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Abstract— Autonomous Cyber-Physical Systems (CPS) fuse
proprioceptive sensors such as GPS and exteroceptive sensors
including Light Detection and Ranging (LiDAR) and cameras
for state estimation and environmental observation. It has been
shown that both types of sensors can be compromised by
malicious attacks, leading to unacceptable safety violations.
We study the problem of safety-critical control of a LiDAR-
based system under sensor faults and attacks. We propose
a framework consisting of fault tolerant estimation and fault
tolerant control. The former reconstructs a LiDAR scan with
state estimations, and excludes the possible faulty estimations
that are not aligned with LiDAR measurements. We also verify
the correctness of LiDAR scans by comparing them with the re-
constructed ones and removing the possibly compromised sector
in the scan. Fault tolerant control computes a control signal with
the remaining estimations at each time step. We prove that the
synthesized control input guarantees system safety using control
barrier certificates. We validate our proposed framework using
a UAV delivery system in an urban environment. We show that
our proposed approach guarantees safety for the UAV whereas
a baseline fails.

I. INTRODUCTION

Autonomous Cyber-Physical Systems (CPS) are expected
to satisfy safety property in different applications [1]. Safety
violations can lead to severe economic loss and catastrophic
damage to systems as well as human operators [1]. When
the system can perfectly observe its state and the surrounding
environment, safe control methodologies have been proposed
including control barrier function (CBF) [2], Hamilton-
Jacobi-Bellman-Isaacs (HJI) equation [3], and finite-state
abstraction [4] -based approaches.

In real-world applications, system states and the environ-
ment are measured by sensors. As the environment becomes
increasingly complex, modern CPS utilizes exteroceptive
sensors including Light Detection and Ranging (LiDAR) and
cameras to obtain richer perception of the operating space
[5]. Fusion among the exteroceptive sensors and propriocep-
tive sensors such as GPS and odometer allows CPS to better
understand the environment [6] and ensure safe operation.

Sensors have been shown to be vulnerable to faults and
malicious attacks, under which ensuring CPS safety becomes
more challenging. The navigation sensors can be spoofed by
an adversary to cause crashes of autonomous vehicles [7],
[8]. Reflections [9] and malicious attacks [10], [11] targeting
LiDAR sensors can create a compromised description of
the environment. These false sensor measurements bias the
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CPS state estimation and observations over the environment,
rendering CPS to make erroneous control decisions and incur
safety violations.

Modeling and detecting of sensor faults and attacks have
been extensively studied [12], [13]. Secure system state
estimation using measurements from proprioceptive sensors
has been investigated in [14], [15]. Closed-loop safety-
critical control under sensor faults and attacks has been
recently studied in [16], [17]. However, these approaches are
applicable to CPS using only proprioceptive sensors. When
exteroceptive sensors such as LiDAR are adopted by CPS,
the impact of attacks on the output of the nonlinear filters
used to process LiDAR measurements are not incorporated
into the aforementioned safety-critical control designs [16],
[17], rendering them less effective.

In this paper, we study the problem of safety-critical
control for a LiDAR-based system in the presence of sensor
faults and attacks. We propose a fault tolerant safe control
framework consisting of two components, namely fault tol-
erant estimation and fault tolerant control. Our proposed
framework leverages the fact that only a narrow sector
(normally within 8°) of LiDAR scans can be compromised
by an adversary. Using these insights, we select system
state estimations and sectors in LiDAR scans simultaneously
so that they are aligned, while removing untrusted state
estimates. We then use the selected state estimations and
LiDAR measurements to compute a control input with safety
guarantees. We make the following specific contributions:

o We propose a fault tolerant state estimation algorithm
that is resilient to attacks against proprioceptive sensors
and LiDAR measurements. Our approach reconstructs
a simulated scan based on a state estimate and an
precomputed map of the environment. We leverage this
reconstruction to remove false sensor inputs as well as
detect and remove spoofed LiDAR measurements.

e We propose a fault tolerant safe control design using
control barrier certificates. We present a sum-of-squares
program to compute a control barrier certificate, which
verifies a given safety constraint in the presence of
estimation errors due to noise and attacks. We prove
bounds on the probability that our synthesized control
input guarantees safety.

o We validate our proposed framework using a UAV de-
livery system equipped with multiple sensors including
a LiDAR. We show that the UAV successfully avoids
the obstacles when navigating in an urban environment
using our synthesized control law, while crashes into
the unsafe region using a baseline.



