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Abstract

Parameter-free algorithms are online learning algorithms that do not require setting learning rates.

They achieve optimal regret with respect to the distance between the initial point and any competitor.

Yet, parameter-free algorithms do not take into account the geometry of the losses. Recently, in the

stochastic optimization literature, it has been proposed to instead use truncated linear lower bounds,

which produce better performance by more closely modeling the losses. In particular, truncated linear

models greatly reduce the problem of overshooting the minimum of the loss function. Unfortunately,

truncated linear models cannot be used with parameter-free algorithms because the updates become

very expensive to compute. In this paper, we propose new parameter-free algorithms that can take

advantage of truncated linear models through a new update that has an “implicit” flavor. Based on a

novel decomposition of the regret, the new update is efficient, requires only one gradient at each

step, never overshoots the minimum of the truncated model, and retains the favorable parameter-free

properties. We also conduct an empirical study demonstrating the practical utility of our algorithms.

Keywords: Online convex optimization, Regret, Truncated linear models, Parameter-free

1. Introduction

In this paper, we study Online Convex Optimization (OCO) (Gordon, 1999; Zinkevich, 2003). In

this setting, for each of T steps, a learner produces a prediction wt ∈ V in each step t, where

V ⊆ R
d is the feasible convex set. After each prediction, an adversary reveals a convex loss function

ℓt : V → R and the learner pays ℓt(wt). The aim of the learner is to minimize its regret with respect

to any fixed prediction u ∈ V , defined as

RegretT (u) ,
T
∑

t=1

ℓt(wt)−
T
∑

t=1

ℓt(u) .

Depending on the assumptions on the feasible set and the losses, there are many OCO algo-

rithms that achieve optimal regret. The two main families of OCO algorithms are based on Online

Mirror Descent (OMD) (Nemirovsky and Yudin, 1983; Warmuth and Jagota, 1997) and Follow-The-

Regularized-Leader (FTRL) (Shalev-Shwartz, 2007; Abernethy et al., 2008b; Hazan and Kale, 2008).

For the particular case where V ≡ R
d, parameter-free algorithms are minimax optimal (Orabona

and Pál, 2016; Cutkosky and Orabona, 2018). The key feature of parameter-free algorithms is that

the RegretT (u) scales nearly linearly in ‖u‖, and is constant for u = 0. This guarantee is only

obtainable by popular strategies like Online Subgradient Descent (Zinkevich, 2003) if the learning
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rate is carefully tuned to the (unknown!) value of ‖u‖. This lack of tuning learning rates motivates

the name “parameter-free”. Yet, even this favorable minimax optimality might not be satisfactory.

In particular, most OCO algorithms simply approximate the losses using linear functions, ignoring

their geometry. This approach is justified by the fact that the worst-case losses are indeed just linear

ones. However, in the extremely common case that the losses are not actually linear, that is they are

not worst-case, the algorithm is wasting potentially useful information. More generally, too much

focus on worst-case analyses and asymptotic rates can prevent the design of better algorithms.

In an effort to address this issue and go beyond focusing only on asymptotic rates, Asi and Duchi

(2019) have proposed the use of truncated linear models instead of linear models to obtain better

stochastic Mirror Descent algorithms with negligible additional computational complexity. Truncated

linear models are tighter lower bounds to the original function that do not require additional curvature

while still yielding a closed form update for Mirror Descent algorithms. For example, a common

issue with standard gradient descent methods is that they can overshoot the minimum of the loss

during any given iteration. The use of truncated linear models significantly mitigates this concern by

providing a “signal” that gradient descent might overshoot, allowing the learning algorithm to take a

more conservative step. The same idea can be applied to the online (rather than stochastic) setting,

but only for OMD. It is unknown how to use truncated linear models in parameter-free algorithms

without having an explosion in the computational time.

x

f(x)

Figure 1: Coin-Betting with truncated

linear models (Red), Coin-Betting with

linear models (Green), OGD with large

constant stepsizes (Grey), and OGD with

small constant stepsizes (Black).

In this work, we propose new parameter-free algo-

rithms that are able to take advantage of truncated linear

models. Note that any optimization algorithm based on

linear models can overshoot the optimum, but parameter-

free algorithms may be even more prone to overshooting

because their iterates can move exponentially far between

iterations. Instead, our new algorithms effectively alleviate

this problem, see Figure 1. Our algorithms are based on

a new decomposition of the regret that takes advantage of

the geometry of truncated linear losses that might be of

independent interest.

In summary, our primary contribution is a new algo-

rithm that maintains optimal parameter-free regret bounds

but also incorporates additional geometric information

about the loss functions. While such an improvement is

not visible in worst-case rates, we demonstrate through

an “implicit-style” regret bound that the algorithm could

perform significantly better in practice, and verify this

behavior in an empirical study.

The rest of the paper is organized as follows: in Section 2 we discuss related work and in Section 3

we review some definitions and background knowledge. In Section 4, we show the difficulties in

using truncated linear models in parameter-free algorithms. In Section 5, we present our solution

and prove a bound on its regret. Since this algorithm does not have a closed form update rule, in

Section 6 we propose a more efficiently computable variant while still retaining the same theoretical

guarantee. In Section 7, we present a coordinate-wise extension that obtains a tighter bound as well

as better empirical performance. Finally, in Section 8, we empirically validate our algorithm.
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2. Related work

Parameter-free OCO Algorithms Parameter-free OCO algorithms are motivated by a desire to

avoid choosing a step size and can achieve optimal theoretical regret bounds (e.g., McMahan and

Orabona, 2014; Orabona, 2014; Orabona and Pál, 2016; Cutkosky and Boahen, 2017; Foster et al.,

2018; Cutkosky and Orabona, 2018; Kotłowski, 2020; Kempka et al., 2019; Cutkosky and Sarlos,

2019; Jun and Orabona, 2019; van der Hoeven, 2019; Mhammedi and Koolen, 2020; Orabona and

Pál, 2021; Chen et al., 2021). Some of them are based on the FTRL framework (Shalev-Shwartz,

2007; Abernethy et al., 2008b; Hazan and Kale, 2008) (sometimes indirectly through methods such

as coin-betting). The closest work to our algorithms is the CODE algorithm (Chen et al., 2022)

which is the first attempt to combine parameter-free methods with truncated losses. Inspired by the

Importance Weight Awareness updates in Karampatziakis and Langford (2011), CODE models the

optimization algorithm with an ODE, and solves the ODE in a closed form to make infinitely many

infinitesimal parameter-free updates on truncated losses. While CODE solves the ODE in closed

form, it does not have any theoretical guarantee. In our work, in each step t, we consider the loss in

two points only: on the current prediction and the updated one. This gives rise to an implicit equation

that we can solve for truncated losses and to an optimal regret guarantee.

Truncated Linear Models and Implicit Updates Truncated linear models were proposed in Asi

and Duchi (2019) to create a tighter surrogate model for optimization. While the use of convex linear

lower bounds is also the core method in OCO algorithms (see, e.g., Orabona, 2019), we are not aware

of any other online learning algorithm with a regret guarantee based on truncated linear models. Asi

and Duchi (2019) incorporate truncated linear models into the Mirror Descent update (Nemirovsky

and Yudin, 1983), forming a proximal/implicit update (Moreau, 1965; Martinet, 1970; Rockafellar,

1976; Kivinen and Warmuth, 1997; Parikh and Boyd, 2014). In online learning, Kulis and Bartlett

(2010) provides the first regret bounds for implicit updates that match those of OMD, while McMahan

(2010) makes the first attempt to quantify the advantage of the implicit updates in the regret bound.

Song et al. (2018) generalize the results in McMahan (2010) to Bregman divergences and strongly

convex functions, and quantify the gain differently in the regret bound. Finally, Campolongo and

Orabona (2020) show that implicit updates give rise to regret guarantees that depend on the temporal

variability of the losses as well. We will match the dependency on the subgradients in our final results

to the one of FTRL with implicit updates (McMahan, 2010), which underlines the “implicit” nature

of our algorithm.

3. Preliminary

In this section, we introduce some of the needed background and definition.

Convex Analysis Definitions For a function f : R
d → R ∪ {+∞}, we define a subgradient

of f in x ∈ R
d as a vector g ∈ R

d that satisfies f(y) ≥ f(x) + 〈g,y − x〉, ∀y ∈ R
d. We

denote the set of subgradients of f at x by ∂f(x). A function f : R
d → R ∪ {+∞} is µ-

strongly convex over a convex set V ⊆ int dom f w.r.t. ‖ · ‖ if ∀x,y ∈ V , we have g ∈ ∂f(x),
f(y) ≥ f(x) + 〈g,y − x〉+ µ

2‖x− y‖2. The Fenchel conjugate f⋆ of a function f : Rd → R is

defined as f⋆(θ) = supx〈θ,x〉 − f(x). We denote the projection of a vector x onto a convex set B
as ΠB(x) , argminu∈B ‖x− u‖2.

