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Abstract

Parameter-free algorithms are online learning algorithms that do not require setting learning rates.
They achieve optimal regret with respect to the distance between the initial point and any competitor.
Yet, parameter-free algorithms do not take into account the geometry of the losses. Recently, in the
stochastic optimization literature, it has been proposed to instead use truncated linear lower bounds,
which produce better performance by more closely modeling the losses. In particular, truncated linear
models greatly reduce the problem of overshooting the minimum of the loss function. Unfortunately,
truncated linear models cannot be used with parameter-free algorithms because the updates become
very expensive to compute. In this paper, we propose new parameter-free algorithms that can take
advantage of truncated linear models through a new update that has an “implicit” flavor. Based on a
novel decomposition of the regret, the new update is efficient, requires only one gradient at each
step, never overshoots the minimum of the truncated model, and retains the favorable parameter-free
properties. We also conduct an empirical study demonstrating the practical utility of our algorithms.
Keywords: Online convex optimization, Regret, Truncated linear models, Parameter-free

1. Introduction

In this paper, we study Online Convex Optimization (OCO) (Gordon, 1999; Zinkevich, 2003). In
this setting, for each of 7' steps, a learner produces a prediction w; € V in each step ¢, where
V C R%is the feasible convex set. After each prediction, an adversary reveals a convex loss function
¢, -V — R and the learner pays ¢;(w;). The aim of the learner is to minimize its regret with respect
to any fixed prediction u € V, defined as

T

T
Regrety(u) £ ) " f(w;) = > l(u) .
t=1

t=1

Depending on the assumptions on the feasible set and the losses, there are many OCO algo-
rithms that achieve optimal regret. The two main families of OCO algorithms are based on Online
Mirror Descent (OMD) (Nemirovsky and Yudin, 1983; Warmuth and Jagota, 1997) and Follow-The-
Regularized-Leader (FTRL) (Shalev-Shwartz, 2007; Abernethy et al., 2008b; Hazan and Kale, 2008).
For the particular case where V' = RY, parameter-free algorithms are minimax optimal (Orabona
and Pél, 2016; Cutkosky and Orabona, 2018). The key feature of parameter-free algorithms is that
the Regret,(u) scales nearly linearly in ||u/||, and is constant for uw = 0. This guarantee is only
obtainable by popular strategies like Online Subgradient Descent (Zinkevich, 2003) if the learning
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rate is carefully tuned to the (unknown!) value of ||u||. This lack of tuning learning rates motivates
the name “parameter-free”. Yet, even this favorable minimax optimality might not be satisfactory.

In particular, most OCO algorithms simply approximate the losses using linear functions, ignoring
their geometry. This approach is justified by the fact that the worst-case losses are indeed just linear
ones. However, in the extremely common case that the losses are not actually linear, that is they are
not worst-case, the algorithm is wasting potentially useful information. More generally, too much
focus on worst-case analyses and asymptotic rates can prevent the design of better algorithms.

In an effort to address this issue and go beyond focusing only on asymptotic rates, Asi and Duchi
(2019) have proposed the use of truncated linear models instead of linear models to obtain better
stochastic Mirror Descent algorithms with negligible additional computational complexity. Truncated
linear models are tighter lower bounds to the original function that do not require additional curvature
while still yielding a closed form update for Mirror Descent algorithms. For example, a common
issue with standard gradient descent methods is that they can overshoot the minimum of the loss
during any given iteration. The use of truncated linear models significantly mitigates this concern by
providing a “signal” that gradient descent might overshoot, allowing the learning algorithm to take a
more conservative step. The same idea can be applied to the online (rather than stochastic) setting,
but only for OMD. It is unknown how to use truncated linear models in parameter-free algorithms
without having an explosion in the computational time.

In this work, we propose new parameter-free algo-
rithms that are able to take advantage of truncated linear
models. Note that any optimization algorithm based on
linear models can overshoot the optimum, but parameter-
free algorithms may be even more prone to overshooting
because their iterates can move exponentially far between
iterations. Instead, our new algorithms effectively alleviate
this problem, see Figure 1. Our algorithms are based on
a new decomposition of the regret that takes advantage of
the geometry of truncated linear losses that might be of
independent interest.

In summary, our primary contribution is a new algo-
rithm that maintains optimal parameter-free regret bounds
but also incorporates additional geometric information
about the loss functions. While such an improvement is
not visible in worst-case rates, we demonstrate through
an “implicit-style” regret bound that the algorithm could
perform significantly better in practice, and verify this
behavior in an empirical study.

The rest of the paper is organized as follows: in Section 2 we discuss related work and in Section 3
we review some definitions and background knowledge. In Section 4, we show the difficulties in
using truncated linear models in parameter-free algorithms. In Section 5, we present our solution
and prove a bound on its regret. Since this algorithm does not have a closed form update rule, in
Section 6 we propose a more efficiently computable variant while still retaining the same theoretical
guarantee. In Section 7, we present a coordinate-wise extension that obtains a tighter bound as well
as better empirical performance. Finally, in Section 8, we empirically validate our algorithm.

Figure 1: Coin-Betting with truncated
linear models (Red), Coin-Betting with
linear models (Green), OGD with large
constant stepsizes (Grey), and OGD with
small constant stepsizes (Black).



2. Related work

Parameter-free OCO Algorithms Parameter-free OCO algorithms are motivated by a desire to
avoid choosing a step size and can achieve optimal theoretical regret bounds (e.g., McMahan and
Orabona, 2014; Orabona, 2014; Orabona and P4l, 2016; Cutkosky and Boahen, 2017; Foster et al.,
2018; Cutkosky and Orabona, 2018; Kottowski, 2020; Kempka et al., 2019; Cutkosky and Sarlos,
2019; Jun and Orabona, 2019; van der Hoeven, 2019; Mhammedi and Koolen, 2020; Orabona and
Pal, 2021; Chen et al., 2021). Some of them are based on the FTRL framework (Shalev-Shwartz,
2007; Abernethy et al., 2008b; Hazan and Kale, 2008) (sometimes indirectly through methods such
as coin-betting). The closest work to our algorithms is the CODE algorithm (Chen et al., 2022)
which is the first attempt to combine parameter-free methods with truncated losses. Inspired by the
Importance Weight Awareness updates in Karampatziakis and Langford (2011), CODE models the
optimization algorithm with an ODE, and solves the ODE in a closed form to make infinitely many
infinitesimal parameter-free updates on truncated losses. While CODE solves the ODE in closed
form, it does not have any theoretical guarantee. In our work, in each step ¢, we consider the loss in
two points only: on the current prediction and the updated one. This gives rise to an implicit equation
that we can solve for truncated losses and to an optimal regret guarantee.

Truncated Linear Models and Implicit Updates Truncated linear models were proposed in Asi
and Duchi (2019) to create a tighter surrogate model for optimization. While the use of convex linear
lower bounds is also the core method in OCO algorithms (see, e.g., Orabona, 2019), we are not aware
of any other online learning algorithm with a regret guarantee based on truncated linear models. Asi
and Duchi (2019) incorporate truncated linear models into the Mirror Descent update (Nemirovsky
and Yudin, 1983), forming a proximal/implicit update (Moreau, 1965; Martinet, 1970; Rockafellar,
1976; Kivinen and Warmuth, 1997; Parikh and Boyd, 2014). In online learning, Kulis and Bartlett
(2010) provides the first regret bounds for implicit updates that match those of OMD, while McMahan
(2010) makes the first attempt to quantify the advantage of the implicit updates in the regret bound.
Song et al. (2018) generalize the results in McMahan (2010) to Bregman divergences and strongly
convex functions, and quantify the gain differently in the regret bound. Finally, Campolongo and
Orabona (2020) show that implicit updates give rise to regret guarantees that depend on the temporal
variability of the losses as well. We will match the dependency on the subgradients in our final results
to the one of FTRL with implicit updates (McMahan, 2010), which underlines the “implicit” nature
of our algorithm.

