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Abstract

This paper considers online optimization of a renewal-reward system. A controller performs
a sequence of tasks back-to-back. Each task has a random vector of parameters, called the
task type vector, that affects the task processing options and also affects the resulting
reward and time duration of the task. The probability distribution for the task type vector
is unknown and the controller must learn to make efficient decisions so that time-average
reward converges to optimality. Prior work on such renewal optimization problems leaves
open the question of optimal convergence time. This paper develops an algorithm with
an optimality gap that decays like O(1/

√
k), where k is the number of tasks processed.

The same algorithm is shown to have faster O(log(k)/k) performance when the system
satisfies a strong concavity property. The proposed algorithm uses an auxiliary variable
that is updated according to a classic Robbins-Monro iteration. It makes online scheduling
decisions at the start of each renewal frame based on this variable and the observed task
type. A matching converse is obtained for the strongly concave case by constructing an
example system for which all algorithms have performance at best Ω(log(k)/k). A matching
Ω(1/

√
k) converse is also shown for the general case without strong concavity.

Keywords: stochastic processes, dynamic control, opportunistic scheduling, cloud com-
puting

1. Introduction

Consider a system where a controller performs a sequence of tasks over time (see Fig. 1).
The tasks are performed back-to-back so that when task k ends the task k+1 immediately
begins. The interval of time over which the system performs task k ∈ {0, 1, 2, . . .} shall be
called frame k. Fix m as a positive integer. At the start of each frame k ∈ {0, 1, 2, . . .}
the controller observes a vector S[k] ∈ R

m that determines the task type. Components of
S[k] may include parameters that determine the characteristics of task k. Assume that
{S[k]}∞k=0 is independent and identically distributed (i.i.d.) over frames with distribution
function

FS(s) = P [S[k] 4 s] ∀s ∈ R
m

where vector inequality is taken entrywise. The distribution function FS(s) is not necessarily
known to the controller. After observing S[k], the controller chooses to operate in one
of various task processing modes for the duration of frame k. The available modes can
depend on S[k]. The S[k] value and the particular mode that is chosen together determine
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the task duration T [k] and the task reward R[k] for frame k. For example, R[k] can be
the monetary profit earned by completing the task on frame k. In a network scheduling
scenario, R[k] can be the total amount of data transmitted on frame k. Alternatively, we
can have R[k] = −P [k] where P [k] is a power cost incurred on frame k.

Every frame k ∈ {0, 1, 2, . . .} the controller first observes S[k] and then chooses a decision
vector :

(T [k], R[k]) ∈ D(S[k])

where D(S[k]) is the set of all possible decision vectors available for the task type S[k]
(considering all processing modes). The infinite horizon reward per unit time is

lim
K→∞

∑K−1
k=0 R[k]

∑K−1
k=0 T [k]

temporarily assuming the limit exists. Let θ∗ denote the optimal average reward per unit
time. The goal is to develop an algorithm for making decisions over frames that yields an
average reward per unit time that converges to θ∗ as quickly as possible. Long term opti-
mality is defined by all possible algorithms, including algorithms that know the probability
distribution FS(s). However, convergence time to optimality is considered for algorithms
that have no prior knowledge of FS(s). For fast convergence, algorithms must quickly learn
whatever aspects of the distribution are relevant for making intelligent control decisions
that maximize average reward.

1.1 Discussion

This problem is called a renewal optimization problem because the system state renews itself
on each new frame (when a new S[k] is observed). For example, consider a stationary and
randomized algorithm that, on every frame k, chooses (T [k], R[k]) ∈ D(S[k]) independently
of the past using a fixed conditional probability distribution given the observed S[k]. Then
{R[k]}∞k=0 and {T [k]}∞k=0 are i.i.d. and standard renewal theory implies (see, for example,
(Gallager, 1996)):

lim
K→∞

∑K−1
k=0 R[k]

∑K−1
k=0 T [k]

=
E [R[0]]

E [T [0]]
with prob 1 (1)

To avoid divide-by-zero issues, it is assumed there is a known constant Tmin > 0 such that
E [T [0]] ≥ Tmin, regardless of the decision that is made for task 0.1

It can be shown that the optimal reward per unit time can be achieved over the class of
stationary and randomized algorithms (see (Neely, 2010)). In principle, one could perform
an offline computation to find the best stationary and randomized algorithm. For example,
suppose there is a finite set ΩS of task types, and let π(s) denote the probability mass
function for task types:

π(s) = P [S[k] = s] ∀s ∈ ΩS

Suppose for each s ∈ ΩS the set of decision options D(s) is finite. A stationary and
randomized algorithm observes the task type S[k] for each new task k and then randomly

1. This assumption that Tmin exists holds trivially in the special case when there is a positive lower bound
on the smallest possible frame size, such as when all frames are at least one unit of time.
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chooses a decision (T [k], R[t]) ∈ D(S[k]) according to conditional probabilities

p((t, r)|s) = P [(T [k], R[k]) = (t, r)|S[k] = s]

Offline computation to maximize the ratio of expectations in the right-hand-side of (1)
chooses conditional probabilities p((t, r)|s) to solve

Maximize:

∑

s∈ΩS

∑

(t,r)∈D(s) π(s)p((t, r)|s)r
∑

s∈ΩS

∑

(t,r)∈D(s) π(s)p((t, r)|s)t
(2)

Subject to: p((t, r)|s) ≥ 0 ∀s ∈ ΩS , ∀(t, r) ∈ D(s) (3)
∑

(t,r)∈D(s)

p((t, r)|s) = 1 ∀s ∈ ΩS (4)

This is a linear fractional program and the optimal objective value in (2) is θ∗. It is not
practical to solve (2)-(4) because: (i) We do not know the probabilities π(s); (ii) The set ΩS

of task types can be very large, possibly containing more elements than there are atoms in
the universe, and so the problem can be intractable even if probabilities π(s) were somehow
known for all s ∈ ΩS .

The proposed algorithm of this paper is not a stationary and randomized algorithm,
and so {R[k]}∞k=0 and {T [k]}∞k=0 are not i.i.d. sequences. The proposed algorithm operates
online with no a-priori knowledge of the distribution for S[k]. It must adapt its decisions
by learning from the past. We show that it quickly converges to the same optimal reward
per unit time, as specified in (2)-(4), with a decision complexity for each task k that is
independent of the size of the set ΩS (this set can even be infinite).

1.2 Comparison to problems with unknown states

Our problem formulation is an opportunistic scheduling problem where a task type S[k] is
observed for each task k and the decision options and rewards are fully known based on S[k].
This problem is important because the task type information S[k] can be used to inform the
decision of how to execute task k. This problem structure is different from online convex
optimization problems and multi-arm bandit problems. In those problems, the decision set
is the same for all steps k, but the reward vectors or reward functions are random.

For example, while the decision set D(S[k]) for our problem depends on the observed
state S[k], one can imagine a different problem formulation with a decision set D that is
always the same and with a random state S[k] that is unknown. In this case, we can define
d[k] ∈ D as the particular decision choice on step k, and the decision d[k] would produce
a random vector (T [k], R[k]) with a distribution that depends on d[k]. This changes the
problem structure to a multi-arm bandit problem where the “arms” are the decisions d ∈ D.
The optimal reward per unit time for this new problem is typically decreased because,
fundamentally, the same optimality point cannot be achieved when the system state S[k] is
unknown. The new optimality point no longer depends on the full probability distribution
for S[k] as needed in (2)-(4). Rather, the new optimality point depends only on the mean
vectors (t(d), r(d)) associated with each arm d ∈ D, where

(t(d), r(d)) = E [(T [k], R[k])|d[k] = d]
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If the mean vectors (t(d), r(d)) were fully known, we would always choose the arm d ∈ D that
maximizes r(d)/t(d). Further, estimation of (t(d), r(d)) could be done easily by exploring
each arm d ∈ D according to various bandit techniques such as the resource-constrained
techniques in (Badanidiyuru et al., 2018)(Agrawal and Devanur, 2014)(Xia et al., 2015).

The opportunistic scheduling problem of our paper has a different structure and cannot
be solved by bandit techniques. Even though the state S[t] is fully known, it is not clear
how to utilize this extra information to achieve the (correspondingly larger) optimal reward
per unit time. One might guess that choosing the option (T [k], R[k]) ∈ D(S[k]) to greedily
maximize R[k]/T [k] on every task k is optimal. This is not true. A simple counter-example
is provided in Section 2. Generally, solving (2)-(4) is not trivial. The state probabilities π(s)
must somehow be incorporated into the solution without knowledge of these probabilities.
When there are an overwhelmingly large number of these probabilities, it is not even possible
to estimate them.

Opportunistic scheduling problems are also fundamentally different from deterministic
optimization and online convex optimization problems. For example, in (Neely, 2019),
an opportunistic scheduling problem for wireless networks with fixed time slots is shown
to have an optimal convergence time of Θ(log(t)/t) for any smooth and concave utility
function, regardless of whether or not the function is strongly concave. This is in stark
contrast to deterministic convex optimization and online convex optimization for which
strong convexity/concavity is known to significantly improve performance, and for which
convergence tradeoffs are different (see (Nesterov, 2004) for bounds on certain types of
deterministic convex minimization problems, and (Zinkevich, 2003) (Hazan et al., Dec.
2007) (Hazan and Kale, 2014) for online convex optimization tradeoffs).

The current paper is different from the opportunistic scheduling work in (Neely, 2019)
because, as we show, the variable frame lengths create different convergence properties. It
turns out that strong convexity shall arise as an important feature here, but in a different
context.

1.3 Relation to finite horizon problems

This paper defines optimality in terms of the infinite horizon limit in (1). The linear
fractional program in (2)-(4) can be viewed as searching over the set of all expectation
vectors (E [T ] ,E [R]) that can be achieved to find an optimal (E [T ∗] ,E [R∗]) that maximizes
the ratio E [R∗] /E [T ∗]. Define this maximum ratio as

θ∗ =
E [R∗]
E [T ∗]

Intuitively, algorithms that are designed to achieve an infinite horizon limit of θ∗ will
also do a good job of maximizing the total accumulated reward over a fixed but long time
horizon ttotal. An alternative (and more complex) problem formulation might fix a finite
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time horizon ttotal and then seek to maximize total expected reward over this time:

Maximize: E

[

K
∑

k=0

R[k]

]

Subject to:
K
∑

k=0

T [k] ≤ ttotal

where K is a random number of tasks that can be completed up to the time limit, and the
(T [k], R[k]) values for each task k are chosen from the set D(S[k]). This can be viewed as
an opportunistic scheduling version of a stochastic knapsack problem. This problem is more
complex than the linear fractional program (2)-(4) because it would require an additional
state variable that represents the remaining time until the deadline. However, when ttotal
is large, the problem can be closely approximated by the following problem of choosing a
real number m > 0 and choosing an expectation vector (E [T ] ,E [R]) to solve

Maximize: mE [R] (5)

Subject to: mE [T ] ≤ ttotal (6)

Intuitively, problem (5)-(6) relates to using a stationary and randomized policy that yields
i.i.d. vectors {(T [k], R[k])}∞k=0 with expectations (E [T ] ,E [R]). The value m represents
a real-valued relaxation of an integer number of tasks that can be performed until the
expected task size exceeds the time limit ttotal. This type of approximation was used for the
different context of bandit problems in (Badanidiyuru et al., 2018). When ttotal is large, the
approximation error can be shown to be small by bounding the “overshoot” associated with
performing one more task before time expires (see stopping time and renewal theorems in
(Gut, 2009)(Asmussen, 2003)).

It is easy to see that the approximate problem (5)-(6) is exactly solved by using expec-
tations (E [T ∗] ,E [R∗]) that achieve the maximum ratio θ∗, and by using m∗ = ttotal/E [T ∗].
Indeed, this particular solution satisfies the constraint (6) with equality and achieves an
objective value of

m∗
E [R∗] = θ∗ttotal

No other values for (m,E [T ] ,E [R]) that satisfy the constraints can have an objective value
higher than θ∗ttotal because

mE [R] =

(

E [R]

E [T ]

)

mE [T ]

(a)

≤ θ∗mE [T ]

(b)

≤ θ∗ttotal

where (a) holds by definition of θ∗ as the maximum ratio of expectations; (b) holds by
(6). Overall, this discussion emphasizes that the infinite horizon problem considered in this
paper can also be used as an efficient method to treat fixed but large time horizons.
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1.4 Prior work

Optimization of renewal systems is related to linear fractional programming (see, for ex-
ample, (Schaible, 1983)(Boyd and Vandenberghe, 2004)). An offline method for optimizing
Markov renewal systems via linear fractional programming is in (Fox, 1966). Online methods
for renewal optimization are developed in (Neely, 2013)(Neely, 2010), which treat systems
with additional time-average constraints. The work (Neely, 2013) develops a drift-plus-
penalty ratio rule for making decisions that are shown, over time, to satisfy the constraints
and achieve a time-averaged reward that is arbitrarily close to optimal. The algorithm in
(Neely, 2013) requires knowledge of the probability distribution for S[k]. An approximate
implementation is also given in (Neely, 2013) that uses a bisection procedure that does not
require knowledge of the probability distribution. This method is applied to treat data
center scheduling in (Wei and Neely, 2017), asynchronous renewal timelines in (Wei and
Neely, 2018), power-aware computing in (Neely, 2012), and has connections to the delay-
optimal queueing work in (Li and Neely, 2014). An alternative Robbins-Monro technique
is used in (Neely, 2010) and shown to perform well in simulation, but its convergence time
is not analyzed. This prior work leaves open the question of optimal convergence time in
a renewal system where there is no a-priori knowledge of the task type distribution S[k].
That question is resolved in the current paper.