Coin-Betting and Online Learning We now explain the coin-betting framework for parameter-free

algorithm design (Orabona and Pál, 2016), which operates through convex duality. We consider a

vector-valued “coin” ct ∈ R
d with ‖ct‖ ≤ 1 provided to a gambler in response to a “bet” xt ∈ R

d.
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The gambler earns 〈ct,xt〉 dollars, for a total wealth of Wealtht = ǫ +
∑t

i=1〈ci,xi〉 at time t,
assuming an initial endowment of ǫ. We enforce that xt = βtWealtht−1 for some betting fraction

‖βt‖ ≤ 1, which intuitively corresponds to preventing the gambler from betting more money than

the gambler has: Wealtht ≥ 0 for all t. The goal of the gambler is of course to make the wealth

as high as possible. To use this gambling game in online learning, set ct ∈ −∂ℓt(xt), and let

the learner’s wt ∈ R
d be simply equal to the gambler’s xt. To analyze the regret, suppose that

WealthT ≥ H
(

∑T
t=1 ct

)

for some arbitrary function H . Then we have:

T
∑

t=1

ℓt(wt)− ℓt(u) ≤
T
∑

t=1

〈ct,u−wt〉 = ǫ+

T
∑

t=1

〈ct,u〉 −WealthT

≤ ǫ+
T
∑

t=1

〈ct,u〉 −H
(

T
∑

t=1

ct

)

≤ ǫ+ sup
G∈Rd

〈G,u〉 −H(G) = ǫ+H⋆(u)

where in the first inequality we use the definition of the subgradient, in the second the assumption on

H , and the last equality the definition of Fenchel conjugate H⋆.

Critically, notice that the wealth lower-bound WealthT ≥ H
(

∑T
t=1 ct

)

does not involve u.

Instead, u appears only in analysis through Fenchel duality, which provides the parameter-free

property. Hence, we can use any betting algorithm that guarantees a high wealth to design a

parameter-free optimization algorithm.

f(x)
Truncated

Linear

(x0)

(x1)

(x∗)

Figure 2: Models of the function f(x) =
log(1 + e−x): a truncated linear model

(Red) built around the point x0, and a

linear model (Green) built around the

point x1. x∗ is the hinge corner.

Truncated Linear model For any ℓ̂t such that ℓ̂t(wt) =
ℓt(wt) and ℓ̂t(w) ≤ ℓt(w), ∀w, we have

∑T
t=1(ℓt(wt)−

ℓt(u)) ≤
∑T

t=1(ℓ̂t(wt)− ℓ̂t(u)). Linear models ℓ̂t(w) =
ℓt(wt) + 〈gt,w − wt〉 satisfy this property with gt ∈
∂ℓt(wt), which motivates the popularity of online linear

optimization. However, we might think to design tighter

approximations. In particular, Asi and Duchi (2019) pro-

posed truncated linear models:

ℓ̂t(w) , max{ℓt(wt) + 〈gt,w −wt〉, inf
w
ℓt(w)} .

Besides the property above, truncated linear models sat-

isfy: i) ℓ̂t(w) is convex and subdifferentiable on the

domain; ii) For any w, we have g+ = hgt where

g+ ∈ ∂ℓ̂t(w) and h ∈ [0, 1]; iii) ℓ̂t(w) ≥ infw ℓt(w).
In the following, we will assume that infw ℓt(w) = 0,

w.l.o.g. for loss functions bounded from below.

4. Difficulties in Using Truncated Models in

Parameter-free Algorithms

Many parameter-free algorithms are based on FTRL. Hence, it is natural to ask whether it is possible

to directly use truncated linear models instead of linear models in FTRL to utilize truncated linear

models in parameter-free algorithms. This approach immediately runs into significant problems.

Specifically, FTRL algorithms usually maintain the sum of the losses observed so far. One can
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easily store this sum when the losses are linear, but truncated losses would require O(T ) space and

O(poly(T )) time for every update. Thus, using truncated linear models with FTRL has the same

computational cost as using the original cost functions - the simplification to using truncated linear

models does not appear to help. In contrast, our solution has the same computational and space

complexity of online gradient descent.

Another possibility is to adapt the coin-betting design of parameter-free algorithms (Orabona

and Pál, 2016) to truncated linear models. A moment of thinking should convince the reader this

is far from simple: The reduction from optimization to coin-betting described in Section 3 works

by transforming subgradients into coin outcomes, but the subgradient of a truncated loss is exactly

the same as the subgradient of the original function! Thus, simply using the reduction as-is on the

truncated linear model would provide no benefit over using the simpler linear model.

Another method that seems possible is using truncated linear models in online gradient de-

scent, and then make online gradient descent parameter-free via some application of the doubling

trick (Shalev-Shwartz, 2012, 2.3.1). Perhaps surprisingly, employing the doubling trick in this way is

quite difficult. The only known application of the doubling trick is in Streeter and McMahan (2012),

but it does not achieve the optimal regret bound, and more importantly, employs a delicate identity

relating the regret and sums of gradients that may fail for the truncated linear model. Furthermore,

the doubling trick usually has terrible empirical performance, which completely defeats the purpose

of using truncated linear models.

5. Parameter-free OCO with Truncated Linear Models

In this section, we introduce our novel parameter-free algorithms for truncated linear models.

We overcome the difficulties described above through a multi-step process, during which we

will introduce three separate algorithms. First, we introduce a new regret decomposition to take

advantage of truncated losses while still only requiring storage of a few vectors. As an illustration

of the key principles, we will use this new regret decomposition to design Algorithm 1. While the

theoretical guarantee of Algorithm 1 matches our desiderata, the update does not have a closed

form. Hence, we then show how to slightly change our algorithm to obtain a closed form update in

Algorithm 2. Finally, in Section 7, we consider each coordinate as a separate 1-d problem to obtain a

coordinate-wise variant that achieves better performance both theoretically and empirically.

As mentioned previously, using truncated linear models in an FTRL-based parameter-free

algorithm would result in an inefficient update. Therefore, in the following, we show a different

approach inspired by the idea of implicit updates (Kivinen et al., 2006; Kulis and Bartlett, 2010;

McMahan, 2010). Our method introduces a new variation on the standard approach to bounding

online convex optimization with online linear optimization, and an accompanying update to the

regret/reward duality.

A New Regret Decomposition We are interested in upper bounding the terms ℓt(wt) − ℓt(u) for

any u ∈ R
d. The usual method (Zinkevich, 2003) is to upper bound the regret by linear terms, and

then proceed to bound the regret on the linear losses as follows:

RegretT (u) =
T
∑

t=1

ℓt(wt)− ℓt(u) ≤
T
∑

t=1

〈gt,wt − u〉,

where gt ∈ ∂ℓt(wt). While this approach gives worst-case optimal upper bounds, it completely

ignores the geometry of the loss functions ℓt. In contrast, we consider upper bounding the term
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Algorithm 1 Parameter-free OCO with Truncated Linear Models

1: Initialize β1 ← 0,Wealth0 ← 1, η1 ← 1/3
2: for t = 1 to T do

3: Predict wt ← βtWealtht−1

4: Receive ℓt(wt) and gt ∈ ∂ℓt(wt)
5: Calculate g+

t (see Section 5.1). g+
t = htgt by property (ii) of truncated linear models

6: β̂t+1 ← βt −
g+
t +2βt(‖gt‖

2−‖g+
t −gt‖

2)

1/η1+2
∑t−1

i=1
(‖gi‖

2−‖g+

i −gi‖
2)

7: βt+1 ← β̂t+1/max
(

1, 2‖β̂t+1‖
)

8: Wealtht ←Wealtht−1
1−〈gt,βt〉

1+(ht−1)〈gt,βt+1〉

9: end for

ℓt(wt)− ℓt(u) with the truncated linear loss ℓ̂t, and decompose the regret on the truncated linear

losses from an “implicit” point of view for a tighter bound. Specifically, for any u ∈ R
d we have

ℓt(wt)− ℓt(u) ≤ ℓ̂t(wt)− ℓ̂t(u) = ℓ̂t(wt)− ℓ̂t(wt+1) + ℓ̂t(wt+1)− ℓ̂t(u)
≤ 〈gt,wt −wt+1〉+ 〈g+

t ,wt+1 − u〉 ,
(1)

where gt ∈ ∂ℓt(wt), gt ∈ ∂ℓ̂t(wt), g
+
t ∈ ∂ℓ̂t(wt+1), the first inequality is true by the property of

the truncated linear model, and the second inequality is from the convexity. This decomposition can

take into account part of the geometry of the function through g+
t , which quantifies how far we are

from the infimum of ℓt. Note that the decomposition itself is very general and does not require ℓ̂ to

be a truncated linear loss: this structure is primarily used to form more efficient algorithms.

Implicit Coin-Betting To leverage this decomposition, we now define a modified notion of the

wealth quantity described in Section 3. Our key idea is to realize that the regret/reward duality

is more general than previously thought. In particular, we define Wealth0 = ǫ and WealthT ,

WealthT−1−〈gt,wt −wt+1〉 − 〈g+
t ,wt+1〉, to have

WealthT = ǫ−
T
∑

t=1

(〈gt,wt −wt+1〉+ 〈g+
t ,wt+1〉) . (2)

This implies RegretT (u) ≤ ǫ +
〈

−∑T
t=1 g

+
t ,u

〉

−WealthT . Suppose that we obtain a bound

WealthT ≥ ψT

(

−
∑T

t=1 g
+
t

)

for some ψT . Then, we can still use the Fenchel conjugate:

RegretT (u)− ǫ ≤ −
〈

T
∑

t=1

g+
t ,u

〉

− ψT

(

−
T
∑

t=1

g+
t

)

≤ sup
y
〈y,u〉 − ψT (y) = ψ⋆

T (u) .