3. Preliminary

In this section, we introduce some of the needed background and definition.

Convex Analysis Definitions For a function f : R? — R U {400}, we define a subgradient
of fin x € R? as a vector g € R? that satisfies f(y) > f(z) + (g.y — =), Vy € RL We
denote the set of subgradients of f at & by df(x). A function f : R? — R U {400} is p-
strongly convex over a convex set V' C intdom f w.rt. || - || if V&,y € V, we have g € 0f(x),
f(y) > f(z) + (g, y — =) + |l — y||*. The Fenchel conjugate f* of a function f : RY — Ris
defined as f*(6) = sup,, (0, x) — f(x). We denote the projection of a vector x onto a convex set B
as llp(x) £ argmin,cp ||z — ul/?

Coin-Betting and Online Learning We now explain the coin-betting framework for parameter-free
algorithm design (Orabona and Pal, 2016), which operates through convex duality. We consider a
vector-valued “coin” ¢; € R? with ||¢;|| < 1 provided to a gambler in response to a “bet” x; € R,



The gambler earns (c;, x;) dollars, for a total wealth of Wealth; = ¢ + >"/_, (c;, ;) at time ¢,
assuming an initial endowment of . We enforce that x; = 3, Wealth;_; for some betting fraction
I3:]] < 1, which intuitively corresponds to preventing the gambler from betting more money than
the gambler has: Wealth; > 0 for all ¢. The goal of the gambler is of course to make the wealth
as high as possible. To use this gambling game in online learning, set ¢; € —0¢;(x;), and let
the learner’s w; € RY be simply equal to the gambler’s ;. To analyze the regret, suppose that

Wealthr > H (Zthl ct) for some arbitrary function H. Then we have:
T T T
Zﬁt(wt) —li(u) < Z(ct,u —wy) =€+ Z(ct, u) — Wealthp
t=1

T
Se—i—Z(ct,u)—H (th> < e+ sup (G,u) — H(G) = e+ H*(u)

GeR4

where in the first inequality we use the definition of the subgradient, in the second the assumption on
H, and the last equality the definition of Fenchel conjugate H™*.

Critically, notice that the wealth lower-bound Wealthy > H (Zle ct) does not involve wu.
Instead, u appears only in analysis through Fenchel duality, which provides the parameter-free
property. Hence, we can use any betting algorithm that guarantees a high wealth to design a
parameter-free optimization algorithm.

Truncated Linear model For any /, such that ét(wt) =
0 (wy) and £;(w) < ;(w), Yw, we have Y7 (¢4 (w;) —
li(w)) < S (6 (wy) — £y (w)). Linear models £; (w) =
li(wy) + (g4, w — wy) satisfy this property with g, €
0l (w¢), which motivates the popularity of online linear
optimization. However, we might think to design tighter
approximations. In particular, Asi and Duchi (2019) pro-

} e

posed truncated linear models: p *)\
&
L 2

ly(w) & max{ly(w;) + (g, w — wy), igfgt(w)} I e R

— f@)
- - - Truncated
Linear

Besides the property above, truncated linear models sat-
isfy: i) f;(w) is convex and subdifferentiable on the
domain; ii) For any w, we have g* = hg, where
gt € 0ly(w) and h € [0,1]; iii) fs(w) > infy, £ (w).
In the following, we will assume that inf,, ¢;(w) = 0,
w.l.o.g. for loss functions bounded from below.

Figure 2: Models of the function f(z) =
log(1 4 e~*): a truncated linear model
(Red) built around the point zg, and a
linear model (Green) built around the
point x1. x* is the hinge corner.

4. Difficulties in Using Truncated Models in
Parameter-free Algorithms

Many parameter-free algorithms are based on FTRL. Hence, it is natural to ask whether it is possible
to directly use truncated linear models instead of linear models in FTRL to utilize truncated linear
models in parameter-free algorithms. This approach immediately runs into significant problems.
Specifically, FTRL algorithms usually maintain the sum of the losses observed so far. One can



easily store this sum when the losses are linear, but truncated losses would require O(7") space and
O(poly(T')) time for every update. Thus, using truncated linear models with FTRL has the same
computational cost as using the original cost functions - the simplification to using truncated linear
models does not appear to help. In contrast, our solution has the same computational and space
complexity of online gradient descent.

Another possibility is to adapt the coin-betting design of parameter-free algorithms (Orabona
and Pal, 2016) to truncated linear models. A moment of thinking should convince the reader this
is far from simple: The reduction from optimization to coin-betting described in Section 3 works
by transforming subgradients into coin outcomes, but the subgradient of a truncated loss is exactly
the same as the subgradient of the original function! Thus, simply using the reduction as-is on the
truncated linear model would provide no benefit over using the simpler linear model.

Another method that seems possible is using truncated linear models in online gradient de-
scent, and then make online gradient descent parameter-free via some application of the doubling
trick (Shalev-Shwartz, 2012, 2.3.1). Perhaps surprisingly, employing the doubling trick in this way is
quite difficult. The only known application of the doubling trick is in Streeter and McMahan (2012),
but it does not achieve the optimal regret bound, and more importantly, employs a delicate identity
relating the regret and sums of gradients that may fail for the truncated linear model. Furthermore,
the doubling trick usually has terrible empirical performance, which completely defeats the purpose
of using truncated linear models.

5. Parameter-free OCO with Truncated Linear Models

In this section, we introduce our novel parameter-free algorithms for truncated linear models.

We overcome the difficulties described above through a multi-step process, during which we
will introduce three separate algorithms. First, we introduce a new regret decomposition to take
advantage of truncated losses while still only requiring storage of a few vectors. As an illustration
of the key principles, we will use this new regret decomposition to design Algorithm 1. While the
theoretical guarantee of Algorithm 1 matches our desiderata, the update does not have a closed
form. Hence, we then show how to slightly change our algorithm to obtain a closed form update in
Algorithm 2. Finally, in Section 7, we consider each coordinate as a separate 1-d problem to obtain a
coordinate-wise variant that achieves better performance both theoretically and empirically.

As mentioned previously, using truncated linear models in an FTRL-based parameter-free
algorithm would result in an inefficient update. Therefore, in the following, we show a different
approach inspired by the idea of implicit updates (Kivinen et al., 2006; Kulis and Bartlett, 2010;
McMahan, 2010). Our method introduces a new variation on the standard approach to bounding
online convex optimization with online linear optimization, and an accompanying update to the
regret/reward duality.

