IoT Device Identification Based on Network Traffic
Characteristics

Md Mainuddin, Zhenhai Duan
Department of Computer Science
Florida State University
Tallahassee, FL 32306, USA
{mainuddi, duan}@cs.fsu.edu

Abstract—IoT device identification plays an important role in
monitoring and improving the performance and security of IoT
devices. Compared to traditional non-IoT devices, IoT devices
provide us with both unique challenges and opportunities in
detecting the types of IoT devices. Based on critical insights
obtained in our previous work on understanding the network
traffic characteristics of IoT devices, in this paper we develop
an effective machine-learning based IoT device identification
scheme, named iotID. In developing iotID, we extract 70 features
of TCP flows from three complementary aspects: remote network
servers and port numbers, packet-level traffic characteristics such
as packet inter-arrival times, and flow-level traffic characteristics
such as flow duration. Different from existing work, we take into
account the imbalance nature of network traffic generated by
various devices in both the learning and evaluation phases of
iotID. Our performance studies based on network traffic collected
on a typical smart home environment consisting of both IoT and
non-IoT devices show that iotID can achieve a balanced accuracy
score of above 99%.

Index Terms—Internet of Things, IoT Devices, IoT Device
Identification, IoT Security

I. INTRODUCTION

Internet of Things (IoT) devices have been increasingly
deployed in various environments, including smart homes,
smart cities, and general enterprise networks. On the one
hand, IoT devices greatly improve the convenience, efficiency,
and quality of our lives and our communities; on the other
hand, they also introduce many new challenges in monitoring
and managing such devices, due to the immense diversity
of manufacturers and models of IoT devices, and the sheer
volume of such devices on the Internet. In this paper, we
adopt a commonly accepted definition of IoT devices—an
IoT device performs a specific functionality, and can operate
autonomously without direct human controls. Examples of IoT
devices include security cameras, smart plugs, and smart bulbs,
to name a few. In contrast, traditional computers, laptops,
and smart phones are examples of non-IoT devices; they
can perform a diverse set of different functionalities directly
instructed by the users of these devices.

One of the key foundations in monitoring and managing
IoT devices is the capability to identify the specific type of an
IoT device, including its manufacturer and model, termed loT
device identification. 10T device identification plays a critical

978-1-6654-3540-6/22 © 2022 IEEE

Yingfei Dong
Department of Electrical Engineering
University of Hawaii
Honolulu, HI 96822 USA
yingfei@hawaii.edu

Shaeke Salman, Tania Taami
Department of Computer Science
Florida State University
Tallahassee, FL 32306, USA

{salman, taami} @cs.fsu.edu

role in monitoring and improving the performance and security
of IoT devices. For example, a network may only allow certain
types of IoT devices to be deployed inside the network; in
addition, certain types of IoT devices can be blocked on a
network once a security vulnerability is identified on such
devices. Compared to traditional non-IoT devices, [oT devices
provide us with both unique challenges and opportunities in
detecting the types of IoT devices, including the vast diversity
of IoT device types and mostly autonomous operations of
specific (simple) functionalities. Given the importance of this
problem, a number of IoT device identification techniques have
been developed in the literature (see Section V for details).
However, these existing techniques have a few shortcomings
in identifying IoT devices.

First, most of these techniques considered networks com-
prising only IoT devices, without non-IoT devices. However,
in a real-world deployment of an IoT device identification
technique, a network normally consists of both IoT and non-
IoT devices, and the identification technique must handle both
IoT and non-IoT devices. Second, different IoT devices (and
non-IoT devices) generate vastly different volumes of data
traffic; put in another way, the data traffic of different devices
is imbalanced. For example, security cameras in general gen-
erate much more traffic than smart plugs. However, none of
the existing work considered the imbalance nature of datasets
in either learning or evaluating the IoT device identification
models. Third, the majority of the existing work developed
machine-learning identification methods based on a large set of
traffic features, for example, all the TCP/IP header fields. They
failed to illustrate why and how a feature contributed to the
overall performance of the developed identification method.

