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Abstract— We study the problem of synthesizing a controller
to satisfy a complex task in the presence of sensor faults
and attacks. We model the task using Gaussian distribution
temporal logic (GDTL), and propose a solution approach that
does not rely on computing any finite abstraction to model the
system. We decompose the GDTL specification into a sequence
of reach-avoid sub-tasks. We develop a class of fault-tolerant
finite time convergence control barrier functions (CBFs) to
guarantee that a dynamical system reaches a set within finite
time almost surely in the presence of malicious attacks. We use
the fault-tolerant finite time convergence CBFs to guarantee the
satisfaction of ‘reach’ property. We ensure ‘avoid’ part in each
sub-task using fault-tolerant zeroing CBFs. These fault-tolerant
CBFs formulate a set of linear constraints on the control input
for each sub-task. We prove that if the error incurred by
system state estimation is bounded by a certain threshold,
then our synthesized controller fulfills each reach-avoid sub-
task almost surely for any possible sensor fault and attack,
and thus the GDTL specification is satisfied with probability
one. We demonstrate our proposed approach using a numerical
study on the coordination of two wheeled mobile robots.

I. INTRODUCTION

Cyber-physical systems (CPS) in applications including
autonomous vehicles, industrial control systems, and robotics
must complete increasingly complex tasks. Temporal log-
ics [1] such as linear temporal logic (LTL) are used to
specify tasks because of their concreteness, rigor, and rich
expressiveness. To model the process and observation noises
that are commonly incurred by CPS, Gaussian distribution
temporal logic (GDTL) has been proposed to specify CPS
properties involving the uncertainties in the system state [2],
[3]. Controller design for CPS under different temporal logic
constraints has attracted extensive research attention [2]–[5].
There have been two types of methodologies for temporal
logic based control synthesis, namely abstraction-based and
abstraction-free approaches.

The abstraction-based approaches [2]–[8] lift the CPS
model from continuous domain to discrete domain by com-
puting a finite abstraction, e.g., finite transition systems [6]
and Markov decision processes (MDPs) [7], [8]. A controller
is synthesized by applying model checking algorithms on
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the finite abstraction. In general, the abstraction-based ap-
proaches are computationally demanding and suffer from
the curse of dimensionality. To mitigate the computation re-
quired by the abstraction-based approaches, abstraction-free
approaches have been proposed [9]–[15]. These approaches
eliminate the step of constructing the finite abstractions, and
directly compute the controller in the continuous state space.

The previously introduced abstraction-based [2]–[8] and
abstraction-free approaches [9]–[15] assume that there exist
no faults or malicious attacks targeting the system sensors.
However, CPS have been shown to be vulnerable to sensor
faults and malicious attacks [16]–[19], making temporal logic
based control synthesis more challenging. Sensor faults and
malicious attacks can arbitrarily manipulate the sensor mea-
surements. Inaccurate measurements prevent the CPS from
correctly evaluating and tracking the satisfaction of temporal
logic specifications. Moreover, the faulty or compromised
measurements can bias the state estimate and lead to erro-
neous controller actions, which deviate the system trajectory
and violate the temporal logic specification. Although there
has been research attention on fault and attack detection [17],
[19], [20] and low-level control design under sensor attacks
[21], abstraction-free temporal logic based control synthesis
under sensor faults and attacks has not been studied.

In this paper, we study the problem of synthesizing a
controller for a nonlinear control-affine system to satisfy
a GDTL specification in the presence of process and ob-
servation noises as well as malicious attacks on sensor
measurements. We assume that the adversary has finitely
many choices of the sensors to attack. The system estimates
the state by employing a set of Extended Kalman Filters
(EKFs) associated with each possible set of sensors attacked
by the adversary. If there exists a control input that satisfies
the GDTL specification for all of the state estimates, then
the GDTL formula can be satisfied regardless of the attack.
When such control input does not exist, it indicates that the
state estimates given by some EKFs conflict with the others.
We view two EKFs as conflicting if the divergence between
their state estimates exceeds a certain threshold. We then
compute a baseline state estimate without using any sensor
corresponding to the conflicting EKFs. We compare this
baseline with those from the conflicting EKFs, and treat the
one that diverges from the baseline as being compromised.
We make the following specific contributions:

• We decompose the GDTL specification into a sequence
of reach-avoid sub-tasks with the system state uncer-
tainties being explicitly encoded.

• We synthesize the controller for each decomposed



problem by deriving a set of sufficient conditions. We
guarantee the ‘reach’ and ‘avoid’ properties in each sub-
task by developing a class of fault-tolerant finite time
convergence control barrier functions and applying the
fault-tolerant zeroing control barrier functions.

• We prove that if the errors incurred by the EKFs are
bounded by some thresholds, then each decomposed
reach-avoid sub-task is satisfied with probability one
using our proposed approach, and thus the GDTL
specification is satisfied almost surely.

• We evaluate our proposed approach using a numerical
case study on two wheeled mobile robots. We show
that our proposed approach satisfies the given GDTL
specification, while a baseline fails.

The rest of this paper is organized as follows. Section
II reviews related work. Section III presents the system
model and reviews necessary background on finite time
stability in probability, EKF, and GDTL. Section IV presents
our proposed solution approach. A numerical case study is
presented in Section V. Section VI concludes the paper.

