
Abstracting the Understanding and Application
of Cognitive Load in Computational Thinking

and Modularized Learning

Taylor Gabatino(B), Michael-Brian C. Ogawa, and Martha E. Crosby

Department of Information and Computer Sciences, University of Hawaii at Manoa,
1680 East-West Road, Honolulu, HI 96822, USA

{tgabatin,ogawam,crosby}@hawaii.edu

Abstract. The purpose of this study is to determine whether modularized stan-
dalone sections within topics in computer science are deterministic in the perfor-
mance of students studying subjects that involve computational thinking. Teaching
methods regarding this form of cognition within the realm of computer science is
presented with a limited understanding in how students think and analyze prob-
lems when presented material with ambiguous forms of approach. The method
and scope of the work involve the presentation of topics in computer science in a
modularized form that determines whether correctness is a function of time based
on cognitive load introduced in computational thinking concepts, involving base
conversions of transposition ciphers and programming fundamentals.

Keywords: Cognitive load and performance · Shared cognition · Team
performance and decision making · Understanding human cognition and
behavior in complex tasks and environment

1 Introduction

Computational Thinking (CT) has become one of the most important skills of the 21st

century, with problems being solved not only in the realm of computer science, but
its applicable partners within the educational community, and a primary fundamental
in modern scientific disciplines [2, 5]. As CT skills increase within the digital society,
teaching these abilities become an essential factor in the arsenal of educators; however,
there is a limitation of understanding between both students and instructors in what
methodologies are best employed in CT. Although Wing [5] states CT to be a funda-
mental skill, there is still much speculation as to what it truly embodies, with a general
knowledge consensus that it comprises of problem-solving skills such as abstraction and
decomposition [3, 5]. This invokes a need to design teaching methodologies that are best
proposed for this - in particular, how cognitive load changes with the level of difficulty
in CT.

Methodologies involved in teaching CT are often invoked in assisting students to
understand concepts in computer science that are devised to test pattern recognition,
abstraction, and algorithmic design [8].As the development of teaching computer science
grows substantially through the years, there exists the correlation of the demand for CT

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. D. Schmorrow and C. M. Fidopiastis (Eds.): HCII 2022, LNAI 13310, pp. 273–286, 2022.
https://doi.org/10.1007/978-3-031-05457-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05457-0_22&domain=pdf
https://doi.org/10.1007/978-3-031-05457-0_22


274 T. Gabatino et al.

education to increase as a result of the parallels of technological growth in the digital
society [4]. Although various studies have been introduced to meet the demands of
teaching CT, there is a growing complexity in the field to also meet the difficulties of
employers outside of the technological realm.

As computational degrees become increasingly lucrative in modern society, it is
argued that it should be a basis for comprehension, as it begins to influence disciplines
in fields beyond STEM, with areas of study active in the algorithmic design within social
sciences and humanities [1, 6]. In addition, curriculum across the United States along
with an increasing number of other countries have begun to adopt CT as a necessity in
addition to the base requirements in K-12 schools [14]. Furthermore, universities have
also begun to propose computational thinking as a requirement for non-STEM majors
systematically introducing them to the teaching curriculum [2]. Various assertations rec-
ognize that there is also a commonmisconception associated with CT, with its alignment
primarily associated in computer science [14]. Wing [17] however, states that students
should be given the opportunity to participate in a digital society by becoming competent
in CT, regardless of their relation to computer science and STEM.

The understanding of CT to abstraction and problem solving; however, is vastly
misunderstood. In addition to the pilot study performed, a survey amongst students in
the experiment were distributed asking what they best believed computational thinking
to be.

0 1 2 3 4 5 6 7 8

A method of abstraction information based on
knowledge already obtained

A method of abstraction based on algorithmic
design

A way for programmers to design solutions to
problems effectively

Decomposition of problems that allow for pattern
recognition to create effective solutions

I do not fully understand the context of
computational thinking

Computational Thinking Survey

Group 1 Group 2 Group 3 Group 4

Fig. 1. Survey of students describing computational thinking

Results from the survey showed varying discrepancies between the understanding of
CT, and how to best use it for abstraction and decomposition of proposed problems. This
is further expanded within the pilot study, where questions introduced in modularized
pedagogy propose varying cognitive load as a function of time in seconds.