The algorithm of the current paper is closely related to the classical Robbins-Monro
iteration (Robbins and Monro, 1951). The work (Robbins and Monro, 1951) treats a prob-
lem of finding a root θ to an equation M(x) = 0 in the case when a nondecreasing function
M : R → R is unknown and can only be indirectly evaluated. Specifically, on each iteration
k we hand a value X[k] to an oracle, where X[k] represents our best guess of the root at time
k, and the oracle returns a random variable Y [k] whose expectation is equal to M(X[k]).
That is

M(x) = E [Y [k]|X[k] = x] ∀x ∈ R (7)

The estimated root is then updated via the iteration:

X[k + 1] = X[k]− η[k]Y [k] (8)

where {η[k]}∞k=0 is a sequence of positive stepsizes. Under certain assumptions, the work
(Robbins and Monro, 1951) shows that X[k] converges in probability to the root θ. The
technique of (Robbins and Monro, 1951) inspired the field of stochastic approximation and
has been extended to treat minimization of convex functions M : Rn → R when an ora-
cle returns stochastic gradients or subgradients (Nemirovski and Yudin, 1983)(Polyak and
Juditsky, 1992)(Nemirovski et al., 2009)(Kushner and Yin, 2003)(Borkar, 2008). Modifica-
tions of Robbins-Monro type iterations are considered in (Toulis et al., 2020)(Toulis et al.,
2014), improvements for binary data are in (Joseph, 2004), and applications to Bayesian
inference is explored in (Mandt et al., 2017). If M(x) is convex then, under a carefully cho-
sen sequence of stepsizes, the optimality gap decays like O(1/

√
k), where k is the number

of iterations, while if M(x) is strongly convex then the optimality gap decays like O(1/k).
Converse results in (Nemirovski and Yudin, 1983) show these convergence rates cannot be
improved. However, an example in (Nemirovski et al., 2009) shows convergence is sensitive
to choosing the stepsize based on knowledge of the strong convexity parameter. When this
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parameter is over-estimated the convergence can be as slow as Ω(1/k1/5). This is used to
motivate robust methods in (Nemirovski et al., 2009).

The current paper uses an iteration similar to (8). However, renewal optimization
problems have a different structure from the stochastic approximation problems described
in the previous paragraph. For example, optimality for the current paper is related to
maximizing a ratio of expectations

E [R[k]]

E [T [k]]

which is different from minimizing the single expectation that defines M(x) in (7). Further-
more, the expectations E [R[k]] and E [T [k]] are not determined by a single input parameter
x but by a family of conditional distributions for choosing (T [k], R[k]) given S[k]. The struc-
ture of the randomness is also different: In stochastic approximation, we choose a input
vector X[k] and an oracle gives us a noisy version of M(X[k]), whereas in the current paper
the system gives us a random “input” state S[k] from which we choose a (fully known) out-
put (T [k], R[k]) ∈ D(S[k]). The renewal problem is online and all decisions (starting from
frame 0) are important in creating time-averages that are close to optimal. This is different
from problems that seek a single vector x and do not care what decisions are made in the
past as long as they lead to a good eventual choice of x. Finally, there are no convexity
assumptions on the sets D(s). Nevertheless, a connection to Robbins-Monro type methods
is made in (Neely, 2013) where it is shown that the optimal time-average reward θ∗ is the
root of the following M(θ) function

M(θ) = E

[

sup
(T [k],R[k])∈D(S[k])

{R[k]− θT [k]}
]

where the expectation is with respect to the random S[k] (that has an unknown distribu-
tion).

The current paper uses this observation to motivate a Robbins-Monro style iteration
for finding the root θ∗ using an auxiliary variable θ[k] on each frame k. However, it is not
enough to simply find a value θ that is close to θ∗. That is because our goal is to obtain an
online algorithm with a time-average (starting from frame 0) that converges to θ∗ as quickly
as possible. Fast learning is crucial because early mistakes are included in the time-average
that we are trying to optimize. The fundamental convergence times for renewal systems
that are established in this paper are different from the fundamental convergence times for
stochastic approximation in (Nemirovski and Yudin, 1983).

The focus on convergence time in this paper is conceptually similar to analysis of regret
in multi-armed bandit systems, see, for example, scalar-based bandit problems in (Bubeck
and Cesa-Bianchi, 2012)(P. Auer et al., 1995)(Auer, 2002), vector-based bandits in (Badani-
diyuru et al., 2018)(Agrawal and Devanur, 2014)(Xia et al., 2015), and a recent renewal-
based bandit formulation in (Cayci et al., 2019). Such problems have an “exploration versus
exploitation” structure that is different from the structure of the current paper. In (Cayci
et al., 2019), one of multiple “bandit-style” arms is pulled, each arm giving a reward after
a random renewal-time. The goal is to learn the best arm to pull. In contrast, rather than
choosing an unknown arm and receiving a reward, our system receives a random task state
S[k] and chooses one of multiple (known) control actions (T [k], R[k]) ∈ D(S[k]) in a way
that most quickly optimizes the system.
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1.5 Our contributions

This paper develops an online algorithm for making decisions (T [k], R[k]) ∈ D(S[k]) on
each frame k, without knowing the distribution for S[k], that ensures time-average reward
converges to the optimal value θ∗ with probability 1. The algorithm uses an auxiliary
variable θ[k] that is updated according to a Robbins-Monro type iteration. However, the
rate at which θ[k] converges to θ∗ is faster than the rate at which the online averages
converge to θ∗. Specifically, we show:

• Under the general system structure, the proposed algorithm has an optimality gap
that decays like O(1/

√
k).

• Under a special “strongly concave” system structure, the proposed algorithm ensures
an improved O(log(k)/k) performance. The algorithm is robust in the sense that
it does not require knowledge of the strong concavity parameter. However, it turns
out that knowledge of a minimum average frame size parameter Tmin is crucial for
selecting the stepsize. Fortunately, Tmin is easily known in most practical systems.

• Regardless of whether or not the system exhibits strong concavity, the mean squared
error between θ[k] and θ∗ decays like O(1/k). It is remarkable that convergence of this
auxiliary variable is independent of strong concavity and is fundamentally different
from convergence of the online time-averages (which do depend on strong concavity
structure).

• We present a matching Ω(log(k)/k) converse result for systems with a strongly concave
structure. This is done by constructing an example system for which no algorithm can
achieve faster convergence. The proof utilizes a Bernoulli estimation theorem from
(Hazan and Kale, 2014) and a recent mapping technique in (Neely, 2020a).

• We also present a matching Ω(1/
√
k) converse for an example system without the

strongly concave property. The proof has a different structure from the strongly
concave case: It shows that for a given ε > 0 and for any algorithm operating on the
system, there is a probability parameter for S[k] under which the algorithm needs
at least Ω(1/ε2) frames to ensure performance is within ε of optimal. This result is
similar in spirit to a known square-root converse result for pseudo-regret in multi-arm
bandit problems in (Bubeck and Cesa-Bianchi, 2012). However, the square root law
does not arise for the same reason as in (Bubeck and Cesa-Bianchi, 2012). Indeed,
the two problems are structurally different and use different proofs.

2. Examples

2.1 Cloud computing with two choices

Suppose a cloud computing device performs back-to-back tasks. Each task is one of two
types, shown as red or green in Fig. 1. Let S[k] ∈ {0, 1} be the type of task k and assume
{S[k]}∞k=0 is i.i.d. with P [S[k] = 1] = p. Red tasks always take 1 unit of time and earn 3
units of revenue. Green tasks earn revenue depending on the quality of the processing, and
there are only two processing modes available. The decision sets are described in the table
below:
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0

Task 0 Task 1 Task 2 Task 3 Task 6 Task 7

R[0]=3 R[1]=3 R[2]=3 R[3]=3 R[4]=1 R[5]=3 R[6]=3 R[7]=1

Time

Task 4 Task 5 Task 8 Task 9

R[8]=1 R[9]=3

Figure 1: A sequence of back-to-back tasks of different types: Red tasks (S[k] = 0) have
(T [k], R[k]) = (1, 3). Green tasks (S[k] = 1) have (T [k], R[k]) ∈ {(1, 1), (2, 3)}.

Task type color Decision set

S[k] = 0 red D(0) = {(1, 3)}
S[k] = 1 green D(1) = {(2, 3), (1, 1)}

If S[k] = 1 we can choose either high-quality processing (which takes 2 units of time and
brings revenue 3) or low-quality processing (which takes 1 unit of time and brings revenue
1). Which should we choose? Since 3

2 > 1
1 , a naive guess is that it is always optimal to

choose high-quality. This is not true: It depends on the value of p. This is because Type
0 tasks are more valuable than Type 1 tasks, so it may be better to quickly get a Type 1
task over with in hopes that the next task is Type 0. It can be shown that it is best to
always choose low-quality if 0 ≤ p < 1/2, and to always choose high-quality if 1/2 ≤ p ≤ 1.
If p is unknown, an intuitively good online control algorithm is to form a running estimate
p̂[k] = 1

k

∑k−1
j=0 1{S[j]=1} and choose high-quality whenever p̂[k] ≥ 1/2. Unfortunately, this

method can make mistakes if p ≈ 1/2. Section 6 shows that no causal algorithm that does
not have a-priori knowledge of p can optimize this system faster than a square root law.

2.2 Infinitely many choices

Now suppose the time T [k] spent on each task can be chosen as any real number in the
interval [Tmin, Tmax], where Tmin and Tmax are some given positive constants. Suppose the
corresponding revenue is:

R[k] = A[k]f(T [k]B[k], C[k])

where f : R2 → R is some function (possibly discontinuous and nonconvex) that is nonde-
creasing in the first coordinate. Thus, revenue can be larger if more time is spent on the task.
The peculiarities of each task are described by the random vector S[k] = (A[k], B[k], C[k]),
which has an unknown joint cumulative distribution FA,B,C(a, b, c). Every frame k the
controller observes S[k] and chooses T [k] ∈ [Tmin, Tmax].

2.3 Project selection

Suppose Alice works on one project at a time. On each frame k, Alice receives a random
number N [k] of new potential projects, each with a different profit and time commitment.
Suppose N [k] has some unknown probability mass function (for example, N [k] might be a
Poisson random variable with some unknown parameter λ). Let (Tj [k], Rj [k]) represent the
time and profit characteristics for each project j ∈ {1, . . . , N [k]}. The joint distribution for
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these random parameters is arbitrary and unknown. At the start of frame k, Alice chooses
which single project j ∈ {1, . . . , N [k]} to work on. She can also choose to work on nothing
for one time unit, which yields (T [k], R[k]) = (1, 0). This is useful if she believes that none
of the current project options are desirable. For example, if there is only one project option
and it requires a large time commitment but brings only a small profit, she might reject
this project in favor of waiting for a new batch of options. If N [k] = 0 then there are no
options and so (T [k], R[k]) = (1, 0).

The task type S[k] formally contains all N [k] and (Tj [k], Rj [k]) parameters, and the
decision set is:2

D(S[k]) = {(1, 0), (T1[k], R1[k]), . . . , (TN [k][k], RN [k][k])}

How do we know if a particular option, say (10.7, 1.2), is good or bad? Can we learn to
make good project selection decisions? How fast can we learn?

3. Formulation

As described in the introduction, the task type sequence {S[k]}∞k=0 is i.i.d. over frames.
Every frame k ∈ {0, 1, 2, . . .} the controller observes S[k] and chooses (T [k], R[k]) ∈ D(S[k]),
where D(S[k]) is a known set of options for (T [k], R[k]) that are available under S[k].

3.1 Structural assumptions

Assume {S[k]}∞k=0 is an i.i.d. sequence of random vectors that take values in a set ΩS ⊆ R
m.