II. RELATED WORK

Abstraction-based approaches have been proposed for con-
trol synthesis of CPS in the absence of observation noise and
sensor attacks under LTL constraints [4], [6]–[8]. When CPS
are subject to observation noises, GDTL has been proposed
to model the uncertainties [2], [3].

When CPS operate under malicious attacks targeting the
system actuators, abstraction-based approaches for control
synthesis under LTL constraints have been studied in [22],
[23], where the CPS are abstracted as finite stochastic games.
For CPS under partially observable environments, partially
observable stochastic game is used as the finite abstraction
for control synthesis [24]. These works [22]–[24] and the
present paper focus on different scopes of attacks. In [22]–
[24], sensor faults or attacks are not considered, and thus
the system state is known by the CPS. This paper focuses on
sensor faults and attacks. In addition, our proposed approach
does not compute a finite abstraction for the CPS, and thus
belongs to the class of abstraction-free approaches.

Abstraction-free approaches eliminate the step for comput-
ing the finite abstractions to improve the scalability. In [25],
the LTL specification is encoded as a set of mixed integer
linear constraints. In [10], the authors solve a sequence
of stochastic reachability problems via nonlinear PDEs to
satisfy a co-safe LTL specification. Alternatively, a mixed
continuous-discrete HJB-based formulation is proposed in
[11]. In general, solving PDEs and HJB equations are
computationally expensive.

In [12], [13], [15], the authors adopt control barrier
functions (CBFs), which are originally proposed for safety-
critical control synthesis [26], [27], to compute control
policies that satisfy LTL specifications for deterministic CPS.
In parallel, (control) barrier certificate based verification and
synthesis for temporal logic properties have been investigated
in [28], [29]. An abstraction-free safe learning scheme is
proposed in [30] for systems under adversarial actuator

attacks. Our paper differs from these barrier function based
works in two aspects. First, we consider the presence of
sensor faults and attacks. Second, we develop a class of fault-
tolerant finite time convergence CBF, in combined with the
recent advancement in fault-tolerant zeroing CBF, to address
the presence of noises, faults, and attacks.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first present the system model. We then
give some background on GDTL and EKF. We finally present
the problem formulation.

A. System Model

In this subsection, we first give the notations that we will
use throughout this paper. We next present the system model.

Notations. We use Rn to denote the n-dimensional Eu-
clidean space. Given a vector a ∈ Rn, we use supp(a) and
[a]i to denote its support and i-th entry, respectively. For any
matrix A, we denote its trace as tr(A). The set of positive
semi-definite matrices of dimension n× n is represented as
Sn×n. We denote the set of non-negative real numbers as
R≥0. A function α : R≥0 → R≥0 belongs to class K if it
is continuous, strictly increasing, and α(0) = 0. A class K
function belongs to class K∞ if α(x) → ∞ when x → ∞.
We use P(·) to represent the probability of an event.

Consider a nonlinear dynamical system defined as

dxt = (f(xt) + g(xt)ut) dt+ σt dWt, (1)

where xt ∈ Rn is the system state, ut ∈ Rp is the control
input at time t, σt ∈ Rn×n, and Wt is an n-dimensional
Brownian motion. Functions f : Rn → Rn and g : Rn →
Rn×p are locally Lipschitz continuous.

We denote the system output at time t as yt ∈ Rq . The
output yt follows an observation process [31] given as:

dyt = (cxt + at) dt+ νt dVt, (2)

where c ∈ Rq×n, νt ∈ Rq×q , and Vt is a q-dimensional
Brownian motion. We assume that the system operates in the
presence of a malicious adversary. The adversary can inject a
signal at ∈ Rq to manipulate the output yt with supp(at) ⊆
{1, . . . , q}. We assume that once the adversary determines
the set of sensors to attack, it cannot adjust the support of
the attack signal, i.e., the adversary cannot change its target
after the attack starts. We assume that there are finitely many
choices for the support of at, denoted as F = {r1, . . . , rm},
which is also known to the system. In the remainder of this
paper, we refer to ri as a fault pattern. However, the choice
supp(at) made by the adversary is not known to the system.

B. Finite Time Stability in Probability of Stochastic Nonlin-
ear Systems

In this subsection, we introduce background on finite
time stability of stochastic nonlinear systems. Consider a
stochastic nonlinear system with complete state information
given by Eqn. (1). We then give the definition of finite time
stability in probability.



Definition 1 (Finite Time Stability in Probability [32]). The
solution of system (1), denoted as x(t;x0), is said to be
finite time stable in probability if system (1) admits a unique
solution for any initial state x0 ∈ Rn and the following
conditions hold:

1) Finite time attractiveness in probability: For every ini-
tial state x0 ̸= 0, the stochastic settling time τx0

=
inf{t : x(t;x0) = 0} is finite almost surely, i.e.,
P(τx0 <∞) = 1.

2) Stability in probability: For every pair of ϵ ∈ (0, 1)
and χ > 0, there exists some constant v such that

P(|x(t;x0)| < χ, ∀t ≥ 0) ≥ 1− ϵ, (3)

for any |x0| < v.

Let V be a twice continuously differentiable function.
Finite time stability in probability is then certified by the
following stochastic Lyapunov theorem.