Hence, it suffices to design an algorithm that guarantees a lower bound on WealthT to achieve

a regret upper bound, even for our modified notion of wealth. Moreover, given that our regret

decomposition takes into account the geometry of the truncated linear losses, we can expect a regret

guarantee that becomes tighter when we are close to the infimum of the functions ℓt.
We designed Algorithm 1 to maximize the wealth in (2), yielding a regret bound in Theorem 1.
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Theorem 1 Assume ℓt(x), t = 1, . . . , T , to be convex functions. Set Wealth0 = ǫ = 1 and assume

that ‖gt‖ ≤ 1 and g+
t = htgt where ht ∈ [0, 1]. Then, Algorithm 1 satisfies

RegretT (u) =O
(

max

{

‖u‖ ln
(

‖u‖
(

1 +
T
∑

t=1

‖gt‖‖g+
t ‖
))

,

‖u‖

√

√

√

√

T
∑

t=1

(2‖gt‖‖g+
t ‖ − ‖g+

t ‖2) · ln
(

1 + ‖u‖
T
∑

t=1

(2‖gt‖‖g+
t ‖ − ‖g+

t ‖2)
)









 .

To convey the main ideas, here we present a proof sketch, the full proof is included in the

Appendix.

Proof [Proof sketch] We first lower bound the wealth of the algorithm. From the definition of the

wealth (2) and the fact that the algorithm predicts with wt = βtWealtht−1, we have

Wealtht = Wealtht−1−〈gt,wt−wt+1〉− 〈g+
t ,wt+1〉 ⇒Wealtht =

Wealtht−1(1− 〈gt,βt〉)
1 + 〈g+

t − gt,βt+1〉
.

This implies that lnWealthT = ln ǫ +
∑T

t=1(ln(1 − 〈gt,βt〉) − ln(1 + 〈g+
t − gt,βt+1〉)). It is

possible to show that lnWealthT − ln ǫ can be lower bounded as

T
∑

t=1

(

ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt+1〉)

)

≥
T
∑

t=1

[

−〈g+
t ,βt〉 − (‖gt‖2 − ‖g+

t − gt‖2)‖βt‖2 − 2‖gt‖‖βt+1 − βt‖
]

.

(3)

So, βt is designed to be the output of running OGD (Online Gradient Descent) on µt strongly-

convex losses ft(β) , 〈g+
t ,β〉 + µt

2 ‖βt‖2, where µt = 2(‖gt‖2 − ‖gt − g+
t ‖2) with β ∈ B,

B = {x|‖x‖ ≤ 1/2}, and stepsizes ηt =
1

1/η1+
∑t−1

i=1
µi

. Standard OGD analysis provides the lower

bound for
∑T

t=1〈g+
t ,βt〉+ (‖gt‖2 − ‖g+

t − gt‖2)‖βt‖2. Besides, ‖βt+1 − βt‖ is upper bounded

by
3‖g+

t ‖

1+2
∑t

i=1
‖gi‖‖g

+

i ‖
. Combining all pieces together leads to the lower bound

lnWealthT ≥ −3/2− 7.25 ln

(

1 + 2

T
∑

t=1

‖gt‖‖g+
t ‖
)

+min











∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

4
,

∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

2
∑T

t=1 µt











.

A lower bound on WealthT indicates an upper bound on regret. Now, we derive the upper bound on

the regret from the Fenchel conjugate of the function above.

Note that the bounded subgradient assumption is a known requirement shared by all parameter-

free algorithms, see lower bound in Cutkosky and Boahen (2017). However, the limitation is milder

than it seems at first blush: this Lipschitz bound can actually be over-estimated by a factor of
√
T

before significant damage is done to the regret bound. This can be seen by observing that other

than an O(log T ) term, our regret bounds scale with the observed norms of the gradients. Thus, the

limitation is actually rather benign - we simply assume a bound of 1 to simplify equations.

7



Comparison with Parameter-Free Bounds Previous work of Cutkosky and Orabona (2018) achieved

a regret bound ofO
(

‖u‖
√

∑T
t=1 ‖gt‖2

)

which has the optimal worst-case dependence on ‖gt‖ (Aber-

nethy et al., 2008a; Cutkosky, 2018). In Theorem 1, we obtain a regret bound depending on

‖gt‖2 − ‖g+
t − gt‖2 = ‖gt‖2(2ht − h2t ). So, as long as the algorithm goes close to the hinge corner

of the truncated linear model, it will yield an ht < 1 and a smaller regret. Intuitively, this should

be expected to occur whenever it is possible to obtain small loss as obtaining small loss requires

reaching the hinge of the truncated linear model.

Relation to Implicit Updates Truncated linear models were introduced as an approximation of the

implicit updates (Asi and Duchi, 2019). In this view, it is instructive to compare the dependency on the

subgradients in Theorem 1 and the regret bounds for implicit updates. For example, McMahan (2010,

Theorem 2) gives a regret guarantee for FTRL with implicit updates and non-adaptive regularizer

that depends on 〈gt − 1
2g

+
t , g

+
t 〉. This quantity is exactly 1

2(‖gt‖2 − ‖g+
t − gt‖2) that appears in

Theorem 1. This supports the idea that the decomposition in (1) “emulates” the idea of implicit

updates in parameter-free algorithms. However, there is a subtle difference: in standard implicit

updates g+
t ∈ ∂ℓt(wt+1) is a subgradient of the original loss function. Instead, here g+

t ∈ ∂ℓ̂t(wt+1),
so it is a subgradient of the truncated linear model. We can see this as a price we pay to obtain a

smaller computational complexity compared to standard implicit updates.

Comparison with OMD with truncated linear model To the best of our knowledge, there are

actually no regret guarantees with OMD with truncated linear models in the literature (Asi and Duchi

(2019) do not consider the adversarial setting). However, it is quite likely that OMD with truncated

models can achieve an implicit regret similar to that reported by McMahan (2010) subject to oracle

tuning of the learning rates. Our results match this benchmark in the dependency on gt and g+
t and

improve in the dependency on ‖u‖ since we do not require oracle tuning of the learning rate.

No Overshooting Property We now prove that the proposed algorithm never overshoots the mini-

mum of the truncated linear loss. Moreover, in the case that the minimum of ℓ̂t coincides with the

minimum of ℓt, we end up exactly in the minimum, as illustrated by Figure 1.

Theorem 2 Under the assumptions of Theorem 1 and the notation of Algorithm 1, assume that

gt 6= 0. Then, the update wt+1 can never land on the flat part of the loss ℓ̂t, but only on its linear

part or in the corner.

Proof The statement is equivalent to showing that ℓt(wt)+ 〈gt,wt+1−wt〉 ≥ 0 from the definition

of ℓ̂t. We prove it by contradiction. Let’s assume that ℓt(wt) + 〈gt,wt+1 −wt〉 < 0. Then, we

would have ℓ̂t(wt+1) = 0 and g+
t = 0 (equivalently ht = 0). In turn, this would imply βt+1 = βt

and Wealtht = Wealtht−1. So, we would have wt+1 = wt which is impossible because gt 6= 0.

Note that we assume gt 6= 0 in Theorem 2 since when gt = 0 the algorithm is already in the

corner.

5.1. Computation of ht

The next challenge is how to find ht. This is the only part of the Algorithm that uses the truncated

linear model structure: the analysis Theorem 1 actually applies to any losses for which g+
t = htgt.

Truncated linear models combine this favorable property with the additional property that it is

possible to efficiently compute ht. The argument of Theorem 2 shows that we cannot be in the flat
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Algorithm 2 Parameter-free OCO with Truncated Linear Models – closed form update

1: Initialize β1 ← 0, η1 ← 1
2C , C ← 9,Wealth0 ← 1

2: for t = 1 to T do

3: Predict wt ← βtWealtht−1

4: Receive ℓt(wt) and gt ∈ ∂ℓt(wt)
5: Calculate ht (see Section 6.1)

6: if ‖βt‖ < 3
8 then

7: βt+1 ← βt − ηt(g+
t + 2βt(2‖gt‖‖g+

t ‖ − ‖g+
t ‖2))

8:
1

ηt+1
← 1

ηt
+ 2(‖gt‖2 − ‖g+

t − gt‖2)
9: else

10: βt+1 ← βt − ηt2C‖g+
t ‖βt

11:
1

ηt+1
← 1

ηt
+ 2C‖g+

t ‖
12: end if

13: Wealtht ←Wealtht−1
1−〈gt,βt〉

1+(ht−1)〈gt,βt+1〉

14: end for

region. By inspection of the updates, there are two achievable cases: in the first case ht = 1 and we

are not in the corner of the truncated model, while in the second case, we are in the corner. Hence, as

a first step, we posit that ht = 1, calculate wt+1 and see if indeed g+
t = gt. If this is not the case,

then the solution must be in the corner and ht ∈ [0, 1). By definition wt+1 = βt+1Wealtht, where

βt+1 =
∏

B

(βt−ηt(htgt+2βt‖gt‖2(2ht−h2t )) and Wealtht = Wealtht−1
1− gtβt

1 + (g+
t − gt)βt+1

.