Abstracting the Understanding and Application of Cognitive Load 275

We specifically begin this analysis through discussion of both CT and Cognitive
Load, and its relation to methodologies involved in teaching these approaches and meth-
ods of thinking to students. This discussion can then further how human cognitive archi-
tecture can thus be chunked into sub-divisions that allow for the highest capacity of
working memory to be recorded quantitatively and qualitatively. The corresponding
experiment associated with how working memory intertwines with cognitive load are
thus introduced. Lastly, we look at the associations between correctness of question and
time when tested with topics involving ASCII, HEX, Binary, and Programming Funda-
mentals, providing the evidence for the principle of cognitive load and its determinant
of performance.

2 Background

2.1 Computational Thinking and Cognitive Load

Computational thinking, as defined by Wing are the thought processes that are involved
with the formulation of problems and their relative solutions such that they are repre-
sented effectively by a potential information-processing agent [6]. It is within reason,
thus, that there is a significant level of cognitive load that is placed on individuals when
presentedwith problems that requiremental processing contributed to learning, memory,
and problem-solving [7]. This cognitive load, based on concepts in cognitive science act
as the agent of an information-processing approach, with the mind divided into sensory,
working, and long-term memory [7].

Cognitive Load theory as described by Sweller is based on the model that the mind
works in two sets [7]. The first set proposes that the human working memory is con-
strained to a limited capacity, which determines performance based on cognitive load,
while the second imposes mechanisms that are designed to elude its weaknesses [7]. As
there are a multitude of sensory processors that are used within a cognitive load, the
information processing works in conjunction with these sensors to meet the demands of
human cognitive architecture [7].

Working memory, often termed short-term memory or intermediate memory inter-
changeably, refers to the temporary availability of information that is recalled through
a recollection of recent scenarios [10]. This concept, based on Miller [11] introduces a
capacity on information processing such that it can be limited to several familiar chunks
[10]. These chunks of information are then loaded into working memory, where the
cognitive load factor is then introduced; however, the implications presented in the lim-
itation of working memory place a strong emphasis on instructional design and limiting
its overstimulation [8]. High working memory otherwise places a complex demand for
learners who do not have knowledge that is specific to the domain in where cognitive
load is to be implied [19]. Furthermore, the complex knowledge structures that would
increase this type of information would be better served through the chunking of indi-
vidual elements within a single element [19]. Based on the implications imposed on
working memory, tasks designed with high cognitive load should be taught in chunks,
which allow for better retrieval of information.

Long-term memory is situated on the opposing spectrum of cognitive architecture,
with a focus on recollection and processes involved in problem solving [13]. Since



276 T. Gabatino et al.

this information is characterized as the ability to store large amounts of information in
memory, it is argued the long-term memory can best define human cognitive ability as
stored knowledge, as opposed to the ability to engage in complicated reasoning and logic
within working memory [8]. This can thus limit the need to access working-memory as
a single individual segment in human cognition, increasing the capacity for processing
within working memory to be a simpler process [9, 15]. Based on this information, CT
can be best taught when modularized structures are introduced in an efficient manner
that decrease the cognitive load of working memory by enforcing concepts sequentially
through long-term memory.

2.2 Computational Teaching Methodologies

The pedagogy of computational teaching methodologies raises an interest within signif-
icant educational communities, as CT becomes a universal skill set not limited to only
computer scientists [9]. The further development involved in CT can thus result in the
growth of a learners’ abilities tomake connectionswithin their knowledge, questionwhat
is known, and further express themselves through active engagement [12]. Methodolo-
gies further designed to adapt to this difference in teaching must then be implemented in
a manner that consider its effectiveness within instructional design, regarding working
memory and the limitations of chunks of information, and long-term memory and the
cognitive ability to manage storage and retrieval [8].