The remainder of this paper is organized as follows.
Section II presents the related work. Section III presents
the system model, threat model, and necessary background.
Section IV presents our proposed fault tolerant safe control
framework along with its safety guarantee. Section V gives
a numerical case study on a UAV delivery system. Section
VI concludes the paper.

II. RELATED WORK

Ensuring CPS safety has attracted extensive research at-
tention. Typical approaches include finite-state abstraction
[4], HIT equation [3], and counterexample-guided synthesis
[18]. Barrier function-based approaches, which formulate the
safety constraint as a linear inequality over the control input,
have been proposed to guarantee safety for CPS [2], [19]-
[21]. These approaches are applicable to CPS estimating
system state using proprioceptive sensors.

Safety-critical control for systems using exteroceptive sen-
sors such as cameras and LiDAR have been recently inves-
tigated in [22]-[25]. CBFs designed for high-dimensional
exteroceptive sensor measurements including measurement-
robust CBF [23], observation-based neural CBF [24], and
differentiable CBFs for learning systems [25] have been
proposed to compute controllers with safety guarantees.

False data injection (FDI) attacks have been reported
in different applications, including modern power systems
[13] and unmanned aerial vehicle (UAV) [26]. To this end,
modeling, mitigating, and detecting FDI [12]-[15] have
been studied. LiDAR sensors have been demonstrated to be
vulnerable to spoofing attacks in [11], [27]. The authors of
[10] designed attacks that are capable of injecting false points
at different locations in the point cloud. In [28], a stealthy
attack against a perception-based controller equipped with
an anomaly detector were proposed.

The existing literature on safe control in the presence of
FDI attacks mainly focuses on systems with proprioceptive
sensors. In [16], a barrier certificate based approach is
proposed to ensure safety and reachability under FDI attack.
A fault tolerant CBF is introduced in [17] to ensure joint
safety and reachability under attacks targeting propriocep-
tive sensors. In [29], the authors have demonstrated that
camera and LiDAR fusion is secure against naive attacks.
For systems under attacks targeting both proprioceptive and
exteroceptive sensors, how to synthesize a safety-critical
control has been less studied.

ITIT1. PROBLEM FORMULATION
In this section, we introduce the system and threat model.
We then formulate the problem and give needed background.
A. System Dynamics and Observation Model

Consider a discrete-time control-affine system given as:
zlk + 1] = f(z[k]) + g(@[k])u[k] + wlk] (D

where w[k] is a Gaussian process with mean zero and
autocorrelation function R, (k, k') = Qrd(k — k') with §
denoting the discrete-time delta function. We assume that

there is a nominal controller u = 7(z), for some function
m: X — R™ We let z[k] € X C R™ denote the system state
and u[k] € R™ denote a control signal at time k. Functions
f:R*" - R" and g : R® — R™*"™ are assumed to be
Lipschitz continuous.

System (1) uses a set of sensors I, := {1,...,m,} to
measure its states with observation y[k] € R* following the
dynamics described as:

ylk] = o(z[k]) + v[k], 2

where o : R™ — R? is the observation function and v[k] is
an independent Gaussian process with mean identically zero
and autocorrelation function R,[k, k| = Ripdé(k — k') and
Ry, is a positive definite matrix.

The system is equipped with a LIDAR sensor that observes
the environment by calculating the ranges and angles to
objects. A LiDAR sensor fires and collects ng laser beams
to construct a scan S := {(s},s?), 0 < i < ny}, where s!
denotes the range of the i-th scan, and s{ denotes the angle
of the i-th scan. We denote the Cartesian translated LiDAR
scan S measured at pose z as O(z,.S)

We assume a 2D point-cloud map M is known by the
system as prior knowledge. The map M := {(m¥,m?), 0 <
i <npq} is a collection of n g points with tuples of object
positions (m?, mY) in the world coordinate.

B. Threat Model

We assume that there exists an adversary that aims to
cause collisions or other unsafe behaviors. The adversary
has the capability to utilize any state-of-the-art spoofer for
different sensors to conduct false data injection to perturb the
observations. The injected false data can bias the system state
estimation and cause the system to make incorrect control
decisions. We denote the perturbed observations as

ylk] = o(x[k]) + v[k] + alk]. 3)

The adversary can also compromise the LiDAR sensor
by creating a near obstacle as demonstrated in [10]. The
adversary fires laser beams to inject several artificial points
into a LiDAR scan. We denote the compromised LiDAR scan
as S @ €', where & is a merge function introduced by [10].
However, due to the physical limitation of spoofer hardware,
the injected point can only be within a very narrow spoofing
angle, i.e. 8° horizontal angle.