Thus, wt+1 is a function of ht. Assuming infw ℓt(w) = 0 w.l.o.g. for loss functions bounded from

below, we are looking for ht that makes

ℓt(wt) + 〈gt,wt+1 −wt〉 = 0 . (4)

Although we could solve for ht via bisection, there is no closed form solution due to the projection

of βt+1. Thus, we next propose a more complex algorithm with a closed form equation for ht.

6. Variant with Closed-form Update

In this section, we introduce the Algorithm 2: a variant of Algorithm 1 that has a closed form update.

The key steps are still the same, but here we want to remove the projection step on βt. In this way,

the expression of wt+1 depends on a simple polynomial in ht. In turn, to remove the projection step,

we change the update of βt so that its norm is always assured to be bounded. For Algorithm 2, we

can prove the following guarantee. We present a proof sketch, while the full proof is in the Appendix.

Theorem 3 Assume ℓt(x), t = 1, . . . , T , to be convex functions. Set Wealth0 = ǫ = 1, C = 9 and

1/η1 = 2C, and assume that ‖gt‖ ≤ 1 and g+
t = htgt where ht ∈ [0, 1]. Then, for all u ∈ R

d,

Algorithm 2 satisfies the same bound as in Theorem 1, up to constants hidden in the big O notation.

Proof [Proof sketch] As we stated above, due to the projection step in line 6 of Algorithm 1, ht can

not be solved in a closed form. To overcome this, we design a new update rule that guarantees that

βt will always end up in the ball B = {x : ‖x‖ ≤ 1
2} to avoid the projection step.

9



In Algorithm 1, βt is the output of running OGD on strongly-convex losses ft(β). However,

when βt is close to 1/2, the next iteration, βt+1, could go too far so that a projection step can be

necessary. To avoid this, we intricately design an update rule that when ‖βt‖ ≥ 3/8 indicating that

βt is close to the boundary of the ball, the next iteration will shrink it a little bit, to make sure that it

stays in the ball B. The new update rule is the output of running OGD on strongly-convex losses

φt(β). In the following, we introduce the sketch of the proof.

βt is the output of OGD with ηt =
1

1/η1+
∑t−1

i=1
µi

on the strongly-convex losses φt(β):

φt(β) =

{

ft(β), if ‖βt‖ < 3
8 ,

C‖g+
t ‖‖β‖2, if 3

8 ≤ ‖βt‖ ≤ 1
2 ,

where βt ∈ B andB = {x : ‖x‖ ≤ 1
2}. φt(β) is µt strongly convex. β⋆

1 , argminβ∈B1

∑T
t=1 ft(β),

where B1 = {x : ‖x‖ ≤ 1
4}. The intricate design of φt(β) allows to say that if βt ≥ 3/8,

‖βt+1‖ = (1− ηt2C‖g+
t ‖)‖βt‖ will shrink if ηt ≤ 1/2C; if βt ≤ 3/8, ‖βt+1‖ will stay in B if ηt

is small enough. Therefore, Algorithm 2 guarantees ‖βt‖ ≤ 1
2 for all t = 1, . . . , T , which removes

the projection step on βt, and gives rise to the closed form updates.

Furthermore, for C ≥ 9, the regret of φt(βt) upper bounds the regret of ft(βt): ft(βt) −
ft(β

⋆
1) ≤ φt(βt) − φt(β⋆

1). We upper bound
∑T

t=1 φt(βt) − φt(β⋆
1) by standard OGD analysis,

which implies a bound on
∑T

t=1 ft(βt). Combining the upper bound of ‖βt+1−βt‖ and
∑T

t=1 ft(βt)
lower bounds wealth by (3). The rest of the proof is similar to the proof of Theorem 1.

We also note that the non-overshooting property holds for this algorithm too. The proof is exactly

the same as before and it is omitted.

Theorem 4 Under the assumptions of Theorem 3 and the notation of Algorithm 2, assume that

gt 6= 0. Then, the update wt+1 can never land on the flat part of the loss ℓ̂t, but only on its linear

part or on the corner.

6.1. Computation of ht with Closed Form Solution

Now, we show how to obtain a closed form expression for the update in Algorithm 2. As before,

first we tentatively set ht = 1 and check if g+
t = gt. If yes, then ht = 1 and we can compute wt+1.

If not, thanks to Theorem 4, we know that wt+1 lands in the corner of ℓ̂t and we need to compute

ht ∈ [0, 1). In this case we are looking for the ht such that wt+1 satisfies (4).

Let A = 〈gt,wt〉 − ℓt(wt), B = Wealtht(1− 〈gt,βt〉). We consider two cases based on βt.

If ‖βt‖ ≤ 3
8 , we have that 〈gt,βt+1〉 = 〈gt,βt − ηt(g+

t + 2βt(2ht‖gt‖2 − h2t ‖gt‖2))〉. Let

D = 2ηt‖gt‖2〈gt,βt〉, so (4) becomes a cubic equation of ht that has closed form solution:

−ADh3t + (2AD +Aηt‖gt‖2 + (A+B)D)h2t + (−(A+B)ηt‖gt‖2 − 2(A+B)D

−A〈gt,βt〉)ht + (A+B)〈gt,βt〉 −A = 0 .

If 3
8 ≤ ‖βt‖ ≤ 1

2 , we have 〈gt,βt+1〉 = 〈gt,βt〉(1−2Cηt‖gt‖ht). Let D = 2Cηt‖gt‖〈gt,βt〉.
So, (4) can be rewritten as the following quadratic equation of ht and again it has closed form

solution: ADh2t + (−A〈gt,βt〉 − (A+B)D)ht + (A+B)〈gt,βt〉 −A = 0.

10



Algorithm 3 Parameter-free OCO with Truncated Linear Models – coordinate-wise update

1: Initialize β1 ← 0, η1 ← 1
2C · 1, C ← 9,Wealth0 ← 1 ∈ R

d

2: for t = 1 to T do

3: Predict wt ← βt ⊙Wealtht−1

4: Receive ℓt(wt) and gt ∈ ∂ℓt(wt)
5: Calculate ht s.t. ℓt(wt) + 〈gt,wt+1 −wt〉 = 0 (see Section 5.1)

6: for i = 1 to d do

7: if |βt,i| < 3
8 then

8: βt+1,i ← βt,i − ηt,i(g+t,i + 2βt,i(2gt,ig
+
t,i − (g+t,i)

2))

9:
1

ηt+1,i
← 1

ηt,i
+ 2(g2t,i − (g+t,i − gt,i)2)

10: else

11: βt+1,i ← βt,i − ηt,i2C|g+t,i|βt,i,
12:

1
ηt+1,i

← 1
ηt,i

+ 2C|g+t,i|
13: end if

14: Wealtht,i ←Wealtht−1,i
1−gt,iβt,i

1+(ht−1)gt,iβt+1,i

15: end for

16: end for

7. Tighter Regret Guarantee through Coordinate-wise Updates

In this section, we introduce a coordinate-wise variant of Parameter-free OCO with truncated linear

models. This is a simple extension of Algorithm 2 by considering each coordinate as a different 1-d

OCO algorithm. The advantage is that this regret bound is even tighter than the bound of Theorem 1.

Here we present the Theorem 5. (The proof can be found in the Appendix.) We use βt,i, ui, gt,i ∈ R

to represent the i-th element of the vector correspondingly.

Theorem 5 Assume ℓt(x), t = 1, . . . , T , to be convex functions. Set Wealth0 = ǫ = 1, C = 9. For

i = 1, . . . , d, 1/η1,i = 2C and assume that |gt,i| ≤ 1, g+
t = htgt where ht ∈ [0, 1]. Then, for all

u ∈ R
d, Algorithm 3 guarantees

RegretT (u) =
d
∑

i=1

ǫ+O
(

max

{

|ui| ln
(

|ui|
(

1 +
T
∑

t=1

|gt,i||g+t,i|
))

,

|ui|

√

√

√

√

T
∑

t=1

(2|gt,i||g+t,i| − |g+t,i|2) · ln
(

1 + |ui|
T
∑

t=1

(2|gt,i||g+t,i| − |g+t,i|2)
)









 .

To see how this bound is more desirable than Theorem 1, first notice that the bound obtains some

adaptivity to L1 geometry: if G∞ = max ‖gt‖∞, then the bound is at most Õ(‖u‖1G∞

√
T ).

Furthermore, by application of Cauchy-Schwarz (twice!) we can see that the bound is at most an

additive ǫd larger than Theorem 1 - and could be much smaller if either application of Cauchy-

Schwarz is loose. Thus, this bound is never much worse than that of Theorem 1, but has the further

desirable property that one can add a large number of “irrelevant” dimensions for which ui = 0
without harming the bound.

Unfortunately, we no longer have a closed form expression for ht due to the coupling of the

coordinates. However, at each iteration, we can find a δ-approximation to ht using O(log(1/δ))

11



Figure 3: Regression tasks: Mean test loss versus epochs.

steps of bisection and a single gradient oracle call. By “bisection” we mean a binary-search style

algorithm: given a guess for ht, we can compute if the true value is lower or higher than the guess

by computing what the update would be if the guess were correct and checking if we have overshot

the corner of the truncated bound. Though this inflates the cost of an update by O(log(1/δ)), this is

still significantly more efficient than the poly(T ) oracle calls required to run FTRL with truncated

linear models directly at each step. This small extra computation cost is a price we pay for better

theoretical as well as empirical results.