In this paper, we develop an effective machine-learning
(ML) based IoT device identification approach, named iotID.
We consider a realistic network environment consisting of both
IoT and non-IoT devices, and iotID can effectively identify IoT
devices based on the combined traffic of both kinds of devices.
In addition, we also take into account the nature of imbalanced
traffic generated by different kinds of devices in developing
and evaluating iotID. Furthermore, the development of iotID
is based on our previous work on studying the network traffic
characteristics of IoT devices [1], which provides us with an
informed understanding of the behavioral characteristics of

6074

different devices and critical insights in developing an effective
IoT device identification scheme. We evaluate the performance
of iotID using a week-long data trace collected in a typical
smart home environment, comprising both IoT and non-IoT
devices. Our evaluation studies show that iotID can achieve
a balanced accuracy score of above 99% in identifying the
deployed IoT devices in the smart home environment.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the problem statement, and the collection
and pre-processing of the data used in this study. In Section III
we present the design of the iotID scheme. We evaluate the
performance of iotID in Section IV, and discuss the related
work in Section V. We summarize the paper in Section VI

II. PROBLEM STATEMENT AND DATA COLLECTION

In this section we first describe the problem of IoT device
identification, and then we present the collection and pre-
processing of the data in carrying out this study.

A. Problem Statement

We consider a network environment consisting of both IoT
and non-IoT devices. This network environment can be a
smart home, smart city, or any enterprise network with both
kinds of devices deployed in the network. As discussed in
Section I, unlike non-IoT devices, there is a sheer diversity
of manufacturers and models in IoT devices, and different
IoT devices often perform very specific functionalities with
different objectives. Given the diversity of IoT devices, they
also require different levels of service guarantees and exhibit
different levels of security properties. Consequently, network
administrators would like to identify IoT devices in their
networks for various performance or security purposes. For
example, they may allow certain IoT devices to be used in the
network but would like to block other IoT devices because of
vulnerabilities associated with these IoT devices.

An IoT device identification scheme such as iotID devel-
oped in this paper tries to identify the specific types of the
IoT devices in the network, which is the critical first step in
supporting device-specific policies adopted by the network.
Schemes such as iotID can be deployed at the edge of a
network by its administrator or its upstream network service
provider. As discussed above, a monitored network consists of
both IoT and non-IoT devices; however, in this study we are
only interested in identifying the specific types of IoT devices,
given the unique challenges and opportunities in identifying
IoT devices compared to the non-IoT devices. In this paper,
we consider all the non-IoT devices as one single class, non-
1oT devices; we do not identify the specific types of non-IoT
devices.

B. Data Collection and Pre-processing

We collect the data used in this study in a typical smart
home network, consisting of 12 IoT devices and 7 non-IoT
devices. These devices are connected via a Wi-Fi router to
the global Internet. The router is flashed with OpenWrt. In
addition, tcpdump and some homemade scripts are installed

on the router to capture network traffic on a daily basis, for
60 continuous days. We randomly choose one week of data
for this study (we have also performed studies using other
weeks and similar results are obtained). The collected data
contains both TCP and UDP flows. Each flow is identified by
the standard 5 tuple of source and destination IP addresses,
source and destination port numbers, and protocol, with a flow
expiration threshold of 120 seconds between two consecutive
packets in the flow [1]. Based on our preliminary studies, UDP
flows only marginally improve the performance of iotID in
classifying IoT devices, as a consequence, we only consider
TCP flows in this study.

Table I shows the types of IoT devices, their assigned
type name used in this paper, and the number of TCP flows
generated by the corresponding IoT devices. In the table, we
also include one row for all 7 non-IoT devices (including
laptops, smartphones, and tablets). Since we are not interested
in classifying the non-lIoT devices, we consider them as a
single type and named it as non-IoT. We also note that we
have two Logitech Circle-2 cameras in the network. As our
focus is on identifying device types, both are considered as the
same type and combined in the table. The same observation
applies to the two Eufy Indoor cameras in the network. As
a consequence, we have 12 IoT devices on the network, but
there are only 10 different IoT device types.

From the table we can see that devices generate drastically
different amount of traffic in terms of the number of TCP
flows (and also the number of packets and bytes, not shown
in the table; see [1] for more details on the network traffic
characteristics of the devices). For example, while (the 12) IoT
devices generate 26,354 TCP flows, on average, [oT devices
generate much less TCP flows compared to non-IoT devices
(253,325 TCP flows, or about 90.58% of all TCP flows). In
addition, even among IoT devices, some IoT devices (such
as Eufy camera) generate much more TCP flows than other
IoT devices (such as Epicka smart plug). In essence, we can
observe that the dataset is vastly imbalanced, with some device
types containing much more traffic than other device types.