For each s ∈ ΩS the decision set D(s) is assumed to be a compact subset of R2 that satisfies

D(s) ⊆ (0,∞)× (−∞,∞)

This ensures all vectors (t, r) ∈ D(s) have t > 0 (so frame sizes are positive). It is as-
sumed that on each slot k the decisions (T [k], R[k]) ∈ D(S[k]) are made according to some
probability law that ensures T [k] and R[k] are both random variables, meaning they are
probabilistically measurable.3 The probability law can be different for each frame and can
depend on observations from previous frames.

It is useful to ensure bounds on the first and second moments of T [k] and R[k] that hold
regardless of the decisions. For this we assume existence of lower bound and upper bound
functions L : ΩS → [0,∞) and U : ΩS → [0,∞) that satisfy

inf
(t,r)∈D(s)

{t} ≥ L(s) ∀s ∈ ΩS (9)

sup
(t,r)∈D(s)

{t2 + r2} ≤ U(s) ∀s ∈ ΩS (10)

2. There is no loss of generality in assuming S[k] ∈ R
m for some positive integer m. That is because we

can formally pack an infinite sequence of task parameters into a single real number by organizing the
digits of its infinite decimal expansion.

3. The assumption that T [k] and R[k] are probabilistically measurable is mild and precludes using the
Axiom of Choice to make nonmeasurable decisions.
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and for which L(S[0]) and U(S[0]) are random variables with expectations that satisfy

E [L(S[0])] > 0 (11)

E [U(S[0])] < ∞ (12)

An example when such bounding functions exist is when D(s) ⊆ [t1, t2] × [r1, r2] for all
s ∈ ΩS , where t1, t2 and r1, r2 are some constants that satisfy 0 < t1 ≤ t2 and r1 ≤ r2. In
that case we have constant functions L(s) = t1 and U(s) = t22 +max{r21, r22} for all s ∈ ΩS .

From (9)-(12) it follows that regardless of the decisions we have

T [k] ≥ L(S[k]) ∀k ∈ {0, 1, 2, . . .}
T [k]2 +R[k]2 ≤ U(S[k]) ∀k ∈ {0, 1, 2, . . .}

and there are constants Tmin, Tmax, Rmin, Rmax, C1, C2 such that for all k ∈ {0, 1, 2, . . .}:

Tmin > 0 (13)

Tmin ≤ E [T [k]] ≤ Tmax (14)

Rmin ≤ E [R[k]] ≤ Rmax (15)

E
[

T [k]2
]

≤ C1 (16)

E
[

R[k]2
]

≤ C2 (17)

It is assumed the controller knows the values of Tmin, Tmax, Rmin, Rmax.

3.2 Optimization goal

The goal is to choose decision vectors over time to solve:

Maximize: lim inf
K→∞

∑K−1
k=0 E [R[k]]

∑K−1
k=0 E [T [k]]

(18)

Subject to: (T [k], R[k]) ∈ D(S[k]) ∀k ∈ {0, 1, 2, . . .} (19)

The objective in (18) considers a ratio of expectations, similar to the renewal optimization
problems considered in (Neely, 2013)(Neely, 2010). Define θ∗ as the supremum value of
the objective function (18) over all algorithms that satisfy the constraints (19). The value
θ∗ considers all algorithms that result in measurable decision vectors, including algorithms
that know, starting from time 0, the full distribution function FS(s) and all future values
{S[k]}∞k=0. The key result of this paper is to establish the fundamental convergence time
required to approach a value close to θ∗ under the more practical class of algorithms that
are causal (so they have no knowledge of the future) and statistics unaware (so they have
no a-priori knowledge of the distribution FS(s)).

3.3 Characterizing optimality

This subsection summarizes key facts from (Neely, 2013). LetA ⊆ [Tmin, Tmax]×[Rmin, Rmax]
be the set of all 1-shot expectations (E [T [0]] ,E [R[0]]) achievable on frame 0, considering
all possible conditional probability distributions for choosing (T [0], R[0]) ∈ D(S[0]) given

11
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the observed task type S[0]. It can be shown that A is a convex set. Because {S[k]}∞k=0 is
i.i.d. over frames, the set of expectations achievable on slot 0 is the same as the set of ex-
pectations achievable on any slot k. Thus, under any algorithm for making probabilistically
measurable decisions over frames we have

(E [T [k]] ,E [R[k]]) ∈ A ∀k ∈ {0, 1, 2, . . .}

and since a convex combination of vectors in the convex set A must also be in A, we have

1

K

K−1
∑

k=0

(E [T [k]] ,E [R[k]]) ∈ A ∀K ∈ {1, 2, 3, . . .}

Let A denote the closure of set A. Recall that all points (t, r) ∈ A have t ≥ Tmin > 0.
It can be shown that the supremum objective θ∗ for the problem (18)-(19) is achievable
by a particular (possibly non-stationary) algorithm for making decisions over frames and
satisfies:

θ∗ = sup
(t,r)∈A

{r

t

}

(20)

The supremum on the right-hand-side of (20) is achievable because r/t is a continuous
function over the compact set A. In particular, there exists a (possibly non-unique) optimal
point (t∗, r∗) ∈ A such that

θ∗ =
r∗

t∗
(21)

Lemma 1 (From (Neely, 2013)) Let θ∗ be the optimal ratio in (20). Then

sup
(t,r)∈A

{r − θ∗t} = 0 (22)

Proof A proof is provided for completeness. Fix (t, r) ∈ A and recall that t > 0. Then

r − θ∗t =
(

−θ∗ +
r

t

)

t ≤
(

−θ∗ + sup
(t′,r′)∈A

{

r′

t′

}

)

t = 0

where the final equality uses the definition of θ∗ in (20). This holds for all (t, r) ∈ A and so

sup
(t,r)∈A

{r − θ∗t} ≤ 0

To prove the reverse inequality, since (t∗, r∗) ∈ A we have

sup
(t,r)∈A

{r − θ∗t} ≥ r∗ − θ∗t∗ = 0

where the final equality holds by (21).

12
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4. An iterative algorithm

Here we develop an algorithm that is causal and that does not know the distribution function
FS(s). Assume the values Tmin, Tmax, Rmin, Rmax are known to the controller. Let θmin

and θmax be finite and known values that satisfy:

θmin ≤ θ∗ ≤ θmax (23)

For example, the following values for θmin and θmax can be used:

θmin = min
{

Rmin

Tmin
, Rmin

Tmax

}

θmax = max
{

Rmax

Tmin
, Rmax

Tmax

}

where we recall that the Rmin and Rmax values can be negative. Values of θmin and θmax

that more tightly bracket θ∗ can be used if the structure of the system allows such tighter
values to be known. The following algorithm introduces a sequence of estimates {θ[k]}∞k=0

of θ∗ as follows: Initialize θ[0] ∈ [θmin, θmax] as an arbitrary deterministic value. On each
frame k ∈ {0, 1, 2, . . .} do:

• Observe S[k] ∈ ΩS and the current θ[k] value. Choose (T [k], R[k]) to solve:

Maximize: R[k]− θ[k]T [k] (24)

Subject to: (T [k], R[k]) ∈ D(S[k]) (25)

breaking ties arbitrarily.4 There is at least one maximizer because the set D(S[k]) is
compact.

• Update θ[k] via the iteration:

θ[k + 1] = [θ[k] + η[k](R[k]− θ[k]T [k])]θmax

θmin
(26)

where {η[k]}∞k=0 is a deterministic sequence of step sizes to be chosen later; [x]θmax

θmin

denotes a projection of real number x onto the interval [θmin, θmax].

The update equation (26) is inspired by the classic Robbins-Monro iteration in (8). The
main complexity of the algorithm is the selection of (T [k], R[k]) in (24)-(25) to maximize
a linear function over the 2-dimensional decision set D(S[k]). Recall that the decision
set is only assumed to be compact (it can be finite or infinite, convex or nonconvex). If
D(S[k]) contains 100 points, then we simply consider all 100 points and choose the best
one. Simulations in Section 8 treat cases where the decision set contains a finite number of
points, and also cases where it contains an infinite curve of points.

The objective in the maximization step (24) is similar to the r − θ∗t expression from
Lemma 1, with the exception that the vector (t, r) ∈ A, which represents an achievable ex-
pectation (E [T [k]] ,E [R[k]]), is replaced by the actual realization (T [k], R[k]) that is chosen

4. As a minor detail, we note that the tiebreaking rule must conform to a particular probability law that
yields probabilistically measurable (T [k], R[k]) variables. An example tiebreaking rule is to choose,
among all vectors (t, r) ∈ D(S[k]) that tie, the vector with the smallest t-coordinate.
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for task k. However, since θ[k] is independent of S[k], choosing the realization (T [k], R[k]) ∈
D(S[k]) to solve (24)-(25) results in a conditional expectation E [(T [k], R[k])|θ[k]] that max-
imizes r − θ[k]t over all (t, r) ∈ A. Another difference is that the value of θ∗ is unknown,
so we use the estimated value θ[k] in (24). The estimate θ[k] is updated according to (26),
which increases or decreases θ[k] depending on whether R[k] − θ[k]T [k] is positive or neg-
ative. This is because, as shown in (Neely, 2013), the value of sup(t,r)∈A{r − θt} yields a
sign that indicates whether θ > θ∗, θ = θ∗, or θ < θ∗.

4.1 Technical lemma

The following lemma holds because the θ[k] parameter in the algorithm (24)-(26) depends
only on {S[0], . . . , S[k − 1]} and does not depend on the task type S[k].

Lemma 2 Consider algorithm (24)-(26) with any initial constant θ[0] ∈ [θmin, θmax] and
any positive stepsizes {η[k]}∞k=0. For each k ∈ {0, 1, 2, . . .} and for any versions of E [T [k]|θ[k]]
and E [R[k]|θ[k]], the following holds with probability 1:5

(E [T [k]|θ[k]] ,E [R[k]|θ[k]]) ∈ A (27)

That is, (27) holds for almost all realizations of θ[k]. Further, there are versions of
E [T [k]|θ[k]] and E [R[k]|θ[k]] under which (27) holds surely for all realizations of θ[k].

Proof This is a special case of a more general result developed in (Neely, 2020c).

Intuitively, the above lemma holds because {S[k]}∞k=0 is i.i.d. over frames. Since θ[k]
depends only on {S[0], . . . , S[k − 1]}, the random variables θ[k] and S[k] are independent.
Since the decision set D(S[k]) depends only on S[k], knowing θ[k] does not change the set
of expectations that can be achieved on frame k. For the rest of this paper E [T [k]|θ[k]] and
E [R[k]|θ[k]] shall represent any particular versions of the conditional expectations.

4.2 Analysis of the (T [k], R[k]) decision

The following lemmas use θ∗ as the optimal ratio in (20) and assume (t∗, r∗) is a vector in
A that satisfies θ∗ = r∗/t∗. Lemma 3 connects to Lemma 1 by bounding the deviation from
0 for E [R[k]− θ[k]T [k]|θ[k]] when θ[k] 6= θ∗.

Lemma 3 Consider the algorithm (24)-(26) with any initial constant θ[0] ∈ [θmin, θmax]
and any positive stepsizes {η[k]}∞k=0. For each k ∈ {0, 1, 2, . . .} we have for almost all
realizations of θ[k]:

E [R[k]− θ[k]T [k]|θ[k]] ≥ t∗(θ∗ − θ[k]) (28)

and
E [R[k]− θ∗T [k]|θ[k]] ≥ (θ[k]− θ∗)E [(T [k]− t∗)|θ[k]] (29)

That is, the probability that random variable θ[k] does not satisfy both (28) and (29) is 0.

5. Recall that ifX and Y are two random variables with E [|X|] <∞ then: (i) There can be multiple versions
of the conditional expectation E [X|Y ]; (ii) Each version is a random variable that is a deterministic
function of Y ; (iii) Any two versions φ(Y ) and ψ(Y ) satisfy P [φ(Y ) = ψ(Y )] = 1.