8. Empirical Evaluation

While our main contribution is theoretical, here we evaluate the empirical performance of Algorithm 2

and Algorithm 3 to show their practical potential. We will denote the algorithms as Implicit Coin,

and Coordinate-wise Implicit Coin. We would also like to stress that we used Algorithm 2 and

Algorithm 3 as they are, with the choice of the hyperparameters directly given by theory, i.e., η0, C,

Wealth0. It is quite possible that these choices were not optimal. We do this on purpose: we want to

demonstrate how robust parameter-free algorithms are, even with theory-derived constants.

We compare SGD, SGD with truncated models (aProx) (Asi and Duchi, 2019), SGD with

Importance Weight Aware updates (IWA) (Karampatziakis and Langford, 2011), Coin-betting algo-

rithm (Coin) (Orabona and Pál, 2016), Coin-betting with ODE updates (CODE) (Chen et al., 2022),

COntinuous COin Betting (COCOB) (Orabona and Tommasi, 2017).

We tested the algorithms on real-world datasets from the LIBSVM website (Chang and Lin,

2001) and OpenML (Vanschoren et al., 2013). 2dPlane, CPU-act, and Houses are classification

tasks, Rainfall, Bank32nh, and House-8L are regression tasks. (More information about datasets is in

Appendix). We standardize and pre-process the samples, normalizing them to unit norm vectors. We

shuffle the data and separate into a training set (70%), validation set (15%), and test set (15%).

For SGD, aProx and IWA, we tune the initial step size η0 and consider stepsize sequence of

the form: ηk = η0/
√
k. All the parameter-free algorithms do not have parameters to tune. Implicit

Coin has a closed form solution for ht, so the implementation is as efficient as SGD. For CODE and

Coordinate-wise Implicit Coin, we used a bisection algorithm to find ht.
We considered linear predictors trained with the hinge loss for classification, and with the absolute

loss for regression. We trained all algorithms for 10 epochs over the training data. Each epoch

requires running through the total shuffled training set. All the experiments are repeated 3 times, we

report the average of the 3 repetitions. For all the algorithms that require a learning rate, on every

12



Figure 4: Classification tasks: Mean test loss versus epochs.

dataset and for each repetition, we use the validation loss to choose the best learning rate, train using

that learning rate, test on the test set, and report the test loss averaged over 3 repetitions.

Figure 3 and Figure 4 show the average of test losses versus number of epochs. In all experiments,

Coordinate-wise Implicit Coin has a performance that is superior or comparable to all the competitors.

It is worth remembering that the algorithms with a learning rate were tuned on the validation set,

while the parameter-free algorithms were not tuned in any way. Moreover, in all cases, Implicit

Coin has a better performance than Coin. Given that their key difference is the truncated models in

Implicit coin, this directly supports the advantage of these updates over linearized ones.

More in detail, on regression tasks (Figures 3), the performance of Coordinate-wise Implicit Coin

is superior to the other competitors at the end of the training on Rainfall and House-8L. COCOB,

CODE, and Coordinate-wise Implicit Coin outperform the other competitors significantly on Houses-

8L, and their performances are close to each other on Bank32nh. On the classification tasks (Figure 4),

Coordinate-wise Implicit Coin and Implicit Coin achieve essentially the optimal performance on

CPU-act and Houses correspondingly. On 2dPlane, Coordinate-wise Implicit Coin, Implicit Coin,

and CODE perform almost equally satisfying, and they outperform the other competitors.

9. Conclusion

In this paper, we present new parameter-free algorithms utilizing a better convex lower bound: the

truncated linear model. We overcome the theoretical difficulties of using truncated linear models in

parameter-free algorithms with a new regret decomposition. Our regret bounds are analogous to

bounds achieved by implicit methods. Besides, we propose a variant of our algorithm that has a very

efficient closed form update rule, matching the runtime of gradient descent. Finally, we provide a

coordinate-wise variant with tighter regret bounds.

In the future, we would like to explore the additional possibilities offered by the new decomposi-

tion of regret. For example, we would like to overcome the limitation of the current per-coordinate

formulation and explore the possibility to design a per-coordinate variant that uses truncated linear

models, retaining the closed form update. Besides, considering the good empirical performance of

CODE and the similarity in the spirit of CODE and Implicit Coin, we are interested in the possibility

of studying the theoretical properties of CODE.
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Appendix A. Proof of Theorem 1

Before we prove Theorem 1, we first introduce some technical Lemmas that will be used in the proof.

Lemma 6 Under the assumptions of Theorem 1 and the notation of Algorithm 1, we have ‖βt+1 −
βt‖ ≤

3‖g+
t ‖

1+2
∑t

i=1
‖gi‖‖g

+

i ‖
for all t = 1, . . . , T .
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Proof By the definition of βt+1, β̂t+1, βt, we have:

‖βt+1 − βt‖ ≤ ‖β̂t+1 − βt‖ =
‖g+

t + 2βt(‖gt‖2 − ‖g+
t − gt‖2)‖

3 + 2
∑t−1

i=1(‖gi‖2 − ‖g+
i − gi‖2)

≤ ‖g
+
t ‖+ 2‖βt‖(2‖gt‖‖g+

t ‖ − ‖g+
t ‖2)

3 + 2
∑t−1

i=1(2‖gi‖‖g+
i ‖ − ‖g+

i ‖2)
≤ ‖g

+
t ‖+ 2‖βt‖(2‖gt‖‖g+

t ‖ − ‖g+
t ‖2)

3 + 2
∑t−1

i=1 ‖gi‖‖g+
i ‖

≤ ‖g
+
t ‖+ 2‖βt‖‖g+

t ‖(2‖gt‖ − ht‖gt‖)
1 + 2

∑t
i=1 ‖gi‖‖g+

i ‖
≤ 3‖g+

t ‖
1 + 2

∑t
i=1 ‖gi‖‖g+

i ‖
,

where we used the fact that ‖gi‖‖g+
i ‖ ≤ 1 in second to last inequality.

Lemma 7 Let a0 ≥ 0 and f : [0,+∞)→ [0,+∞) a nonincreasing function. Then,

T
∑

t=1

atf

(

a0 +
t
∑

i=1

ai

)

≤
∫

∑T
t=0

at

a0

f(x)dx .

Proof Denote by st = a0 +
∑t

i=1 ai.

atf

(

a0 +
t
∑

i=1

ai

)

= atf(st) =

∫ st

st−1

f(st)dx ≤
∫ st

st−1

f(x)dx .

Summing over t = 1, . . . , T , we have the stated bound.

Lemma 8 Let V a non-empty closed convex set in R
d. Assume that the functions ft : R →

(−∞,∞] are µt-strongly convex w.r.t ‖ · ‖2 over V ⊂ ∩Tt=1 int dom ft, where µt > 0. Assume

we receive subgradients vt ∈ ∂ft(wt) and set wt using Online Gradient Descent with stepsizes:

ηt =
1

1/η1+
∑t−1

i=1
µi

. Then, for any u ∈ V , we have the following regret guarantee:

T
∑

t=1

(ft(wt)− ft(u)) ≤
‖w1 − u‖2

2η1
+

T
∑

t=1

ηt ‖vt‖2
2

+
T
∑

t=1

µt
2
‖wt+1 +wt − 2u‖‖wt+1 −wt‖ .

Proof From the strongly convexity of the function ft, we have that

ft(wt)− ft(u) ≤ 〈vt,wt − u〉 − µt
2
‖wt − u‖ ,

where vt ∈ ∂ft(wt). From the fact that ηt =
1

1/η1+
∑t−1

i=1
µi

, we have

1

2ηt
+
µt
2

=
1

2ηt+1
, t = 1, . . . , T .

Also, observe that

‖wt − u‖2 = ‖wt+1 − u+wt −wt+1‖2

= ‖wt+1 − u‖2 + 2〈wt+1 − u,wt −wt+1〉+ ‖wt −wt+1‖2

= ‖wt+1 − u‖2 + 〈2wt+1 − 2u+wt −wt+1,wt −wt+1〉
≥ ‖wt+1 − u‖2 − ‖wt+1 +wt − 2u‖‖wt −wt+1‖ .
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Thus, we have

T
∑

t=1

(ft(wt)− ft(u)) ≤
T
∑

t=1

(

1

2ηt
‖wt − u‖2 − 1

2ηt
‖wt+1 − u‖2 − µt

2
‖wt − u‖2 + ηt

2
‖vt‖2

)

≤
T
∑

t=1

(

1

2ηt
‖wt − u‖2 − 1

2ηt
‖wt+1 − u‖2 − µt

2
‖wt+1 − u‖2

+
µt
2
‖wt+1 −wt‖‖wt+1 +wt − 2u‖+ ηt

2
‖vt‖2

)

=
T
∑

t=1

(

1

2ηt
‖wt − u‖2 − 1

2ηt+1
‖wt+1 − u‖2

)

+
T
∑

t=1

µt
2
‖wt+1 −wt‖‖wt+1 +wt − 2u‖+

T
∑

t=1

ηt
2
‖vt‖2 .