III. DESIGN OF 10TID

In this section we will present the design of the iotID
scheme and the features we extract from TCP flows to repre-
sent their traffic characteristics.

A. iotID

The scheme iotID is a machine-learning (ML) based IoT
device identification system. At the high level, iotID will be
trained based on a set of traffic features of known IoT devices,
where each IoT device type will be considered as a separate
class, and all non-IoT devices will be considered as another
combined single class. We use the device type name in Table I
as the class name in the ML model. The trained iotID scheme
can then be deployed at the edge of a monitored network to
identify the device types of other newly deployed IoT devices
in the network. We will discuss the traffic features used in the
development of iotID in the next subsection.

6075

Table I: Device Types and Traffic (One Week)

Device Type Name Device Type # of TCP Flows % of Total TCP Flows
Non-IoT All non-IoT devices 253325 90.5771
eufy_cam Eufy Indoor Cam 2K 13369 4.7801
amz_echo Amazon Echo Dot 5399 1.9304
wyze_cam Wyze Cam V2 4652 1.6633
len_spkr Lenovo Smart Clock Speaker 1132 0.4047
hp_printer HP Officejet 3830 Printer 1091 0.3901
Itlelf_cam LittleElf Pan & Tilt 258 0.0922
amz_plug Amazon Smart Plug 254 0.0908
semoic_bulb Semioc WiFi Smart Bulb 88 0.0315
logi_cam Logitech Circle 2 Camera 76 0.0272
epicka_plug Epicka Smart Plug 35 0.0125

In our preliminary studies, we have experimented with
a number of well-established machine learning algorithms,
including SVM, Random Forest, xgboost, and MLP. Based
on our preliminary studies, we note that in general xgboost
outperforms all other ML algorithms that we have studied
in most cases. Therefore, we will focus on xgboost in this
study. Xgboost is an ensemble algorithm of decision trees (or
more precisely CART) based on gradient boosting. Compared
to other gradient boosting ensemble tree algorithms, xgboost
adopted a number of algorithmic and system optimizations to
improve its performance in terms of both resource consump-
tion and classification accuracy [2].

In the design of iotID we need to handle the imbalance na-
ture of the data traffic as discussed in the last section. There are
a number of different methods to handle imbalanced datasets,
including oversampling minority classes, undersampling ma-
jority classes, and cost-sensitive learning techniques, among
others. Given that both oversampling and undersampling have
some undesired drawbacks [3], in this study we focus on the
cost-sensitive learning techniques. More specifically, a cost or
penalty is associated with a misclassification in cost-sensitive
learning, which, instead of trying to optimize the overall
accuracy, tries to minimize the overall misclassification cost.
By associating a higher cost with a misclassification of a data
point in a minority class than that of a majority class, a cost-
sensitive learning algorithm will in essence put more efforts in
minimizing misclassification of data points in minority classes.

In this paper we adopt a simple class balanced cost mech-
anism, where our objective is that all classes will have the
same cost or weight in optimizing the objective function of
an ML algorithm. More specifically, let /N be the number of
total data points in the dataset, K the total number of classes
in the dataset, N;j the number of data points in class j, w;j the
weight assigned to a data point in class j, then wj is given by:

N
~ KN,

We note that given this definition of w; to each data point in
class j, the weight assigned to class j is w; * N; = N/K,

(1)

Wy

which is the same value for all classes, regardless of the
number of data points in a class. Put in another way, all
classes carry the same weight in optimizing the objective
function of the ML algorithm. In addition to considering the
imbalance nature of the dataset in the learning algorithm, we
also consider this nature in the evaluation of the learning
algorithm. We will discuss the performance metrics that we
adopt to better illustrate the performance of iotID given the
imbalanced dataset in the next section.

B. Feature Selection

In this subsection we will discuss the features that we extract
from each TCP flow in training and testing the ML algorithm
of iotID. In order to effectively identify the IoT device type
for a given TCP flow, we need to extract the features that
can better represent or characterize TCP flows generated by
various types of IoT devices (and non-IoT devices in a network
with both types of devices). In our previous work [1] we
have studied the network traffic characteristics of IoT (and
non-IoT) devices from three complementary aspects: remote
network servers and port numbers that IoT devices connect
to, packet-level traffic characteristics such as packet inter-
arrival time, and flow-level traffic characteristics such as flow
duration, which provided critical insights into the operational
and behavioral characteristics of IoT devices.