14



Fast Learning for Renewal Optimization in Online Task Scheduling

Proof Fix k ∈ {0, 1, 2, . . .}. The decision vector (T [k], R[k]) is chosen by observing θ[k]
and S[k] and selecting the vector in D(S[k]) that maximizes R[k]− θ[k]T [k], and so

R[k]− θ[k]T [k] ≥ R∗[k]− θ[k]T ∗[k]

where (T ∗[k], R∗[k]) is any other (potentially randomized) vector in D(S[k]). Taking con-
ditional expectations gives (with probability 1):6

E [R[k]− θ[k]T [k]|θ[k]] ≥ E [R∗[k]|θ[k]]− θ[k]E [T ∗[k]|θ[k]] (30)

Note that θ[k] depends on history in the system that occurred before frame k, and in
particular θ[k] is independent of S[k]. Fix (t, r) ∈ A. By definition of A, there is a con-
ditional distribution for choosing (T [0], R[0]) ∈ D(S[0]), given the observed S[0], such that
(E [T [0]] ,E [R[0]]) = (t, r). Since S[k] is independent of θ[k] and has the same distribu-
tion as S[0], we can use the same conditional distribution to produce a random vector
(T ∗[k], R∗[k]) ∈ D(S[k]) that is independent of θ[k] such that

(E [T ∗[k]] ,E [R∗[k]]) = (t, r)

and since (T ∗[k], R∗[k]) is independent of θ[k] we have (with probability 1):

E [T ∗[k]|θ[k]] = t

E [R∗[k]|θ[k]] = r

Substituting these identities into (30) gives (with probability 1):

E [R[k]− θ[k]T [k]|θ[k]] ≥ r − θ[k]t (31)

Let (t∗, r∗) be a vector in A that satisfies θ∗ = r∗/t∗. Since (t∗, r∗) is in the closure of the set
A, there is a sequence of points {(ti, ri)}∞i=1 in A that converge to the value (t∗, r∗). Since
(31) was shown to hold (with probability 1) for an arbitrary (t, r) ∈ A, with probability 1
it holds simultaneously for all of the (countably many) (ti, ri) ∈ A for i ∈ {1, 2, 3, . . .} and
so:7

E [R[k]− θ[k]T [k]|θ[k]] ≥ ri − θ[k]ti ∀i ∈ {1, 2, 3, . . .}

Taking a limit as i → ∞ yields (with probability 1):

E [R[k]− θ[k]T [k]|θ[k]] ≥ r∗ − θ[k]t∗

= t∗(θ∗ − θ[k])

where the final equality uses θ∗ = r∗/t∗. This proves (28). Adding (θ[k] − θ∗)E [T [k]|θ[k]]
to both sides proves (29).

6. This uses the measure theory fact that if X and Y are random variables with finite expectations that
satisfy X − Y ≥ 0 surely, and if Z is another random variable, then E [X − Y |Z] ≥ 0 with probability 1.

7. Recall that if {Fi}
∞

i=1 is an infinite sequence of events that satisfy P [Fi] = 1 for all i ∈ {1, 2, 3, . . .} then
P [∩∞

i=1Fi] = 1.
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Lemma 4 Consider the algorithm (24)-(26) with any θ[0] ∈ [θmin, θmax] and any positive
stepsizes {η[k]}∞k=0. We have for all positive integers K:

∣

∣

∣

∣

∣

θ∗ −
∑K−1

k=0 E [R[k]]
∑K−1

k=0 E [T [k]]

∣

∣

∣

∣

∣

≤ 1

KTmin

K−1
∑

k=0

E [|θ[k]− θ∗| · |T [k]− t∗|] (32)

where Tmin satisfies (13)-(14).

Proof Fix k ∈ {0, 1, 2, . . .}. We have (E [T [k]] ,E [R[k]]) ∈ A and so

E [R[k]]− θ∗E [T [k]] ≤ sup
(t,r)∈A

[r − θ∗t] = 0

where the final equality holds by Lemma 1. Summing over k ∈ {0, . . . ,K − 1} gives
∑K−1

k=0 E [R[k]− θ∗T [k]] ≤ 0

Rearranging terms yields

θ∗ ≥
∑K−1

k=0 E [R[k]]
∑K−1

k=0 E [T [k]]
(33)

On the other hand, we can take expectations of (29) and use the law of iterated expec-
tations to obtain

E [R[k]− θ∗T [k]] ≥ E [(θ[k]− θ∗)(T [k]− t∗)]

Summing this over k ∈ {0, . . . ,K − 1} and rearranging terms yields

∑K−1
k=0 E [R[k]]

∑K−1
k=0 E [T [k]]

≥ θ∗ +
1

∑K−1
k=0 E [T [k]]

K−1
∑

k=0

E [(θ[k]− θ∗)(T [k]− t∗)]

≥ θ∗ − 1

KTmin

K−1
∑

k=0

E [|θ[k]− θ∗| · |T [k]− t∗|] (34)

Combining (33) and (34) proves the lemma.

To make the right-hand-side of (32) close to 0, it is desirable to make the θ[k] parameter
close to θ∗.

4.3 Analysis of the update rule

Consider the algorithm (24)-(26) with any initial constant θ[0] ∈ [θmin, θmax] and any posi-
tive stepsizes. Define b as a constant that satisfies

1

2
E
[

(R[k]− θ[k]T [k])2
]

≤ b ∀k ∈ {0, 1, 2, . . .} (35)

Such a constant b exists because θ[k] ∈ [θmin, θmax] and the R[k] and T [k] variables satisfy
the first and second moment bounds (13)-(17). The following lemma is similar in spirit
to the analysis of Robbins-Monro iterations for different systems in (Robbins and Monro,
1951)(Nemirovski et al., 2009). Here, the size of Tmin determines a weight on an important
negative quadratic term.
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Lemma 5 Under algorithm (24)-(26) with any initial constant θ[0] ∈ [θmin, θmax] and any
(deterministic) positive stepsizes {η[k]}∞k=0, we have for all frames k ∈ {0, 1, 2, . . .}

1

2
E
[

(θ[k + 1]− θ∗)2
]

≤
(

1

2
− Tminη[k]

)

E
[

(θ[k]− θ∗)2
]

+ η[k]2b (36)

where the constant b satisfies (35); the constant Tmin satisfies (13)-(14); the constant θ∗ is
defined by (20).

Proof Fix k ∈ {0, 1, 2, . . .}. For simplicity of notation define z[k] = θ[k] + η[k](R[k] −
θ[k]T [k]). Recall that [x]θmax

θmin
denotes a projection of the real number x onto the interval

[θmin, θmax]. By (26) we have

(θ[k + 1]− θ∗)2 = ([z[k]]θmax

θmin
− θ∗)2

(a)
= ([z[k]]θmax

θmin
− [θ∗]θmax

θmin
)2

(b)

≤ (z[k]− θ∗)2

where (a) uses the fact that θ∗ ∈ [θmin, θmax]; (b) uses the fact that the distance between the
projections of two real numbers onto a closed interval is less than or equal to the distance
between those real numbers. Thus

1

2
(θ[k + 1]− θ∗)2 ≤ 1

2
(θ[k]− θ∗ + η[k](R[k]− θ[k]T [k]))2

=
1

2
(θ[k]− θ∗)2 +

η[k]2

2
(R[k]− θ[k]T [k])2 + η[k](θ[k]− θ∗)(R[k]− θ[k]T [k])

Taking expectations gives

1

2
E
[

(θ[k + 1]− θ∗)2
]

≤ 1

2
E
[

(θ[k]− θ∗)2
]

+η[k]2b+η[k]E [(θ[k]− θ∗)(R[k]− θ[k]T [k])] (37)

To complete the proof it suffices to provide the following bound on the final term of (37):

η[k]E [(θ[k]− θ∗)(R[k]− θ[k]T [k])] ≤ −η[k]TminE
[

(θ[k]− θ∗)2
]

To do this, it suffices to show the following conditional expectation holds for almost all
realizations of θ[k], that is with probability 1:

(θ[k]− θ∗)E [R[k]− θ[k]T [k]|θ[k]] ≤ −Tmin(θ[k]− θ∗)2 (38)

To show (38) we consider two cases.

• Case 1: Suppose θ[k] < θ∗. By (28) we have for almost all θ[k] for which θ[k]−θ∗ < 0:

E [R[k]− θ[k]T [k]|θ[k]] ≥ t∗(θ∗ − θ[k])

Multiplying both sides by the (negative) value θ[k]− θ∗ flips the inequality to yield

(θ[k]− θ∗)E [R[k]− θ[k]T [k]|θ[k]] ≤ −t∗(θ∗ − θ[k])2

≤ −Tmin(θ
∗ − θ[k])2

where the final inequality holds because t∗ ≥ Tmin. Thus, (38) holds in this Case 1.
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• Case 2: Suppose θ[k] ≥ θ∗. We have

(θ[k]− θ∗)(R[k]− θ[k]T [k]) = (θ[k]− θ∗)(R[k]− θ∗T [k])− T [k](θ[k]− θ∗)2

Taking conditional expectations given θ[k] gives, for almost all θ[k] that satisfy θ[k]−
θ∗ ≥ 0:

(θ[k]− θ∗)E [R[k]− θ[k]T [k]|θ[k]]
= (θ[k]− θ∗)E [R[k]− θ∗T [k]|θ[k]]− (θ[k]− θ∗)2E [T [k]|θ[k]]
≤ (θ[k]− θ∗)E [R[k]− θ∗T [k]|θ[k]]− Tmin(θ[k]− θ∗)2 (39)

where the final inequality holds because E [T [k]|θ[k]] ≥ Tmin (recall Lemma 2). How-
ever, by Lemma 2 we know the conditional expectations (E [T [k]|θ[k]] ,E [R[k]|θ[k]])
are in the set A (with probability 1) and so (with probability 1):

E [R[k]|θ[k]]− θ∗E [T [k]|θ[k]] ≤ sup
(t,r)∈A

[r − θ∗t]

= 0

where the final equality holds by Lemma 1. Multiplying the above inequality by the
nonnegative value (θ[k]− θ∗) does not flip the inequality and we obtain

(θ[k]− θ∗)E [R[k]− θ[k]T [k]|θ[k]] ≤ 0

Substituting this into (39) shows that (38) holds in this Case 2.

4.4 Decreasing stepsize

The previous lemma can be used with a constant stepsize η[k] = ε to prove a bound on the
mean squared error between θ[k] and θ∗. However, the following lemma uses a decreasing
stepsize to achieve faster convergence. Due to the renewal optimization structure of the
current problem, the stepsize used here must be sized carefully with respect to the Tmin

parameter. This required care in choosing the stepsize is analogous to the discussion on
stepsize for a different class of systems in (Nemirovski et al., 2009): Work in (Nemirovski
et al., 2009) shows how, for a class of systems with strongly convex properties, a fast O(1/k)
convergence rate can be degraded into a slow O(1/k1/5) rate if the stepsize parameter is not
carefully sized according to a strong convexity parameter (which may be difficult to know in
practice). That example is used to motivate alternative robust approaches for the systems
studied there. The lemma below applies to a different kind of system and does not require
any type of strong convexity/concavity. It uses a value Tmin for the stepsize selection, but
Tmin is easy to know in practice. For example, if all frame sizes are at least 1 unit of time,
we can use Tmin = 1.
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Lemma 6 Under the algorithm (24)-(26) with any initial constant θ[0] ∈ [θmin, θmax] and
with stepsizes

η[k] =
1

(k + 2)Tmin
∀k ∈ {0, 1, 2, . . .}

we have

E
[

(θ[k]− θ∗)2
]

≤ 2b

kT 2
min

∀k ∈ {1, 2, 3, . . .} (40)

where the constant b satisfies (35); the constant Tmin satisfies (13)-(14); the constant θ∗ is
defined by (20).

Proof The proof uses an induction argument inspired by the analysis in (Bubeck, 2015)
for a different class of problems (namely, Frank-Wolfe methods for deterministic convex
optimization). For simplicity define

zk =
1

2
E
[

(θ[k]− θ∗)2
]

∀k ∈ {0, 1, 2, . . .}

It suffices to show zk ≤ b
kT 2

min

for all k ∈ {1, 2, 3, . . .}. From (36) we have

zk+1 ≤ (1− 2Tminη[k])zk + η[k]2b ∀k ∈ {0, 1, 2, . . .} (41)

Applying the above inequalty at k = 0 and using η[0] = 1/(2Tmin) gives

z1 ≤
b

4T 2
min

We now use induction with the base case k = 1. Suppose that zk ≤ b/(kT 2
min) for some

k ∈ {1, 2, 3, . . .} (it holds for k = 1 by the above inequality, since b/(4T 2
min) ≤ b/T 2

min). We
show the same holds for k + 1. We have from (41):

zk+1 ≤ (1− 2Tminη[k])zk + η[k]2b

(a)
= (

k

k + 2
)zk +

b

(k + 2)2T 2
min

(b)

≤ (
k

k + 2
)

b

kT 2
min

+
b

(k + 2)2T 2
min

=
b(k + 3)

(k + 2)2T 2
min

(c)

≤ b

(k + 1)T 2
min

where (a) holds because η[k] = 1
(k+2)Tmin

; (b) holds by the induction assumption zk ≤ b
kT 2

min

;

(c) holds because (k + 3)/(k + 2)2 ≤ 1/(k + 1) for all k ≥ 0.
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4.5 Online performance theorem

Theorem 1 (General performance) Under the algorithm (24)-(26) with initial constant
θ[0] ∈ [θmin, θmax] and stepsizes η[k] = 1

(k+2)Tmin
for k ∈ {0, 1, 2, . . .} we have

∣

∣

∣

∣

∣

θ∗ −
∑K−1

k=0 E [R[k]]
∑K−1

k=0 E [T [k]]

∣

∣

∣

∣

∣

≤
√
2C1

KTmin

[

|θ[0]− θ∗|+ −
√
2b+

√

8b(K − 1)

Tmin

]

∀K ∈ {2, 3, 4, . . .}

where C1 satisfies (16) and b satisfies (35). Hence, deviation from the optimal ratio θ∗

decays like O(1/
√
K).