A New Regret Decomposition We are interested in upper bounding the terms ¢;(w;) — ¢;(u) for
any u € R The usual method (Zinkevich, 2003) is to upper bound the regret by linear terms, and
then proceed to bound the regret on the linear losses as follows:

RegretT th ’lUt — gt Z g, Wi —

where g, € 0/;(w;). While this approach gives worst-case optimal upper bounds, it completely
ignores the geometry of the loss functions ¢;. In contrast, we consider upper bounding the term



Algorithm 1 Parameter-free OCO with Truncated Linear Models
. Initialize 3, < 0, Wealthg < 1,71 < 1/3
fort =1to 71 do
Predict w; < 3, Wealth;_;
Receive /:(w;) and g, € 00 (w)
Calculate g, (see Section 5.1). g~ = h;g, by property (ii) of truncated linear models

B . /3 _ g?+2ﬁt(\\1gtHQ—IIQQL—QtIIQ)
t+1 Eooym+2is (lgil?—llgf —9:01%)

7 B+ Bra/max (1, 2\\@“1\)

5 Wealth, « Wealth, 1+(he— <1%2£f2"t+1>

AN U R ey

9: end for

{;(wy) — € (w) with the truncated linear loss ¢;, and decompose the regret on the truncated linear
losses from an “implicit” point of view for a tighter bound. Specifically, for any u € R? we have

< Oy(wy) — by(u) = by(wy) — Ly(wigr) + y(wigr) — O (u) 0
< <gta w — wt+1> + <gt+,’wt+1 - u> )

li(wy) — b (u)

where g, € 94 (w;), g, € Ol (w;), g5 € Ol (wy41), the first inequality is true by the property of
the truncated linear model, and the second inequality is from the convexity. This decomposition can
take into account part of the geometry of the function through gzr , which quantifies how far we are
from the infimum of /;. Note that the decomposition itself is very general and does not require /to
be a truncated linear loss: this structure is primarily used to form more efficient algorithms.
Implicit Coin-Betting To leverage this decomposition, we now define a modified notion of the
wealth quantity described in Section 3. Our key idea is to realize that the regret/reward duality
is more general than previously thought. In particular, we define Wealthy = € and Wealthy =
Wealthy_1 —{g;, w; — wi11) — (g, w4 1), to have

T

Wealthy = € — Z((gt, wy — wip1) + (g wig1)) - (2)
t=1

This implies Regrety(u) < € + <— Zthl ar, u> — Wealthy. Suppose that we obtain a bound
Wealthr > ¢ <— Zthl g;“ ) for some 7. Then, we can still use the Fenchel conjugate:

T
Regret(u) —e < — <Zg?,u> - ( th ) < Sup (y,u) —vr(y) = ¢v7(u) .
t=1

Hence, it suffices to design an algorithm that guarantees a lower bound on Wealthr to achieve
a regret upper bound, even for our modified notion of wealth. Moreover, given that our regret
decomposition takes into account the geometry of the truncated linear losses, we can expect a regret
guarantee that becomes tighter when we are close to the infimum of the functions ;.

We designed Algorithm 1 to maximize the wealth in (2), yielding a regret bound in Theorem 1.



Theorem 1 Assume ¢,(x),t = 1,...,T, to be convex functions. Set Wealthy = € = 1 and assume
that ||g,|| < 1 and g;” = h.g, where hy € [0, 1]. Then, Algorithm I satisfies

T
Regrety(u) =0 (maX{HUII In (IIUH <1 +y Igtlllgﬂl)) :
t=1

T

T
lully| > llgllllgd | = llgi 1I?) - n (1 + el Y (2llgelllgi 1| — Hgt*||2)>
t=1

t=1

To convey the main ideas, here we present a proof sketch, the full proof is included in the
Appendix.
Proof [Proof sketch] We first lower bound the wealth of the algorithm. From the definition of the
wealth (2) and the fact that the algorithm predicts with w; = 38, Wealth;_;, we have

Wealth,_1(1 — (g,, 3;))
14+ (g7 — 94, Bryn)

This implies that In Wealthy = Ine + 322 (In(1 — (g,,8,)) — In(1 + (g} — 9, B11)))- Itis
possible to show that In Wealth7 — In € can be lower bounded as

Wealth; = Wealth; 1 —(g,, w; — w1 1) — (g7, w1 1) = Wealth, =

T

Z (In(1 = {(g;, By)) —In(1 + (g — 94, Br11)))

t=1

3)

> [‘(9?7,31:) - (HgtH2 - ngr - gtHQ)H/BtHz - 2”gt|w/8t+1 - /Btm .

E

t=1

So, B, is designed to be the output of running OGD (Online Gradient Descent) on p; strongly-

convex losses f+(B) = (g, B) + &t[|B,||%, where pe = 2(|lg,|I> — llg; — g/ ||*) with B8 € B,

B = {z|||z| < 1/2}, and stepsizes 1, = m Standard OGD analysis provides the lower
1 i=1 Mi

bound for 7, (g7, B,) + (llg 12 — llgi” — g:1)I|B, |12 Besides. ||, 1 — B, is upper bounded

3llg," |l Lo :
by 25, adle Tl Combining all pieces together leads to the lower bound

2
T T
HZt:lng Hthlger

T
In Wealthy > —3/2 — 7.251n <1 +2) ||gt||||gﬂ> + min : -
4 2215:1 Kt

t=1

A lower bound on Wealthr indicates an upper bound on regret. Now, we derive the upper bound on
the regret from the Fenchel conjugate of the function above. |

Note that the bounded subgradient assumption is a known requirement shared by all parameter-
free algorithms, see lower bound in Cutkosky and Boahen (2017). However, the limitation is milder
than it seems at first blush: this Lipschitz bound can actually be over-estimated by a factor of v/T'
before significant damage is done to the regret bound. This can be seen by observing that other
than an O(log T') term, our regret bounds scale with the observed norms of the gradients. Thus, the
limitation is actually rather benign - we simply assume a bound of 1 to simplify equations.



Comparison with Parameter-Free Bounds Previous work of Cutkosky and Orabona (2018) achieved
aregret bound of O <||u|| Zthl llg, H2> which has the optimal worst-case dependence on ||g, || (Aber-

nethy et al., 2008a; Cutkosky, 2018). In Theorem 1, we obtain a regret bound depending on
llg:lI? — llgi — g:lI? = Ilg:]|?(2hs — h?). So, as long as the algorithm goes close to the hinge corner
of the truncated linear model, it will yield an ~; < 1 and a smaller regret. Intuitively, this should
be expected to occur whenever it is possible to obtain small loss as obtaining small loss requires
reaching the hinge of the truncated linear model.

Relation to Implicit Updates Truncated linear models were introduced as an approximation of the
implicit updates (Asi and Duchi, 2019). In this view, it is instructive to compare the dependency on the
subgradients in Theorem 1 and the regret bounds for implicit updates. For example, McMahan (2010,
Theorem 2) gives a regret guarantee for FTRL with implicit updates and non-adaptive regularizer
that depends on (g, — 3g;", g;). This quantity is exactly 3(||g;||* — ||g; — g,||*) that appears in
Theorem 1. This supports the idea that the decomposition in (1) “emulates” the idea of implicit
updates in parameter-free algorithms. However, there is a subtle difference: in standard implicit
updates g;” € 0¢;(wy 1) is a subgradient of the original loss function. Instead, here g;” € aft(wtﬂ),
so it is a subgradient of the truncated linear model. We can see this as a price we pay to obtain a
smaller computational complexity compared to standard implicit updates.

Comparison with OMD with truncated linear model To the best of our knowledge, there are
actually no regret guarantees with OMD with truncated linear models in the literature (Asi and Duchi
(2019) do not consider the adversarial setting). However, it is quite likely that OMD with truncated
models can achieve an implicit regret similar to that reported by McMahan (2010) subject to oracle
tuning of the learning rates. Our results match this benchmark in the dependency on g, and gz“ and
improve in the dependency on ||u|| since we do not require oracle tuning of the learning rate.