Based on the insights obtained in [1], in this paper we will
similarly extract traffic features of TCP flows from the three
complementary aspects to represent a TCP flow. Overall we
extract a total of 70 features from each TCP flow.

1) Remote network servers and port numbers (3 features):
Due to the autonomous nature of IoT devices, they normally
only communicate with a small set of remote servers for
uploading status data, accepting control commands, or up-
dating software, among other operations. This is in drastic
contrast with non-IoT devices, which may contact a larger
and more diverse set of remote servers based on the browsing
and other activities of device users. Therefore, we consider
the IP address and port number of a TCP flow as important
features. Given that it is common for an IoT device to contact

6076

multiple remote servers in the same network of the service
provider (either a hosting service provider such as AWS or
the manufacturer’s own network), we split an IP address of
a remote server into two parts (features): network prefix part
and host part, based on BGP [4]. Consequently we have three
features in this category.

2) Packet level features (54 features): 1oT (and non-IoT)
devices exhibit different characteristics at the network packet
level, in terms of packet sizes and inter-arrival times (IAT)
of packets, due to the nature of the device firmware and
autonomous behavior of IoT devices. However, different TCP
flows (including the ones from the same device) may contain
different number of packets. Based on our preliminary studies
we note that the majority of TCP flows contain more than
10 packets, therefore we choose the first 10 packets in each
direction of a TCP flow as features, including both packet
sizes and IATs. If there are less than 10 packets, we will fill
the remaining ones with both sizes and IATs as zero. In this
way we extract 38 additional features from a TCP flow. In
addition, we also extract a few statistical features including
the minimum, maximum, mean, and standard deviation of the
packet sizes and IATs in each direction of a TCP flow, which
amount to 16 additional features in this category.

3) Flow level features (13 features): Different IoT devices
generate very different amount of traffic in a TCP flow. In
addition, while some IoT devices generate long-lasting TCP
flows, others generate more bursty short TCP flows. We extract
a number of features at the flow level that represent flow-level
traffic characteristics of TCP flows. More specifically, for each
TCP flow we extract the following features: flow duration;
flow sizes in number of bytes in the incoming and outgoing
directions of a flow, respectively; flow sizes in number of
packets in the two directions, respectively; and similarly, flow
rates in number of bytes and packets per second (in the
two directions), respectively. Additionally, we also include
the ratios of incoming and outgoing flow sizes (in bytes and
packets) and rates (in bytes/sec and packets/sec), respectively.
In this way we gather 13 features at the TCP flow level.

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of xgboost-
based iotID using the dataset collected on the smart home
network. We will first discuss the settings of the evaluation
studies and then present the evaluation results.

A. Evaluation Settings and Performance Metrics

As we have discussed in Section II, the dataset containing
both IoT and non-IoT device traffic is imbalanced. In order
to ensure that both training and test datasets contain the same
proportion of data points from various device types as the
original dataset, we adopt the stratified train-test split method
to split the original dataset into a training set and a test
set, containing 80% and 20% of the original data points,
respectively. We use this single split of dataset to investigate
the properties of iotID in terms of confusion matrix and feature
importance (see below and the next subsection). In order to

mitigate the potential bias in this single split of dataset, we also
perform stratified 5-fold cross validation to better illustrate the
performance of iotID.

We consider two possible realizations of iotID in this paper.
The first realization of iotID is a two-stage scheme. In the first
stage, we aim to separate all IoT devices as a single class from
non-IoT devices (recall that we consider all non-IoT devices
as a combined single class). Put in another way, we treat this
as a binary classification problem. In the second stage, we
only focus on IoT devices and classify them into individual
IoT device types. The second realization of iotID is a single-
stage scheme, where each IoT device type is considered as a
single class (and all non-IoT devices as a separate combined
class). We will evaluate and compare the performance of the
two realizations in the next subsection.