Proof From (32) we have for all integers K ≥ 2:

∣

∣

∣

∣

∣

θ∗ −
∑K−1

k=0 E [R[k]]
∑K−1

k=0 E [T [k]]

∣

∣

∣

∣

∣

≤ 1

KTmin

K−1
∑

k=0

E [|θ[k]− θ∗| · |T [k]− t∗|]

(a)

≤ 1

KTmin

K−1
∑

k=0

√

E [(θ[k]− θ∗)2]E [(T [k]− t∗)2]

(b)

≤
√
2C1

KTmin

[

√

E [(θ[0]− θ∗)2] +
K−1
∑

k=1

√

E [(θ[k]− θ∗)2]

]

(c)

≤
√
2C1

KTmin

[

√

E [(θ[0]− θ∗)2] +
K−1
∑

k=1

√

2b

kT 2
min

]

(d)

≤
√
2C1

KTmin

[

√

E [(θ[0]− θ∗)2] +
−
√
2b+

√

8b(K − 1)

Tmin

]

where (a) follows by the Cauchy-Schwarz inequality; (b) holds by (16) and (T [k] − t∗)2 ≤
T [k]2+(t∗)2 ≤ T [k]2+C1; (c) holds by (40); (d) holds because

∑K−1
k=1

1√
k
≤ 1+

∫K−1
1

1√
t
dt.

4.6 Strongly concave curvature

This section proves that the algorithm achieves a faster convergence rate in the special
case when the set A has a strongly concave property. Specifically, suppose the set A has a
strongly concave upper boundary about the optimality point (t∗, r∗), so that for some c > 0
we have (see Fig. 2):

r ≤ r∗ + θ∗(t− t∗)− c

2
(t− t∗)2 ∀(t, r) ∈ A (42)

Theorem 2 (Performance with strongly concave curvature) Assume A has the strongly
concave curvature property (with parameter c) specified in (42). Under the algorithm
(24)-(26) with initial constant θ[0] ∈ [θmin, θmax] and stepsize η[k] = 1

(k+2)Tmin
for k ∈

20



Fast Learning for Renewal Optimization in Online Task Scheduling

{0, 1, 2, . . .} we have

∣

∣

∣

∣

∣

θ∗ −
∑K−1

k=0 E [R[k]]
∑K−1

k=0 E [T [k]]

∣

∣

∣

∣

∣

≤
2(θ[0]− θ∗)2 + 4b

T 2
min

(1 + log(K − 1))

KcTmin
∀K ∈ {2, 3, 4, . . .} (43)

and so deviation from the optimal ratio θ∗ decays like O(log(K)/K).

Proof Fix k ∈ {0, 1, 2, . . .}. For almost all θ[k] we have (by Lemma 2):

(E [T [k]|θ[k]] ,E [R[k]|θ[k]]) ∈ A

So by (42) we have with probability 1:

E [R[k]|θ[k]] ≤ r∗ + θ∗(E [T [k]|θ[k]]− t∗)− c

2
(E [T [k]|θ[k]]− t∗)2 (44)

From (29) we have for all real numbers β > 0 (with prob 1):

E [R[k]− θ∗T [k]|θ[k]] ≥ (θ[k]− θ∗)(E [T [k]|θ[k]]− t∗)

=

(

1

β
(θ[k]− θ∗)

)

β(E [T [k]|θ[k]]− t∗)

(a)

≥ −(θ[k]− θ∗)2

2β2
− β2(E [T [k]|θ[k]]− t∗)2

2
(b)

≥ −(θ[k]− θ∗)2

2β2
− β2

c
[r∗ + θ∗(E [T [k]|θ[k]]− t∗)− E [R[k]|θ[k]]]

(c)
= −(θ[k]− θ∗)2

2β2
+

β2

c
E [R[k]− θ∗T [k]|θ[k]]

where (a) uses the fact ab ≥ −a2+b2

2 for all real numbers a, b; (b) uses (44); (c) uses
r∗ − θ∗t∗ = 0. Choose β > 0 so that β2/c = 1/2. Then

E [R[k]− θ∗T [k]|θ[k]] ≥ −(θ[k]− θ∗)2

β2
= −2

c
(θ[k]− θ∗)2

where the final equality uses β2 = c/2. Taking expectations of the above and using the law
of iterated expectations gives

E [R[k]− θ∗T [k]] ≥ −2

c
E
[

(θ[k]− θ∗)2
]

Fix integer K ≥ 2. Summing the above inequality over k ∈ {0, . . . ,K − 1} gives

K−1
∑

k=0

E [R[k]]− θ∗
K−1
∑

k=0

E [T [k]] ≥ −2

c
E
[

(θ[0]− θ∗)2
]

− 2

c

K−1
∑

k=1

E
[

(θ[k]− θ∗)2
]

(a)

≥ −2

c
E
[

(θ[0]− θ∗)2
]

− 2

c

K−1
∑

k=1

2b

kT 2
min

(b)

≥ −2

c
E
[

(θ[0]− θ∗)2
]

− 4b

cT 2
min

(1 + log(K − 1))
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where (a) holds by (40); (b) holds because
∑K−1

k=1 1/k ≤ 1 +
∫K−1
1 (1/t)dt. Rearranging

terms gives

∑K−1
k=0 E [R[k]]

∑K−1
k=0 E [T [k]]

≥ θ∗ −
2E
[

(θ[0]− θ∗)2
]

+ 4b
T 2
min

(1 + log(K − 1))

c
∑K−1

k=0 E [T [k]]

≥ θ∗ −
2E
[

(θ[0]− θ∗)2
]

+ 4b
T 2
min

(1 + log(K − 1))

KcTmin

where the final inequality holds because E [T [k]] ≥ Tmin for all k. On the other hand (33) im-
plies that the ratio on the left-hand-side is less than or equal to θ∗. This proves the result.

4.7 Discussion

Theorem 1 shows the optimality gap decays like O(1/
√
K) for general systems. Theorem 2

shows that for systems with a strongly concave property, the optimality gap decays much
faster according to O(log(K)/K). This improved convergence speed does not require any
changes in the algorithm itself. Indeed, the algorithm does not need to know whether or
not the system has the strong concavity property. If the system does have the strongly
concave property, the algorithm automatically yields faster convergence without having to
know the strong concavity parameter c.

5. Matching converse for strongly concave structure

This section constructs a particular system (with a strongly concave curvature) for which
all causal algorithms that do not have a-priori knowledge of the probability distribution
FS(s) have optimality gaps that decay no faster than Ω(log(K)/K). This matches the
O(log(K)/K) achievability result of Theorem 2 and shows that this convergence rate is op-
timal over the class of systems with strongly concave curvature. For the proof, we construct
a nontrivial mapping from the sequential decision problem to a related estimation prob-
lem. This allows use of the Bernoulli estimation theorem of (Hazan and Kale, 2014). This
mapping technique is conceptually similar to the method recently used to prove a converse
result for a different class of systems with unit timeslots in (Neely, 2020a).

5.1 System

Suppose the task type process is an i.i.d. Bernoulli process {S[k]}∞k=0 with

P [S[k] = 1] = q ; P [S[k] = 0] = 1− q (45)

where q is an unknown probability. For technical reasons, we assume throughout that
q ∈ [1/4, 3/4]. Every frame k ∈ {0, 1, 2, . . .} the controller observes S[k] and then chooses
(T [k], R[k]) ∈ D(S[k]), where

D(S[k]) =

{

(1, 1) , if S[k] = 0
{(x, 2− (2− x)2) ∈ R

2 : x ∈ [1, 2]} , if S[k] = 1
(46)
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The decision structure (46) defines a system with inflexible tasks (type 0) and flexible
tasks (type 1). Indeed, if S[k] = 0 then the controller must choose (T [k], R[k]) = (1, 1).
However, if S[k] = 1 then the controller can choose (T [k], R[k]) as any point on the curve
(x, 2− (2− x)2) for x ∈ [1, 2]. A higher reward is obtained for larger values of x, but with
diminishing returns (see Fig. 2). This particular curve is chosen as a representative example
with strongly concave curvature.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Frame size T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
e

w
a

rd
 R

(t*,r*)

Set A

Figure 2: The set A with a strongly concave upper boundary for the example of Section
5.1 with q = 0.7.

Lemma 7 The point (t∗, r∗) ∈ A that maximizes r/t over all points (t, r) ∈ A is achieved
on the upper boundary of A (see Fig. 2) and satisfies:

t∗ =
√

1 + q (47)

r∗ =
2(q + 1)

(

−1 +
√
1 + q

)

q
(48)

θ∗ =
r∗

t∗
= 2− 2

q

(

−1 +
√

1 + q
)

(49)

Further, by strong concavity of the upper boundary of set A we have

r ≤ θ∗t− 1

q
(t− t∗)2 ∀(t, r) ∈ A (50)

8. The strongly concave decision curve gives rise to a set A with a strongly concave upper boundary. The
Ω(log(K)/K) converse result in this section can be extended to more general systems for which A has a
strongly concave upper boundary.

23



Neely

Proof This holds by basic analysis of the set A in Fig. 2 and details are in the technical
report (Neely, 2020c).

5.2 Causal and measurable algorithms

Our converse result considers algorithms that choose (T [k], R[k]) ∈ D(S[k]) every frame k in
a way that is causal (so the algorithm has no knowledge of the future) and probabilistically
measurable (so probability distributions and expectations are well defined). For each k ∈
{0, 1, 2, . . .}, define H[k] as the system history up to but not including frame k:

H[k] = (S[0], S[1], . . . , S[k − 1]) ∀k ∈ {1, 2, 3, . . .}

where H[0] is formally defined as 0 (since there is no history before frame 0). On each frame
k, a general causal and measurable algorithm makes decisions as a deterministic function
of (H[k], U) where U is uniformly distributed in [0, 1) and is independent of {S[k]}∞k=0.
The variable U represents an external source of randomness that can inform randomized
decisions. Let {fk}∞k=0 be a sequence of Borel-measurable functions of the following form:

f0 : [0, 1) → D(1)

fk : {0, 1}k × [0, 1) → D(1) ∀k ∈ {1, 2, 3, . . .}

These functions {fk}∞k=0 establish control decisions on each frame k ∈ {0, 1, 2, . . .}:

(T [k], R[k]) =

{

(1, 1) , if S[k] = 0
fk(H[k], U) , if S[k] = 1

(51)

Since D(1) is a bounded set, the corresponding expectations (E [T [k]] ,E [R[k]]) are well
defined and finite, as are the conditional expectations given (H[k], U). We say that decisions
(T [k], R[k]) ∈ D(S[k]) for k ∈ {0, 1, 2, . . .} are causal and measurable if they come from a
sequence of deterministic functions {fk}∞k=0 with the above structure.

This algorithm structure is not restrictive: From the single random variable U , we can
construct an infinite sequence of i.i.d. uniformly distributed random variables {Ui}∞i=1,
where each Ui is a deterministic function of U .9 This allows the controller to make as many
calls to a random number generator as needed (assuming an at-most countably infinite
number of such calls).

Lemma 8 Fix q ∈ [1/4, 3/4] and consider any causal and measurable decisions (T [k], R[k]) ∈
D(S[k]) for k ∈ {0, 1, 2, . . .}. For each k ∈ {0, 1, 2, . . .} we have:

E [(T [k], R[k])|H[k]] ∈ A (52)

Furthermore,

E [R[k]|H[k]] ≤ θ∗E [T [k]|H[k]]− 1

q
(E [T [k]|H[k]]− t∗)2 (53)

where t∗ =
√
1 + q and θ∗ satisfies (49).

9. This can be done by writing U =
∑

∞

i=1Xi10
−i in the unique base-10 expansion where Xi ∈ {0, . . . , 9} is

the ith digit of the expansion and {Xi}
∞

i=1 does not have an infinite tail of 9s, and defining Un for each
n ∈ {1, 2, 3, . . .} by Un =

∑
∞

i=1Xg(n,i)10
−i where g : N2 → N is any bijection.
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Proof The fact (52) is similar to Lemma 2 and can be proven by noting A = A and S[k] is
independent of (U,H[k]) (see (Neely, 2020c) for details). Substituting (52) into (50) proves
(53).