The importance of understanding CT and teaching it relies on the significant factor
that there is an introduction of new challenges for instructors that do not hold a back-
ground in computational thinking, with institutions struggling with how to coordinate
information technologies in their systems [15]. Given CT is more adept to problem-
solving and its processes, it is best understood when decomposed into a staged cycle,
where the congruence of CT and problem-solving intertwine [15]. These staged cycles,
as introduced inmodularized formats, is best designedwhen taught in progression,where
the buildup of one concept is dependent on understanding another [17]. This can decrease
the cognitive load introduced on working-memory when instructional design is paired
with methodologies that employ understanding of problem approach and deconstruction
through introducing them in formats that are designed with long-term teaching meth-
ods. Introducing algorithmic concepts to best improve these methods then, are based
on modularized design that have yet to be determined. In this scenario, the following
questions are imposed to enhance the teaching of computational thinking principles:

1. Does modularized structure in computer science education have a dependency in its
placement within curriculum?

2. Does teaching concepts within computational thinking depend on the level of
cognitive load introduced in a specific topic?

3. Will the restructuring of modules based on this cognitive load have an effect on the
understanding of basic CT principles, such as basic transposition and conversions in
hexadecimal, binary, and ASCII?

It is thus important to design modules in teaching computational thinking that are
best designed to augment cognitive overload, where the processing of demands that
are created from the learning task exceeds the cognitive system [20]. These teaching



Abstracting the Understanding and Application of Cognitive Load 277

methodologies much then employ the steps involved in CT, with the process of decom-
posing a problem, recognizing these specific patters, and thus using a form of abstraction
to both generalize and formulate the probable solutions [1]. These logical methodolo-
gies can then be augmented to solve the potential problems imposed [1]. Those without
prior computational thinking skills may have a more limited capacity in processing com-
plex topics – therefore, design for cognitive overload must be implemented in teaching
methodologies, with respect to schemas that are best augmented for long-term retention
and less cognitive overload on working memory.

3 Pilot Study

The study below seeks to determine whether modularized formats in an introductory
computer science course demonstrating methodologies in computational thinking are
time-dependent based on the cognitive load of individual questions and their placement
in a schema. Considering a given architecture of a lesson plan by Dr. Ogawa introducing
hexadecimal, binary, and ASCII, modules are restructured to be determinants in the
cognitive load introduced in the sample experiment, with time being the indicating
factor in the measurement of cognitive load and relationships to accuracy. Students
in the study were given segmented chunks of videos from two lectures introducing
transposition ciphers and simple base number conversions. Given the modular formats
did potentially have an impact on cognitive load, there should be statistically significant
data correlating results to this hypothesis.

4 Methodology

4.1 Modularized Format

The examination of the experiment was completed within students in an Information
and Computer Science introductory level course. The course, labeled as ICS 101 is
affiliatedwith theUniversity ofHawaii atManoa, covering introductory level concepts in
computer science and software used in a variety of productivity environments. The pilot
study of this experiment was conducted in an online format in the Fall 2021 semester,
with a series of questions in a sequential structure summarizing knowledge based in
Transposition Ciphers, ASCII, HEX, and Binary, Encryption and Decryption, and lastly
Programming Fundamentals. The total group of students, (n = 39) were divided into
4 independent subsets based on class section, where each individual group were given
the same segments and topics; however, they were organized and presented in varying
preparations depending on the class section the group belonged in.

The insight into the development of CT skills of students was taken with cognitive
load being a function of time. Given the difficulty involving understanding binary, hex-
adecimal, and ASCII, the experiment seeks to determine whether changing the structure
of thesemodules is a factor in best understanding concepts introduced inCT,with respect
to working-memory and the chunking of information.

The proposed lectures involve recordings of pedagogy performed by Dr. Ogawa,
highlighting concepts involved in introductory level programming courses. These lec-
tures were then chunked, in a similar fashion to Miller [11] and his proposal of the
working memory. The formatting of these modularized schemas was designed based



278 T. Gabatino et al.

on the division of curriculum into discrete modules that were short in duration to test
the limits of working memory [18]. By dividing and chunking these subcategories into
modularized formats, students were limited in their abilities to access the next or previ-
ous chunk depending on which version of the test they received. The following diagram
organizes these original pedagogies, with the modular formats representing the chunks
of information they would receive in varying orders based on which group received the
test. In contrast to methodologies that create a linear format of the presentation of infor-
mation, modularized learning allows stand-alone independent units that can be taken
in different orders at varying speeds, associated with the chunking of information and
greater intensity in delivery of information [16]. The decomposition of the potential
ordering of the tests were then divided, re-structured, and distributed to the respec-
tive groups. Data that was collected in this study ensured no personal information was
released, and that the confidentiality of those involved would be protected. The results
of this study hope to improve the understanding and methodologies involved in teaching
computational thinking to those both within and outside of the STEM community.