We index the LiDAR sensor as the 0-th sensor and define
I ={0}JI,. We denote the set of sensors attacked by the
adversary as A C I. We assume that the system is uniformly
observable from the sensors in I'\.4. We assume that, at each
time k, the support of a[k] is contained in A.

C. Safety and Problem Formulation
We define the state space X' and a safety set C as
X={x:h(zx) >0}, C={xeX:hy(x)>0}

where h, hg : X — R. We say system (1) is safe with respect
to C if z[k] € C for all time k = 0,1,.... We assume that



the safe region C is pre-defined and known by the system,
and the initial state of the system is safe, i.e. xg € C.

Problem 1. Given a map M and a safety set C, we consider
a nonlinear LiDAR-based system with dynamics (1) that is
controlled by a nominal controller. The problem studied is to
find a scheme to ensure system safety with desired probability
(1 —€), where € € (0,1), when an adversary is present.

D. Preliminaries

In what follows, we give background on discrete-time
Extended Kalman Filter (EKF) and estimating pose from
LiDAR scans

1) DT-EKF: For the system with dynamics (1) and ob-
servation (2), the state estimate & is computed via EKF as:

&k + 1] = F(alK], ulk) + Ki(ylK] - o(@[k), @)

where F(x[k],ulk]) = f(z[k]) + g(x[k])u[k]. The Kalman
filter gain is

Ky = A P.CE(CyPCF + Ry) ™1, )

where A, = g—f(:ﬁ[k],u[k}) Cr = %(:i[k}) and Py is

defined by the Riccati difference equation:
Pis1 = AP AR + Qi — Kn(CuPuCf + Ri) K

The error bound of discrete-time EKF can be derived by
Theorem 3.2 in [30] if Assumption 1 holds.

Assumption 1. The system described by (1) and (2) satisfies
the conditions:

o Ay is nonsingular for every k > 0.

o There are positive real numbers a,c,p,p > 0 such that
the following bounds on various matrices are fulfilled
for every k >0 :

[All < a; |Gkl < & pI < P < pI;
ql < Qp; vl < Ry.

o Let ¢ and x be defined as

F(alk] ulk]) = F(2[k], ulk]) = Ax(z[k] — 2[K])
+ (k] 2[K], ulk])
o(z[k]) — o(&[k]) = Cr(x[k] — Z[k]) + x(x[k], 2[K])

Then there are positive real numbers €, €y, Ky, Ky > 0
such that the nonlinear functions ¢, x are bounded via
lo(z, 2, u)ll < Kglla =2, lIx(z,2)] < rylle -2
for x,2 € R™ with ||x — &|| < €, and ||z — &|| < €,
respectively.

If the conditions of Assumption 1 hold, the estimation
error (;, = xz[k] — Z[k] is exponentially bounded in mean
square and bounded with probability one, provided that the
initial estimation error satisfies (|| < ¢ [30].

2) Estimating Pose By Comparing Scans: Pose refers to
the position of the system in a Cartesian coordinate frame.
Pose estimations with LiDAR scans have been extensively
studied. NDT [31], as one of the widely-used approaches,
models the distribution of all reconstructed 2D-Points of one
laser scan by a collection of local normal distributions.

Consider two states x1,z5 € X and the LiDAR scans
O(z1,51) and O(z2,S2) collected at z; and x3, respec-
tively. The NDT method estimates the relative pose change
as 7 = O(z1,51) © O(x2,S52), where © is a scan match
operation. The scan match operation is implemented as
follows. The NDT method first subdivides the surrounding
space uniformly into cells with constant size. For each cell
in O(x1,51), the mean ¢ and the covariance matrix ¥ are
computed to model the points contained in the cell as the
normal distribution N (g, X). Denote the points in O(z3, S2)
as p;, © € ng, where p; is a position vector and ns is the
number of valid points. Define loss function £4(r) as

—((pi =) —a)"S;  ((pi — 1) — s
»CS(T) _ Zexp < ((pl ) q ) 227, ((p ) q ))
l (6)

Estimating r is to solve the minimization problem:
min —L(r) (7
T

with Newton’s algorithm. We use 7 to denote the solution to
(7) for the rest of the paper. The corresponding loss L(7)
can be computed with the output of scan match r by (6).

