optimality, and stability of the OTS problems, and 

the proposed model can effectively find a set of optimal values 

for the big M, allowing the OTS problem to be solved fast while 

converging to the global optimum.  

 

TABLE I 
COMPUTATIONAL TIMES FOR 1-SCENARIO OTS 

M 1000 5000 10000 Optimal M 

 1 Transmission Switch Allowed – No failures 

Time (s) 3.157 3.355 3.376 3.063 

Objective ($) 1,595,271 1,584,756 1,584,756 1,584,756 

 1 Transmission Switch Allowed – 3 failures 

Time(s) 2.266 2.567 2.703 2.008 

Objective ($) 5,964,818 5,911,480 5,911,480 5,911,480 

 2 Transmission Switch Allowed – No failures 

Time(s) 4.235 4.579 5.547 4.207 

Objective ($) 1,530,968 1,506,473 1,506,473 1,506,473 

 2 Transmission Switch Allowed – 3 failures 

Time(s) 2.938 3.360 3.579 2.859 

Objective ($) 3,569,559 3,564,907 3,564,907 3,564,907 

 3 Transmission Switch Allowed – No failures 

Time(s) 7.097 6.646 7.754 5.709 

Objective ($) 1,501,527 1,470,217 1,470,217 1,470,217 

 3 Transmission Switch Allowed – 3 failures 

Time(s) 3.391 4.016 4.126 3.193 

Objective ($) 2,465,004 2,464,802 2,464,802 2,464,802 

TABLE II 
COMPUTATIONAL TIMES FOR 1-SCENARIO OTS 

M 1000 5000 10000 Optimal M 

 1 Transmission Switch Allowed – No failures 

Time(s) 162.617 260.895 249.264 158.593 

Objective ($) 1,801,245 2,464,802 2,464,802 2,464,802 

 1 Transmission Switch Allowed – 3 failures 

Time(s) 63.322 132.663 135.299 52.653 

Objective ($) 7,489,953 7,399,367 7,399,367 7,399,367 

 2 Transmission Switch Allowed – No failures 

Time(s) 149.566 195.236 203.369 192.162 

Objective ($) 1,728,716 1,725,476 1,725,476 1,725,476 

 2 Transmission Switch Allowed – 3 failures 

Time(s) 106.641 113.697 130.817 85.121817 

Objective ($) 4,489,102 4,488,312 4,488,312 4,488,312 

 3 Transmission Switch Allowed – No failures 

Time(s) 186.261 252.698 266.511 216.309 

Objective ($) 1,690,485 1,682,310 1,682,310 1,682,310 

 3 Transmission Switch Allowed – 3 failures 

Time(s) 112.588 125.534 139.057 121.698 

Objective ($) 2,739,361 2,739,222 2,739,222 2,739,222 
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