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Abstract
This paper presents an approach for detecting out-
of-context (OOC) objects in images. Given an im-
age with a set of objects, our goal is to determine
if an object is inconsistent with the contextual re-
lations and detect the OOC object with a bounding
box. In this work, we consider common contex-
tual relations such as co-occurrence relations, the
relative size of an object with respect to other ob-
jects, and the position of the object in the scene.
We posit that contextual cues are useful to deter-
mine object labels for in-context objects and in-
consistent context cues are detrimental to determin-
ing object labels for out-of-context objects. To re-
alize this hypothesis, we propose a graph contex-
tual reasoning network (GCRN) to detect OOC ob-
jects. GCRN consists of two separate graphs to pre-
dict object labels based on the contextual cues in
the image: 1) a representation graph to learn ob-
ject features based on the neighboring objects and
2) a context graph to explicitly capture contextual
cues from the neighboring objects. GCRN explic-
itly captures the contextual cues to improve the de-
tection of in-context objects and identify objects
that violate contextual relations. In order to eval-
uate our approach, we create a large-scale dataset
by adding OOC object instances to the COCO im-
ages. We also evaluate on recent OCD benchmark.
Our results show that GCRN outperforms compet-
itive baselines in detecting OOC objects and cor-
rectly detecting in-context objects. Code and data:
https://nusci.csl.sri.com/project/trinity-ooc

1 Introduction
We address the problem of detecting out-of-context (OOC)
objects in an image. Given an image with a set of ob-
jects, the goal is to detect objects that are OOC and also
correctly identify the in-context objects. Typically, objects
in natural images appear in a suitable context and consid-
ering contextual cues are useful for object detection [Oliva
and Torralba, 2007; Koller and Friedman, 2009; Beery et
al., 2018; Zhang and Chen, 2012; Sun and Jacobs, 2017;
Bomatter et al., 2021]. While appropriate contextual cues

Figure 1: Given the ‘elephant in the room’ image, we build a graph
based on the objects to share contextual cues between the objects.
In-context objects are highlighted with green frames and the OOC
object is highlighted with a red frame. Here, the ‘elephant’ is an
OOC object as it is inconsistent with the co-occurrence relations
with respect to other objects in the image.

are useful for object detection, incorrect contextual cues can
negatively impact the performance of object detection for
both humans [Zhang et al., 2020; Bomatter et al., 2021]
and machine learning approaches [Rosenfeld et al., 2018;
Madras and Zemel, 2021]. Thus, in order to develop reliable
object detection systems, it is crucial to detect objects that
appear in unusual contexts where the predictions may not be
reliable.

While detecting in-context objects is extensively explored,
detecting OOC objects remains less studied. Recent work has
shown that the presence of OOC objects can severely affect
an object detector’s ability to detect in-context objects in the
image [Rosenfeld et al., 2018]. Detecting OOC objects can
become difficult for humans as well [Bomatter et al., 2021].
Motivated by these observations, we develop an approach to
explicitly capture the contextual cues and detect OOC objects
by checking inconsistent object-context relations.

Detecting OOC objects is challenging as these objects ap-
pear normal in isolation and thus relying on the object’s ap-
pearance alone may not be sufficient for detection. We also
assume that OOC object classes are present in the training
data and thus these objects are not novel object instances. A
few early approaches consider hand-crafted contextual rela-
tionships (e.g., co-occurrence, the constraint on object size)
for OOC detection [Choi et al., 2012]. Some recent ap-
proaches consider neural network-based models to learn con-
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textual relations in a data-driven manner [Bomatter et al.,
2021]. Many of such approaches consider context as generic
background and do not exploit informative cues such as la-
bel dependencies and relative object properties in the image
[Beery et al., 2018; Zhang et al., 2020]. To address these
challenges, we propose an approach to explicitly capture con-
textual cues for object detection and exploit contextual in-
consistencies to detect OOC objects. We posit a simple yet
effective hypothesis to detect OOC objects in an image - for
in-context objects, label predictions with and without con-
textual cues are more likely to match, and for out-of-context
objects, predictions with and without context are less likely to
match due to the inconsistent contextual cues. In other words,
contextual cues are only useful to detect objects that are in-
context and adversely affect the detection of out-of-context
objects. For example, as shown in Fig. 1, detecting an in-
context object such as ‘person’ can benefit from the contex-
tual cues from other indoor objects. However, in the case of
the OOC ‘elephant’ object, inconsistent contextual cues can
be confusing as elephants usually do not appear indoor scenes
and do not co-occur with indoor objects.