Fig. 2. Structure of original modular lecture in transposition ciphers

It is observed in these pedagogies that although presented in a sequential format, the
introduction of quizzes in between each module does not determine the level of under-
standing of students if there is no qualitative factor that indicates significant knowledge
gained in the previous module. This leads to a recurring cycle of students returning to
the previous section in which no form of redirection can best be determined without a
quantitative approach. In addition, students may attribute their inability to understand
current schemas to the previous module, when alternative segments of the schema may
be required for further understanding. Furthermore, it is observed in these lectures that
background knowledge associated with transposition ciphers is assumed; therefore, the
addition of this knowledge was introduced as a subset of number representations and
their potential bases, such as hexadecimal, ASCII, and binary. Given CT is a process of
decomposition, this also relies heavily on the need to match specific teaching method-
ologies to the level of proficiency and understanding of the student while introducing
new concepts and assessing the CT skills [3]. Since this is an introductory level course of
topics in Computer Science, the proficiency of students was considered, and additional
information was introduced to match the level of understanding of students to allow
them to continue the task.

As cognitive load is to be observed between modules, the introduction of scored
quizzes was introduced between each schema to determine level of understanding.
These quizzes would be used in the statistical collection, with scoring and time recorded
between each question being the indicating variables of cognitive load.

The first group received the original set of lecture activity, with no changes prior to
the original teaching methodology. The order in which they received their modules are
as follows (Table 1).



Abstracting the Understanding and Application of Cognitive Load 279

Table 1. Group 1 chunked module ordering

Order Module

1 Transposition ciphers

2 ASCII, HEX, and binary

3 Encryption and decryption

4 Programming fundamentals

Using this as a control group, as the original base lecture, the modules were then
organized in a manner introduced by Fig. 2 above. Since these sections were to be
divided into smaller chunks, it was imperative to also link the information relevant to
these divisions that studentsmay not have access to. This iswhere the additions tomodule
2 were introduced, as it was retrieved from a previous lecture that introduced ASCII,
HEX, and Binary as an independent lecture. The following tables show the finalized
ordering of the chunked modules based on grouping, in addition to the ASCII, HEX,
and Binary module which included supporting material (Tables 2, 3 and 4).

Table 2. Group 2 chunked module ordering

Order Module

1 ASCII, HEX, and binary

2 Transposition ciphers

3 Encryption and decryption

4 Programming fundamentals

Table 3. Group 3 chunked module ordering

Order Module

1 Encryption and DECRYPTION

2 Transposition ciphers

3 ASCII, HEX, and binary

4 Programming fundamentals

4.2 Analyzing Student Outcome

The resulting groups were then tested on video lectures ordered and chunked into their
corresponding subsections. Questions were introduced between each schema with rela-
tion to the module content, ranging from a variety of multiple-choice types to radio-box



280 T. Gabatino et al.

Table 4. Group 4 chunked module ordering

Order Module

1 Programming fundamentals

2 Encryption and decryption

3 ASCII, HEX, and binary

4 Transposition ciphers

selections. The test used to determine statistical significance were ANOVA tests to deter-
mine variance in results. Given there were more than three groups independent of each
other, this was determined to be the best test to determine statistically significant data
based on time and correctness.

Groups 1 and 4, with group 1 being the primary control group scored similarly
in average in comparison to group 2 and 3, who also had similar results in respect to
scores. In relation to previous findings, although group 1 and 4 scored worse on average
in comparison to group 2 and 3, the previous survey introduced asking what students
believed computational thinking to be had conflicting results when compared to the
average scores across all sections. In addition, when considering the placement of each
module, it is observed that group 1 and 4 had noticeable inverses with respect to their
structure, receiving scores on the lower end of the study, while groups 3 and 3 received
higher averages.