IV. FAULT TOLERANT SAFE CONTROL FRAMEWORK

In this section, we propose a framework for safe control
that is compatible with existing LiDAR-based autonomous
systems. We first give an overview and then describe each
component in detail.

A. Overview of Framework

We consider a system with dynamics (1) and observation
model (2) in the presence of an adversary, as described in
Section III. To guarantee the system safety under attacks, we
propose a fault tolerant framework to ensure safety at each
time step. The framework consists of two parts, namely fault
tolerant estimation and fault tolerant control.

The idea of fault tolerant estimation is to exclude com-
promised sensors in I, by utilizing additional information
contained in LiDAR sensor measurements. We maintain a
set of state estimations Z; using EKF, where ¢ € I; C 21p
and each element of ¢ € I; is a collection of sensors
in I, such that system (1) is uniformly observable from
the sensors in I;. As shown in Fig. 1, a fault tolerant
estimation reconstructs a LiDAR observation, denoted as
O(%;, M), for each state estimation &;. The reconstruction
is achieved by simulating the scan process on knowledge
map M with state estimate & being the center. We propose
a fault tolerant LiDAR estimation to compare the estimated
LiDAR scan O(&;, M) with the actual LIDAR measurement
O(x, S). The comparison then provides a pose estimation.
Using the pose estimation, our proposed fault tolerant state



estimation excludes the conflicting state estimations, i.e., the
state estimations that deviate from the LiDAR estimation.
We will detail fault tolerant estimation in Section IV-B and
IV-C.

After excluding the conflicting state estimations using fault
tolerant estimation, we then design fault tolerant safe control
to ensure safety of the system at each time step. Fault tolerant
safe control computes an input u, that does not deviate too
far from the nominal controller 7(&;) for all ¢ given by the
fault tolerant estimation. The safety of wu, is certified by a
discrete-time barrier certificate. We will present the details
of fault tolerant safe control in Section IV-D

Proprioceptive |States EKF | States Est £
sensors observation s J
Prior Knowledge

Env inf LiDAR Scan
Map .
Reconstruction

Actual LIDAR
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LiDAR S S
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Fig. 1: Fault tolerant estimation for LiDAR-based system
removes conflicting state estimations by comparing estima-
tions of proprioceptive sensors with additional information
from exteroceptive sensors measurements.

Fault Tolerant

Estimation

Estimated LIDAR
Observation

0(x,S)

FT-LiDAR
Estimation G,

In what follows, we describe the fault tolerant estimation
in two-fold, that is fault tolerant LiDAR estimation (Section
IV-B) and fault tolerant state estimation (Section IV-C).

Algorithm 1 LiDAR Scan Reconstruction

1: Input: State estimate Z;, point-cloud map M

2: Parameters: Resolution of the LiDAR scan c¢,, maxi-
mum LiDAR range 7,44-

3: Output: Estimated LiDAR Observation O(z;, M)

4: Init: Set &; as the center of scan Say, set [ < Tmaq.
Separate the scan equally into 26—” sectors Sy with cor-
responding angle [} '

5: Translate points m; € M into polar coordinate with the

origin #;, and represent it with a tuple (mj, mg).

6: for m; € M and k € [0,¢,] do
7: if m; € Sy, and m}f < I} then
8 I, <ol

9: end if

10: end for

11: for k s.t. I}, = rymqq do

12: I < NaN

13: end for

14: Reconstruct Syq = {(I}, 1)}

15: Return O(i’z,M) = O(jl, SM)

B. Fault Tolerant LiDAR Estimations

In the following, we introduce fault tolerant LiDAR
estimation. This procedure converts each state estimation

Z; given by EKFs to an estimated LiDAR observation
O(&;, M) using map M. The estimated LiDAR observation
is then compared with the actual LiDAR observation to
exclude possible faults in state estimations.

Fault tolerant LiDAR estimation is presented in Alg. 1.
Given parameters on the resolution of the LiDAR scan ¢, and
maximum LiDAR range 7., we initialize the estimated
scan Sy = {(I}, 1)} with a circle centered at ; and radius
as Tmaz- We equally divide the circle and assign sectors Sy
to the corresponding [}. Next, we represent the points in map
M using polar coordinates with the origin at ;. To simulate
the scan, we assign the closest point to the scan from line
6 to 10. We iterate through all points m; € M. For the
point in sector Sy, we replace [;; with m? if m? < [}. Then
we remove the points that have never been updated. Finally,
we output estimated observation O(Z;, M) = O(&;, Spm).
Intuitively, this estimated observation can be viewed as the
output of a LiDAR scan centered at state &; with object
locations given in the map M. Hence, any deviation of the
estimated and actual scans indicates either an error in the
state estimate or a spoofing attack on the scan.