Theorem 1 (Stochastic Lyapunov Theorem [32]). Assume
system (1) admits a unique solution. If there exists a twice
continuously differentiable function V : Rn → R≥0, class
K∞ functions α1 and α2, positive constants γ > 0, and
ρ ∈ (0, 1) such that

α1(|x|) ≤ V (x) ≤ α2(|x|), (4a)
∂V

∂x
(x)(f(x) + g(x)u) +

1

2
tr

(
σ⊤ ∂

2V (x)

∂x2
σ

)
+ γ · V (x)ρ ≤ 0 (4b)

then the solution of system (1) is finite time stable in
probability.

C. Extended Kalman Filter

The system given in Eqn. (1) and (2) employs a set of
EKFs [33] to estimate the system state. Each EKF corre-
sponds to a potential fault pattern ri ∈ F . We briefly review
the background on EKF in the following.

We denote the state estimate at time t as x̂t,i when fault
pattern ri is chosen by the adversary. Then the dynamics of
x̂t,i can be represented as

x̂t,i = (f(x̂t,i) + g(x̂t,i)ut)dt+Kt,i(dyt,i − cix̂t,idt), (5)

where Kt,i = Pt,ic
⊤
i R

−1
t,i , Rt,i = νt,iν

⊤
t,i, and ci as well as

yt,i are obtained from matrix c and vector yt by removing
the corresponding rows indexed by ri. Matrix νt,i is obtained
from νt by removing the rows and columns indexed by ri.
The covariance of xt,i, denoted as Pt,i, is the solution to

dPt,i

dt
= At,iPt,i + Pt,iA

⊤
t,i +Qt − Pt,ic

⊤
i R

−1
t,i cPt,i, (6)

where Qt = σtσ
⊤
t and At,i =

∂f̄
∂x (x̂t, u) with f̄(x̂t,i, u) =

f(x̂t,i)+ g(x̂t,i)u. A belief state bt,i ∈ Rn×Sn×n ≜ B cor-
responding to fault pattern ri is defined as bt,i = (x̂t,i, Pt,i).
The evolution of the belief state is described by Eqn. (5) and
(6). We make the following assumptions on Eqn. (1) and (2).

Assumption 1. SDEs in Eqn. (1) and (2) satisfy the follow-
ing conditions for all fault patterns ri:

1) The pair [∂f̄∂x (x̂t,i, u), c] is uniformly detectable;
2) There exist constants β1 and β2 such that Qt ≥ β1I

and Rt,i ≥ β2I for all t;
3) Let

∆(xt, x̂t,i, u) = f̄(xt, u)−f̄(x̂t,i, u)−
f̄

∂x
(xt−x̂t,i, u).

Then there exist real numbers k∆ and ϵ∆ such that
∥∆(xt, x̂t,i, u)∥ ≤ k∆∥xt − x̂t,i∥22 for all xt and x̂t,i
satisfying ∥xt − x̂t,i∥2 ≤ ϵ∆.

Given Assumption 1, we have the following result.

Lemma 1 ( [33]). Suppose the conditions of Assumption 1
hold. If there exists ε > 0 such that if Qt ≤ εI and Rt,i ≤ εI ,
then for any ζ > 0, there exists γ > 0 such that

P
(
sup
t≥0
∥xt − x̂t,i∥2 ≤ γ

)
≥ 1− ζ. (7)

when the fault pattern is ri.

D. Gaussian Distribution Temporal Logic and Problem For-
mulation

In this subsection, we introduce GDTL [2], [3], which will
be used to model the task that needs to be satisfied by system
(1)-(2). We then formulate the problem studied in this paper.

The syntax of GDTL is defined as follows:

φ = True|l ≤ 0|¬φ|φ1 ∧ φ2|φ1Uφ2, (8)

where l : B→ R, and l ≤ 0 is a predicate.
Let b = b0b1 . . . be an infinite sequence of belief states

with each bi ∈ B. We denote the suffix btbt+1 . . . of b as
bt. Then a GDTL formula is interpreted as follows:

• bt |= True
• bt |= l ≤ 0 iff l(bt) ≤ 0
• bt |= ¬φ iff ¬(bt |= φ)
• bt |= φ1 ∧ φ2 iff (bt |= φ1) ∧ (bt |= φ2)
• bt |= φ1Uφ2 iff ∃t′ ≥ t s.t. (bt′ |= φ2) ∧ (bt′′ |= φ1)

for all t′′ < t′

Let Bl = {b : l(b) ≤ 0} be the set of belief states such
that predicate l is true and Lφ be the set of predicates that
appear in a GDTL formula φ. We present the following
proposition [3] so as to construct an equivalent deterministic
Rabin automaton (DRA) representing GDTL formula φ.

Proposition 1 ( [3]). Let φ be a GDTL formula. Let Π̃
be an additional finite set of atomic propositions such that
|Lφ| = |Π̃|. Let e : Lφ → Π̃ be a bijective map. Then GDTL
formula φ is equivalent to an LTL formula φ̃ defined over
atomic proposition set Π ∪ Π̃, with each predicate l in Lφ

being replaced by e(l) ∈ Π̃.

Leveraging Proposition 1, we can represent a GDTL
formula using an equivalent DRA defined as follows:

Definition 2 (Deterministic Rabin Automaton (DRA) [1]).
A Deterministic Rabin Automaton (DRA) is a tuple A =
(Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is
the finite set of alphabet, δ : Q × Σ → Q is a finite



set of transitions, q0 ∈ Q is the initial state, and F =
{(B(1), C(1)), . . . , (B(S), C(S))} is a finite set of Rabin
pairs such that B(s), C(s) ⊆ Q for all s = 1, . . . , S with S
being a positive integer.