No Overshooting Property We now prove that the proposed algorithm never overshoots the mini-
mum of the truncated linear loss. Moreover, in the case that the minimum of ét coincides with the
minimum of /;, we end up exactly in the minimum, as illustrated by Figure 1.

Theorem 2 Under the assumptions of Theorem I and the notation of Algorithm 1, assume that
g, # 0. Then, the update w11 can never land on the flat part of the loss {y, but only on its linear
part or in the corner.

Proof The statement is equivalent to showing that ¢, (w;) + (g;, w41 — wy) > 0 from the definition
of /,. We prove it by contradiction. Let’s assume that ¢;(w;) + (g;, w1 — w;) < 0. Then, we
would have /;(w;41) = 0 and g; = 0 (equivalently h; = 0). In turn, this would imply 3,,, = B,
and Wealth; = Wealth;_;. So, we would have w;; = w; which is impossible because g, # 0. &

Note that we assume g, # 0 in Theorem 2 since when g, = O the algorithm is already in the
corner.

5.1. Computation of /;

The next challenge is how to find h;. This is the only part of the Algorithm that uses the truncated
linear model structure: the analysis Theorem 1 actually applies to any losses for which g, = h;g,.
Truncated linear models combine this favorable property with the additional property that it is
possible to efficiently compute h;. The argument of Theorem 2 shows that we cannot be in the flat



Algorithm 2 Parameter-free OCO with Truncated Linear Models — closed form update

1: Initialize B, + 0,71 ¢ 55, C « 9, Wealthg + 1
2: fort =1to T do
3:  Predict wy < 3, Wealthy_;

4:  Receive {;(w;) and g, € 04 (wy)

5. Calculate h; (see Section 6.1)

6: if |3,] < 2 then

T By o Bl +20ladllgl) - a7 1P)
z 4T < ot 2(lgell” = llgi” — g:ll®)

103 5§+1 = /?t —277Ct2Cﬂgt+Hﬂt

o e Tl

15 Wealdhy  Wealthe1 =g
14: end for

region. By inspection of the updates, there are two achievable cases: in the first case h; = 1 and we
are not in the corner of the truncated model, while in the second case, we are in the corner. Hence, as
a first step, we posit that hy = 1, calculate w41 and see if indeed g;r = g,. If this is not the case,
then the solution must be in the corner and h; € [0, 1). By definition w41 = B;,; Wealth;, where

1—
Bt = H(ﬁt —ne(hegy + 2841 9: 11> (2h: — h?)) and Wealth, = Wealth;_; T 9, .
B L+ (9f — 9B

Thus, w41 is a function of h;. Assuming inf,, /;(w) = 0 w.l.o.g. for loss functions bounded from
below, we are looking for h; that makes

Et('wt) + (gt, Witp1 — wt> =0. @

Although we could solve for h; via bisection, there is no closed form solution due to the projection
of B, . Thus, we next propose a more complex algorithm with a closed form equation for h;.

6. Variant with Closed-form Update

In this section, we introduce the Algorithm 2: a variant of Algorithm 1 that has a closed form update.
The key steps are still the same, but here we want to remove the projection step on 3,. In this way,
the expression of w; 1 depends on a simple polynomial in h;. In turn, to remove the projection step,
we change the update of 3, so that its norm is always assured to be bounded. For Algorithm 2, we
can prove the following guarantee. We present a proof sketch, while the full proof is in the Appendix.

Theorem 3 Assume (,(x),t = 1,...,T, to be convex functions. Set Wealthy = e = 1, C' = 9 and
1/m = 2C, and assume that ||g,|| < 1 and g;” = hg, where h; € [0,1]. Then, for all u € RY,
Algorithm 2 satisfies the same bound as in Theorem 1, up to constants hidden in the big O notation.

Proof [Proof sketch] As we stated above, due to the projection step in line 6 of Algorithm 1, h; can
not be solved in a closed form. To overcome this, we design a new update rule that guarantees that
B, will always end up in the ball B = {z : ||| < £} to avoid the projection step.



In Algorithm 1, f3; is the output of running OGD on strongly-convex losses f;(/3). However,
when f; is close to 1/2, the next iteration, [3;11, could go too far so that a projection step can be
necessary. To avoid this, we intricately design an update rule that when ||3;|| > 3/8 indicating that
B¢ is close to the boundary of the ball, the next iteration will shrink it a little bit, to make sure that it
stays in the ball B. The new update rule is the output of running OGD on strongly-convex losses
@+(5). In the following, we introduce the sketch of the proof.

. . o 1 _ .
3, is the output of OGD with n; = VS S on the strongly-convex losses ¢;(3):

s~ [ 1P if 18] < &,

Cllgf IBIP, if § <118l < 3
where 8, € Band B = {x : |[z| < 1}. ¢,(8) is pu strongly convex. 3] £ arg mingep, Zthl fi(B),
where By = {x : ||| < 3}. The intricate design of ¢;(3) allows to say that if 3, > 3/8,
18411l = (1 = 1:2C|lgy ID1|B, || will shrink if n, < 1/2C;if B, < 3/8, [|B,14 || will stay in B if n,
is small enough. Therefore, Algorithm 2 guarantees ||3,| < % forallt = 1,...,T, which removes
the projection step on 3,, and gives rise to the closed form updates.

Furthermore, for C' > 9, the regret of ¢;(3,) upper bounds the regret of f.(3;): fi(3;) —
Jo(BY) < $i(B,) — é1(B7). We upper bound L ¢¢(8,) — ¢+(87) by standard OGD analysis.
which implies a bound on 23:1 ft(B;). Combining the upper bound of ||3;, ; —3,|| and 23:1 ft(By)
lower bounds wealth by (3). The rest of the proof is similar to the proof of Theorem 1. |

We also note that the non-overshooting property holds for this algorithm too. The proof is exactly
the same as before and it is omitted.

Theorem 4 Under the assumptions of Theorem 3 and the notation of Algorithm 2, assume that
g, # 0. Then, the update w1 can never land on the flat part of the loss {y, but only on its linear
part or on the corner.

6.1. Computation of 7; with Closed Form Solution

Now, we show how to obtain a closed form expression for the update in Algorithm 2. As before,
first we tentatively set h; = 1 and check if g;” = g,. If yes, then h; = 1 and we can compute w; 1.
If not, thanks to Theorem 4, we know that w1 lands in the corner of @t and we need to compute
hi € [0, 1). In this case we are looking for the h; such that wy; satisfies (4).

Let A = (g, wy) — li(wy), B = Wealth,(1 — (g, B;)). We consider two cases based on 3,.

If [|B,]] < %’ we have that (g;, 8;,1) = (g:, B¢ — ne(gi + 28:(2hel|gy||* — A llg:)1?))). Let
D = 2n:||g;1*(gy, B,). so (4) becomes a cubic equation of h; that has closed form solution:

— ADh} + (2AD + Angl|g,||* + (A + B)D)h} + (—(A + B)nellg:|I” — 2(A+ B)D
— A(gy, By))hi + (A+ B){(g,B;) —A=0.
If 3 <8l < 5. wehave (g, By, 1) = (g4, 8;) (1 —2Cn|g,||he). Let D = 2Cny||g;|(gy. By)-

So, (4) can be rewritten as the following quadratic equation of h; and again it has closed form
solution: ADh? + (—A{g,,3,) — (A + B)D)h; + (A + B){(g;,8;) — A= 0.