Next, we consider the case where the adversary not only
injects false data into prorioceptive sensors but also spoofs
LiDAR sensors. The intuitive countermeasure is to remove
the region of the scan that is impacted by false data. Since
the adversary is only capable of modifying points in the scan
within a narrow spoofing angle, our approach is to partition
the scan and map into regions c¢; and attempt to identify
which region has been impacted by spoofing. That region is
then removed from the scan and the estimated scan. Since
the adversary tries to bias the state estimation, we model the
problem of choosing a set of observations to ignore in order
to mitigate the impact of false data as a minimax optimization

min max L (7) (8)
ey Cj
where 7 = O(2;, M\¢;) © O(z, S @ e} \¢;j). We search for

subdivision ¢; through the LiDAR observation space with
Alg. 2, which is detailed as follows.

Algorithm 2 FT-LiDAR Estimation

1: Input: State estimation £, number of sector n;, Map M
and LiDAR scan S

2: Output: r;,¢;

3: Init: Equally separate scan S into n; sectors ¢; € S
4: for c; € S do

5: Scan Reconstruction O;(z, M\c¢;)

6: Scan Reconstruction O;(z, S\c;)

7: Compute nJ the number of points in S\c;.
8. Compute 7; = O;(&, M\¢;) © O;(z,S\c;))
9:  Compute ¢/ =nJ — L4(r;)

10:  if ¢/ < (; then return 7, c;

11: end if

12: end for

The adversary compromises the LiIDAR scan S by merging
it with false data e/, denoted as S & e}. As shown in Alg. 2,



we take in state estimation Z;, number of sectors n;, map M,
and scan S to search for sector c; over scan S. The algorithm
outputs the corresponding estimated relative pose 7;. For
each sector ¢;, we estimate observations O(z;, M\¢;) with
Alg. 1 and reconstruct the corresponding LiDAR observation
O(z, S@e)\¢;). Next, we compute nJ, the number of points
contained in S\¢;, and perform scan match to obtain 7 by

7y = O, M\e)) © O, S @ ef\ey). (9

Then, we compute the loss function £4(7) and the perfor-
mance degradation ¢/ = nJ — L4(7). Finally, we output 7;
and ¢; for ¢J < Cs. In what follows, we compute the upper
bound ¢, of the degradation of the loss £, brought by noise
as the criteria of whether LiDAR sensor is affected by factors
other than noise.

We consider a point p; sampled in the LiDAR scan
collected at state x with a zero-mean disturbance w; whose
norm is bounded as ||w;| < w;.

Theorem 1. Consider a state x and its state estimation Z.
Let O(x,S) and O(%, M) be LiDAR scan and estimated
LiDAR observation. Let r = O(&;, M) © O(z, S) and 7 be
computed by (9) when adversary present. In the case where
the LiDAR sensor is not attacked, we have the performance
degradation (s is bounded by

Cs o= L) = Ls(r)

—TA ) L s
<y Z}Xp( 5 ) =: (s, (10)
where L7 (r) is the maximum of (6), ns is the number
of points contained in S, and N(X;') is the maximum
eigenvalue of E;l.

When the LiDAR sensor is attacked, if a subdivision
¢; 2 € can be found by Alg. 2, we have the performance
degradation of scan match is bounded as (10), where n is
the number of points contained in S\c; and the summation
is over all points in S\ ¢;.

Proof. We first show that L7**(r) = ng. Then we derive
a lower bound for L4(r). Since covariance X; is positive
definite, using (6) we have

Ly (r)
_ Zexp (‘((pi —r)—q)'S (i — 1) — qi))

2
< Zexp(O) = n.

Let p; be a point sampled in LiDAR scan. We have that
((pi —7) —q;) <= w; with w; being the realized disturbance
when sampling p;. Since |Jw;|| < @w; and Ei_l is Hermitian,
we then have

Z;eXp (—((pi —-r)— Qi)TQE;l((Pi —) —(Ji))

> zi:exp <U_’i2A2(Zi_l)> .

Hence, we have that (; is bounded as (10).