5.3 The Bernoulli estimation theorem from (Hazan and Kale, 2014)

Let {gk}∞k=1 be an infinite sequence of deterministic functions of the form:

gk : {0, 1}k → [0, 1] ∀k ∈ {1, 2, 3, . . .}

and for each k ∈ {1, 2, 3, . . .} the function gk(s0, . . . , sk−1) maps a binary-valued sequence
(s0, . . . , sk−1) to a real number in the interval [0, 1]. Let {S[k]}∞k=0 be an i.i.d. sequence
of Bernoulli random variables with parameter q = P [S[k] = 1]. Assume that q is an
unknown parameter in the interval [1/4, 3/4]. The functions gk shall be called estimation
functions because they can map the first k observations of the Bernoulli random variables
to a (deterministic) estimate G[k] of the q parameter via:

G[k] = gk(S[0], S[1], . . . , S[k − 1]) ∀k ∈ {1, 2, 3, . . .} (54)

The following theorem from (Hazan and Kale, 2014) provides a lower bound on the mean
square error for any sequence of estimation functions.10

Theorem 3 (Bernoulli Estimation (Hazan and Kale, 2014)) For any sequence of estima-
tion functions {gk}∞k=0 as defined above, there exists a probability q ∈ [1/4, 3/4] such that if
{S[k]}∞k=0 is an i.i.d. Bernoulli sequence with parameter q, then for all positive integers K
we have

K
∑

k=1

E
[

(q −G[k])2
]

≥ Ω(log(K)) (55)

where the random variables G[k] are defined in (54) for each k ∈ {1, 2, . . .}.

5.4 Completing the converse

Lemma 9 Define φ : [1/4, 3/4] → R by

φ(q) =
−1 +

√
1 + q

q

Then

a) φ is continuous and strictly decreasing with minimim and maximum values

φmin = φ(3/4) ≈ 0.430501

φmax = φ(1/4) ≈ 0.472136

10. The result in (Hazan and Kale, 2014) also applies to randomized estimation functions. This paper shall
only need the result for deterministic estimation functions.
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b) There is a continuous inverse function φ−1 : [φmin, φmax] → [1/4, 3/4] that satisfies

φ(φ−1(y)) = y ∀y ∈ [φmin, φmax]

c) The derivative of φ exists for all q ∈ (1/4, 3/4) and

|φ′(q)| ≥ β ∀q ∈ (1/4, 3/4)

where β = |φ′(3/4)| ≈ 0.0700485.
d) We have

|φ(q)− φ(u)| ≥ β|q − u| ∀u, q ∈ [1/4, 3/4] (56)

Proof Parts (a) and (c) follow by basic analysis on the function φ. Part (b) follows
immediately from (a). To prove (d), without loss of generality assume 1/4 ≤ u < q ≤ 3/4.
By the mean value theorem, there is a point x with u < x < q such that

φ(q)− φ(u)

q − u
= φ′(x)

and so
∣

∣

∣

∣

φ(q)− φ(u)

q − u

∣

∣

∣

∣

= |φ′(x)| ≥ β

Theorem 4 Let {fk}∞k=0 be any sequence of decision functions that define a causal and
measurable algorithm according to (51). There is a parameter q ∈ [1/4, 3/4] such that
using these decision functions with an i.i.d. Bernoulli-q process {S[k]}∞k=0 and with an
independent uniform random variable U , the resulting (causal and measurable) decisions
(T [k], R[k]) ∈ D(S[k]) satisfy

∑K−1
k=0 E [R[k]]

∑K−1
k=0 E [T [k]]

≤ θ∗ − Ω

(

log(K)

K

)

where θ∗ is the optimal ratio in (49). In particular, no algorithm can have error that decays
faster than Ω(log(K)/K).

Proof Define for each k ∈ {0, 1, 2, . . .} and each hk ∈ {0, 1}k:

zk(hk) = E [T [k]|S[k] = 1, H[k] = hk]

Define gk : {0, 1}k → [0, 1] by

gk(hk) = φ−1
(

[zk(hk)− 1]φmax

φmin

)

Since φ−1 : [φmin, φmax] → [1/4, 3/4], these {gk} functions can be viewed as estimation
functions. Define

G[k] = gk(H[k]) ∀k ∈ {1, 2, 3, . . .} (57)
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and so

G[k] = φ−1
(

[zk(H[k])− 1]φmax

φmin

)

(58)

Observe that for k ∈ {1, 2, 3, . . .}, the gk functions can be viewed as estimation functions
for the parameter q, with G[k] the corresponding estimator based on the past k observa-
tions, because they have the general structure specified by the Bernoulli estimation theorem
(Theorem 3). Indeed G[k] maps H[k] = (S[0], . . . , S[k − 1]) to the unit interval [0, 1], and
this map is measurable because it is a composition with the measurable zk(h) function, the
continuous projection to the interval [φmin, φmax], and the continuous inverse function φ−1.
Hence, if we can express the ratio of expectations in question as a sum of the mean squared
error between G[k] and q, we can apply Theorem 3.

Fix k ∈ {1, 2, 3, . . .}. We have for each hk ∈ {0, 1}k:

E [R[k]|H[k]]
(a)

≤ θ∗E [T [k]|H[k]]− 1

q
(E [T [k]|H[k]]− t∗)2

(b)
= θ∗E [T [k]|H[k]]− 1

q
((1− q) + qzk(H[k])− t∗)2

= θ∗E [T [k]|H[k]]− q

(

zk(H[k])− 1− −1 + t∗

q

)2

(c)
= θ∗E [T [k]|H[k]]− q (zk(H[k])− 1− φ(q))2

(d)

≤ θ∗E [T [k]|H[k]]− q
(

[zk(H[k])− 1]φmax

φmin
− φ(q)

)2

= θ∗E [T [k]|H[k]]− q
(

φ(φ−1([zk(H[k])− 1]φmax

φmin
))− φ(q)

)2

(e)
= θ∗E [T [k]|H[k]]− q (φ(G[k])− φ(q))2

(f)

≤ θ∗E [T [k]|H[k]]− qβ2(G[k]− q)2

(g)

≤ θ∗E [T [k]|H[k]]− (1/4)β2(G[k]− q)2

where (a) holds by (53); (b) holds by (51); (c) holds by definition of φ and because t∗ =√
1 + q (recall (47)); (d) holds because the distance between zk(H[k])−1 and φ(q) is greater

than or equal to the distance between their projections onto the interval [φmin, φmax] (and
the fact that φ(q) ∈ [φmin, φmax]); (e) holds by (58); (f) holds by (56); (g) holds because
q ≥ 1/4. Taking expectations of both sides with respect to the random H[k] gives

E [R[k]] ≤ θ∗E [T [k]]− β2

4
E
[

(G[k]− q)2
]

∀k ∈ {1, 2, 3, . . .}
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Summing gives

K−1
∑

k=0

E [R[k]] ≤ E [R[0]] + θ∗
K−1
∑

k=1

E [T [k]]− β2

4

K−1
∑

k=1

E
[

(G[k]− q)2
]

= E [R[0]− θ∗T [0]] + θ∗
K−1
∑

k=0

E [T [k]]− β2

4

K−1
∑

k=1

E
[

(G[k]− q)2
]

≤ θ∗
K−1
∑

k=0

E [T [k]]− β2

4

K−1
∑

k=1

E
[

(G[k]− q)2
]

where the final inequality holds by Lemma 1. Dividing by
∑K−1

k=0 E [T [k]] and noting that
this is less than or equal to 2K (since T [k] ≤ 2 always, see (46)) yields

∑K−1
k=0 E [R[k]]

∑K−1
k=0 E [T [k]]

≤ θ∗ − β2

8K

∑K−1
k=1 E

[

(G[k]− q)2
]

≤ θ∗ − Ω(log(K)/K)

where the final inequality holds by application of the Bernoulli estimation bound (55).

6. Matching square root converse

This section presents a square-root converse result for systems without the strongly concave
structure. We consider the example system of Section 2 with task type process {S[k]}∞k=0

that is i.i.d. Bernoulli with P [S[k] = 1] = p, where p is an unknown parameter. The nature
of this converse is different from the one in the previous section and we shall consider only
two possible values of p: Fix ε such that 0 < ε ≤ 1/4. Consider the two possible hypotheses:

• Hypothesis H(1/2−ε): p = 1/2− ε. Under this hypothesis it can be shown that:

θ∗(1/2−ε) = 2 + 2ε (59)

• Hypothesis H(1/2+ε): p = 1/2 + ε. Under this hypothesis it can be shown that:

θ∗(1/2+ε) =
6

3 + 2ε
(60)

The structure of considering only two possible hypotheses that are difficult to discern is
similar in spirit to the converse result of (Bubeck and Cesa-Bianchi, 2012) for multi-armed
bandit systems, where a square root law is also developed. However, the square root arises
for a different reason here. Indeed, the system treated in this paper has a different structure
and requires a different proof.

Fix U uniform over [0, 1) and assume U is independent of {S[k]}∞k=0. Consider a general
causal algorithm that has no knowledge of p and that makes decisions as follows: On each
frame k, it chooses a conditional probability β[k], which is the conditional probability of
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choosing high-quality given that S[k] = 1, as some deterministic and measurable function
β̂k(·) of U and S[0], . . . , S[k − 1]:

β[0] = β̂0(U) (61)

β[k] = β̂k(U, S[0], . . . , S[k − 1]) ∀k ∈ {1, 2, 3, . . .} (62)

For each frame k, given β[k], we have

(T [k], R[k]) =







(1, 3) with prob 1− p
(2, 3) with prob pβ[k]
(1, 1) with prob p(1− β[k])

and so

E [R[k]|β[k]] = (1− p)(3) + p(1 + 2β[k])

E [T [k]|β[k]] = (1− p)(1) + p(1 + β[k])

E [R[k]− θ∗T [k]|β[k]] = (1− p)(3) + p(1 + 2β[k])− θ∗(1− p+ p(1 + β[k])) (63)

Theorem 5 Fix δ such that 0 < δ ≤ 1/256 and let ε = 64δ. Consider any general causal
algorithm of the type (61)-(62). Fix K ∈ {1, . . . , b 3

219δ2
c}. If for the case p = 1

2 − ε the
algorithm satisfies

∑K
k=0 E [R[k]]

∑K
k=0 E [T [k]]

> θ∗(1/2−ε) − δ

then for the case p = 1
2 + ε the algorithm must satisfy

∑K
k=0 E [R[k]]

∑K
k=0 E [T [k]]

≤ θ∗(1/2+ε) − δ

The proof is developed in the next subsections by fixing δ ∈ (0, 1/256], defining ε = 64δ,
and fixing a particular causal algorithm of the type described in this section.

6.1 Case H(1/2−ε)

Fix a particular causal algorithm of the type (61)-(62). Substituting (59) into (63) and
doing the basic but tedious arithmetic gives

E(1/2−ε)

[

R[k]− θ∗(1/2−ε)T [k]|β[k]
]

= −β[k]ε+ 2β[k]ε2

(a)

≤ −β[k]

2
ε

(b)

≤ − ε

4
1{β[k]>1/2}

where where E(1/2−ε) [·] denotes an expectation under the assumption that the true Bernoulli
parameter is p = 1/2 − ε; (a) holds because 0 < ε ≤ 1/4; (b) uses the indicator function
1{β[k]>1/2} that is 1 if β[k] > 1/2 and 0 else. Taking expectations and using the law of
iterated expectations gives

E(1/2−ε)

[

R[k]− θ∗(1/2−ε)T [k]
]

≤ − ε

4
P [β[k] > 1/2] (64)
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6.2 Case H(1/2+ε)

Substituting (60) into (63)

E(1/2+ε)

[

R[k]− θ∗(1/2+ε)T [k]|β[k]
]

= −(1− β[k])
2ε+ 4ε2

3 + 2ε
(a)

≤ −(1− β[k])
ε

2
(b)

≤ − ε

4
1{β[k]≤1/2}

where E(1/2+ε) [·] denotes an expectation under the assumption that the true Bernoulli
parameter is p = 1/2+ε; (a) holds because (2+4ε)/(3+2ε) ≥ 1/2 whenever 0 < ε < 1/4; (b)
uses the indicator function 1{β[k]≤1/2} that is 1 if β[k] ≤ 1/2 and 0 else. Taking expectations
gives

E(1/2+ε)

[

R[k]− θ∗(1/2+ε)T [k]
]

≤ − ε

4
P [β[k] ≤ 1/2] (65)

6.3 Bernoulli estimation for mean absolute error

For each k ∈ {1, 2, 3, . . .} let Âk be Borel-measurable functions of the type:

Âk : [0, 1)× {0, 1}k → [0, 1]

and define

A[k] = Âk(U, S[0], S[1], . . . , S[k − 1])

The sequence of functions {Ak(·)}∞k=1 shall be called estimation functions because they
represent any way of estimating the Bernoulli parameter p based only on U and the first k
observations S[0], . . . , S[k − 1].