Summing and telescoping, we obtain

T
∑

t=1

(ft(wt)− ft(u)) ≤
‖w1 − u‖2

2η1
+

T
∑

t=1

µt
2
‖wt+1 −wt‖‖wt+1 +wt − 2u‖+

T
∑

t=1

ηt
2
‖vt‖2 .

Corollary 9 Consider an OCO problem with losses ft(β) = 〈g+
t ,β〉+

(

‖gt‖2 − ‖gt − g+
t ‖2

)

‖β‖2,

with β ∈ B, B = {x|‖x‖ ≤ 1/2}. Then, from Lemma 8, we have

T
∑

t=1

(ft(βt)− ft(β⋆)) ≤ 3/2 + 17/4

T
∑

t=1

2‖gt‖‖g+
t ‖

1 + 2
∑t

i=1 ‖gi‖‖g+
i ‖

.

Proof From Lemma 8,

T
∑

t=1

(ft(βt)− ft(β⋆)) ≤ ‖β1 − β⋆‖2
2η1

+
T
∑

t=1

µt
2
‖βt+1 − βt‖‖βt+1 + βt − 2β⋆‖+

T
∑

t=1

ηt
2
‖vt‖2 .

Observe that βt,βt+1,β
⋆ ∈ B, so ‖βt+1 + βt − 2β⋆‖ ≤ 2. Moreover, we have µt ≤ 2‖gt‖. So,

summing the second term and using Lemma 6, we obtain

T
∑

t=1

µt
2
‖βt+1 − βt‖‖βt+1 + βt − 2β⋆‖ ≤

T
∑

t=1

µt‖βt+1 − βt‖ ≤ 3

T
∑

t=1

2‖gt‖‖g+
t ‖

1 + 2
∑t

i=1 ‖gi‖‖g+
i ‖

.

Noting that vt ∈ ∂ft(βt) = g+
t + 2βt(‖gt‖2 − ‖g+

t − gt‖2), we have

‖vt‖2 ≤ ‖g+
t ‖2 + 4‖βt‖‖g+

t ‖‖gt‖+ 4‖βt‖2‖gt‖(2‖g+
t ‖) ≤ 5‖g+

t ‖‖gt‖ .

Hence, summing the third term, we have

T
∑

t=1

ηt
2
‖vt‖2 ≤

5

4

T
∑

t=1

2‖gt‖‖g+
t ‖

1 + 2
∑t

i=1 ‖gi‖‖g+
i ‖

.
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Now using the fact that 1
η1

= 3, we obtain

T
∑

t=1

ft(βt)− ft(β⋆) ≤ 3/2 +
17

4

T
∑

t=1

2‖gt‖‖g+
t ‖

1 + 2
∑t

i=1 ‖gi‖‖g+
i ‖

.

Lemma 10 Consider an OCO problem with losses ft(β) = 〈g+
t ,β〉+ µt

2 ‖β‖2 and

µt = 2
(

‖gt‖2 − ‖gt − g+
t ‖2

)

, with β ∈ B = {x|‖x‖ ≤ r}. Define β∗
T := argminβ∈B

∑T
t=1 ft(β).

Then we have

T
∑

t=1

ft(β
⋆
T ) ≤ max











−r
∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2
,
−
∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

2
∑T

t=1 µt











.

Proof We consider 2 cases: By definition β⋆ = βT+1 =
∏

B(β̂T+1), ft is µt strongly convex,

where µt = 2(‖gt‖2 − ‖g+
t − gt‖2).

• If β̂T+1 ∈ B, that is βT+1 = β̂T+1 =
−

∑T
t=1

g+
t∑T

t=1
µt

. In this case,

T
∑

t=1

ft(β
∗) =

(

T
∑

t=1

g+
t

)

−
∑T

t=1 g
+
t

∑T
t=1 µt

+

∥

∥

∥−
∑T

t=1 g
+
t

∥

∥

∥

2

(

∑T
t=1 µt

)2

∑T
t=1 µt
2

= −1

2

∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

∑T
t=1 µt

.

• If β̂T+1 6∈ B, βT+1 =
∏

B(β̂T+1) = r
−

∑T
t=1

g+
t

‖−
∑T

t=1
g+
t ‖

. In this case,

‖β̂T+1‖ =
∥

∥

∥

∥

∥

−
∑T

t=1 g
+
t

∑T
t=1 µt

∥

∥

∥

∥

∥

≥ r .

That is,
∥

∥

∥

∥

∥

T
∑

t=1

g+
t

∥

∥

∥

∥

∥

≥ r
T
∑

t=1

µt .

Therefore, we have

T
∑

t=1

ft(β
∗) = −r

∥

∥

∥

∥

∥

T
∑

t=1

g+
t

∥

∥

∥

∥

∥

+ r2
T
∑

t=1

µt
2

(

‖
∑T

t=1 g
+
t ‖

‖
∑T

t=1 g
+
t ‖

)2

≤ −r
∥

∥

∥

∥

∥

T
∑

t=1

g+
t

∥

∥

∥

∥

∥

+
r2

2

∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

r

= −r
2

∥

∥

∥

∥

∥

T
∑

t=1

g+
t

∥

∥

∥

∥

∥

.

In conclusion,

T
∑

t=1

ft(β
⋆) ≤ max











−r
∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2
,
−
∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

2
∑T

t=1 µt











.
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Lemma 11 Let ‖gt‖ ≤ 1, g+
t = htgt where ht ∈ [0, 1], for t = 1, . . . , T . Then, we have

ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt+1〉) ≥ −〈g+

t ,βt〉 − (‖gt‖2 − ‖g+
t − gt‖2)‖βt‖2

− 2‖gt‖‖βt+1 − βt‖ .

Proof

ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt+1〉)

≥ ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt〉+ ‖g+

t − gt‖‖βt+1 − βt‖)

= ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt〉)− ln

(

1 +
‖g+

t − gt‖‖βt+1 − βt‖
1 + 〈g+

t − gt,βt〉

)

≥ ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt〉)−

‖g+
t − gt‖‖βt+1 − βt‖
1 + 〈g+

t − gt,βt〉

≥ ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt〉)−

‖g+
t − gt‖‖βt+1 − βt‖

1− 1/2

≥ ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt〉)− 2‖gt‖‖βt+1 − βt‖,

where in the last inequality we used the fact that g+
t = htgt, 0 ≤ ht ≤ 1, ‖βt‖ ≤ 1/2. The sum of

these last terms is upper bounded by a logarithmic term.

Now, considering the first two terms, we have

ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt〉) = f(〈gt,βt〉),

where f(x) = ln(1− x)− ln(1 + (ht − 1)x) for |x| ≤ 1/2.

To have the tightest inequality, we consider two cases separately.

Case 0 ≤ x ≤ 1/2. We consider g(x) = f(x) − htx. We have that the first derivative of

g is negative for 0 ≤ x ≤ 1/2. Moreover, the function φ(x) = x2(2ht − h2t ) is increasing for

0 ≤ x ≤ 1/2. Hence, for 0 ≤ x ≤ 1/2, we have

ln(1− x)− ln(1 + (ht − 1)x)− htx
x2(2ht − h2t )

=
g(x)

φ(x)
≥ g(1/2)

φ(1/2)
=
−4 ln(1 + ht)− 2ht

2ht − h2t
≥ −1,

where in the last inequality we used the fact that 0 ≤ ht ≤ 1.

Case −1/2 ≤ x < 0. Here, we lower bound f using a Taylor expansion:

f(x) = f(0) + xf ′(0) +
x2

2
f ′′(y),

where y is between 0 and x. Denoting a = ht − 1, we have

f(x) = −xht −
x2

2

(a+ 1)(2ay − a+ 1)

(y − 1)2(ay + 1)2
.

Now, consider the quadratic term in the above expression. Dividing and multiplying by 1− a ≥ 0,

we have
(1− a2)(2ay − a+ 1)

(1− a)(y − 1)2(ay + 1)2
.
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We are interested in keeping the term 1 − a2 and upper bounding the rest. Given that we are

considering the case −1/2 ≤ x < 0, we have −1/2 ≤ y < 0. So, we have

2ay − a+ 1 ≤ 1− a− y + ay = (1− a)(1− y) .

and

2ay − a+ 1

(1− a)(y − 1)2(ay + 1)2
≤ (1− a)(1− y)

(1− a)(y − 1)2(ay + 1)2
=

1

(1− y)(ay + 1)2
≤ 1 .

Hence, putting all together, we have

ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt〉) ≥ −ht〈gt,βt〉 − (1− a2)(〈gt,βt〉)2

≥ −ht〈gt,βt〉 − (1− a2)‖gt‖2‖βt‖2

= −〈g+
t ,βt〉 − (‖gt‖2 − ‖gt‖2(ht − 1)2)‖βt‖2

= −〈g+
t ,βt〉 − (‖gt‖2 − ‖g+

t − gt‖2)‖βt‖2 .

Now, we present the full proof of Theorem 1. Note that a part of the proof of Theorem 3 is

similar to the proof of Theorem 1.

Proof [Proof of Theorem 1] From the (2), we get

Wealtht = Wealtht−1−〈gt,wt −wt+1〉 − 〈g+
t ,wt+1〉 .

Using the fact that the algorithm predicts with wt = βtWealtht−1, we obtain

Wealtht = Wealtht−1
1− 〈gt,βt〉

1 + 〈g+
t − gt,βt+1〉

.

This implies that lnWealthT = ln ǫ+
∑T

t=1 ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt+1〉).

