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Abstract— Complex, interconnected Cyber-physical Systems
(CPS) are increasingly common in applications including smart
grids and transportation. Ensuring safety of interconnected
systems whose dynamics are coupled is challenging because the
effects of faults and attacks in one sub-system can propagate to
other sub-systems and lead to safety violations. In this paper,
we study the problem of safety-critical control for CPS with
coupled dynamics when some sub-systems are subject to failure
or attack. We first propose resilient-safety indices (RSIs) for
the faulty or compromised sub-systems that bound the worst-
case impacts of faulty or compromised sub-systems on a set
of specified safety constraints. By incorporating the RSIs, we
provide a sufficient condition for the synthesis of control policies
in each failure- and attack- free sub-systems. The synthesized
control policies compensate for the impacts of the faulty or
compromised sub-systems to guarantee safety. We formulate
sum-of-square optimization programs to compute the RSIs and
the safety-ensuring control policies. We present a case study that
applies our proposed approach on the temperature regulation of
three coupled rooms. The case study demonstrates that control
policies obtained using our algorithm guarantee system’s safety
constraints.

I. INTRODUCTION

Safety is an important property of cyber-physical systems
(CPS) in multiple domains including power systems and
transportation [1]–[3]. Safety violations can potentially cause
damage to the system and even endanger human lives [4],
[5]. To this end, safety verification and safety-critical control
for CPS have been extensively studied [1], [2], [6], [7].

CPS have been shown to be vulnerable to random failures
and cyber attacks, which can cause safety violations [4],
[5]. To mitigate the impacts of faults and cyber attacks,
defending mechanisms and resilient control for CPS have
garnered significant research attention [8]–[11]. Resilient and
safety-critical control can be even more challenging for the
class of CPS that are formed by the interconnection of sub-
systems [12], [13]. Due to the couplings among the sub-
systems, faults and attacks in one sub-system may lead to
safety violation in other sub-systems and the overall CPS.
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For instance, the blackout in India in 2012 was caused
by the escalation of a local and small disturbance thor-
ough the interconnections of the power system [14]. Thus,
an intelligent adversary can utilize such cascading effects
to compromise the controllers and cause maximum-impact
safety violations. In addition, the dimension of coupled sub-
systems grows with the number of sub-systems, posing a
scalability challenge in safety verification and safety-critical
control design.

To alleviate the scalability challenge, compositional ap-
proaches which decompose the safety constraint over the
sub-systems have been proposed [15]–[20]. These ap-
proaches do not consider the presence of attack. Specif-
ically, compositional approaches to fault-tolerant safety-
critical control for coupled CPS has received limited research
attention. jct ggfvc

In this paper, we aim to develop a compositional approach
to safety-critical control for interconnected systems in which
some of the sub-systems are faulty or compromised. We
consider a class of interconnected systems with the sub-
systems’ dynamics being coupled, which we will refer as
interconnected system or coupled system interchangeably.
We propose two types of resilient-safety indices (RSIs),
named as intrinsic resilient-safety index (IRSI) and coupled
resilient-safety index (CRSI), using the self- and coupled-
dynamics of each sub-system, respectively. h min The sign
and magnitude of RSIs characterize and quantify the impacts
of faulty or compromised sub-systems on specified safety
constraints. Using the proposed RSIs as well as control
barrier functions, we provide conditions and algorithm to
design control laws for the remaining sub-systems that are
fault- and attack-free. We make the following contributions:

• We define RSIs for the sub-systems that are vulnerable
to failure or attack. The IRSI bounds the worst-case
impact of the sub-system on safety constraint due to
intrinsic/self-dynamics, whereas the CRSI bounds the
worst-case impact introduced by the couplings.

• Utilizing the proposed RSIs, we derive the control poli-
cies in the fault- and attack-free sub-systems. We prove
that our proposed control policies guarantee safety in
the presence of faulty or compromised sub-systems.

• We propose an algorithm based on sum-of-squares op-
timization to compute the RSIs and the safety-ensuring
control policy in each fault- and attack-free sub-system
independently. We discuss two special cases of linear
systems and monotone systems, where computationally
efficient methods can be used to estimate the RSIs.

• We present a case study of temperature regulation of



interconnected rooms to illustrate our approach. We
demonstrate that the control policy obtained using our
algorithm maintains the specified safety constraints.

The rest of the paper is organized as follows. Section II
presents the related works. Section III presents the system
model and formulates the problem. Section IV introduces the
indices and presents the condition for safety-ensuring control
policies. Section V presents the algorithms for computing
the indices and synthesizing the control policies. Section VI
contains a case study. Section VII concludes the paper.

II. RELATED WORK

Safety-critical CPS are widely seen in real-world ap-
plications including power systems [4], robotics [21], and
intelligent transportation [5], [22]. In the absence of fault
or malicious adversary in the system, safety verification and
synthesis have been studied using model checking [23] and
deductive verification [24]. Recently, barrier function based
approaches, which map the safety constraint to a linear
constraint on the control policy, have attracted extensive
research attention [1], [6], [7].

The existing safety verification approaches focusing on the
overall CPS state space become computationally demanding
and even intractable [7], [25] when applied to coupled
systems. Compositional approaches, which decompose the
safety constraint to those defined over low-dimensional sub-
systems, have been proposed [15]–[18], [26], [27]. The
formulations in [15]–[18], [26], [27] do not consider the
presence of random failures or malicious attacks.

To address the presence of adversary and random failures
in CPS, resilient and fault-tolerant CPS have been studied.
Typical approaches include employing defense mechanisms
against malicious attacks [11], [28], [29] and designing
intrusion tolerant system architectures [30]–[34]. For com-
plex interconnected CPS, the adversary can compromise the
entire system by intruding into a subset of sub-systems and
leveraging the interconnection.