We consider that the system given by Eqn. (1) and (2)
needs to satisfy a GDTL specification φ. We define a labeling
function L : B → 2Π̃, where Π̃ is the set of atomic
propositions generated by Proposition 1. For any π ∈ Π̃,
we define JπK as JπK = {b : π ∈ L(b)}. Consider Z ∈ 2Π̃.
We define JZK as

JZK =

{
B \ ∪π∈Π̃JπK if Z = ∅
∩π∈ZJπK \ ∪π∈Π\ZJπK otherwise

(9)

We let b be a trajectory of belief state of infinite length.
We now define the trace of b to establish the connection
between the satisfaction of φ to trajectory b.

Definition 3 (Trace of Trajectory [34]). An infinite sequence
Trace(b) = Z0, Z1, . . . , Zi, . . ., where Zi ∈ 2Π̃ for all i =
0, 1, . . . is a trace of a trajectory b if there exists a sequence
t0, t1, . . . , ti, . . . of time instants such that

1) t0 = 0
2) ti →∞ as i→∞
3) ti < ti+1

4) x̂ti ∈ JZiK
5) if Zi ̸= Zi+1, then there exists some t′i ∈ [ti, ti+1] such

that x̂t ∈ JZiK for all t ∈ (ti, t
′
i), x̂t ∈ JZi+1K for all

t ∈ (t′i, ti+1), and either x̂t′i ∈ JZiK or x̂t′i ∈ JZi+1K.

Using the trace of system trajectory, we have that GDTL
specification φ is satisfied if Trace(b) |= φ. The problem
investigated in this paper is then formulated as follows:

Problem 1. Given a parameter ϵ ∈ (0, 1), compute a control
policy µ : {yt′ : t′ ∈ [0, t)} → Rp for the system at each time
t mapping from the sequence of outputs {yt′ : t′ ∈ [0, t)}
to a control input ut, so that the probability of satisfying φ,
denoted as P(φ), satisfies P(φ) ≥ 1− ϵ for any fault r ∈ F
when fault r occurs.

IV. SOLUTION APPROACH

In this section, we present the proposed solution approach.
We first derive a fault-tolerant stochastic finite time conver-
gence CBF. We then decompose the GDTL formula into a
sequence of sub-formulae using the DRA representing φ.
We show that the satisfaction probability of GDTL formula
φ can be expressed using that of each sub-formula. We
then synthesize a control policy that enables the system to
satisfy each sub-formula with certain probability guarantee
using fault-tolerant stochastic finite time convergence CBF
and fault-tolerant stochastic zeroing CBF. We finally derive
the satisfaction probability guarantee for each sub-formula.

A. Fault-Tolerant Stochastic Finite Time Convergence CBF

This subsection derives fault-tolerant stochastic finite time
convergence CBF. We first define stochastic finite time
convergence CBF under complete information in the absence

of an adversary. Then we extend it to the incomplete informa-
tion setting. We finally propose the fault-tolerant stochastic
finite time convergence CBF to address the presence of the
adversary.

Definition 4 (Stochastic Finite Time Convergence CBF un-
der Complete Information). Consider the dynamical system
given in Eqn. (1) whose solution is denoted as x(t;x0).
Consider a set C = {x : h(x) ≥ 0} where h : Rn → R
is a twice continuously differentiable function. We say h is
a stochastic finite time convergence CBF if the following
conditions hold:

1) There exist class K∞ functions α1 and α2 such that

α1(h(x)) ≤ h(x) ≤ α2(h(x)) (10)

for all x.
2) There exist control input u such that

∂h

∂x
(x)(f(x) + g(x)u) +

1

2
tr

(
σ⊤ ∂

2h(x)

∂x2
σ

)
+ sgn(h(x))|h(x)| ≥ 0. (11)

Stochastic finite time convergence CBF provides the finite
time stability in probability guarantee as given by Definition
1. We formally state this result as follows:

Lemma 2. Let C = {x : h(x) ≥ 0}. Suppose the system
admits a stochastic finite time convergence CBF h(x). Let
T = inf{t : x(t;x0) ∈ C}. Then P(T < ∞) = 1, i.e., the
system reaches C within finite time almost surely. Moreover,
the system remains in C for all t′ ≥ T almost surely.

Proof. We define a function V (h(x)) as V (h(x)) = h(x)2.
Using the definition of V , we have that

∂V

∂x
(x)(f(x) + g(x)u) +

1

2
tr

(
σ⊤ ∂

2V (x)

∂x2
σ

)
=2h(x)

[
∂h

∂x
(x)(f(x) + g(x)u) +

1

2
tr

(
σ⊤ ∂

2h(x)

∂x2
σ

)]
If Eqn. (11) holds and x /∈ C, we have that

∂V

∂x
(x)(f(x) + g(x)u) +

1

2
tr

(
σ⊤ ∂

2V (x)

∂x2
σ

)
≤ 2h(x)|V (x)| 12 ≤ 0.