Let A[k]p be the resulting (random) estimation of the Bernoulli parameter given that the
true parameter is p. Let Ep [|A[k]p − p|] denote the expected mean absolute error given the
true parameter is p. The following Bernoulli estimation lemma for mean absolute error is
from (Neely, 2020b) and is a modified version of a lemma for mean squared error developed
in (Hazan and Kale, 2014):

Lemma 10 Suppose p and q are in the interval [1/4, 3/4]. For any positive integer k and
any Borel-measurable function Âk(·) of the structure defined above, we have

Ep [|A[k]p − p|] + Eq [|A[k]q − q|] ≥ |p− q|
4

whenever |p− q| ≤
√
3

4
√
2k

Proof See Lemma 6 in (Neely, 2020b).

To use the above lemma, define the following estimator functions for each k ∈ {1, 2, 3, . . .}:

Âk(u, s0, . . . , sk−1) =

{

1/2− ε if β̂k(u, s0, . . . , sk−1) ≤ 1/2

1/2 + ε if β̂k(u, s0, . . . , sk−1) > 1/2
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where (u, s0, . . . , sk−1) ∈ [0, 1)× {0, 1}k. Then

E(1/2−ε)

[

|A[k]1/2−ε − (1/2− ε)|
]

= 2εP [β[k] > 1/2] (66)

E(1/2+ε)

[

|A[k]1/2+ε − (1/2 + ε)|
]

= 2εP [β[k] ≤ 1/2] (67)

Thus for each k ∈ {1, 2, 3, . . .} such that 2ε ≤
√
3

4
√
2k

we have

E(1/2−ε)

[

R[k]− θ∗(1/2−ε)T [k]
]

+ E(1/2+ε)

[

R[k]− θ∗(1/2+ε)T [k]
]

(a)

≤ −ε

4
[P [β[k] > 1/2] + P [β[k] ≤ 1/2]]

(b)
=

−1

8

(

E(1/2−ε)

[

|A[k]1/2−ε − (1/2− ε)|
]

+ E(1/2+ε)

[

|A[k]1/2+ε − (1/2 + ε)|
])

(c)

≤ −ε

16
(68)

where (a) holds by (64)-(65); (b) holds by (66)-(67); (c) holds by application of Lemma 10
for p = 1/2−ε and q = 1/2+ε (indeed the conditions of Lemma 10 hold because ε ∈ (0, 1/4],

p and q are in [1/4, 3/4], and |p− q| = 2ε). The condition 2ε ≤
√
3

4
√
2k

is equivalent to

k ≤ 3

128ε2

Fix K ∈ {1, 2, . . . , b 3
128ε2

c} (this corresponds to K in the interval specified by Theorem 5
with ε = 64δ). Summing (68) over k ∈ {0, . . . ,K} gives

K
∑

k=0

E(1/2−ε)

[

R[k]− θ∗(1/2−ε)T [k]
]

+

K
∑

k=0

E(1/2+ε)

[

R[k]− θ∗(1/2+ε)T [k]
]

(a)

≤
K
∑

k=1

−ε

16

= −Kε

16

where (a) neglects the nonpositive k = 0 term (recall Lemma 1). It follows that either

K
∑

k=0

E(1/2−ε)

[

R[k]− θ∗(1/2−ε)T [k]
]

≤ −Kε

32
(69)

or

K
∑

k=0

E(1/2+ε)

[

R[k]− θ∗(1/2+ε)T [k]
]

≤ −Kε

32
(70)
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Assume (69) holds: Then assuming p = 1/2− ε and rearranging terms in (69) yields (using
notation E [·] and θ∗ instead of E(1/2−ε) [·] and θ∗(1/2−ε) for simplicity):

∑K
k=0 E [R[k]]

∑K
k=0 E [T [k]]

≤ θ∗ − Kε

32
∑K

k=0 E [T [k]]

(a)

≤ θ∗ − ε

64
(b)
= θ∗ − δ

where (a) holds because this example has E [T [k]] ≤ 2 for all k; (b) holds because ε = 64δ.
Therefore, if (69) holds, then running the algorithm in the case when the true parameter is
p = 1/2− ε means that

∑K
k=0 E [R[k]]

∑K
k=0 E [T [k]]

≤ θ∗ − δ (71)

On the other hand, if (69) fails then (70) must hold and by the same argument it follows
that (71) is true for the case p = 1/2+ ε. So for any particular causal algorithm, (71) must
hold for either the case p = 1/2− ε or the case p = 1/2 + ε. This proves Theorem 5.

6.4 Discussion

Recall that Theorem 1 shows that the proposed algorithm of this paper achieves an opti-
mality gap of O(1/

√
k) for general renewal optimization systems (including those without

a strongly concave structure). The square root converse result of Theorem 5 is theoret-
ically important because it matches this achievability result and demonstrates that the
O(1/

√
k) behavior cannot generally be improved. From the above result, one would expect

a computer simulation of this system to converge more slowly when p ≈ 1/2. Surprisingly,
simulations show the algorithm converges quickly even for such cases (see Section 8). This
may be due to the very small coefficient 3

219
obtained in Theorem 5. One interpretation

is that, while Theorem 5 proves that no mathematical analysis can improve convergence
for general systems beyond a square root law, the small constant coefficient suggests that
performance is not significantly degraded for practical scenarios and timescales.

7. Probability 1 convergence

This section considers the general system described in Section 3.1 (not necessarily having
the strong concavity property used in Section 4.6). Recall that {S[k]}∞k=0 is i.i.d. with some
distribution FS(s) = P [S[k] ≤ s] for s ∈ R

m. We show:

• (Theorem 6) No algorithm can have a sample path time-average that exceeds θ∗.

• (Theorem 7) The algorithm (24)-(26) with the stepsize rule η[k] = 1
(k+2)Tmin

ensures

θ[k] → θ∗ with probability 1.

• (Theorem 8) The algorithm (24)-(26) with stepsize rule η[k] = 1
(k+2)Tmin

ensures

lim
K→∞

∑K−1
k=0 R[k]

∑K−1
k=0 T [k]

= θ∗ (with prob 1)
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7.1 Preliminary lemma

Lemma 11 Assume {Xi}∞i=1 is a sequence of random variables that satisfies

∞
∑

i=1

E
[

X2
i

]

i2
< ∞ (72)

and there are finite constants a, b such that with probability 1 we have

a ≤ E [Xi|X0, . . . , Xi−1] ≤ b ∀i ∈ {1, 2, 3, . . .} (73)

where X0 is defined to be 0. Then with probability 1 we have

a ≤ lim inf
k→∞

1

k

k
∑

i=1

Xi ≤ lim sup
k→∞

1

k

k
∑

i=1

Xi ≤ b (74)

Proof See (Neely, 2020c).

7.2 Sample path convergence

Recall that {S[k]}∞k=0 are i.i.d. vectors in R
m. Let U be uniformly distributed over [0, 1)

and independent of {S[k]}∞k=0. The variable U is used as an external source of randomness
to enable potentially randomized decisions. As described in the previous section, there is no
loss of generality in using a single variable U . A general causal and measurable algorithm
makes decisions on each frame k ∈ {0, 1, 2, . . .} by

(T [k], R[k]) = fk(U, S[0], S[1], . . . , S[k]) (75)

where for each k, fk(u,w, s) is a Borel-measurable function that satisfies

fk(u, s0, . . . , sk−1, sk) ∈ D(sk) ∀sk ∈ ΩS (76)

Theorem 6 Under any causal and measurable algorithm we have

lim sup
K→∞

∑K−1
k=0 R[k]

∑K−1
k=0 T [k]

≤ θ∗ (with prob 1)

where θ∗ is from (20). Furthermore

Tmin ≤ lim sup
K→∞

1

K

K−1
∑

k=0

T [k] ≤ Tmax (with prob 1) (77)

Proof See (Neely, 2020c).
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Theorem 7 Under algorithm (24)-(26) with stepsize η[k] = 1
(k+2)Tmin

for all k ∈ {0, 1, 2, . . .}
we have

lim
k→∞

θ[k] = θ∗ (with prob 1)

where θ∗ is from (20).

Proof Fix ε > 0. By the Markov/Chebyshev inequality we have

P [|θ[k]− θ∗| ≥ ε] ≤ E
[

(θ[k]− θ∗)2
]

ε2
≤ 2b

kε2T 2
min

∀k ∈ {1, 2, 3, . . .}

where the final inequality holds by (40). It follows that

∞
∑

i=1

P [|θ[i2]− θ∗| ≥ ε] ≤ 2b

ε2T 2
min

∞
∑

i=1

1

i2
< ∞

and so the Borel-Cantelli theorem ensures that {|θ[i2] − θ∗| ≥ ε} happens for an at most
finite number of indices i with probability 1. Since ε > 0 was arbitrary, this implies

lim
i→∞

θ[i2] = θ∗ (with prob 1) (78)

Every positive integer k must be between two perfect squares n2
k and (nk + 1)2:

n2
k ≤ k < (nk + 1)2

Then for all positive integers k we have

|θ[k]− θ∗| ≤ |θ[k]− θ[n2
k]|+ |θ[n2

k]− θ∗|

Taking a lim sup of the above inequality and using (78) yields

lim sup
k→∞

|θ[k]− θ∗| ≤ lim sup
k→∞

|θ[k]− θ[n2
k]| (with prob 1)

It suffices to show the right-hand-side of the above inequality is 0 with probability 1. For
each positive integer k define

Gk = max
i∈{k2,...,(k+1)2−1}

{

(θ[i]− θ[k2])2
}

Fix ε > 0. It suffices to show that, with probability 1, {Gk > ε} occurs for at most finitely
many positive integers k. To show this, by the Borel-Cantelli theorem it suffices to show

∞
∑

k=1

P [Gk > ε] < ∞ (79)

For each positive integer k we have by the Markov inequality:

P [Gk > ε] ≤ E [Gk]

ε

=
1

ε
E

[

max
i∈{k2,...,(k+1)2−1}

{

(θ[i]− θ[k2])2
}

]

(80)
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Let V be a finite constant that satisfies

E
[

(R[i]− θ[i]T [i])2
]

≤ V ∀i ∈ {0, 1, 2, . . .} (81)

Such a value V exists because θ[i] ∈ [θmin, θmax] always, and second moments of R[i] and
T [i] are uniformly bounded for all i. Observe by the update procedure for θ[j] in (26) we
have for all j ∈ {0, 1, 2, . . .}

|θ[j + 1]− θ[j]| (a)=
∣

∣

∣
[θ[j] + η[j](R[j]− θ[j]T [j])]θmax

θmin
− [θ[j]]θmax

θmin

∣

∣

∣

(b)

≤ |η[j](R[j]− θ[j]T [j])| (82)

where (a) uses θ[j] ∈ [θmin, θmax]; (b) uses the fact that the distance between the projections
of two numbers onto a closed interval is less than or equal to the distance between the
numbers. For all positive integers k and all i ∈ {k2, . . . , (k + 1)2 − 1}:

(θ[i]− θ[k2])2 =





i−1
∑

j=k2

(θ[j + 1]− θ[j])





2

≤





i−1
∑

j=k2

|θ[j + 1]− θ[j]|





2

(a)

≤





i−1
∑

j=k2

|η[j](R[j]− θ[j]T [j])|





2

(b)

≤ 1

(k2 + 2)2T 2
min

(k+1)2−1
∑

j=k2

(k+1)2−1
∑

r=k2

|R[j]− θ[j]T [j]| · |R[r]− θ[r]T [r]|

where (a) holds by (82); (b) holds because η[j] ≤ 1
(k2+2)Tmin

for all j ≥ k2. Taking the

maximum of the above inequality over all i ∈ {k2, . . . , (k + 1)2 − 1} gives

max
i∈{k2,...,(k+1)2−1}

{(θ[i]−θ[k2])2} ≤ 1

(k2 + 2)2T 2
min

(k+1)2−1
∑

j=k2

(k+1)2−1
∑

r=k2

|R[j]−θ[j]T [j]|·|R[r]−θ[r]T [r]|

Taking an expectation and using the Cauchy-Schwarz inequality and (81) gives

E

[

max
i∈{k2,...,(k+1)2−1}

{

(θ[i]− θ[k2])2
}

]

≤ V
(

(k + 1)2 − k2
)2

(k2 + 2)2T 2
min

=
V (2k + 1)2

(k2 + 2)2T 2
min

Substituting this into (80) gives

P [Gk > ε] ≤ 1

ε

V (2k + 1)2

(k2 + 2)2T 2
min

which decays like O(1/k2) and so
∑∞

k=1 P [Gk > ε] < ∞.
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Theorem 8 Under algorithm (24)-(26) with stepsize η[k] = 1
(k+2)Tmin

for all k ∈ {0, 1, 2, . . .}
we have

lim
K→∞

∑K−1
k=0 R[k]

∑K−1
k=0 T [k]

= θ∗ (with prob 1)

where θ∗ is from (20).