Using Lemma 11 and Lemma 6, we have

T
∑

t=1

(

ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt+1〉)

)

≥
T
∑

t=1

[

−〈g+
t ,βt〉 − (‖gt‖2 − ‖g+

t − gt‖2)‖βt‖2 − 2‖gt‖‖βt+1 − βt‖
]

≥
T
∑

t=1

[

− 〈g+
t ,βt〉 − (‖gt‖2 − ‖g+

t − gt‖2)‖βt‖2 −
6‖gt‖‖g+

t ‖
1 + 2

∑t
i=1 ‖gi‖‖g+

i ‖

]

≥ −3 ln
(

1 + 2

T
∑

t=1

‖gt‖‖g+
t ‖
)

−
T
∑

t=1

ft(βt) .
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Where ft is as defined in Corollary 9. Applying Corollary, and defining µt as in Lemma 10, we have

≥ −3/2− 7.25 ln

(

1 + 2
T
∑

t=1

‖gt‖‖g+
t ‖
)

−
T
∑

t=1

ft(β
⋆)

≥ −3/2− 7.25 ln

(

1 + 2
T
∑

t=1

‖gt‖‖g+
t ‖
)

−max











−
∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

4
,
−
∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

2
∑T

t=1 µt











= −3/2− 7.25 ln

(

1 + 2

T
∑

t=1

‖gt‖‖g+
t ‖
)

+min











∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

4
,

∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

2
∑T

t=1 µt











.

The last inequality is from Lemma 10. Next, we perform a case analysis to derive the upper bound

for RegretT .

If min

{

‖∑T
t=1

g+
t ‖

4 ,
‖∑T

t=1
g+
t ‖2

2
∑T

t=1
µt

}

=
‖∑T

t=1
g+
t ‖

4 , then

WealthT ≥
e−3/2

(

1 + 2
∑T

t=1 ‖gt‖‖g+
t ‖
)7.25 exp

∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

4
.

By Cutkosky and Orabona (2018, Lemma 18), we have

RegretT (u) ≤ 4‖u‖






ln

4‖u‖
(

1 + 2
∑T

t=1 ‖gt‖‖g+
t ‖
)7.25

e−3/2
− 1






.

If min

{

‖∑T
t=1

g+
t ‖

4 ,
‖∑T

t=1
g+
t ‖2

2
∑T

t=1
µt

}

=
‖∑T

t=1
g+
t ‖2

2
∑T

t=1
µt

, then

WealthT ≥
e−3/2

(

1 + 2
∑T

t=1 ‖gt‖‖g+
t ‖
)7.25 exp

∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

2
∑T

t=1 µt
.

By Orabona and Tommasi (2017, Lemma 1), we have

RegretT (u) ≤ −
e−3/2

(

1 + 2
∑T

t=1 ‖gt‖‖g+
t ‖
)7.25

+ ‖u‖

√

√

√

√

√

√

2
T
∑

t=1

(2‖gt‖‖g+
t ‖ − ‖g+

t ‖2) ln






1 +

(

∑T
t=1 µt

)

‖u‖2
(

1 + 2
∑T

t=1 ‖gt‖‖g+
t ‖
)14.5

e−3






.
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Finally, combining the two cases result gives the regret bound

RegretT (u) = O
(

max

{

‖u‖ ln
(

‖u‖
(

1 +

T
∑

t=1

‖gt‖‖g+
t ‖
))

,

‖u‖

√

√

√

√

T
∑

t=1

(2‖gt‖‖g+
t ‖ − ‖g+

t ‖2) · ln
(

1 + ‖u‖
T
∑

t=1

(2‖gt‖‖g+
t ‖ − ‖g+

t ‖2)
)









 .

Appendix B. Proof of Theorem 3

In this section, we present the proofs of Theorem 3 and the Lemmas required for its proof.

Lemma 13 shows that the regret of φt(βt) upper bounds the regret of ft(βt), and Lemma 12

gives the upper bound of the regret of running φt(βt). Thus we are able to obtain similar results

as in Corollary 9. Lemma 14 proves that Algorithm 2 guarantees ‖βt‖ ≤ 1/2 which removes the

projection step, and leads to the closed form updates.

Lemma 12 For t = 1, . . . , T , βt are outputs of running OGD with stepsizes: ηt =
1

1/η1+
∑t−1

i=1
µi

on the strongly convex losses φt(β) defined as following:

• If ‖βt‖ < 3
8 , φt(β) = ft(β),

• If 3
8 ≤ ‖βt‖ ≤ 1

2 , φt(β) = C‖g+
t ‖‖β‖2,

where βt ∈ B andB = {x : ‖x‖ ≤ 1
2}. φt(β) is µt strongly convex. β⋆

1 , argminβ∈B1

∑T
t=1 ft(β),

where B1 = {x : ‖x‖ ≤ 1
4}. Then, for C ≥ 3 we have

T
∑

t=1

(φt(βt)− φt(β⋆
1)) ≤ −

5C2

4
ln(1/η1 − 2) +

1

2η1
+

5C2

4
ln

(

1/η1 − 2 + 2
T
∑

t=1

‖gt‖‖g+
t ‖
)

.

Proof Applying Lemma 8, we have

T
∑

t=1

(φt(βt)− φt(β⋆
1)) ≤

‖β1 − β⋆
1‖2

2η1
+

T
∑

t=1

(

µt‖βt+1 − βt‖+
ηt ‖∇φt(βt)‖2

2

)

.

We now consider the two possible cases for ht.
If φt(β) = ft(β), then

‖∇φt(βt)‖ = ‖g+
t + 2βt(‖gt‖2 − ‖g+

t − gt‖2)‖ ≤ 3‖g+
t ‖ .

Hence, ‖∇φt(βt)‖2 ≤ 9‖g+
t ‖2 ≤ 9‖gt‖‖g+

t ‖. Moreover, µt = 2(‖gt‖2 − ‖g+
t − gt‖2) ≥

2‖gt‖‖g+
t ‖.

If φt(β) = C‖g+
t ‖‖βt‖2, then

‖∇φt(βt)‖ =
∥

∥2Cβt‖g+
t ‖
∥

∥ ≤ C‖g+
t ‖ .
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Hence, ‖∇φt(βt)‖2 = C2‖g+
t ‖2 ≤ C2‖gt‖‖g+

t ‖. Moreover, assuming C ≥ 1, we have µt =
2C‖g+

t ‖ ≥ 2‖gt‖‖g+
t ‖.

Consequently, with C ≥ 3, we have

T
∑

t=1

ηt ‖∇φt(βt)‖2
2

≤ 1

2

T
∑

t=1

C2‖gt‖‖g+
t ‖

1/η1 +
∑t−1

i=1 µi
≤ C2

4

T
∑

t=1

2‖gt‖‖g+
t ‖

1/η1 + 2
∑t−1

i=1 ‖gi‖‖g+
i ‖

.

Applying Lemma 15 and C ≥ 3, we thus obtain

T
∑

t=1

φt(βt)− φt(β⋆
1) ≤

1

2η1
+

(

max
(

C2, 3
)

+
C2

4

) T
∑

t=1

2‖gt‖‖g+
t ‖

1/η1 + 2
∑t−1

i=1 ‖gi‖‖g+
i ‖

≤ 1

2η1
+

(

max
(

C2, 3
)

+
C2

4

) T
∑

t=1

2‖gt‖‖g+
t ‖

1/η1 − 2 + 2
∑t

i=1 ‖gi‖‖g+
i ‖

≤ 1

2η1
+

(

max
(

C2, 3
)

+
C2

4

)

(

ln

(

1/η1 − 2 + 2
T
∑

t=1

‖gt‖‖g+
t ‖
)

− ln(1/η1 − 2)

)

=
5C2

4
ln

(

1/η1 − 2 + 2
T
∑

t=1

‖gt‖‖g+
t ‖
)

+
1

2η1
− 5C2

4
ln(1/η1 − 2) .

Lemma 13 Under conditions and notations of Lemma 12 and for any C ≥ 9, we have

ft(βt)− ft(β⋆
1) ≤ φt(βt)− φt(β⋆

1) .

Proof We consider the two cases for the losses ht.
When 3

8 ≤ ‖βt‖ ≤ 1
2 , we have φt(βt) = C‖g+

t ‖‖βt‖2. Hence, we have

φt(βt)− φt(β⋆
1) = C‖g+

t ‖
(

‖βt‖2 − ‖β⋆
1‖2
)

.

Moreover,

ft(βt)− ft(β⋆
1) = 〈g+

t ,βt − β⋆
1〉+ (2‖gt‖‖g+

t ‖ − ‖g+
t ‖2)‖βt‖2 − (2‖gt‖‖g+

t ‖ − ‖g+
t ‖2)‖β⋆

1‖2

≤ ‖g+
t ‖(‖βt‖+ ‖β⋆

1‖) + ‖g+
t ‖‖gt‖(2− ht)(‖βt‖2 − ‖β⋆

1‖2)
≤ ‖g+

t ‖(‖βt‖+ ‖β⋆
1‖) + ‖g+

t ‖(‖βt‖2 − ‖β⋆
1‖2) .