Note that h(x) < 0 when x /∈ C. By Theorem 1, we have
that P(T < ∞) = 1, where T = inf{t : h(x(t;x0)) = 0}
is the stochastic settling time. Hence the system reaches C
almost surely when x0 /∈ C. When x0 ∈ C, the lemma holds
since T = 0.

When Eqn. (11) holds, we have that xt ∈ C for t ≥ T and

∂h

∂x
(x)(f(x) + g(x)u) +

1

2
tr

(
σ⊤ ∂

2h(x)

∂x2
σ

)
≥ −h(x).

By [35, Thm. 3], we have that P(xt ∈ C, ∀t ≥ T ) = 1.

In the following, we extend Definition 4 and Lemma 2 to
the incomplete information setting where the system state is
estimated via an EKF. Define

h̄ε = sup{h(x) : ∥x− x′∥2 ≤ ε for some x′ ∈ h−1({0})}



as the supremum of h(x) for all x belonging to the ε-
neighborhood of the boundary of C. We then present the
following preliminary result [35].

Lemma 3 ( [35]). If ∥xt−x̂t∥2 ≤ ε for all t and h(x̂t) > h̄ε
for all t, then xt ∈ C for all t.

We define ĥ(x) = h(x) − h̄ε. Provided Lemma 3, we
are now ready to develop stochastic finite time convergence
CBF under incomplete information setting for the system
described by (1) and (2) employing EKF for state estimation,
assuming that at = 0 for all t ≥ 0.

Theorem 2. Let T = inf{t : x(t;x0) ∈ C}. Suppose there
exists a twice continuously differentiable function h : Rn →
R, control input u, and class K functions α1, α2 such that

α1(ĥ(x)) ≤ h(x) ≤ α2(ĥ(x)) (12a)
∂h

∂x
(x̂)(f(x̂) + g(x̂)u)− ε∥∂h

∂x
Kc∥2

+
1

2
tr

(
σ⊤
t K

⊤ ∂
2h

∂x2
Kσ

)
+ sgn(ĥ(x̂))|ĥ(x̂)| ≥ 0 (12b)

then P(T < ∞|∥xt − x̂t∥2 ≤ ε, ∀t) = 1, i.e., the system
reaches C within finite time almost surely.

Proof. Since we use EKF for state estimation, we have that
the state estimate and covariance follow Eqn. (5) and (6).
Given the output dynamics of yt, we have that

dx̂t = (f(x̂t) + g(x̂t)ut)dt +Kt(cxtdt+ νtdVt − cx̂tdt)
= (f(x̂t) + g(x̂t)ut +Ktc(xt − x̂t))dt+KtνtdVt.

Let ĥ(x) = h(x)− h̄ε. We have that

dĥt =

(
∂h

∂x
(x̂t) (f(x̂t) + g(x̂t)ut +Ktc(xt − x̂t))

+
1

2
tr

(
ν⊤t K

⊤
t

∂2h

∂x
(x̂t)Ktνt

))
dt− ∂h

∂x
KtνtdVt. (13)

When ∥xt − x̂t∥2 ≤ ε holds, then

∂h

∂x
Ktc(xt−x̂t) ≥ −

∥∥∥∥∂h∂xKtc

∥∥∥∥
2

∥xt−x̂t∥2 ≥ −ε
∥∥∥∥∂h∂xKtc

∥∥∥∥
2

.

When Eqn. (12b) holds, we thus have that

∂h

∂x
(x̂t) (f(x̂t) + g(x̂t)ut +Ktc(xt − x̂t))

+
1

2
tr

(
ν⊤t K

⊤
t

∂2h

∂x2
(x̂t)Ktνt

)
≥∂h
∂x

(x̂t) (f(x̂t) + g(x̂t)ut)− ε
∥∥∥∥∂h∂xKtc

∥∥∥∥
2

+
1

2
tr

(
ν⊤t K

⊤
t

∂2h

∂x2
(x̂t)Ktνt

)
≥− sgn(ĥ(x̂t))|ĥ(x̂t)|.

Finally, according to Lemma 2, we have that time T =
inf{t : x(t;x0) ∈ C} is finite with probability P(T <
∞|∥xt − x̂t∥2 ≤ ε, ∀t) = 1.

We are now ready to present fault-tolerant stochastic finite
time convergence CBF for the system given by (1)-(2) as

follows. The system utilizes m EKFs, with each associated
with one attack pattern ri ∈ F , where i = 1, . . . ,m.

Lemma 4. Let h̄εi = sup{h(x) : ∥x − x′∥2 ≤
εi for some x′ ∈ h−1({0})} and ĥi(x) = h(x) − h̄εi . Let
T = inf{t : x(t;x0) ∈ C}. Suppose ε1, . . . , εm and θij are
chosen such that there exists ϱ > 0, making any X ′

t ⊆ Xt(ϱ)
satisfying ∥x̂t,i − x̂t,j∥ ≤ θij for all i, j ∈ X ′

t there exists u
satisfying

Λi(x̂t,i)u > 0, ∀i ∈ X ′
t (14)

where Λi(x̂t,i) =
∂hi

∂x (x̂t,i)g(x̂t,i), Xt(ϱ) = {i : ĥi(x̂t,i) <
ϱ}, then

P(T <∞|∥x̂t,i − x̂t,i,j∥2 ≤ θij/2, ∀j,
∥x̂t,i − xt∥2 ≤ εi, ∀t, ∀ri ∈ F) = 1.