While the commonly used performance metric in machine
learning is accuracy, which is defined as the proportion of
correctly classified inputs, it is not an adequate metric for an
imbalanced dataset [3]. In particular, the corresponding ML
algorithm can bias towards majority classes if the objective is
to simply optimize the accuracy. In order to better illustrate the
performance of iotID given the imbalanced dataset, we adopt
the balanced accuracy score (BAS), which is defined as the
averaged score of recalls of individual classes in the dataset:

1< TP
BAS = K ; TP, + FN;’ @
where K is the total number of classes (device types), and
TP, and FN; are the true positives and false negatives of
class ¢, respectively. We note that in this definition the recalls
of both majority classes and minority classes contribute in the
same way in the balanced accuracy. In addition to the balanced
accuracy, we also consider confusion matrix in order to better

illustrate the performance of the scheme on individual classes.

B. Two-Stage iotID

As discussed above, in the two-stage realization of iotID, we
first aim to separate all the IoT devices from non-IoT devices,
and then in the second stage, we will only focus on identifying
the specific types of IoT devices.

Figure la shows the confusion matrix of the first stage of
iotID. From the figure we can see that 9 out of total 5271
IoT TCP flows are misclassified, and 10 out of 50665 non-
IoT TCP flows are misclassified, which results in a balanced
accuracy of about 99.9%. Figure 2a shows the significance
of top features in affecting the performance of iotID. From
the figure we can see that network prefix of remote server
IP address (remote_ip_prefix) plays the most critical role in
determining the iotID performance. This is understandable in
that IoT devices normally only communicate with a small set
of remote servers of service providers in order to carry out the
specific functionalities of the devices [1].

The figure also shows the contributions of other top features.
In the name of the features, “out” means the packets in the
outgoing direction of a TCP flow, and ’in” means incoming

6077

Balanced Accuracy: 0.9990475845978144

non-loT

Actual label

loT

o'\é @
QO

Predicted label

(a) Stage-1 of Two-Stage iotID

50000

-40000

30000

20000

10000

Balanced Accuracy: 0.9936153584777438

amz_echo $U3 2500
amz_plug
epicka_plug 2000
eufy_cam
hp_printer 1500

len_spkr

Actual label

logi_cam 1000

Itlelf_cam
semoic_bulb 500

wyze_cam

Balanced Accuracy:
amz_echo RUEEE 0

amz_plug Jit
epicka_plug it
eufy_cam Jit
hp_printer
len_spkr

logi_cam J¢

Actual label

Itlelf_cam JiG
non-loT

semoic_bulb Jit

o S & &

LIPS EL LSSy S & o
@Qq‘dc,\\o a,ckbvk; "Ab\ .L/K
J S FT S e o ¢ ¢«

. $ S
ST F S @ ¥ CELS SEL SO & &

Predicted label
(b) Stage-2 of Two-Stage iotID

Figure 1: Confusion Matrix.

Predicted label

(c) Single-Stage iotID

50000

40000

30000

20000

10000

remote_ip_prefix
out_pKtlen 0
remote_port
min_out_iat
out_jafs_1
remote_ip_host
out_pktlen_2 min_out_iat

remote_ip_prefix
remofe_port
out_pktfen_2
out jats”1
remote_ip_host
max_out_pktlen

max_out_iat in_iats_3
out_iats 0 in"iats”2
max_in pktlan Rtlen_:
in_pktlen_2 max_in_pktlen
in_iats_3 In_pKtlen_3
min_in_iat in_iats 0
in_out_bytesratio in_out_pkts rafio
T 7 Tin_iats_4 out_ats_0
inCiats"1 std_out pktlan
avg_in"pktlén in_iats_1
in_pktlen_4 out_pKtlen_0
out_nlim_bytes . out_jats”2
inJiats_2 in_pKtlen0

0.01 0.02 0.03 0.04

Feature Importance

0.05 0.06

(a) Stage-1 of Two-Stage iotID

0.00 001 002 003 004 005 006 007 0.08
Feature Importance

(b) Stage-2 of Two-Stage iotID

remote._ip_prefix
rermofe_port
out_pktlen_0
out_pktlen_2
remote_ip_host
out_iats_1
max_out_pktlen
fin_out_iat

ouE iats 0

in_pktlen_5
avg_out_pktlen

0.00

0.02 0.03 0.04
Feature Importance

0.01 0.05

(c) Single-Stage iotID

Figure 2: Feature Importance.

direction. The numbers in a feature name indicates the index
of a packet, with 0 as the first packet. Others in the feature
names are self-explanatory. Overall we can see that some other
features such as remote port and properties of individual pack-
ets also play important role in determining the performance of
stage-1 of iotID, consistent with observations made in [1].