When the LiDAR sensor is spoofed, there always exists a
subdivision ¢; such that the false data e} satisfies e C ¢;. If
c; is successfully identified by Alg. 2, then the subdivision
c¢; along with the false data e/ are ignored. In this case,
our analysis for the scenario where the LiDAR sensor is
not attacked can be applied, yielding the bound in (10) with
ns being the number of points contained in S\ ¢;. If ¢;
containing ¢’ is not identified and is not ignored, then by
line 10 of Alg. 2, we have that C;Z < ES and thus the bound
in (10) follows. O

C. Fault Tolerant State Estimation

We next propose the criteria to develop an algorithm
for a fault tolerant state estimation that provides bounded
estimation error under false data attacks on the proprioceptive
sensors. Our approach computes a set of indices I, C I;
that are removed to ensure that the state estimation error is
bounded. A state estimate is not removed (i.e. i ¢ I,) if
either of the following criteria holds.

o Case I i ¢ I, for estimation indexed i € Ij, if ||r;]| <

9h and C; < Es-

o Case II: i ¢ I, for estimation indexed ¢ € Ij, if ||7;]| <

Oy and ! < (.

We consider LiDAR observation is trusted, if for all ¢ € I;
estimated LiDAR observation, the scan match degradation
Qﬁ < C_S. In Case I, we have the scan match degradation
¢! < (s, and the pose deviation ||r;|| < 6;,. We draw the
conclusion that &; agrees with the LiDAR observation, and
hence i € I\I,. When the LiDAR observation is not trusted,
we reconstruct estimated and actual LiDAR observation with
Alg. 2 to exclude section c;. In Case II, we have the
reconstructed scan match degradation ||7| < 6, and the
pose deviation within tolerance with (! < ¢*. We draw the
conclusion that ¢ € IT\I,.

In what follows, we show that sensor i € I\1, selected by
criteria is attack-free and we can further have the deviation of
FT-Estimation bounded by the EKF error bound of selected
Sensors.

Theorem 2. Given scan match results r;, 7; and fs, for
sensor i € I\1, given by criteria I and II, we have estimation
error bounded as ||x — Z;|| < (.

Proof. We prove by contradiction. We suppose that there
exists a sensor b € I\I,, whose estimation Z;, satisfies ||z —
#|| > (. We next show contradictions for Case I and II.
In Case 1, set 6, = min; ¢;. Since ¢* < (,, we have that
LiDAR scan matches with estimated scan with relative pose
change r = = — &y, If sensor b is included in I\I,, we have
llz — || < O < (b, which contradicts to ||z — 33| > (.
In Case II, set 6, = min; (;. Since (¥ < (,, we have that
LiDAR scan matches with estimated scan with relative pose
change 7 = x — &y, If sensor b is included in I\I,, we have
|z — || < O < (b, which contradicts to ||z — 33| > (.
Otherwise, sensor b will be excluded into set I, and hence
for any sensor i € I\I, we have the error bounded. O



D. Fault-Tolerant Safe Control

We next present the fault tolerant control synthesis to
ensure safety of the system. We set the state estimation
as &olk] = &;, for some i € I\I,. We define the control
input signal as u,[k] = m(&4[k]) + @[k]. In what follows,
we assume the nominal controller is of the form m(x) =
w9 + K.z, for some mg € R™ and matrix K.. Since we
have ||z[k] —#4[k]|| < {, by Theorem 2, the nominal control
input for the estimated state satisfies

|7 (@alk]) — m(@[K])]] = || Ke(@[k] — Za[kD]] < [Ke||Ca-

Hence, if we choose u,[k] such that ||@[k]||2 < € — || K¢||Ca
for some £ > 0, then we can guarantee that the chosen
control input is within a bounded distance of the nominal
control input corresponding to the true state value.

Proposition 1. Consider a discrete-time system described by
(1) and sets C,D C X. If there exist a function B : X —
RS‘, a constant ¢ > 0, a linear controller v = K.x, and a
constant v € [0,1) such that

B(z) <7, Ve el (11)
B(z) > 1, Vo €D (12)
E[B(f(x) + g(x)(K.x + i)

vz e XVl <€ (13)
) 2] < Bla)+ ull=¢
then for any initial state xo € C, we have the Pr(z[k] €
CO<k<Ty)>1—~—cTy

Proof. We have u, —u = K.x — K %o + 4. Since [|a]| <
§— K.y and || K.z — K 20| < K.(,. By triangle inequality,
we can have ||u,—u| < &. Since there exists a function B(z)
satisfying (11) to (13), B(x) is a control barrier certificate
for system (1). According to [32] and (12), we have