The proof of Lemma 4 is omitted due to space constraint.
Functions h1, . . . , hm satisfying conditions 1) and 2) in
Lemma 4 are fault tolerant stochastic finite time convergence
CBFs.

B. Decomposition of GDTL Formula φ and Satisfaction of
the Decomposed Sub-formulae

Given the GDTL formula, we construct the DRA rep-
resenting it, as defined in Definition 2. We then pick an
accepting run of the automaton A, denoted as η. We rewrite
η into the prefix suffix form η = q1, . . . , qn, (ηsuff )

ω . We
next decompose the accepting run η into a sequence of sub-
formulae, denoted as ψ1, . . . , ψN . Here

ψj = ΦjU✷(ϕj ∧ Φj+1), (15)

where Φj is the input word for self-loop transition
δ(qj ,Φj) = qj , and ϕj is the input word corresponding to
the transition from state qj to qj+1. That is, sub-formula
ψj models a one-step transition from state qj to qj+1 along
accepting run η.

We next synthesize the control policy to satisfy each
sub-formula leveraging fault-tolerant finite time convergence
control barrier functions in Section IV-A and fault-tolerant
zeroing control barrier functions proposed in [36]. We then
derive the satisfaction probability of each sub-formula, which
is used to bound the probability of satisfying φ.

We let functions hj and dj be given as

{b : hj(b) ≥ 0} = {b : (L(b) |= ϕj ∧ Φj+1) ∨ (L(b) |= Φj)}
{b : dj(b) ≥ 0} = {b : L(b) |= Φj+1}.

Then sub-formula ψj indicates that the system trajectory
needs to guarantee hj(b) ≥ 0 for all [tj , tj+1] and dj(b) ≥ 0
for some t′ ∈ [tj , tj+1], where tj and tj+1 are some time
instants satisfying tj+1 ≥ tj ≥ 0. We now define

h̄jε = sup{hj(b) : ∥b− b′∥2 ≤ ε
for some b′ ∈ (hj)−1({0})} (16)

d̄jε = sup{dj(b) : ∥b− b′∥2 ≤ ε
for some b′ ∈ (dj)−1({0})} (17)

ĥj(b) = hj(b)− h̄jε, d̂j(b) = dj(b)− d̄jε. (18)



We next present an algorithm for synthesizing the control
policy so that the probability of satisfying sub-formula ψj

is lower bounded in Algorithm 1. In line 3, we compute
Xt(ϱ) = {i : ĥji (bt,i) < ϱ1, d̂

j
i (bt,i) < ϱ2}, where ϱ =

[ϱ1, ϱ2]
⊤ and ϱ1, ϱ2 > 0 are constants. In line 4, we first

compute the set of control inputs Ωi and Γi, where Ωi

ensures that hj(bt,i) ≥ 0 for all t ∈ [tj , tj+1], and Γi ensures
that there exists t′ ∈ [tj , tj+1] such that dj(x) ≥ 0, provided
that the fault pattern is ri. If ∩i∈Xt(ϱ)(Ωi ∩ Γi) ̸= ∅, then
any control input u ∈ ∩i∈Xt(ϱ)(Ωi ∩ Γi) guarantees the
satisfaction of sub-formula ψj regardless of the fault pattern.
If such u does not exist, then line 5-11 aims to identify
the fault pattern by comparing the state estimate when fault
pattern ri is removed. Line 17 computes the control input by
solving a quadratic program. If no feasible control input can
be found, we will repeat the procedure for another accepting
run η′ ̸= η.

Theorem 3. Let bt,i = (x̂t,i, Pt,i). We define

Λj
i (bt,i, u) =

∂hji
∂x

(bt,i)g(x̂t,i)u

+ tr

[
∂hji
∂P

(bt,i)

(
∂g

∂x
(x̂t,i)uPt,i + Pt,i(

∂g

∂x
(x̂t,i)u)

⊤
)]

,

Ξj
i (bt,i, u) =

∂dji
∂x

(bt,i)g(x̂t,i)u

+ tr

[
∂dji
∂P

(bt,i)

(
∂g

∂x
(x̂t,i)uPt,i + Pt,i(

∂g

∂x
(x̂t,i)u)

⊤
)]

.

Suppose ε1, . . . , εm and θij are chosen such that there exists
ϱ making ∥bt,i − bt,k∥ ≤ θik holds for all i, k ∈ X ′

t and for
any X ′

t ⊆ Xt(ϱ). If there exists some u satisfying

Λi(bt,i, u) > 0, Ξi(bt,i, u) > 0, ∀i ∈ X ′
t. (19)

then

P(ψj |∥bt,i − bt,i,k∥2 ≤ θik/2, ∀j,
∥bt,i − bt∥2 ≤ εi, ∀t, ∀ri ∈ F) = 1.

Proof. We show that if ∥bt,i−bt∥2 ≤ εi and ∥bt,i−bt,i,k∥2 ≤
θik/2 for all t, then ut ∈ Ωi ∩ Γi holds when ĥji (bt,i) < ϱ1
and d̂ji (bt,i) < ϱ2.

Suppose that the fault pattern r = ri. At time t, suppose
that ĥji (bt,i) < ϱ1 and d̂ji (bt,i) < ϱ2 hold. In addition, sup-
pose that ∥bt,i − bt,i,k∥2 ≤ θik/2. We divide our discussion
into three cases.