Figure 1b and 2b shows the confusion matrix and feature
importance of the second stage of the two-stage iotID, where
we only handle data traffic of IoT devices. From the confusion
matrix we can see that 4 TCP flows from amz_echo and 1
flow from hp_printer and semioc_bulb are misclassified as
other IoT types, which results in a balanced accuracy of about
99.4%. From the feature importance figure we can see again
that remote network prefix plays the most important role in
determining the performance of the second stage of the two-
stage iotID, as they may use different service providers.

Multiplying the performance of the two stages of iotID,
we can see that the balanced accuracy of the two-stage
realization of iotID is about 99.3%. We note that we have
used all the TCP flows of IoT devices in the stage-2 of iotID
evaluation, including misclassified TCP flows in the first stage,
to maximize the data points in the second stage of iotID. This
will only marginally affect the combined performance, given
the small number of misclassified TCP flows of IoT devices
in the first stage.

As discussed above, we also perform stratified 5-fold cross
validation on the original dataset to investigate the perfor-
mance of the two-stage iotID. The average balanced accuracy
scores of the first stage and second stage of the two-stage

iotID are 99.87% and 99.45%, respectively. Combining the
performance of the two stages, we can see that the average
balanced accuracy of the two-stage iotID is about 99.3%,
similar to the one we have observed using the single split of
the original dataset without cross validation. In addition, we
have also manually examined the balanced accuracy of each
iteration in the 5-fold cross validation, and observed that they
are very consistent (all are above 99%). These results indicate
that the properties that we have observed in the single split of
the dataset in terms of confusion matrix and feature importance
should be representative of the two-stage iotID.

C. Single-Stage iotID

As discussed above, in the single-stage realization of iotID,
we consider all non-IoT devices as one combined class, and
each type of IoT devices also as a separate class. Figure Ic
shows the confusion matrix of the single-stage iotID. From the
figure we can see that 17 TCP flows of non-IoT devices are
misclassified. We also note that 9 TCP flows of IoT devices
are misclassified as non-IoT flows (similar to stage-1 of the
two-stage iotID), and an additional TCP flow of hp_printer
is misclassified as a flow of another IoT device (len_spkr,
a Lenovo speaker). The balanced accuracy of the single-
stage iotID is about 99.8%, which is slightly better than the
combined performance of the two-stage realization of iotID.

Figure 2c shows the importance of traffic features in de-
termining the performance of the single-stage iotID. From
the figure we can similarly see that features such as remote
network prefix and port number play critical roles in affecting

6078

the performance of iotID. Similarly we have also studied the
performance of the single-stage iotID with stratified 5-fold
cross validation, and the average balanced accuracy is about
99.1%, slightly worse than what we have observed with the
single split of the original dataset. Examining the individual
balanced accuracy from each iteration of the 5-fold cross
validation, we notice that the performance of one iteration
(about 96.8%) is slightly worse than that of other iterations
in the cross validation (above 99%). Overall, the confusion
matrix and feature importance we have observed using the
single split of the original dataset are still representative of
the single-stage iotID, based on manual examination of the
5-fold cross validation results.

V. RELATED WORK

In this section we will briefly discuss the research efforts on
IoT device identification that are most relevant to our work.

In [5], the authors proposed a system to identify device
type in an IoT network based on the periodic communication
properties of the devices. Meidan et al. used device traffic
properties such as network flow, protocols, and TCP sessions
to classify IoT and non-IoT devices and to further identify the
classes of different IoT device [6], [7]. Miettinen et al. pre-
sented a study on IoT device fingerprinting and identification
based on three categories of features, including first IV packets
exchanged in the service discovery protocols [8].

In [9], the authors presented an IoT device identification
scheme based on network traffic behavior of the connected
devices. Their feature set includes the packet sizes and inter-
arrival-times of first 10 packets from each TCP flow. Only 4
IoT devices were used in their studies. In [10], the authors
proposed a two-level classification approach of IoT devices,
where Genetic Algorithm was used to select useful features
among a large set of features extracted from a packet header,
and then ML algorithms were used to classify the IoT device
types. The authors of [11] adopted a similar approach as
above for device type identification using TCP/IP packet
header information. Sivanathan et al. presented a machine-
learning algorithm to classify [oT devices based on statistical
attributes of their network activities [12], including features
such as activity cycles, remote servers and ports, signaling
patterns, and cipher suites. The authors of [13] proposed a
machine-learning based IoT device fingerprinting approach
using general flow metadata and TLS handshake data.