We propose a graph contextual reasoning network (GCRN)
to capture contextual cues for predicting object class labels.
We define a graph where nodes represent objects in an im-
age and edges represent object-to-object relations. Specifi-
cally, our GCRN consists of two graphical models: 1) repre-
sentation graph (repG) to learn useful visual representations,
and 2) context graph (conG) to capture contextual cues from
the scene in order to predict object labels. We consider three
contextual relations for OOC detection: co-occurrence of ob-
jects, location, and shape similarity of object boxes. These
contextual cues are shown to effective for object detection
[Koller and Friedman, 2009; Zhang and Chen, 2012]. Each
graphical model is realized by a Graph Convolutional Net-
work (GCN) to ensure efficient learning and inference [Dai
et al., 2016; Kipf and Welling, 2017; Hamilton et al., 2017;
Velickovic et al., 2019; Qu et al., 2019]. Both the mod-
els are trained together to ensure GCRN learns informa-
tive node representation and contextual relations among the
objects. GCRN has several advantages over existing ap-
proaches. Compared to the graph-based models that define
contextual relations using hand-crafted features, such as con-
ditional random fields [Zhang and Chen, 2012], GCRN learns
these cues in a data-driven manner. Compared to the stan-
dard GCN models [Dai et al., 2016; Kipf and Welling, 2017;
Hamilton et al., 2017], conG in GRCN explicitly captures the
contextual dependencies among the objects while predicting
node labels. Our experiments show explicitly capturing these
contextual cues is crucial for detecting OOC objects.

Our main contributions include:

• We propose a graph contextual reasoning network to de-
tect OOC objects by explicitly capturing contextual cues
in a data-driven manner. GCRN does not require manual
specification of the contextual relationships.

• We create a large-scale OOC dataset based on the COCO
dataset [Lin et al., 2014] where objects appear in various
OOC scenarios based on common contextual relations:
co-occurrence, location, and shape of the objects.

2 Related Works
Context for object detection. Contextual cues are impor-
tant for object detection and segmentation. Graph-based
models provide a flexible way to represent context where
nodes represent objects and edges represent pair-wise rela-
tions among the objects [Zhang and Chen, 2012]. Among
graph-based models, conditional random fields (CRF) are
explored extensively, where contextual cues are represented
by edge potentials. Common contextual cues include co-
occurrence, spatial distance, geometric and appearance simi-
larity [Koller and Friedman, 2009; Zhang and Chen, 2012].
More recently, graphical models are combined with neu-
ral networks to exploit data-driven feature learning. Graph
convolutional networks (GCN) [Dai et al., 2016; Kipf and
Welling, 2017; Hamilton et al., 2017] provide a convolutional
implementation of the graphical models combining the power
of representation learning of neural networks with the struc-
tured representation of graphs. However, standard GCNs do
not explicitly capture the contextual relations that are crucial
to detect OOC objects [Qu et al., 2019]. Our GCRN learns
two GCNs, one for learning the feature representation and
another for capturing context cues, to effectively detect OOC
objects.
Out-of-context object detection. Existing studies have ar-
gued the importance of OOC object detection as these af-
fect the performance of object detection for both humans
and machines [Rosenfeld et al., 2018; Zhang et al., 2020;
Bomatter et al., 2021]. Choi et al. [Choi et al., 2012] define
OOC objects that violate common contextual rules (e.g., fly-
ing cars) in terms of unusual background, unusual size, etc.
Unlike these approaches, we define the context for a target
object as its relation (object classes, relative size, relative lo-
cation) with other objects and the scene.
Graph Convolutional Networks. GCNs provide an end-
to-end neural network-based realization of graph models
and are shown to be successful in object detection [Dai et
al., 2016; Kipf and Welling, 2017; Hamilton et al., 2017;
Qu et al., 2019]. In GCNs, a robust node representation
is learned by sharing the representations with neighboring
nodes. This node-to-node exchange is implemented via a
convolutional operation that facilitates efficient learning and
inference in GCNs. However, GCNs typically avoid model-
ing the label dependency among the nodes [Qu et al., 2019].
Thus, common GCNs frameworks are not effective to cap-
ture global contextual cues. Recently, graph Markov neural
networks (GMNN) [Qu et al., 2019] are proposed to capture
label dependency by simultaneously learning two GCNs - one
for learning node representations and another for learning la-
bel dependency. We consider a similar setup where one net-
work learns the node representation and another network cap-
tures context for predicting mode labels.
Predictive Coding inspired Robust Learning. In recent
work, predictive coding [Friston, 2018] - a theory of mind,
has inspired an effective approach for robust learning [Jha et
al., 2020]. The central idea [Roy et al., 2022] is to build
a predictive context model and rather than use the output of
deep learning models directly, the input is first validated and
fused with the context model to detect whether the inputs
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present a surprise to the model. This is an example of “anal-
ysis by synthesis” approaches [Yuille and Kersten, 2006;
Jha et al., 2019], where hypotheses are formulated in the form
of candidate models and those whose predictions match the
input data are preferred. The presented out of context detec-
tion approach in this paper can be viewed as an implemen-
tation of such a top-down predictive coding based approach,
where the predictive context is learned as a graph contextual
reasoning network.