Case I. We first consider ∥bt,i− bt,k∥2 ≤ θik for all i, k ∈
Xt(ϱ). Note that Ωi and Γi can be represented as

Ωi = {u : Λi(bt,i, u) ≥ ωi}, Γi = {u : Ξi(bt,i, u) ≥ ιi},

where ωi, ιi ∈ R are some constants. When ∥bt,i − bt,k∥2 ≤
θik for all i, k ∈ Xt(ϱ) holds, by condition 1), we then have
that there exists ut satisfying

Λi(bt,i, ut) > 0, Ξi(bt,i, ut) > 0, ∀i ∈ X ′
t.

indicating that ut ∈ ∩i∈Xt(ϱ)(Ωi ∩ Γi).

Case II. We next consider that ∥bt,i − bt,k∥2 ≤ θik for all
k ∈ Xt(ϱ), but there exists some z, k ∈ Xt(ϱ)\{i} such that
∥bt,k−bt,z∥ > θzk. In this case, by the iteration between line
5-11 in Algorithm 1, Ωk ∩Γk is removed. By the hypothesis
that ∥bt,i−bt,i,k∥2 ≤ θik for all k ∈ Xt(ϱ), we have that the
updated Xt(ϱ) now reduces to Case I, and thus our previous
analysis can be applied.

We finally suppose that ∥bt,i − bt,k∥2 > θik for some
k ∈ Xt(ϱ). We then have that

θik ≤ ∥bt,i − bt,i,k + bt,i,k − bt,k∥2
≤ ∥bt,i − bt,i,k∥2 + ∥bt,i,k − bt,k∥2

≤ θik
2

+ ∥bt,i,k − bt,k∥2

where the second inequality holds by triangle inequality,
and the last inequality holds by the hypothesis that ∥bt,i −
bt,i,k∥2 ≤ θik/2. In this case, ∥bt,i,k − bt,k∥2 ≥ θik/2,

Algorithm 1 Control synthesis for sub-formula ψj .

1: Input: Sub-formula ψj , system dynamics (1)-(2), param-
eters ε1, . . . , εm, θij where i < j, and ϱ1, ϱ2 > 0.

2: Output: control input ut
3: Compute Xt(ϱ) = {i : ĥji (bt,i) < ϱ1, d̂

j
i (bt,i) < ϱ2},

where ϱ = [ϱ1, ϱ2]
⊤

4: For each i ∈ Xt(ϱ), compute

Ωi =
{
u :

∂hji
∂x

(f(x̂t,i) + g(x̂t,i)u)− ε∥
∂hji
∂x

Kt,ic∥2

+
1

2
tr

(
ν⊤t,iK

⊤
t,i

∂2hji
∂x2

Kt,iνt,i

)
≥ −ĥ(bt,i)

}
(20)

Γi =
{
u :

∂dji
∂x

(f(x̂t,i) + g(x̂t,i)u)− ε∥
∂dji
∂x

Kt,ic∥2

+
1

2
tr

(
ν⊤t,iK

⊤
t,i

∂2dji
∂x2

Kt,iνt,i

)
≥ −sgn(d̂ji (bt,i))|d̂(bt,i)|

}
(21)

5: while ∩i∈Xt(ϱ)(Ωi ∩ Γi) = ∅ and Xt(ϱ) ̸= ∅ do
6: for i, k ∈ {1, . . . ,m} do
7: if ∥x̂t,i − x̂t,k∥2 > θik and ∥x̂t,i − x̂t,i,k∥2 >
θik/2 then

8: Update Xt(ϱ)← Xt(ϱ) \ {i}
9: end if

10: end for
11: end while
12: while ∩i∈Xt(ϱ)(Ωi ∩ Γi) = ∅ and Xt(ϱ) ̸= ∅ do
13: k∗ ← argmax{yt,k − ckx̂t,k : k ∈ Xt(ϱ)}
14: Update Xt(ϱ)← Xt(ϱ) \ {k∗}
15: end while
16: if ∩i∈Xt(ϱ)(Ωi ∩ Γi) ̸= ∅ then
17: Solve ut as ut = argmin

ut∈∩i∈Xt(ϱ)
(Ωi∩Γi)

ut
⊤Mut, where

M is positive definite
18: end if
19: Return ut



indicating that {k} is removed by line 8 of Algorithm 1. Then
our previous analysis becomes applicable once all such k are
removed. Lastly, using Theorem 2 and [36], we have that the
control input u satisfies sub-formula ψj almost surely.

We conclude this section by quantifying the probability of
satisfying GDTL formula φ as follows.

Theorem 4. If the conditions in Theorem 3 are satisfied, then
the probability of satisfying GDTL specification φ satisfies

P(φ|∥bt,i − bt,i,k∥2 ≤ θik/2, ∀j,
∥bt,i − bt∥2 ≤ εi, ∀t, ∀ri ∈ F) = 1. (23)

Proof. We denote the probability that ψj , . . . , ψj′ occur in
order as P(ψj , . . . , ψj′), where j ≤ j′. We also denote the
event that ∥bt,i− bt,i,k∥2 ≤ θik/2 holds for all j and ∥bt,i−
bt∥2 ≤ εi holds for all t under fault ri as Υi. By Bayes’
theorem, we have that

P(φ|Υi, ∀ri ∈ F) ≥ P(ψ1 . . . ψN |Υi, ∀ri ∈ F)
=P(ψN |ψ1 . . . ψN−1,Υi, ∀ri ∈ F)
· P(ψN−1|ψ1 . . . ψN−2,Υi, ∀ri ∈ F) . . .
· P(ψ1|Υi, ∀ri ∈ F)P(Υi, ∀ri ∈ F).