Table 5. Average total scores across groups

Group Average score

Group 1 55%

Group 2 64%

Group 3 65.6%

Group 4 41.75%

Average Total Scores Across Groups. Table 5 shows the average scores between each
group who had the same set of questions presented in varying orders depending on the
test version received. In relation to Fig. 1, which displays the results of students’ thoughts
on computational thinking, those in Group 1 and 4 who determined that computational
thinking is defined as the decomposition of problems that allow for pattern recognition
to design effective solutions scored worse overall in comparison to their similar coun-
terparts. Group 2 and 3 on average, determined that computational thinking was either
solely for those in the computer science domain, or computational thinking was based on
knowledge already obtained. A possible explanation between these differences in aver-
age scores is that students who assumed computational thinking being a decomposition



Abstracting the Understanding and Application of Cognitive Load 281

of problems approached the quizzes this way, while those that solved the problem in
their workingmemory based on knowledge obtained prior approached these questions in
a similar manner. This can thus relate to working and long-term memory, and how these
associations can be determining factors in how students solve problems. Since problems
can be identified within specific problem categories, relevant schema associated can be
retrieved from memory, and utilized with the information that is otherwise specific to
the problem [17].

5 Results

The following sections present the findings of the data collected in qualitative and quanti-
tative schemes from the modularized components of each section. Given the assumption
that independent schemas have an impact of the cognitive load of students, a signifi-
cant recording of time and accuracy should be observed. The following observations
were then analyzed through the analysis of variance (ANOVA) in order to determine
whether there were significant differences between groupings. This statistical analy-
sis will determine the effective between the factors contributing to the cognitive load
between groupings.

5.1 Quantitative Data

While Table 5 displayed data that showed the average total scores across groups as a sum
of their sections, the following tables depict the statistical range and average based on the
standalone sections. This however, depicted no findings of statistically significant data
based on ANOVA test; however, this gave insight into the variance of scores based on
groupings and position in the test, as depicted through the following tables and figures.

Table 6. Statistical data scores of transposition ciphers

Groups Count Sum Average Variance

G1S1 14 8.3 60% 0.037

G2S1 9 4.6 52% 0.058

G3S1 6 3 50% 0.166

G4S1 10 6 60% 0.069

Table 6 shows the statistical data of the average scores between groupings on the
Transposition Cipher schema. Between these groupings, groups 1 and 4, and 2 and 3
respectively had similar results in the average scores of their tests.

The module for Sect. 2 tested the understanding of ASCII, HEX, and binary. Here,
groups 1, 2, and 3 scored within a similar range, while group 4 scored significantly lower
(Tables 7 and 8).



282 T. Gabatino et al.

Table 7. Statistical data scores of ASCII, HEX, and binary

Groups Count Sum Average Variance

G1S2 14 9.75 70% 0.088

G2S2 9 6 67% 0.062

G2S3 6 4.25 71% 0.085

G2S4 10 4.75 48% 0.061

Table 8. Statistical data scores of encryptions and decryption

Groups Count Sum Average Variance

G1S3 14 8.5 61% 0.151

G2S3 9 5.5 61% 0.095

G3S3 6 4.25 71% 0.160

G4S3 10 7 70% 0.136

The module for Sect. 3 tested the understanding of encryption and decryption. Here
the average scores between groupings remained within the same relative range, with
groups 1 and 2 recording a similar average range in score, and groups 3 and 4 also
showing close averages (Table 9).

Table 9. Statistical data scores of programming fundamentals

Groups Count Sum Average Variance

G1S4 14 5.5 39% 0.074

G2S4 9 4 44% 0.137

G3S4 5 2.5 50% 0.156

G4S4 10 3.5 35% 0.016

The module for Sect. 4 tests the understanding of basic programming fundamentals.
It is observed here that similar scorings of averages across tests were detected between
groups 1 and 4 and groups 2 and 3 respectively.

5.2 Modularized Results and Cognitive Load

In correspondence to statistically significant results, one of the questions within the
modules exhibited a statistically significant difference with respect to both time and
results. In relation to time differentials, a similar question depicted trends with relation
to cognitive load factors introduced through speculation of time. The questions that thus



Abstracting the Understanding and Application of Cognitive Load 283

determined the analysis of cognitive load as a function of time through this survey are
as follows, with the first question being the statistically significant result.

– “If it is true that uppercase letters have different ASCII codes than lowercase letters,
what is the difference in value needed to change an uppercase letter to a lowercase
letter in ASCII?”

– “Conversion of the word “tEsT” to ASCII yields what set of decimal digits when
decrypted?”