10



Algorithm 3 Parameter-free OCO with Truncated Linear Models — coordinate-wise update

1: Initialize B) < 0,71 + 55 - 1,C 9, Wealthg + 1 € R?

2: fort=1to 1T do

3 Predict w; < 3, ® Wealth;_;

4:  Receive {4 (wy) and g, € 04 (wy)

5. Calculate hy s.t. £y(wy) + (gy, wry1 — we) = 0 (see Section 5.1)
6: fori=1toddo

7 if |3, < 2 then

8 Bervi  Bri — meilgl; + 284 (2geagsi — (7))

9 - lyi +2(¢7; — (9;2 — 91.4)%)

' Nt+1,i mt
10: else
11 Berri + Bri — 142Cg751Beis
. _1 1 =+
12: Nit1,i < Nt i + QC’gt,i‘
13: end if 5
1—g4,iBt,i
14: Wea,ltht,i — Wealthtf]”i m
15  end for
16: end for

7. Tighter Regret Guarantee through Coordinate-wise Updates

In this section, we introduce a coordinate-wise variant of Parameter-free OCO with truncated linear
models. This is a simple extension of Algorithm 2 by considering each coordinate as a different 1-d
OCO algorithm. The advantage is that this regret bound is even tighter than the bound of Theorem 1.
Here we present the Theorem 5. (The proof can be found in the Appendix.) We use 3;;, ui, g¢i € R
to represent the i-th element of the vector correspondingly.

Theorem 5 Assume (y(x),t = 1,...,T, to be convex functions. Set Wealthg = e =1, C = 9. For
i=1,...,d, 1/m; = 2C and assume that |g;;| < 1, g = hig, where h; € [0, 1]. Then, for all
u € R%, Algorithm 3 guarantees

d T
Regretp(u) = Ze+ @] (max {\u1| In <|ul] (1 + |9t1||9t+z|>> ,

=1 t=1

T T
il | Y 2lgeallgg;| = 1g5[?) - In (1 +luil Y lgeillglil - IQEIZ))

t=1 t=1

To see how this bound is more desirable than Theorem 1, first notice that the bound obtains some
adaptivity to L; geometry: if Goo = max||g¢||c. then the bound is at most O(||u/|Goov'T).
Furthermore, by application of Cauchy-Schwarz (twice!) we can see that the bound is at most an
additive ed larger than Theorem 1 - and could be much smaller if either application of Cauchy-
Schwarz is loose. Thus, this bound is never much worse than that of Theorem 1, but has the further
desirable property that one can add a large number of “irrelevant” dimensions for which u; = 0
without harming the bound.

Unfortunately, we no longer have a closed form expression for h; due to the coupling of the
coordinates. However, at each iteration, we can find a J-approximation to h; using O(log(1/6))

11
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Figure 3: Regression tasks: Mean test loss versus epochs.

steps of bisection and a single gradient oracle call. By “bisection” we mean a binary-search style
algorithm: given a guess for h;, we can compute if the true value is lower or higher than the guess
by computing what the update would be if the guess were correct and checking if we have overshot
the corner of the truncated bound. Though this inflates the cost of an update by O(log(1/4)), this is
still significantly more efficient than the poly(7") oracle calls required to run FTRL with truncated
linear models directly at each step. This small extra computation cost is a price we pay for better
theoretical as well as empirical results.

8. Empirical Evaluation

While our main contribution is theoretical, here we evaluate the empirical performance of Algorithm 2
and Algorithm 3 to show their practical potential. We will denote the algorithms as Implicit Coin,
and Coordinate-wise Implicit Coin. We would also like to stress that we used Algorithm 2 and
Algorithm 3 as they are, with the choice of the hyperparameters directly given by theory, i.e., 19, C,
Wealthy. It is quite possible that these choices were not optimal. We do this on purpose: we want to
demonstrate how robust parameter-free algorithms are, even with theory-derived constants.

We compare SGD, SGD with truncated models (aProx) (Asi and Duchi, 2019), SGD with
Importance Weight Aware updates (IWA) (Karampatziakis and Langford, 2011), Coin-betting algo-
rithm (Coin) (Orabona and P4él, 2016), Coin-betting with ODE updates (CODE) (Chen et al., 2022),
COntinuous COin Betting (COCOB) (Orabona and Tommasi, 2017).

We tested the algorithms on real-world datasets from the LIBSVM website (Chang and Lin,
2001) and OpenML (Vanschoren et al., 2013). 2dPlane, CPU-act, and Houses are classification
tasks, Rainfall, Bank32nh, and House-8L are regression tasks. (More information about datasets is in
Appendix). We standardize and pre-process the samples, normalizing them to unit norm vectors. We
shuffle the data and separate into a training set (70%), validation set (15%), and test set (15%).

For SGD, aProx and IWA, we tune the initial step size 79 and consider stepsize sequence of
the form: 7y, = 19/v/k. All the parameter-free algorithms do not have parameters to tune. Implicit
Coin has a closed form solution for h;, so the implementation is as efficient as SGD. For CODE and
Coordinate-wise Implicit Coin, we used a bisection algorithm to find h;.

We considered linear predictors trained with the hinge loss for classification, and with the absolute
loss for regression. We trained all algorithms for 10 epochs over the training data. Each epoch
requires running through the total shuffled training set. All the experiments are repeated 3 times, we
report the average of the 3 repetitions. For all the algorithms that require a learning rate, on every
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dataset and for each repetition, we use the validation loss to choose the best learning rate, train using
that learning rate, test on the test set, and report the test loss averaged over 3 repetitions.

Figure 3 and Figure 4 show the average of test losses versus number of epochs. In all experiments,
Coordinate-wise Implicit Coin has a performance that is superior or comparable to all the competitors.
It is worth remembering that the algorithms with a learning rate were tuned on the validation set,
while the parameter-free algorithms were not tuned in any way. Moreover, in all cases, Implicit
Coin has a better performance than Coin. Given that their key difference is the truncated models in
Implicit coin, this directly supports the advantage of these updates over linearized ones.

More in detail, on regression tasks (Figures 3), the performance of Coordinate-wise Implicit Coin
is superior to the other competitors at the end of the training on Rainfall and House-8L. COCOB,
CODE, and Coordinate-wise Implicit Coin outperform the other competitors significantly on Houses-
8L, and their performances are close to each other on Bank32nh. On the classification tasks (Figure 4),
Coordinate-wise Implicit Coin and Implicit Coin achieve essentially the optimal performance on
CPU-act and Houses correspondingly. On 2dPlane, Coordinate-wise Implicit Coin, Implicit Coin,
and CODE perform almost equally satisfying, and they outperform the other competitors.

9. Conclusion

In this paper, we present new parameter-free algorithms utilizing a better convex lower bound: the
truncated linear model. We overcome the theoretical difficulties of using truncated linear models in
parameter-free algorithms with a new regret decomposition. Our regret bounds are analogous to
bounds achieved by implicit methods. Besides, we propose a variant of our algorithm that has a very
efficient closed form update rule, matching the runtime of gradient descent. Finally, we provide a
coordinate-wise variant with tighter regret bounds.

In the future, we would like to explore the additional possibilities offered by the new decomposi-
tion of regret. For example, we would like to overcome the limitation of the current per-coordinate
formulation and explore the possibility to design a per-coordinate variant that uses truncated linear
models, retaining the closed form update. Besides, considering the good empirical performance of
CODE and the similarity in the spirit of CODE and Implicit Coin, we are interested in the possibility
of studying the theoretical properties of CODE.