3 Proposed Approach
We hypothesize that, for OOC objects, predictions using con-
textual cues may not be reliable due to the inconsistent con-
textual cues. On the other hand, contextual cues are expected
to help predict the labels for in-context objects. To real-
ize this hypothesis, we propose a graph contextual reason-
ing network (GCRN) that consists of two graph models: 1)
Representation graph (RepG) that learns precise object rep-
resentation at each node by sharing the representations with
its neighbors. RepG relies on the shared representations to
predict object labels ignoring context dependencies among
the labels [Qu et al., 2019]. 2) To complement RepG, we
propose a context graph (ConG) that learns context depen-
dencies at each node by sharing the contextual cues with its
neighbors. We consider graph convolutional networks (GCN)
[Kipf and Welling, 2017; Hamilton et al., 2017] to instantiate
both RepG and ConG. We first introduce the GCN framework
and then discuss the implementations of RepG and ConG.
Graph convolutional network. Given an image, we build a
graph over the objects. Consider a graph G = (V,E), where
V is the set of nodes and E is the set of edges. We define
X = {xi} and Y = {yi} as the feature representation and
label of ith node, respectively. Given this definition, the goal
is to predict object labels for each node

H l+1 = f l(W l, H l, E), p(yi|X,E) = SM(HL), (1)

where f l(·) is the convolutional function corresponding to a
layer l. f l(·) iteratively updates node representations to H l+1

from the current representation H l and using the edges be-
tween nodes E. W l represents the parameter for layer l. Note
that H0 = X , the initial node representations. The prediction
is made by applying a softmax operation (SM) at the final
layer HL.
Context-informed prediction. We formulate context-
dependent label prediction in a conditional random field
framework [Lafferty et al., 2001; Koller and Friedman, 2009]
where the conditional distribution over the labels is given by

p(Y |X,E) =
1

Z(X,E)

∏
(i,j)∈E

ϕi,i(yi, yj , X), (2)

where Z(X,E) is the partition function over the graph and
ϕi,i(yi, yj , X) is the potential function over a pair of nodes
i, j [Koller and Friedman, 2009]. Lets denote θ as the graph
parameters. Then, learning can be done by maximizing the
following conditional log-likelihood:

ℓY |X(θ) = log pθ(Y |X, θ). (3)

However, directly maximizing this likelihood function is in-
tractable due to the combinatorial nature of the partition func-
tion [Koller and Friedman, 2009]. Thus, we consider optimiz-
ing the approximate likelihood that is shown to successful in
learning similar graphical models [Richardson and Domin-
gos, 2006].

ℓY |X(θ) =
∑
i

log pθ(yi|yj∈N(i), X, θ), (4)

where N(i) is the set of neighbors of i. Intuitively, with this
approximation, we only consider the contextual dependencies
based on the neighboring nodes. However, as we consider
GCN to capture this dependencies, a few iterations of GCN
allows to capture log-range dependencies by iterative mes-
sage passing [Kipf and Welling, 2017; Koller and Friedman,
2009]. Note that in Equ. 4, the label of a node yi is con-
ditioned on both the neighboring context (yj∈N(i)) and the
feature representation X . To avoid this dependency, we con-
sider an iterative optimization where we optimize for the rep-
resentations in one phase and for the context dependency in
another phase [Qu et al., 2019].