Proof We have by the rule (24)-(25):

R[k]− θ[k]T [k] ≥ R∗[k]− θ[k]T ∗[k] ∀k ∈ {0, 1, 2, . . .} (83)

where (T [k], R[k]) ∈ D(S[k]) is the decision made by the algorithm and (T ∗[k], R∗[k]) ∈
D(S[k]) is any alternative decision. Fix (t, r) ∈ A, so that (t, r) can be achieved as
an expectation of (T ∗[k], R∗[k]) on frame k under some particular decision rule. Let
(T ∗[k], R∗[k]) ∈ D(S[k]) be the decision that is made based purely on observing S[k], inde-
pendent of the past, and that satisfies E [(T ∗[k], R∗[k])] = (t, r). Then {(T ∗[k], R∗[k])}∞k=0

is a sequence of i.i.d. vectors and so by the law of large numbers:

lim
K→∞

1

K

K−1
∑

k=0

(T ∗[k], R∗[k]) = (t, r) (with prob 1) (84)

Rearranging terms in (83) gives the following for all k ∈ {0, 1, 2, . . .}:

R[k]− θ∗T [k] ≥ R∗[k]− θ∗T ∗[k] + (θ[k]− θ∗)(T [k]− T ∗[k])

Summing over k ∈ {0, . . . ,K − 1} and dividing by K gives

1

K

K−1
∑

k=0

R[k]− θ∗
1

K

K−1
∑

k=0

T [k]

≥ 1

K

K−1
∑

k=0

R∗[k]− θ∗
1

K

K−1
∑

k=0

T ∗[k]− 1

K

K−1
∑

k=0

(θ[k]− θ∗)(T [k]− T ∗[k])

≥ 1

K

K−1
∑

k=0

R∗[k]− θ∗
1

K

K−1
∑

k=0

T ∗[k]− 1

K

K−1
∑

k=0

|θ[k]− θ∗|(T [k] + T ∗[k]) (85)

Claim: We have with probability 1:

lim sup
K→∞

1

K

K−1
∑

k=0

|θ[k]− θ∗|(T [k] + T ∗[k]) = 0 (86)

We postpone the proof of (86). Taking a lim inf of (85) and substituting (86) and (84)
gives, with probability 1:

lim inf
K→∞

[

1

K

K−1
∑

k=0

R[k]− θ∗
1

K

K−1
∑

k=0

T [k]

]

≥ r − θ∗t (with prob 1)
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This holds for all (t, r) ∈ A. Taking a limit over a countably infinite sequence of points
(ti, ri) ∈ A that approach the point (t∗, r∗) ∈ A and using the fact that θ∗ = r∗/t∗ gives

lim inf
K→∞

[

1

K

K−1
∑

k=0

R[k]− θ∗
1

K

K−1
∑

k=0

T [k]

]

≥ 0 (with prob 1) (87)

This, together with (77), proves that with probability 1:

lim inf
K→∞

∑K−1
k=0 R[k]

∑K−1
k=0 T [k]

≥ θ∗

On the other hand, Theorem 6 ensures the lim sup is less than or equal to θ∗ with probability
1. Thus, the limit is exactly θ∗ (with prob 1).

It remains to prove (86) of the Claim. We know θ[k] → θ∗ with probability 1. Fix ε > 0.
With probability 1 we know |θ[k]− θ∗| ≤ ε for all sufficiently large k and so

lim sup
K→∞

1

K

K−1
∑

k=0

|θ[k]− θ∗|(T [k] + T ∗[k]) ≤ ε lim sup
K→∞

1

K

K−1
∑

k=0

(T [k] + T ∗[k]) (with prob 1)

Observe that both T [k] and T ∗[k] are from causal and measurable algorithms and so they
both satisfy (77). Thus

lim sup
K→∞

1

K

K−1
∑

k=0

|θ[k]− θ∗|(T [k] + T ∗[k]) ≤ ε2Tmax (with prob 1)

This holds for all ε > 0 and so (86) follows.

8. Simulation

This section presents simulations of the proposed algorithm under the initial condition
θ[0] = θmin and stepsize η[k] = 1

(k+2)Tmin
.

8.1 System 1: Selecting one of multiple projects

Consider the project selection problem of Section 2.3. On each frame k we receive N [k] new
potential projects, where N [k] ∈ {0, 1, 2, 3} with P [N [k] = i] = pi and

p0 = 0.1, p1 = 0.9− p, p2 = p/2, p3 = p/2

where p ∈ [0, 0.9] is a parameter varied in the simulations (larger values of p yield stochas-
tically more projects). The decision set for each frame k is

D(S[k]) = {(1, 0), (T1, R1), . . . , (TN [k], RN [k])}

where the (1, 0) option corresponds to working on no project for 1 time unit (and receiving
no profit). Given that N [k] = i, the vectors (Tj , Rj) for j ∈ {1, . . . , i} are generated
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Figure 3: Comparing the proposed algorithm with the greedy strategy for two different
values of p. Data is averaged over 5000 independent sample paths.

independently with Tj ∼ Uniform([1, 10]) and Rj = AjTj where Aj ∼ Unif([0, 50]). The
proposed algorithm uses [θmin, θmax] = [0, 50] and Tmin = 1.

Fig. 3 compares the proposed algorithm to the greedy strategy that chooses the project
j that maximizes the ratio Rj/Tj . The proposed algorithm has significant gains. Fig. 4
explores convergence of the time-average for one sample path of the proposed algorithm
over 2000 frames for various parameter values p. It is difficult to calculate θ∗ analytically
so the dashed horizontal lines in Fig. 4 are estimated values of θ∗ obtained from 5000
independent runs. It is interesting to note that, considering only frames for which N [k] ≥ 1,
the proposed algorithm chooses to reject all offered projects a significant fraction of time:
For parameters p ∈ {0, 0.3, 0.6, 0.9} the conditional rejection probabilities (given N [k] ≥ 1)
were 0.46, 0.40, 0.33, 0.25, respectively.

Fig. 5 compares the proposed algorithm to the θ-empirical heuristic algorithm of (Neely,
2013) (see Section VI.b of (Neely, 2013)). The θ-empirical heuristic has a similar structure
that maximizes R[k] − θ[k]T [k] over all (T [k], R[k]) choices, but sets θ[k] to the empirical
time-average reward seen up to frame k. In (Neely, 2013) and (Neely, 2010) it is shown that
if this algorithm converges then it converges to the optimal θ∗, but no proof of convergence
and no convergence time results are known. The simulation shows it yields very similar
results, and even (slightly) faster convergence, in comparison to the proposed algorithm
(compare the dashed curves to the solid curves of the same color in Fig. 5). The advantage of
the proposed algorithm is that it comes with a proof of convergence along with convergence
time guarantees.

8.2 System 2: A curve of choices

Now consider the system described in Section 5.1, where θ∗ is analytically known. The
proposed algorithm uses [θmin, θmax] = [1, 2] and Tmin = 1. If S[k] = 1 the algorithm
chooses from a curve of choices:

(T [k], R[k]) = (x[k], 2− (2− x[k])2)

38



Fast Learning for Renewal Optimization in Online Task Scheduling

Figure 4: Simulation of a single sample path for System 2:
∑k−1

i=0 R[i]/
∑k−1

i=0 T [i] versus k ∈
{0, . . . , 2000} for four different values of p. Dashed horizontal lines are obtained
by averaging the final value at time 2000 over 5000 independent sample paths.

Figure 5: Comparing the proposed algorithm to the θ-empirical heuristic of (Neely,
2013). The simulation averages over 5000 independent sample paths and plots
E[
∑k−1

i=0 R[i]/
∑k−1

i=0 T [i]] versus k ∈ {0, . . . , 200} for four different values of p.

to maximize T [k]− θ[k]R[k] subject to 1 ≤ x[k] ≤ 2, which has solution x[k] =
[

2− θ[k]
2

]2

1
.

Results for four different parameter values of p = P [S[k] = 1] are in Figs. 6 and 7. The
dashed horizontal lines are the analytically optimal θ∗ values in (49). Fig. 6 shows how
close one sample path time-average comes to θ∗ after 1000 frames. When the simulation
time is extended it was observed that all four sample paths settled into near-constant val-
ues that were indistinguishable from θ∗, which is consistent with the probability 1 sample
path convergence proven in Section 7. Fig. 7 shows the expected performance (with ex-
pectations computed by averaging over 5000 independent sample paths). Fig. 7 plots
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E

[

∑k−1
i=0 R[i]/

∑k−1
i=0 T [i]

]

. It was observed that plots of
∑k−1

i=0 E [R[i]] /
∑k−1

i=0 E [T [i]] over

the same number of frames looked similar (those plots are omitted for brevity).

0 200 400 600 800 1000

Frames k

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

A
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r 
u

n
it
 t

im
e

System 2: Sample path
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Figure 6: Simulation of a single sample path for System 2:
∑k−1

i=0 R[i]/
∑k−1

i=0 T [i] versus
k ∈ {0, . . . , 1000} for four different Bernoulli probabilities p. Dashed horizontal
lines are the optimal values.

Figure 7: Simulation averaging over 5000 sample paths for System 2:

E

[

∑k−1
i=0 R[i]/

∑k−1
i=0 T [i]

]

versus k ∈ {0, . . . , 50} for four different Bernoulli

probabilities p. Dashed horizontal lines are the optimal values.

8.3 System 3: Two choices

Consider the system of Section 2, which is the same system for which a square-root converse
result was proven in Section 6. When S[k] = 1 there are only two choices: (T [k], R[k]) ∈
{(1, 1), (2, 3)}. We use [θmin, θmax] = [1, 3], Tmin = 1. Fig. 8 plots data from a single
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sample path run over 1000 frames for four different values of p = P [S[k] = 1]. The dashed
horizontal lines are the exact θ∗ values computed analytically in Section 6. Fig. 9 plots
smoother curves that are averaged over 5000 independent sample paths. The curves in
Fig. 9 are plotted over the smaller timeline k ∈ {0, . . . , 50} to show convergence of the
expected value. It can be seen that the algorithm converges quickly to optimality for all p
choices. There was no significant behavioral difference observed when p ≈ 0.5, even though
the p = 0.5 threshold played a crucial role in the square root converse result.11 Indeed,
simulations were considered with p = 0.5 ± δ for various small δ values including δ = 0
(those curves fell in between the p = 0.49 and p = 0.51 curves of Fig. 9 but the data is
omitted for clarity of the plots and for brevity). Our hypothesis about why the p = 0.5
threshold was not more noticeable in the simulations is discussed in Section 6.4.

Figure 8: Simulation of a single sample path for System 3:
∑k−1

i=0 R[i]/
∑k−1

i=0 T [i] versus
k ∈ {0, . . . , 1000} for four different Bernoulli probabilities p. Dashed horizontal
lines are the optimal values.

9. Conclusion

This paper develops an online algorithm for making decisions in a renewal system. The
algorithm is shown to converge to the optimal time-average reward with the fastest possible
asymptotic convergence time. The algorithm adjusts an auxiliary variable according to a
Robbins-Monro iteration. It also makes online decisions on each frame that are informed
by the current value of this variable. When the system has a strongly concave structure the
algorithm is shown to have an optimality gap of O(log(k)/k). A matching converse result
shows this gap is the best possible in the strongly concave scenario. In general conditions
(without strong concavity) the algorithm was shown to have an optimality gap of O(1/

√
k)

and a matching converse was also demonstrated. The convergence results are presented in

11. When one stares at Fig. 9 long enough, one might become convinced of a very slight convergence time

increase for the green and black curves, representing data when p ≈ 0.5, in comparison to the curves
when p is far from 0.5. However, this difference is minor. The author expected to see a bigger behavioral
difference about p = 0.5, but that did not occur. See discussion in Section 6.4.
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System 3: Averaging over 5000 Sample Paths

p=0.2

p=0.4

p=0.49

p=0.51

p=0.8

Figure 9: Simulation averaging over 5000 sample paths for System 3:

E

[

∑k−1
i=0 R[i]/

∑k−1
i=0 T [i]

]

versus k ∈ {0, . . . , 50} for five different Bernoulli

probabilities p. Dashed horizontal lines are the optimal values.

terms of expectations achieved by the algorithm. The algorithm was also shown to have
sample paths that converge to optimality with probability 1.
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