13
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Appendix A. Proof of Theorem 1

Before we prove Theorem 1, we first introduce some technical Lemmas that will be used in the proof.

Lemma 6 Under the assumptions of Theorem 1 and the notation of Algorithm 1, we have ||3,, 1 —

3llg7 |
< . nt=1,....T.
Bill < Tasr gaiary o7 @ yenes
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Proof By the definition of 3, 4, ,Bt 11, By, we have:

lg:" + 28, (lg:ll* — llgi" — glI)l
-1
34251 (lgill? — llgi — g:l1?)

H:3t+1 - :3tH < HBt—H - IBtH =

_ g/l +2HBtH 2lglllg: I = g 1*) _ llg Il + 2113,I( 2HgtHHgt+H — g/ 1I*)
3+2 1 Clgilllgd | - llgf 1)~ 342510 llgillllgf |
< g+ 208elllg N llgll = hellgel) _ 3llg |
- L+ 2375 lgalllgy 1+221 Llgilllg
where we used the fact that ||g;||[|g; || < 1 in second to last inequality. |

Lemma7 Letay > 0and f : [0,4+00) — [0,400) a nonincreasing function. Then,

Zt 0 at
Zatf <a0+2al> _/ f(x)dx .

Proof Denote by s; = ag + 22:1 a;.

t St St
arf a0+ ) ai | =auf(se) = f(sp)dx < f(z)dz
o (ao4 o) ot = [ sias< [*

Summing overt = 1,...,T, we have the stated bound. |

Lemma$8 Let V a non-empty closed convex set in R Assume that the functions f; : R —
(—00, 00] are p-strongly convex w.rt || - ||2 over V. C NL; int dom f;, where y; > 0. Assume
we receive subgradients v, € O fi(wy) and set w; using Online Gradient Descent with stepsizes:

N = m Then, for any u € V, we have the following regret guarantee:

T 9 T
wl—u Mt ||Vt Ht
() - s < 2= Z 201 5y 40 — 2l — il
t=1

t=1

Proof From the strongly convexity of the function f;, we have that
fulwr) = fulw) < (v w, —u) = Eflw, — ],

where v; € 0f; (’wt) From the fact that ; = m,
i=1 M

Lo 1 T,

20 2 2mp

Also, observe that
Jwe — ul]® = |lwigr — u + wy — wig|?
= |lwir1 — ul? + 2(wip1 — w, wp — wip1) + [lwp — w2
= ||lwi41 — uH2 + Qw1 — 2u + Wy — Wi, Wy — W)

> wisr = ul® = w1 +wy = 2ul||wy — wiia ] -
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Thus, we have

~

T

> (gl -

=1

T T
1 1 Mt Mt 2
S i)~ i) < 37 (ol —ulP = 5w = wlP = B we— ul + % o
— 1\t Ug
1
< ul|®
n

1 Ht
- %”’wtﬂ - uHQ - EHwt-H - uH2

~+

+ 5 wier — willllwes +we = 2ul| + 2 odl)

1 2 1 2)
= —|ws — u||* — —— w1 —uw
> (g Il = 5w

t=1
T [ T )
" t 2
+ tg_l E||'lUt+1 — ’lUtH||wt+1 + Wy — 2UH + ;_1: 5 ||’Ut||

Summing and telescoping, we obtain

2 T T
w; —u Ht Ui
E (fe(w) = fi(u)) < H2m’ + o lwesn = wellwegs +we — 2u] + > B loe )
t=1

t=1 t=1

Corollary 9 Consider an OCO problem with losses f(8) = (g, B)+ (llg.|1* — llg: — g7 1) |1 B]?
with B € B, B = {z|||x| < 1/2}. Then, from Lemma 8, we have

’

T

d 2llg.llllgy |
— *)) <3/24+17/4
;(W BT = 32T ;1 125 lgillgr 1

Proof From Lemma 8,

T

<112 T
S (8 - i < P B” Z“—rﬂm Bl1Bes + By — 28° ||+Z@H J?

2
t=1

Observe that 3, B,,1, 8" € B, so ||B;1 + B; — 28| < 2. Moreover, we have j; < 2|g,|. So,
summing the second term and using Lemma 6, we obtain

T T T
e . 2)|g, g/l
MBes1 = BellllBesr + B =287 < D wuellBrar — Bell <3 :
; 2 ; tzz; I+ 221‘:1 ngHngH

Noting that v; € 9fi(8,) = gF + 28,(lgI1> - g — g,/12). we have

loell* < llgi I1* + 418: i 1 1gell + 4181 lg I 2llgi 1) < 5llgi Nllgel -

Hence, summing the third term, we have

1) 5~ 2llglllgl ]l

t 2 +
S M P < 2y .
£~ 2 11425 lgilllgl |
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Now using the fact that % = 3, we obtain

S 17 2llg,llg; |
fi(B,) — <3/24+ — LA
; B0 = IF) <32 ;1”2 gl

Lemma 10 Consider an OCO problem with losses fi(3) = <g2’, 8) + %HIBHQ and

e =2(llg:|* = llg; — g II?), with B € B = {z|||z|| < r}. Define B := argmingep 3, fi(3).
Then we have
4 i e |
Z ) < max ,
=1 2 ta 1 Mt

Proof We consider 2 cases: By definition 3 = B, = [] (B +1)» fe is p; strongly convex,
where 10 = 2(/lg;|1* — llg;" — g:11%)-

T
- 272:1 g,}"
D=1 bt

2
4 4 Lot |Ehe| s =tost]
* - —19 =191 1 Mt 1 t=19t
th(m:(Zgr) Lm0 i IR
t=1

o If BT+1 € B, thatis Bp,; = BT+1 = . In this case,

=1 D=1 M (Zthl Mt) 2 St
o If Bryy € B.Bry1 = [15(Br) = H_gfijgt” In this case,
2 -l
1Byl = || -S| > .
Zt:1 ot
That is,

T
ZTZMt-
t=1

T T 2
[y
Z <||Zt 97 H) a

Therefore, we have

T
tZT;ft(ﬂ*) — L lEbe]

[\)

T
+
|29
t=1

T
> gt
t=1

T
> gt
t=1

In conclusion,

T

—Tr
* sLiot| - [=tist|
t;ft(ﬂ)gmax ;lt ’ 22211;;
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Lemma 11 Let||g,|| < 1, g = hig, where hy € [0,1], fort = 1,...,T. Then, we have

(1= (g, B;) —In(1+ (g — g4, B11) = — (9. 8) — (Ig.l” = llgi" — g.l1)[18,]°
- 2HgtH||/8t+1 — Byl -

Proof

In(1 — (g, 8;)) —In(1+ (g — g4, Bi11))
> In(1 - (g, B;)) —In(1 + <g?_ - 94,8 + Hg;r - gt””ﬁtﬂ — B

lgi — g:llllBr1 — Bl
=In(1—(g,,8,)) —In(1+ (g} —g,,8,)) —In (1 + gtl n i;? _tg+t1, B;) t >

+_ —
> In(1 — (g, B;)) — In(1 + <92_ — 91, 84) — Hgtl T Z;L_Hft;—l 3 >Bt‘
t tr Pt

+_ —
> 1n(1 ~ (g, 8)) ~ a1 + (g7 —g,,0)) — 2 =212 =]

> In(1 — (g, B;)) — In(1 + <92_ —g4,B)) — 2||gt||H:6t+1 — Bl

B:|l < 1/2. The sum of

where in the last inequality we used the fact that g:r =hgy, 0 < hy <1,
these last terms is upper bounded by a logarithmic term.
Now, considering the first two terms, we have

In(1 — (g, B¢)) —In(1+ (g — g+, 8:) = f((9:,8y)),

where f(z) = In(1 — z) — In(1 + (h — 1)) for |z| < 1/2.