Representation graph (RepG). In the first phase, we con-
sider a mean-field approximation to remove context depen-
dency and learn only the visual representation for nodes. The
node-wise label predictions are made as

pθR(Y |X,E) =
∏
i

pθR(yi|X,E), (5)

where θR is the parameters for representation graph. Our rep-
resentation graph is implemented by a GCN where object fea-
tures are used to initialize node representations and parame-
ters are learned to predict node labels.

H l+1
R = f l

R(W
l
R, H

l
R, E), p(yi|XR, E) = SM(HL

R), (6)

where XR denote the initial node representations and WR

denotes the GCN parameters. We consider visual features
from the bounding box as the node representations. Note that
neighboring nodes share feature representations by message
passing (6) but context dependencies are ignored due to the
mean field approximation (5).

Context graph (ConG). In the second phase, we aim to
make context-dependent predictions. Similar to RepG, ConG
is also implemented using a GCN but instead of visual fea-
tures, we consider context features as node representations

H l+1
C = f l

C(W
l
C , H

l
C , E), p(yi|XC , E) = SM(HL

C), (7)

where XC denotes the contextual features as node represen-
tations and WC denotes the GCN parameters. Specifically,
XC includes softmax distribution over the labels from RepG
along with spatial features such as position and size of the
objects. The label distribution helps capturing co-occurrence
cues and the relative spatial cues are captured from position
and size features. ConG learns the context dependencies be-
tween objects while making the final predictions.
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Figure 2: GCRN considers an image with bounding boxes as input to construct a graph over the objects. This graph is fed to RepG which
learns visual representations of objects and ConG which learns contextual relations between objects. Finally, the GRCN predictions are
compared with the object classifier’s predictions to detect OOC objects. Two predictions are likely to match for in-context objects and differ
for OOC objects.

Learning. We perform an iterative learning in an
expectation-maximizing (EM) framework [Richardson
and Domingos, 2006; Qu et al., 2019]. At the E-step, we
learn the parameters of RepG considering a fixed ConG and
at the M-step, keeping RepG fixed, we update the parameters
of ConG. Specifically, at the E-step, we make intermediate
predictions using RepG. Then, considering these intermedi-
ate predictions and context dependencies between objects,
ConG makes final predictions. The node-wise prediction
loss is used to update RepG. At the M-step, we keep RepG
fixed and update ConG based on node-wise prediction loss.
We continue these iterations until convergence, i.e., the
difference in the predictions between RepG and ConG is zero
or below a threshold.

Detecting OOC instances. Given an image, we localize the
objects by bounding boxes and consider them as the nodes of
the graph. GCRN predicts softmax distribution over class la-
bels for each node by considering context cues from other
nodes. We also train an object classifier to predict object la-
bels only from the bounding boxes ignoring the context cues.
Finally, we compare the KL divergence (KLD) between the
softmax distributions from both the predictions as a measure
of OOC. For in-context objects, KLD is expected to be low
and for OOC objects, the KLD is expected to be high. Thus,
OOD detection can be performed by applying a threshold to
the KLD. Our prediction framework is shown in figure 2.

Implementation Details. We implement the GCRN frame-
work using the DGL toolbox [Wang et al., 2019]. For both
RepG and ConG, we consider a GCN with four graph con-
volution layers with residual connections between the layers.
The numbers of neurons at these layers are 256, 128, 64, and
64 respectively. GCNs are trained using an AdamW opti-
mizer with a learning rate of 0.001 without decay. For our
GCRN framework, we first train RepG for five epochs in the

first phase and alternate between RepG and ConG until con-
vergence. In our experiments, convergence is reached within
ten iterations. Residual connections between the layers are
crucial for efficient learning and convergence.

To create a graph for an image, we first detect objects in
images and then extract features for the objects to initial-
ize the graph representation. We consider the MaskRCNN
[He et al., 2017] pre-trained on the COCO dataset to de-
tect objects. We train a ResNet50 [He et al., 2016] net-
work for feature extraction. For contextual cues, we use
the geometrical features for each objects with co-ordinates
(xmin, ymin, xmax,ymax) and calculate a 7D spatial feature
vector

[
w
W , h

H , a
A , xmin

W , ymin
H , xmax

W , ymax
H

]
where w, h, a rep-

resent the width, height and area of the bounding box and W ,
H , A represent the same for the image. These spatial features
are important to capture usual size and location of objects in
images.