However, the majority of existing work only considered
the classification of IoT devices without non-IoT devices. A
real-world network normally contains both IoT and non-IoT
devices, and it is critical to separate IoT devices from non-IoT
devices in such an environment. In addition, none of existing
work considered the imbalance nature of traffic generated by
different IoT devices (and non-IoT devices) and their impacts
on the performance of the IoT device identification algorithms.
IotID takes into account the real-world deployment scenario
with both IoT and non-IoT devices and the nature of imbalance
traffic from various IoT and non-IoT devices.

VI. SUMMARY AND FUTURE WORK

In this paper we developed iotID, an effective machine-
learning (ML) based IoT device identification scheme. In
iotID, 70 features of TCP flows from three complementary
aspect were collected: remote network servers and port num-
bers, packet-level traffic characteristics such as packet inter-
arrival time, and flow-level traffic characteristics such as flow
duration. We evaluated the performance of iotID based on
network traffic collected on a typical smart home environment
consisting of both IoT and non-IoT devices, which showed that
iotID can achieve a balanced accuracy score of above 99%.
In our future work we will explore opportunities to evaluate
iotID with additional IoT devices, and we will also thoroughly
study the two realizations of iotID in various network settings
to investigate the deployment scenarios where one may be
preferred over another.

REFERENCES

[1] Md Mainuddin, Zhenhai Duan, and Yingfei Dong. Network traffic
characteristics of iot devices in smart homes. In 2021 International
Conference on Computer Communications and Networks (ICCCN),
pages 1-11, 2021.

[2] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
785-794, New York, NY, USA, 2016. ACM.

[3] Haibo He and Yungian Ma. Imbalanced Learning: Foundations, Algo-
rithms, and Applications. Wiley-IEEE Press, 1st edition, 2013.

[4] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol
4 (BGP-4). RFC 4271, January 2006.

[5] Samuel Marchal, Markus Miettinen, Thien Duc Nguyen, Ahmad-Reza
Sadeghi, and N Asokan. Audi: Toward autonomous iot device-type
identification using periodic communication. /IEEE Journal on Selected
Areas in Communications, 37(6):1402-1412, 2019.

[6] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo,
Martin Ochoa, Nils Ole Tippenhauer, and Yuval Elovici. Profiliot: a
machine learning approach for iot device identification based on network
traffic analysis. In Proceedings of the symposium on applied computing,
pages 506-509, 2017.

[7] Yair Meidan, Michael Bohadana, Asaf Shabtai, Martin Ochoa, Nils Ole
Tippenhauer, Juan Davis Guarnizo, and Yuval Elovici. Detection of
unauthorized iot devices using machine learning techniques. arXiv
preprint arXiv:1709.04647, 2017.

[8] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-
Reza Sadeghi, and Sasu Tarkoma. Iot sentinel: Automated device-
type identification for security enforcement in iot. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
pages 2177-2184. 1IEEE, 2017.

[9] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar. Iot devices recognition

through network traffic analysis. In 2018 IEEE International Conference

on Big Data (Big Data), pages 5187-5192, 2018.

Ahmet Aksoy and Mehmet Hadi Gunes. Automated iot device iden-

tification using network traffic. In IEEE International Conference on

Communications (ICC), pages 1-7. IEEE, 2019.

Rajarshi Roy Chowdhury, Sandhya Aneja, Nagender Aneja, and

Emeroylariffion Abas. Network traffic analysis based iot device identi-

fication. In Proceedings of 4th International Conference on Big Data

and Internet of Things, pages 79-89, 2020.

Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam

Radford, Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman.

Classifying iot devices in smart environments using network traffic

characteristics. IEEE Transactions on Mobile Computing, 18(8):1745—

1759, 2018.

Jianhua Sun, Kun Sun, and Chris Shenefiel. Automated iot device

fingerprinting through encrypted stream classification. In International

Conference on Security and Privacy in Communication Systems, pages

147-167. Springer, 2019.

[10]

[11]

[12]

[13]

6079