To have the tightest inequality, we consider two cases separately.

Case 0 < z < 1/2. We consider g(z) = f(z) — hyx. We have that the first derivative of
g is negative for 0 < = < 1/2. Moreover, the function ¢(x) = x?(2h; — h?) is increasing for
0 <z < 1/2. Hence, for 0 < z < 1/2, we have

In(1 —z) —In(1+ (hy — )z) — gz g(x) < 9(1/2)  —4In(1+ hy) — 2y

22(2h; — 12) S o) S o(12) - 2m—h2 = b

where in the last inequality we used the fact that 0 < hy < 1.
Case —1/2 < z < 0. Here, we lower bound f using a Taylor expansion:

2
x
Fw) = £0) +2'(0) + - 1" (w),
where ¥ is between 0 and z. Denoting a = h; — 1, we have

B 22 (a+1)(2ay —a+1)
T =ty 1P ay 17

Now, consider the quadratic term in the above expression. Dividing and multiplying by 1 — a > 0,

we have
(1—a®)(2ay —a+1)

(1—a)(y—1)%(ay +1)%
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We are interested in keeping the term 1 — a? and upper bounding the rest. Given that we are
considering the case —1/2 < x < 0, we have —1/2 < y < 0. So, we have

2ap —a+1<1l-a—-y+ay=(1-a)(l—-y).

and

2ay —a+1 (1—a)(1l—y) 1

- a2+ 1’ - (o) )y + 12 - g)(ay 12

Hence, putting all together, we have

In(1 = (g;,B¢)) —In(1+ <er —94,8¢) = —hi(g, By) — (1 — a2)(<gt7/6t>)2
> —hi(gy, By) — (1 — a2>HgtH2H/6tH2
= —(g¢.Be) — (lgell* = llgelI* (he — 1)*) 18,
= —(g¢".80) — (lgull* = llg” — g: 1”181 -

Now, we present the full proof of Theorem 1. Note that a part of the proof of Theorem 3 is
similar to the proof of Theorem 1.
Proof [Proof of Theorem 1] From the (2), we get

Wealth; = Wealth;_1 —(g;, w; — wy11) — (g}, wii1) -

Using the fact that the algorithm predicts with w; = 3, Wealth;_;, we obtain

11— <gt718t> )
+ <gt+ - gtv/Bt+1>

This implies that In Wealthy = Ine + Zz;l In(1 — (g4, By)) —In(1 + (g} — g4 Biy1))-
Using Lemma 11 and Lemma 6, we have

Wealth; = Wealth;_ N

T
Z (ln(l — (94, 8:)) —In(1+ (g — Qtn@t+1>))

t=1

T
> [~gf. 80 — (lgel® — lgi — g8 — 2llg,llllBer — By}

t=1

6llg:llgs |
L+2570 llgslllgi

— (gt B0 = (lgul® = g = gulP)IB:l*

M=

>

t=1

T T
> -3 (1 +23° HgAHg?H) =D By
t=1

t=1
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Where f; is as defined in Corollary 9. Applying Corollary, and defining p; as in Lemma 10, we have

T T
2—W2—7%m(}+22mww%w>—§jﬁwn

=1 t=1

2
T T

> —3/2-1.251 (142§Eju i +n> =] ]
= — (a0l 9:/119¢ — max : -

=1 4 2 g bt

2

T T
) Lot 5ot
min

T
=—-3/2-7.25In (1+22Hgtm|gt+ ; ST
t=1 Mt

t=1

The last inequality is from Lemma 10. Next, we perform a case analysis to derive the upper bound
for Regret.

- IZhel | 1=t e | Sicigf ||
Ifmln{H T | , H2£;‘F1=1t#l = =, then

e—3/2
7.25
T
(1+252 lgellligi 1)

By Cutkosky and Orabona (2018, Lemma 18), we have

T
=i

L

Wealthp >

T i 7.25
Al (1+25L, lgelllgi 1)
Regretr(u) < 4fjul| | In 373 -1
€

2
Ifmin{ HZ%I g?_H’ HZI_IQ?HQ} _ = el , then

2 Zz;l Mt 22?:1 It
T + 2
Wealthy > e 2 Hztzl g: H
CANAT = 7.25 SXP T .
T
(1+ 2L lgillgt 1) 25 b

By Orabona and Tommasi (2017, Lemma 1), we have

o—3/2

7.25
T
(1+257 llgillg 1)

14.5
T T
+(Zﬁu@HMPO+2ZﬁMMMMﬂD

e—3

Regretp(u) < —

T
+llul |2 @lgelllgs || = llgi 12) In
t=1
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Finally, combining the two cases result gives the regret bound

T
Regrety(u) = O (maX{HUII In (HUH (1 +>_ llgllllgs H))
t=1

T T
lull | D2l gl 1l — llg 1) (HHHIZ(?H%HHQ = llgi 1> ))

t=1 t=1

Appendix B. Proof of Theorem 3

In this section, we present the proofs of Theorem 3 and the Lemmas required for its proof.

Lemma 13 shows that the regret of ¢.(3,) upper bounds the regret of f;(3,), and Lemma 12
gives the upper bound of the regret of running ¢;(3,). Thus we are able to obtain similar results
as in Corollary 9. Lemma 14 proves that Algorithm 2 guarantees ||3,| < 1/2 which removes the
projection step, and leads to the closed form updates.

Lemma 12 Fort =1,...,T, B, are outputs of running OGD with stepsizes: n; = m
1 i=1 Mi
on the strongly convex losses ¢.(3) defined as following:

o If[|B:l < %» ¢:(B) = fi(B),
o If2 <|Bl <3 0:(B) = Clg;

where 3, € Band B = {x : ||z|| < 3}. ¢¢(B) is pu strongly convex. 3] £ arg mingep, Zthl fi(B),
where By = {x : ||| < 1}. Then, for C > 3 we have

d 5C? 1 502
Z (01(B¢) — ¢ [31))<——1n(1/n1—2)+%+—1n 1/771—2+QZ||915||”9 |
t=1 t=1

Proof Applying Lemma 8, we have

T T

2 2
> o) - autpn) < 1AL 5 (utuﬁm B+ v7||ws2w>u> |

t=1 t=1

We now consider the two possible cases for h;.

If $(8) = fi(B). then
IV (Bl = llgi” + 28, (lg:ll” — llgi — g:*) Il < 3llgi || -

Hence, [Vou(B)[* < 9llgf 1> < 9llgilllgi |l Moreover, e = 2(lglI* — g — g,ll*) >

2/lg:llg;" -
If ¢¢(8) = Cllg; [|1|B,|*. then

IV (B = 1208,/ ||| < Cllg/ | -
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(B> = C?||lgi 1> < C?||g,llllgi ||. Moreover, assuming C' > 1, we have p; =

2Cg{ || = 2llg.llllg/ Il
Consequently, with C' > 3, we have

T

T
12 CZHQtHHgt [ Cjz 2HgtHHgt |
Y m A+ A S 2y elllel

Applying Lemma 15 and C' > 3, we thus obtain

Z ¢ !V@ B)I?