Pr{z[k] € D for some 0<k<T,|=x(0)=mx0}

< P{ sup B(zlk]) > 1|z(0) = Io}
0<k<T,
< B (wo) + Ty < v+ cly.
O

The system has continuous state space X and action space
U, we can follow the standard procedure to compute control
barrier certificate B(x) by solving an SOS programming. We
define h5, () = (€ — KoCa)? —||@/|3. The SOS programming
is given as follows:

Proposition 2. Suppose there exist a function B(x) and

polynomials \o(x), A1(x), A\z(x, 1) and Ay (x, @) such that
—B(x) = Xo(x)ho(x) + v is SOS  (14)
B(z) + M (2)ho(z) — 1 is SOS  (15)

—E[B(f(x) + g(z)(Kcx + @) + w) | x]+
B(z) — Mx)h(x) — Aoz, @)h%(0) + ¢ is SOS  (16)

then for any initial state o € C, we have the Pr(x[k] €
CO<k<Ty)>1—~—cTy

Proof. Since the entries B(x) and Mg(z) in —B(x) —
Ao(x)ho(z)+-y are SOS, we have 0 < B(x)+Ao(x)ho(z) <
~. Since the term A\g(x)ho(x) is nonnegative over C, (14) and
(15) implies (11) and (12) in Proposition 1. Since the terms
)\ﬂ($)h53(ﬁ) and A(z)h(x) are nonnegative over set X, we
have (13) holds, which implies that the function B(z) is a
control barrier certificate. O

The choice of & uses a similar approach as [16].

We propose Alg. 3 to compute feasible control inputs to
ensure safety at each time-step k. We initialize I, + () and
define Qiepnz, = {uo : (uo — i) (uo — u;) < €} At
each time-step k£ we maintain n; state estimations for sensors
in I; and compute control input u; := m(Z;) with nominal
controller. We compute u, by solving (17), where J is some
cost function. If no such u, exists, then we perform Alg.
2 and fault tolerant state estimation to exclude conflicting
sensors into I,,.

Algorithm 3 Fault Tolerant Control

1: Init: I, < 0 and Qep g, (uo — ui) T (U —
u;) < &}

2: Maintain n; EKFs for each sensor to estimate state

Ty, 1€l = {1,2,...,7”}.

Compute control input u; := 7(&;).

if control input u € (), p\;, §2; then
set t=0and u, =u+1u

else > STEP 1
Compute control input @ such that u, := u + @ is

the solution to the following problem.

= {u, :

A A

H&in J(Zi,uo) 5.t up € Nien\1, 5 17

8: if no such u, can be found then > STEP 2
: Perform FT-LiDAR Estimation (Alg. 2).

10: Exclude false sensors into [, by criteria I and II.
11 Compute 4 by solving (17).
12: if no such u, can be found then > STEP 3
13: for u ¢ (N;cp\ g, 4 do
14: Compute residue values y; — o(&;)
15: Include ¢ into I, with the largest residue.
16: end for
17: end if
18: end if
19: end if

Theorem 3. Given a safe set C and (,, if the following
conditions hold: (i) Assumption 1 holds, and (ii) scan match
results v and T can be found at each time step k, and
(iii) there exists a function B(x) satisfying the conditions
in Proposition 1, then we have Pr(x, € C, VO <k <T) >
1 —~ — T when the adversary is present.

Proof. Given condition (i), (i), and (s, by
#|| < ¢ for each sensor i € I\I,. In Alg. 3, u is computed
by a nominal controller and « is computed by solving (17).
By condition (iii) and Proposition 1, we have Pr(z[k] €
CO<k<Ty>1—~-—cTIy. ]
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Fig. 2: Comparison between the estimated LiDAR observations (blue lines) and actual LiDAR observations (pink lines).
Fig. 2a to 2b compares the estimated and actual LiDAR observations under attack Scenario I (INS1 compromised). The
estimate based on INS1 deviates from the actual scan, causing the compromised sensor INS1 to become untrusted. Fig. 2¢
to 2d compares the estimated and actual LiDAR observations under attack Scenario II (INS1 and LiDAR compromised).
Fig. 2a and Fig. 2c¢ estimate the LiDAR scan using the compromised measurements from INS1. Fig. 2b and Fig. 2d estimate
the LiDAR estimation using the measurements from INS2. The proposed approach removes the spoofed obstacle and aligns

with the non-compromised sensor INS2.