4 Experiments
In the following, we introduce the dataset, describe experi-
mental setup, metrics, and present results.

The COCO-OOC Dataset. To evaluate the performance of
OOC detection, we create a large-scale OOC dataset based
on the COCO object detection benchmark [Lin et al., 2014].
We aim to localize OOC objects and leverage contextual cues
from other objects in an image. This requires bounding box
annotations for all the objects along with the OOC object.
We consider COCO 2014 [Lin et al., 2014] dataset consisting
of 80 indoor and outdoor objects classes. Following the com-
mon strategy [Blum et al., 2021; Zhang et al., 2020], we place
objects in images that violate the contextual relations. We
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Approach AUC score

Softmax confidence 0.043
GCRN (w/o ConG) 0.589
GCRN 0.980

Table 1: Comparison with the baselines on the COCO-OOC dataset.

leverage available object segmentation masks to transplant
objects in images to create OOC scenarios. COCO-OOC con-
sists of 106,036 images with three types of OOC violating
co-occurrence, location and size relations [Blum et al., 2021;
Zhang et al., 2020; Bomatter et al., 2021].

The OCD Dataset. In addition to our COCO-OOC dataset,
we also use the recent OCD benchmark with synthetically
generated OOC indoor scenes [Bomatter et al., 2021]. The
OOC images are generated using the VirutalHome [Puig et
al., 2018] environment. OCD has 11,155 OOC images where
objects violate co-occurrence, size, and gravity relations.

Experimental setup and metrics. To capture usual contex-
tual relations, we train GCRN on the COCO train set where
all objects appear in context. We test on OOC images to de-
tect the OOC objects that appear in unusual contexts. Note
that we assume all OOC objects are available in training and
are not novel during the test. Thus, relying on appearance
cues alone is not sufficient for detecting OOC objects. Re-
call that we compare the KL divergence between predictions
from GCRN and object classifier to detect OOC objects. As
selecting a threshold is often crucial for separating OOC from
in-context objects, we consider the AUC score as the metric
that is not sensitive to a specific threshold.

Baselines. We propose the following baselines to evaluate
various aspects of GCRN.

Softmax confidence: In this baseline, we consider the soft-
max confidence as a measure of OOC assuming that the con-
fidence would be lower for the OOC objects than usual in-
context objects. Softmax confidence is successfully used to
detect anomaly [Blum et al., 2021] and novel objects [Liang
et al., 2018]. Further, our results in table 1 show that the
softmax confidence is not reliable to detect OOC objects as,
unlike anomalous or novel objects, the OOC objects are ob-
served during training. This study implies that relying on the
appearance alone is not sufficient to detect OOC objects.

Without context graph: In this baseline, we do not explic-
itly capture context. Specifically, we omit the context graph
and consider only the representation graph. These results in
table 1 imply that context graph is important to capture con-
text and representation graph itself is not sufficient to cap-
ture context dependencies. This baseline is comparable with
the [Bomatter et al., 2021] where object representations are
learned through a shared network and context dependencies
between the objects (e.g., label dependencies) are ignored.

Impact of contextual cues on in-context vs. OOC object
detection. We compare the performance of object detection
for in-context and OOC objects on COCO-OOC dataset. The

Approach OOC In-context Overall

GCRN (w/o ConG) 0.69 0.77 0.76
GCRN 0.30 0.98 0.93

Table 2: Performance for detecting OOC and in-context objects on
the COCO-OOC dataset.

OOC type Co-occurrence Size

AUC score 0.986 0.921

Table 3: AUC score for detecting OOC variants on COCO-OOC.

results are shown in table 2. As expected, the performance
for detecting OOC objects is slightly inferior without ConG.
However, considering explicit contextual cues in GCRN im-
proved the performance for in-context objects and degraded
the performance for OOC objects. This justifies our hypothe-
sis that accurate contextual cues are helpful for detecting in-
contexts while inconsistent contextual cues can be harmful.

Types of OOC. We evaluate GCRN’s performance on de-
tecting OOC objects that violate co-occurrence and size rela-
tions in table 3. The performance on co-occurrence is supe-
rior as capturing the co-occurrence context is relatively more
reliable. To capture the size context, we consider the relative
size of the object boxes measured in pixel-space. However,
the actual size information is partially lost due to the projec-
tion of 3D world to 2D images.