C? 2llg ||||g I
<Ly C2,3) + ) > t
E ¢1(8,) — ¢1(B7) 2,71 (max( )5 S Um+2310 lgilllg! |

1 C?\ v 2)lgqlgi |
<—+ (max(02,3)+> t
2 4 ; 1m—2+23 llgillllgf |
1 02 T
< o + (max (C?,3) + Ve (m (1/771 — 2+ 22 llg:lllg; H) —In(1/m — 2)>
t=1

5C? 1 5C?
= —ln <1/171 —2+22 lg:llllg; > + T Tln 1/m —2).

Lemma 13 Under conditions and notations of Lemma 12 and for any C' > 9, we have

fi(By) — fr(BY) < 0e(By) — de(BY) -

Proof We consider the two cases for the losses h;.
When 3 < [|B,]| < 5, we have ¢:(83;) = C|lg;"[||B,]]*. Hence, we have

&(By) = 0B = Cllgif | (118:1* — 187) -

Moreover,

F(B) = fe(BY) = (g7 B — BY) + Cllgdllllgi | = g )87 = Cllg.lllgi | - g7 1) 18112
< g 1B + 185D + g gl (2 = ) (IB:* = 18511%)
< llg BN + 18T + g IA8* = 1871%) -

Hence, we have f(83,) — f:(87) < ¢:(B,) — ¢¢(B7) iff
18+ 1811 + 11811 — 181117 < C (118,11 — 1187117 ,

that is
o > 1B +1B1] + 18112 = I18311° _ 1 1
181> = 181117 18N = 11871l
Using the fact that W + 1 <9, gives the stated value for C. When ||3,] < %, we have
¢1(B) = fi(B) and f,(By) — fe(B1) < ¢u(By) — ¢(B1) is trivially true. u
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Lemma 14 Under the assumptions of Theorem 3 and the notation of Algorithm 2, let 1/n; >
max(2C, 16). Then, ||B,|| < & forallt =1,...,T.

Proof We prove this by induction: Base case: 3, = 0, HBOH < 3 is trivially true.

Induction step: Suppose |3, < 1, we prove ||B; | < 1. We perform the following case analysis:

If2 <8, <3,

2CB,llg7 |l
1/n 1+Zi:1

;=

1Beall = |ﬂ

DN =

20 ||g/ |
< Bl | 1 - < Bl <
' 1/m + Zfzi i !

£ +28,2lg:lllg/ |l — llgi11%)

IARS

t++2ﬁt(2\|gt\lllgt+ll —llg/ %)

1Beall = <18l +

1m+ 3 u L+ 301

3
§§+2771§

Lemma 15 Under the assumptions of Theorem 3 and the notation of Algorithm 2, we have, for any
C > 1, we have

lg: ||
1Be41 — Bell < max (C, 3)
1/m+ 231 lgslllg? ||

and

2||gt|||\gt l
wtl|Bey1 — Bell < max (02’ 3)
Um+23 1 lgillllgl ||

Proof We consider the two cases for h;.

o If ¢:(B) = C|lg;||IB||>, we have pu; = 2C||g;||. Assuming C' > 1 we have 2C||g;"|| >

2/|g:|l| (Bl = 2Clgi |18l < Cllg; || So, we have

Clgf | 2|lg; HHg |

ptl|Bri1 — Bell < 2C||g{ | : <C? t t
1/m+ Y201 Um+23 1 lgilllgl |

o If ¢,(8) = fi(B), we have

2llgell = 2llg;|” = pe = 2(llg:l1* — llgi” — 9:l*) = 2llgellllgi 12 — o) > 2g, /11| -

: 2)lg;"|lllgl
Moreover, ||[Vao:(3,)]| < 3|lg;||. So, we obtain 5} 3.l <3
H ¢t( t)H = Hgt H lu’tH t+1 t” = 1/7714,22: %”91”Hg+”
Taking the maximum of the two cases, we obtain the stated upper bounds. |

We can now present the proof of Theorem 3.

25



Proof [Proof of Theorem 3] Using Lemma 11 in the first inequality, and Lemma 15 in the second
inequality, we have

T

(ln(l —{gs,B)) —In(1 + (g — gtu@t-s-l)))
1

T

t=

> (g B = (lgil* = llgi — gilI)) B = 20lg:ll Brsr — Bull)

t=1

T
2)g.llg7 |
> (a8 — (lg.))> = lgi — g P)B% - €
2( f ' cooTe Um—2+25", llg:lllg?ll
T T
> —Cln <1/m —242% ugtuugrn> -3 1B
t=1 t=1
1 5C2 5C2 T T
> =g /m=2) - (4 +0) In (1/m —242)° ||gt||||gt+||> (1)
t=1 t=1
>

5C? L -
(% c)in (1m - 2423 1) - 3 e
=1 =1
T : T t
= —110.251In <16 +2) !gMg?ll) - fu(BY),
t=1

t=1

The second to the last inequality is from Lemma 13 and Lemma 12. C' = 9 gives rise to the last
inequality and the last equation. We now use Lemma 10 to obtain

2 2
T T T T
T - HZt:l g?H - HZt:l g?H ) HZt:l g?H HZt:l ng

- fi(B]) > —max , = min
; 8 230 e 8 23

)

The rest proof is similar to the proof of Theorem 1. Finally, we obtain the same bound as in
Theorem 1, up to constants hidden in big O notation.
|
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Appendix C. Proof of Theorem 5

Proof In each coordinate, we perform the regret decomposition as following:

Regretr(u Z l(wy) — l(u Z O (wy) wt+1) + ét(wt+1) — &(u)

T d
(g wi —wep) + (g7 wep —w) = N gri(wei — wegn) + 67 (W1 — )
t=1 i=1

Mﬁ

“
I
—

I
M&
M=

gti(Wei — Wip1,4) + g,;'(wtﬂ,i - ui)
1

T
( ng> - <—Z(Qt,i(wt,i — Wit1,) +9;,th+1,z‘)) :

t=1

.
Il
—
-
Il

Il
i M:“

where g, € 9l (w,), g, € 8y(w,), gi € Oy (wii1).
Define Wealthr; = € — Zthl(gt,i(wt,z' — Wiy1,) + g;fiwt+1,i). Suppose we obtain a bound

Wealthr; > ¢ (Z;‘FZI g: Z) for some 7. Using the definition of Fenchel conjugate, and the lower
bound on the wealth in each coordinate, we have

d T T
Regret (u) < Z U < th Z) (Wealthr; —e) < Z €+ u; < Zgﬁ) — <Z 9;)
X t=1 =1

=1

<Ze+supy u; — Yy Ze+¢T u;) -

=1

In each coordinate, Algorithm 3 is a specific case of running Algorithm 2 with d = 1. Applying the
result in Theorem 3, we obtain the final bound. [ |

Appendix D. List of Datasets

In our empirical evaluation, we used 3 regression datasets and 3 classification datasets from the
LIBSVM website (Chang and Lin, 2001) and OpenML (Vanschoren et al., 2013), randomly selected
among the ones with a large number of samples. For the OpenML datasets, categorical features are
one-hot-encoded. A short summary of the datasets is in Table 1.
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Table 1: Datasets in experiments.

DATASET TYPE NUMBER OF SAMPLES NUMBER OF FEATURES
CPU-ACT CLASSIFICATION 8192 21
2DPLANE CLASSIFICATION 40768 10
HOUSES CLASSIFICATION 20640 8
RAINFALL REGRESSION 16755 3
BANK32NH REGRESSION 8192 32
HOUSES-8L REGRESSION 22784 8
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