Hence, we have ft(βt)− ft(β⋆
1) ≤ φt(βt)− φt(β⋆

1) iff

‖βt‖+ ‖β⋆
1‖+ ‖βt‖2 − ‖β⋆

1‖2 ≤ C
(

‖βt‖2 − ‖β⋆
1‖2
)

,

that is

C ≥ ‖βt‖+ ‖β⋆
1‖+ ‖βt‖2 − ‖β⋆

1‖2
‖βt‖2 − ‖β⋆

1‖2
=

1

‖βt‖ − ‖β⋆
1‖

+ 1 .

Using the fact that 1
‖βt‖−‖β⋆

1‖
+ 1 ≤ 9, gives the stated value for C. When ‖βt‖ ≤ 3

8 , we have

φt(β) = ft(β) and ft(βt)− ft(β⋆
1) ≤ φt(βt)− φt(β⋆

1) is trivially true.
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Lemma 14 Under the assumptions of Theorem 3 and the notation of Algorithm 2, let 1/η1 ≥
max(2C, 16). Then, ‖βt‖ ≤ 1

2 for all t = 1, . . . , T .

Proof We prove this by induction: Base case: β0 = 0, ‖β0‖ ≤ 1
2 is trivially true.

Induction step: Suppose ‖βt‖ ≤ 1
2 , we prove ‖βt+1‖ ≤ 1

2 . We perform the following case analysis:

If 3
8 ≤ ‖βt‖ ≤ 1

2 ,

‖βt+1‖ =
∥

∥

∥

∥

∥

βt −
2Cβt‖g+

t ‖
1/η1 +

∑t−1
i=1 µi

∥

∥

∥

∥

∥

≤ ‖βt‖
(

1− 2C‖g+
t ‖

1/η1 +
∑t−1

i=1 µi

)

≤ ‖βt‖ ≤
1

2
.

If ‖βt‖ < 3
8

‖βt+1‖ =
∥

∥

∥

∥

∥

βt −
g+
t + 2βt(2‖gt‖‖g+

t ‖ − ‖g+
t ‖2)

1/η1 +
∑t−1

i=1 µi

∥

∥

∥

∥

∥

≤ ‖βt‖+
∥

∥

∥

∥

∥

g+
t + 2βt(2‖gt‖‖g+

t ‖ − ‖g+
t ‖2)

1/η1 +
∑t−1

i=1 µi

∥

∥

∥

∥

∥

≤ 3

8
+ 2η1 ≤

1

2
.

Lemma 15 Under the assumptions of Theorem 3 and the notation of Algorithm 2, we have, for any

C ≥ 1, we have

‖βt+1 − βt‖ ≤ max (C, 3)
‖g+

t ‖
1/η1 + 2

∑t−1
i=1 ‖gi‖‖g+

i ‖
.

and

µt‖βt+1 − βt‖ ≤ max
(

C2, 3
) 2‖gt‖‖g+

t ‖
1/η1 + 2

∑t−1
i=1 ‖gi‖‖g+

i ‖
.

Proof We consider the two cases for ht.

• If φt(β) = C‖g+
t ‖‖β‖2, we have µt = 2C‖g+

t ‖. Assuming C ≥ 1 we have 2C‖g+
t ‖ ≥

2‖gt‖‖g+
t ‖. Moreover, ‖∇φt(βt)‖ = 2C‖g+

t ‖‖βt‖ ≤ C‖g+
t ‖. So, we have

µt‖βt+1 − βt‖ ≤ 2C‖g+
t ‖

C‖g+
t ‖

1/η1 +
∑t−1

i=1 µi
≤ C2 2‖g+

t ‖‖gt‖
1/η1 + 2

∑t−1
i=1 ‖gi‖‖g+

i ‖
.

• If φt(β) = ft(β), we have

2‖gt‖ ≥ 2‖gt‖2 ≥ µt = 2(‖gt‖2 − ‖g+
t − gt‖2) = 2‖gt‖‖g+

t ‖(2− ht) ≥ 2‖gt‖‖g+
t ‖ .

Moreover, ‖∇φt(βt)‖ ≤ 3‖g+
t ‖. So, we obtain µt‖βt+1 − βt‖ ≤ 3

2‖g+
t ‖‖gt‖

1/η1+2
∑t−1

i=1
‖gi‖‖g

+

i ‖
.

Taking the maximum of the two cases, we obtain the stated upper bounds.

We can now present the proof of Theorem 3.
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Proof [Proof of Theorem 3] Using Lemma 11 in the first inequality, and Lemma 15 in the second

inequality, we have

T
∑

t=1

(

ln(1− 〈gt,βt〉)− ln(1 + 〈g+
t − gt,βt+1〉)

)

≥
T
∑

t=1

(

−〈g+
t ,βt〉 − (‖gt‖2 − ‖g+

t − gt‖2)‖βt‖2 − 2‖gt‖‖βt+1 − βt‖
)

≥
T
∑

t=1

(

−〈g+
t ,βt〉 − (‖gt‖2 − ‖g+

t − gt‖2)‖βt‖2 − C
2‖gt‖‖g+

t ‖
1/η1 − 2 + 2

∑t
i=1 ‖gi‖‖g+

i ‖

)

≥ −C ln

(

1/η1 − 2 + 2

T
∑

t=1

‖gt‖‖g+
t ‖
)

−
T
∑

t=1

ft(βt)

≥ − 1

2η1
+

5C2

4
ln(1/η1 − 2)−

(

5C2

4
+ C

)

ln

(

1/η1 − 2 + 2

T
∑

t=1

‖gt‖‖g+
t ‖
)

−
T
∑

t=1

ft(β
⋆
1)

≥ −
(

5C2

4
+ C

)

ln

(

1/η1 − 2 + 2

T
∑

t=1

‖gt‖‖g+
t ‖
)

−
T
∑

t=1

ft(β
⋆
1)

= −110.25 ln
(

16 + 2

T
∑

t=1

‖gt‖‖g+
t ‖
)

−
T
∑

t=1

ft(β
⋆
1) ,

The second to the last inequality is from Lemma 13 and Lemma 12. C = 9 gives rise to the last

inequality and the last equation. We now use Lemma 10 to obtain

−
T
∑

t=1

ft(β
⋆
1) ≥ −max











−
∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

8
,
−
∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

2
∑T

t=1 µt











= min











∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

8
,

∥

∥

∥

∑T
t=1 g

+
t

∥

∥

∥

2

2
∑T

t=1 µt











.

The rest proof is similar to the proof of Theorem 1. Finally, we obtain the same bound as in

Theorem 1, up to constants hidden in big O notation.
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Appendix C. Proof of Theorem 5

Proof In each coordinate, we perform the regret decomposition as following:

RegretT (u) =

T
∑

t=1

ℓt(wt)− ℓt(u) =
T
∑

t=1

ℓ̂t(wt)− ℓ̂t(wt+1) + ℓ̂t(wt+1)− ℓ̂t(u)

≤
T
∑

t=1

〈gt,wt −wt+1〉+ 〈g+
t ,wt+1 − u〉 =

T
∑

t=1

d
∑

i=1

gt,i(wt,i − wt+1,i) + g+t,i(wt+1,i − ui)

=

d
∑

i=1

T
∑

t=1

gt,i(wt,i − wt+1,i) + g+t,i(wt+1,i − ui)

=
d
∑

i=1

ui

(

−
T
∑

t=1

g+t,i

)

−
(

−
T
∑

t=1

(gt,i(wt,i − wt+1,i) + g+t,iwt+1,i)

)

,

where gt ∈ ∂ℓt(wt), gt ∈ ∂ℓ̂t(wt), g
+
t ∈ ∂ℓ̂t(wt+1).

Define WealthT,i = ǫ −
∑T

t=1(gt,i(wt,i − wt+1,i) + g+t,iwt+1,i). Suppose we obtain a bound

WealthT,i ≥ ψT

(

∑T
i=1 g

+
t,i

)

for some ψT . Using the definition of Fenchel conjugate, and the lower

bound on the wealth in each coordinate, we have

RegretT (u) ≤
d
∑

i=1

ui

(

−
T
∑

t=1

g+t,i

)

− (WealthT,i−ǫ) ≤
d
∑

i=1

ǫ+ ui

(

−
T
∑

t=1

g+t,i

)

− ψT

(

T
∑

i=1

g+t,i

)

≤
d
∑

i=1

ǫ+ sup
y
y · ui − ψT (y) =

d
∑

i=1

ǫ+ ψ∗
T (ui) .

In each coordinate, Algorithm 3 is a specific case of running Algorithm 2 with d = 1. Applying the

result in Theorem 3, we obtain the final bound.

Appendix D. List of Datasets

In our empirical evaluation, we used 3 regression datasets and 3 classification datasets from the

LIBSVM website (Chang and Lin, 2001) and OpenML (Vanschoren et al., 2013), randomly selected

among the ones with a large number of samples. For the OpenML datasets, categorical features are

one-hot-encoded. A short summary of the datasets is in Table 1.
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Table 1: Datasets in experiments.

DATASET TYPE NUMBER OF SAMPLES NUMBER OF FEATURES

CPU-ACT CLASSIFICATION 8192 21

2DPLANE CLASSIFICATION 40768 10

HOUSES CLASSIFICATION 20640 8

RAINFALL REGRESSION 16755 3

BANK32NH REGRESSION 8192 32

HOUSES-8L REGRESSION 22784 8
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