The first question that showed statistical significance in relation to time and results
was Question 4 on the exam under ASCII, HEX, and Binary, which prompts: “If it is
true that uppercase letters have different ASCII codes than lowercase letters, what is
the difference in value needed to change an uppercase letter to a lowercase in ASCII?”
Results determined from the ANOVA in Table 10 reveal the statistically significant
differences between the groups, pertaining to this question, with (p= 0.001). Since this
value denotes a significant level less than (p= 0.05), the null hypothesis can be rejected
noting that there is a significant difference between groupings. Furthermore, the time
differential and statistical significance of the results align with the results of accuracy as
depicted in Table 11, where (p = 0.02), again depicting statistical significance between
groupings.

Table 10. ANOVA factor of statistically significance of time in question 4 (ASCII, HEX, binary)

Source SS df MS F P-value F crit

Between
Groups

8.6E–05 3 2.87 E-05 6.77 0.001 2.87

Within
Groups

0.00014 35 4.24 E-06

Total 0.00023 38

Table 11. ANOVA factor of statistically significance of correctness in question 4 (ASCII, HEX,
binary)

Source SS df MS F P-value F crit

Between Groups 2.14 3 0.713 3.65 0.02 2.87

Within Groups 6.83 35 0.195

Total 8.97 38

Groups 1 and 3 as depicted in Table 12 under the average column, with the values
depicting seconds, performed significantly faster than groups 2 and 4. With reference
to Table 6, the average scores on this section showed a relation between the time differ-
ential and accuracy. The modularized format between these groupings had similarities



284 T. Gabatino et al.

Table 12. Summary of time averages on question 4 (ASCII, HEX, binary)

Groups Count Sum Average Variance

G1S2Q4 14 0.0062 39 4.60 E-08

G2S2Q4 9 0.0045 44 2.29 E-07

G3S2Q4 6 0.0276 37 2.90 E-05

G4S2Q4 10 0.0049 43 1.16 E-07

in structure, with the transposition cipher module occurring directly before the ASCII,
HEX, and Binary schema. This could serve as a potential explanation of the similarities
in score and time between these questions. Although not directly relation to the cognitive
load in analysis, the data presented within this variation could present an interpretation
of differences between mental models and understanding, where further study can be
performed through content analysis.

The second question depicting an observed time differentialwasQuestion 4 under the
Encryption andDecryptionmodule, which prompted students to convert theword “tEsT”
to its ASCII code and corresponding decimal digits. As cognitive load being a function
of time, it can be observed in Table 13 that a similar trend between groups 1 and 4 were
depictedwhen asked questions that were determinant on the understanding of knowledge
based on ASCII, HEX, and Binary Fundamentals. Time differentials observed in Table
13 thus show a longer time spent on attempting to convert the word, with shorter time
spent on average between groups 2 and 3.

This trend can be further observed through a reference to Table 5, where the average
scores across groupings were collected. Similarly, the average scores across subsections
of the groups also showed similarities to this trend, with groups 1 and 4 scoring simi-
larly on Transposition Ciphers and Programming Fundamentals respectively. This can
potentially be attributed to the inverse and “flip” in the modules, where although sim-
ilar in design, were different in comparison to groups 2 and 3, who had some form of
ASCII, HEX, and Binary or Encryption and Decryption before Transposition Ciphers
and Programming.

Table 13. Summary of time averages on question 4 (encryption and decryption)

Groups Count Sum Average Variance

G1S2Q4 14 0.0078 48 2.23 E-07

G2S2Q4 9 0.0034 33 6.36 E-08

G2S3Q4 6 0.0068 39 2.01 E-06

G2S4Q4 10 0.0131 54 1.79 E-06



Abstracting the Understanding and Application of Cognitive Load 285

6 Conclusions

6.1 Future Development and Research

Results from the study allow us to revisit the questions imposed in this experiment, where
we relate the individual discoverieswithin the study to questions involving cognitive load
and potential for future research. The analysis of the findings summarizes and identify
themes for future development of this study, in relation to cognitive load factors that are
determinant between the most common accurate and inaccurate answers to questions
between subsets and groups. Although cognitive load as a function of time was deter-
mined between these sets, potential for future study may be determine through content
analysis, where the choice of wording in questions can identify themes in how students
analyze algorithmic thought and problem-solving solutions. Furthermore, analysis on
the reordering of these modules and student performance can be quantified to determine
the best ordering of computational material to prevent cognitive overload amongst those
with little computational strength.