Impact of object detection on OOC detection. We need to
accurately detect an object to determine whether it is OOC. In
this section, we analyze the effect of object detection on the
performance of OOC detection. We consider three setups:
1) oracle bounding boxes and labels (oracle boxes + labels)
- here we have access to ground-truth bounding boxes and
class labels. 2) oracle bounding boxes (oracle boxes + pred
labels) - here we have access to ground-truth bounding boxes
but labels are predicted by the object classifier, 3) predicted
bounding boxes (pred boxes) - here we do not have access
to ground-truth bounding boxes or labels and localize objects
with an object detector. In the oracle boxes + labels setup,
errors are completely attributed to the OOC detection. In or-
acle boxes + pred labels, additional errors may come from
misclassifying object labels. In pred boxes, errors may come
from both incorrect boxes and wrong labels. The results are
shown in table 4. As expected, the performance gradually de-
creases from oracle boxes+labels to pred boxes. This study
depicts the importance of accurate object detection for reli-
able OOC detection.

Approach AUC score

GCRN (oracle boxes + labels) 0.980
GCRN (oracle boxes + pred labels) 0.897
GCRN (pred boxes) 0.771

Table 4: Impact of object detector on OOC detection on the COCO-
OOC dataset.
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Figure 3: Qualitative examples where the proposed GCRN correctly identifies OOC objects in images. Top row presents images from our
COCO-OOC dataset and bottom row presents images from the OCD dataset. The OOC objects are marked by red boxes. GCRN successfully
detects OOC objects that violate co-occurrence, location, and size relations.

Approach AUC score

Softmax confidence 0.402
GCRN (oracle boxes + pred labels) 0.587
GCRN (oracle boxes + labels) 0.709

Table 5: Performance of OOC detection on the OCD dataset.

Results on the OCD dataset. Following the protocol in
[Bomatter et al., 2021], we train on COCO train images and
test on OOC images. As in [Bomatter et al., 2021], we con-
sider the overlapping objects between COCO and OCD as
OOC objects. We present the results in table 5. Note that
COCO consists of natural images and OCD consists of syn-
thetic images. Due to the domain shift, object detection is
more challenging. Thus, our performance of OOC detection
on OCD is lower than that of COCO-OOC.

Qualitative results. We present the qualitative results in
figure 3 where the top row shows the results on COCO-OOC
images and the bottom row shows the results on OCD im-
ages. Our GCRN successfully detects various types of OOC
objects in both natural and synthetic images. Note that we
consider the COCO dataset for training and can detect OOC
objects in the synthetic OCD images.

Failure cases. We present two failure cases in figure 4. In
these two cases, ‘laptop’ and ‘backpack’ are not detected as
OOC objects. The size of the laptop is larger than usual mak-
ing it OOC. Laptops are often observed in indoor scenes with
persons and indoor furniture as in-context objects. This may
cause the misdetection. In the second case, the size of the
OOC backpack is larger than usual. However. backpacks
are often observed in outdoor scenes and regarded as an in-
context object. Generally, the size features are often partially
lost in images due to the 3D to 2D projection. Having ac-

cess to additional 3D cues of object geometry (e.g., from
RGB+Depth) can help capture context more precisely.

Figure 4: Left: laptop is not detected as OOC, Right: backpack is
not detected as OOC

5 Conclusion
We have presented a GCRN framework to detect OOC objects
in images. Detecting OOC objects is crucial for developing
a reliable object detection framework as detectors perform
poorly on OOC objects. The proposed GCRN framework
has two components: RepG to learn object representations
and ConG to explicitly capture contextual relation for object
detection. We have created a large-scale OOC dataset to eval-
uate our performance. We have also evaluated GCRN on the
recent OCD dataset. We have considered common OOC sce-
narios where objects violate co-occurrence, location, and size
relations. Our evaluation shows that contextual cues are help-
ful to detect in-context objects while inconsistent contextual
cues can hinder accurate object detection. We have showed
that explicitly capturing contextual cues is crucial for OOC
detection. We have analyzed the effect of object detection
on the performance of OOC detection and, as expected, ac-
curately localizing objects and identifying object labels are
shown to be important for OOC detection. Finally, we have
presented a few failure cases and propose strategies to miti-
gate such failures.
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