By our hypothesis, we have that P(Υi, ∀ri ∈ F) = 1. Using
Theorem 3, we have that P(ψj |ψ1 . . . ψj−1,Υi, ∀ri ∈ F) =
1 holds for all j = 1, . . . , N . Therefore, we have that Eqn.
(23) holds, completing the proof.

Based on Theorem 4, we have that if the EKFs guarantee
that P(Υi) ≥ 1 − ϵ for all ri ∈ F , then the probability of
satisfying GDTL specification φ can be bounded as P(φ) ≥
1 − ϵ, as desired by Problem 1. The accuracy of EKFs can
be obtained via Lemma 1.

V. CASE STUDY

In this section, we present a case study on the coordination
of two wheeled mobile robots (WMRs) in a 2-D domain.
Each WMR follows dynamics:[ẋt]1[ẋt]2

żt

 =

cos zt 0
sin zt 0
0 1

[vt
ωt

]
+ wt (24)

where [xt]1 and [xt]2 model the position of the robot at
time t, zt is the orientation of the robot at time t, ut =
[vt, ωt]

⊤ is the control input consisting of the linear and
angular velocities, and w is a zero-mean Gaussian process
noise. Following [37], we apply feedback linearization to
Eqn. (24) and use 7 sensors yt ∈ R7 to measure the location
and velocities for each WMR. In particular, we let [yt]1 and
[yt]2 measure horizontal position [xt]1, and use [yt]3 and
[yt]4 to measure vertical position [xt]2. Outputs [yt]5 and
[yt]6 measure the velocities of the WMR. The orientation of
the WMR is measured by [yt]7.

The WMRs need to coordinate to satisfy a GDTL speci-
fication φ given as φ = ∧3i=1φ̃i, where φ̃1 = ✸(dest1a ∧
✸dest1b) ∧✸dest2, φ̃2 = ✷(¬Obs), and φ̃3 = ✷(tr(P ) ≤
0.9). Specification φ requires the WMRs to reach a set of
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Fig. 1: The trajectories of two WMRs generated using our
proposed approach and a baseline are plotted in black and
blue colors, respectively. The baseline applies a CBF-based
control policy with state estimate being calculated using all
sensors. Our proposed approach satisfies the given GDTL
specification φ, whereas the baseline violates it.

destinations, denoted as dest1a, dest1b, and dest2, in order,
and to avoid the unsafe region obs. In addition, the WMRs
must maintain an uncertainty that is less than 0.9. There
exists a malicious adversary that manipulates the outputs of
[yt]2 and [yt]4 to bias the WMRs’ location estimates.

We compare our proposed approach with a baseline ap-
proach [15]. The baseline approach adopts the state-of-the-art
abstraction-free CBF-based control synthesis using the state
estimate obtained by all sensor measurements.

In the following, we demonstrate our proposed approach.
We generate the DRA representing GDTL specification φ.
We then pick an accepting run η and decompose φ into
a sequence of sub-formulae using η. In this case study,
accepting run η requires the WMRs to reach destinations
dest1a, dest1b, and dest2 in this order, while guaranteeing
φ̃2 and φ̃3 to be always satisfied.

We present the trajectories for both robots using our
proposed approach and the baseline in Fig. 1 using lines
in black and blue colors, respectively. The trajectories of
WMR 1 and 2 are presented using solid and dashed lines,
respectively. We observe that the trajectories of the robots
using our proposed approach never enter the unsafe region
obs and reach their assigned destinations. In addition, our
proposed approach yields tr(P ) = 0.03 ≤ 0.9 and thus
satisfies specification φ3. However, the trajectories generated
by the baseline approach enter the the unsafe region obs and
thus violate specification φ2. Moreover, WMR 1 is biased
by the sensor attack and fails to reach its destination dest1a
using the baseline approach. To summarize, our proposed
approach guarantees that WMR 1 and 2 can coordinate to
satisfy GDTL formula φ in the presence of sensor attacks.

VI. CONCLUSION

In this paper, we studied the problem of abstraction-free
synthesis for a control-affine nonlinear system to satisfy



a Gaussian distribution temporal logic specification in the
presence of process and observation noises as well as sensor
faults and attacks. We proposed a solution approach that
decomposes the given specification into a sequence of reach-
avoid tasks that needs to be satisfied by the system. We
developed the sufficient conditions for the controller so
that each decomposed sub-formula can be satisfied by the
system in the presence of sensor faults and attacks using
our proposed fault-tolerant finite time convergence control
barrier functions, along with the fault-tolerant zeroing control
barrier functions. We proved that our synthesized controller
guarantees almost sure satisfaction for each decomposed sub-
formula, and thus ensures that the system satisfies the Gaus-
sian distribution temporal logic specification with probability
one, provided that the extended Kalman filters used by the
system ensures certain accuracy bounds. We presented a
numerical case study on the coordination of two wheeled
mobile robots to demonstrate our proposed approach.
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