The potential for future research on computational teaching methods for students
analyzed through independent modularized formats in CT involve future analysis of con-
cepts to discover variables associated with potential cognitive load. Additional resources
can be supplemented between course material in computer science that can support
opportunities to research specific domains that affect cognitive load in computational
thinking. The discovery of these variables through content analysis of text, discourse
analysis between students and instructor, and quantitative analysis of cognitive load can
be further researched for beneficial impact in the educational community.

Acknowledgements. This material is based upon work supported by the National Science Foun-
dation (NSF) under Grant No. 1662487. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect the views
of the NSF.

References

1. Imberman, S., Sturm, D., Azhar, M.: Computational thinking: expanding the toolkit. J.
Comput. Sci. Coll. 29(6), 39–46 (2016)

2. Lamprou, A., Repenning A.: Teaching how to teach computational thinking. In: Proceedings
of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education (2018)

3. De Jong, I.: Teaching computational thinkingwith interventions adapted to undergraduate stu-
dents’ proficiency levels. In: Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE, pp. 571–572. Association for Computing Machinery (2020)

4. De Jong, I., Jeuring, J.: Computational thinking interventions in higher education: a scoping
literature review of interventions used to teach computational thinking. In: Koli Calling 2020:
Proceedings of the 20th Koli Calling International Conference on Computing Education
Research, pp. 1–10 (2020)

5. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
6. Resnick, L.B.: Education and Learning to Think. National Academy Press, Washington, DC

(1987)



286 T. Gabatino et al.

7. Wing, J.M.: Computational thinking—what and why? In: Article of the Magazine of the
Carnegie Mellon University School of Computer Science (2011)

8. Shaffer, D., Doube, W., Tuovinen, J.: Applying cognitive load theory to computer science
education. In: Petre, M., Budgen, D. (eds.) 15th Annual Workshop of the Psychology of
Programming Interest Group, pp. 333–346 (2003)

9. Sweller, J., van Merrienboer, J.J.G., Paas, F.G.W.C.: Cognitive architecture and instructional
design. Educ. Psychol. Rev. 10, 251–296 (1998)

10. Li, Y., et al.: Computational thinking is more about thinking than computing. J. STEM Educ.
Res. 3, 1–18 (2020)

11. Cowan, N.: George Miller’s magical number of immediate memory in retrospect: Observa-
tions on the faltering progression of science. Psychol Rev. 122, 536 (2015)

12. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychol. Rev. 63(2), 81–97 (1956)

13. Kong, S., Wang, Y.: Formation of computational identity through computational thinking
perspectives development in programming learning: a mediation analysis among primary
school students. Comput. Human Behav. 106, 106230 (2020)

14. Franklin, D., Salac, J., Crenshaw, Z., Turimella, S.: Exploring student behavior using the
TIPP&SEE learning strategy. In: Proceedings of the 2020 ACM Conference on International
Computing Education Research (2020)

15. Sweller, J.: Cognitive load theory. Psychol. Learn. Motiv. 55, 37–76 (2011)
16. Labusch, A., Eickelmann, B., Vennemann, M.: Computational thinking processes and their

congruence with problem-solving and information processing. In: Kong, S.C., Abelson, H.
(eds.) Computational Thinking Education, pp. 65–78. Springer, Singapore (2019). https://doi.
org/10.1007/978-981-13-6528-7_5

17. Wing, J.M.: Computational thinking’s influence on research and education for all. Italian J.
Educ. Technol. 25(2), 7–14 (2017)

18. Dejene, W.: The practice of modularized curriculum in higher education institution: active
learning and continuous assessment in focus. Cogent Educ. 6(1), Art. 1611052 (2019)

19. Gerjets, P., Scheiter, K., Catrambone, R.: Designing instructional examples to reduce intrinsic
cognitive load:molar versusmodular presentation of solution procedures. Instr. Sci. 32, 33–58
(2004)

20. Walkington, C., Clinton, V., Ritter, S., Nathan, M.J.: How readability and topic incidence
relate to performance on mathematics story problems in computer-based curricula. J. Educ.
Psychol. 107(4), 1051–1074 (2015)

https://doi.org/10.1007/978-981-13-6528-7_5