V. CASE STUDY

This section evaluates our proposed approach on a UAV
delivery system in an urban environment. The UAV system
is based on MATLAB UAV Package Delivery Example
[33]. The UAV adopts stability, velocity and altitude control
modules, rendering its position control dynamics to be:

[JL‘]l N 1 —4.29 x 107° [Ih
[z]of, ., |-147x107° 1 [z]2]
0.0019  —1.93x 10757 [[ux "
—2.91 x 1074 0.0028 [ula],’ (18)
where z[k] = [[z]1,[z]2]T is the UAV position, [z]; and

[]2 represent the position of UAV on X-axis and Y -axis,
respectively. The UAV has one LiDAR sensor and two
inertial navigation system (INS) sensors, denoted as INSI
and INS2. The UAV maintains two EKFs associated with
each INS sensor to estimate its position at each time k,
denoted as #1[k] and Z3[k], respectively.

The system operates in the presence of an adversary who
can compromise one of the INS sensors and spoof the LIDAR
sensor [10]. We compare our proposed approach with a
baseline utilizing a PID controller with state estimations
given by INSI.

We first demonstrate how our proposed approach selects
sensors via Alg. 1 and Alg. 2 to obtain an accurate state
estimation. We consider two attack scenarios. In Scenario I,
the adversary compromises INS1 to deviate the measurement
by —20 meters along the X-axis. In Scenario II, the adver-
sary spoofs both the LiDAR sensor and INS1. The adversary
biases INS1 sensor by —20 meters on X -axis and generates a
random obstacle in the LiDAR scan within range of [10, 15]
meters and angle of [—70, —60] degrees.

We present the estimated and actual LiDAR observations
under Scenario I in Fig. 2a-2b. In Fig. 2a, we note that the
estimated LiDAR observations O(i1, M) generated using
state estimation Z; from INSI significantly deviates from
the actual LiDAR observations (the scan in pink color).

Comparison of UAV Trajectories Under Attack
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Fig. 3: Comparison of trajectories of the UAV when con-
trolled using our proposed approach and the baseline.

The estimated LiDAR observations O(&5, M) align with the
actual one as shown in Fig. 2b, which satisfies the criteria
given in Section IV-C. Therefore, we treat INS2 as a trusted
sensor while ignoring the measurements from INS1 when
computing control input to the UAV.

We next compare the estimated and actual LiDAR obser-
vations under Scenario II in Fig. 2c-2d. The adversary ma-
nipulates the LIDAR observations by injecting a set of false
points around position (5.5, —11.6). In Fig. 2¢c, we observe a
significant drift between the estimated LiDAR observations
O(&1, M) and actual LiDAR observations O(z, S). In Fig.
2b, the obstacle points contained in sector c¢ generated by
the LiDAR spoofing attack are eliminated by Alg. 2, and
thus the estimated LiDAR observations O(Z2, M\c) aligns
with the LiDAR observations O(x, S\c). In this case, our
proposed fault tolerant estimation indicates that INS1 should
be ignored and INS2 can be trusted.

We finally present the trajectories of the UAV when
using our proposed fault tolerant control (Alg. 3) and using
the baseline. We present the trajectory generated using our
proposed approach in Fig. 3 as the solid blue line, and the
trajectory generated via the baseline using the dashed pink



line. We observe that our proposed approach ensures the
UAV to successfully avoid all obstacles (the solid black lines)
and the unsafe region (the region in red color), whereas the
baseline controller leads to safety violation.

VI. CONCLUSION

In this paper, we studied the problem of safety-critical
control for a LiDAR-based system in the presence of sensor
faults and attacks. We considered the class of systems that
is equipped with a set of sensors for state measurements
and environment observations. We proposed a fault tolerant
safe control framework for such systems to estimate their
states and synthesize a control signal with safety guarantee.
To obtain an accurate state estimate, we maintain a set of
extended Kalman filters computed from different subsets
of sensor measurements. For each estimate, we construct a
simulated LiDAR scan based on the state estimate and an a
priori known map of the environment, and exclude the state
estimates that conflict with LIDAR measurements. When the
LiDAR scan deviates from all of the state estimates, we
remove the sector of the scan with the largest deviation. We
proposed a control policy that selects a control input based
on the fault tolerant estimate, and proved that the policy
guarantees safety with a bounded probability using a control
barrier certificate. We validated our proposed method with
simulation studies on a UAV delivery system in an urban
environment. We showed that our proposed approach ensures
the UAV to be safe whereas a baseline controller causes it
to reach an unsafe region.
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