For interconnected CPS under malicious attack, attack
detectability is investigated in [35] for linear systems with
pair-wise interconnections. How to guarantee safety under
malicious attacks for interconnected CPS is not considered
in [35]. In [19], [20], safety is achieved for interconnected
systems by reconfiguring the control law of each sub-system
and the coupling topology among them, assuming that each
sub-system is exponentially stable in the absence of coupling.
However, reconfiguring the control law and coupling topol-
ogy may not always be feasible for CPS under malicious
attack. In addition, verifying the reconfiguration over all
possible interdependencies can be computationally expensive
when the system is of large-scale.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the system model and our problem
formulation. Consider a system S consisting of a finite set of

interconnected sub-systems, denoted as {Si}Ni=1. Each sub-
system Si has

Si : ẋi =fi,slf (xi) + gi,slf (xi)ui

+ fi,cpl(xi, x−i) + gi,cpl(xi, x−i)ui (1)

where xi ∈ Rni is the state of sub-system Si, x−i ∈ Rn−ni

is the state of the other sub-systems excluding Si, ui ∈ Rri is
the input to the sub-system Si, and n =

∑N
i=1 ni. Functions

fi,slf : Rni → Rni , gi,slf : Rni → Rni×ri , fi,cpl : Rni ×
Rn−ni → Rni , and gi,cpl : Rni × Rn−ni → Rni×ri are
Lipschitz. Note that functions fi,slf and gi,slf are dependent
on the states of sub-system Si only, and we refer to the term

Fi,slf (xi, ui) ≜ fi,slf (xi) + gi,slf (xi)ui

as the self-dynamics of sub-system Si. Since functions fi,cpl
and gi,cpl are jointly determined by the states of xi and those
of other sub-systems x−i, we refer to

Fi,cpl(x, ui) ≜ fi,cpl(xi, x−i) + gi,cpl(xi, x−i)ui

as the coupled-dynamics of sub-system Si. We further as-
sume that the inputs to each sub-system are bounded as
ui ∈ Ui where Ui =

∏ri
j=1[ui,j , ui,j ] with ui,j < ui,j . A

control policy for sub-system Si is a function µi : Rn → Ui
that maps from the set of system states to the set of control
inputs.

Let x = [x⊤
1 · · · x⊤

N ]⊤ ∈ Rn and u = [u⊤
1 · · · u⊤

N ]⊤ ∈
Rr where r =

∑N
i=1 ri. Then the dynamics of S can be

written as

S :

 ẋ1

...
ẋN

 =

 F1(x1, x−1, u1)
...

FN (xN , x−N , uN )

 ≜ F (x, u) (2)

where Fi(xi, x−i, ui) = Fi,slf (xi, ui) + Fi,cpl(x, ui).
We consider that system S is given K safety constraints

for all time t ≥ 0 where K ∈ Z+. We suppose each safety
constraint is represented as hk(x) ≥ 0 where hk : Rn → R is
a continuously differentiable function for each k = 1, . . . ,K .
We denote the corresponding safety set as C so that C =
∩Kk=1{x ∈ Rn : hk(x) ≥ 0}. We assume C is compact.

Some sub-systems are subject to random failures and
malicious attacks. In these scenarios, the actuator of a failed
or attacked sub-system Si does not behave as expected. In
the following, we assume that there exists a subset of sub-
systems such that they are protected and does not incur
random failures or attack. We denote this set of sub-systems
as {Si : i ∈ N1} where N1 ⊆ {1, 2, . . . , N} and refer
to them as protected sub-systems. In addition, the set of
remaining sub-systems that are subject to random failures
and malicious attack is denoted as {Si : i ∈ N2} where
N2 ⊆ {1, . . . , N} and we refer to them as vulnerable sub-
systems. Note, N1 ∪N2 = {1, 2, . . . , N} and N1 ∩N2 = ∅.

Each vulnerable sub-system Si where i ∈ N2 may incur
fault or cyber attack initiated by a malicious adversary. The
fault or attack can alter the control input ui injected to Si
to arbitrary ũi ∈ Ui. Since the system is interconnected,
the altered behaviors from sub-systems in N2 can further



propagate to other protected sub-systems, leading to potential
safety violation if the sub-systems in N1 are not properly
controlled.

In this paper we aim at computing control policies for
the protected sub-systems to ensure safety of system S
irrespective of the states and inputs of the vulnerable sub-
systems. We state the problem as follows:

Problem 1. Consider an interconnected system S where the
sub-systems in {Si : i ∈ N2} are subject to failures and
malicious attacks while the sub-systems in {Si : i ∈ N1}
are protected. Synthesize a control policy µi : Rn → Ui for
each i ∈ N1 such that system S is safe with respect to C.

IV. RSIS AND RSI-BASED SAFETY GUARANTEE

In this section, we first propose resilient-safety indices
(RSIs) which relate to the worst-case impacts on the safety
constraints caused by the self-dynamics and the coupled-
dynamics of the vulnerable sub-systems. Based on the RSI
we then obtain the sufficient condition for control policies
in the protected sub-systems so that safety constraints are
guaranteed irrespective of the condition (i.e. whether being
faulty/compromised or not) of any of the vulnerable sub-
systems.

We first define the RSIs related to the self-dynamics of
vulnerable sub-systems {Si : i ∈ N2} as follows:

Definition 1. For each i ∈ N2 and k = 1, . . . ,K , we define
an intrinsic resilient-safety index (IRSI) of sub-system Si with
respect to function hk as

γ̂k
i = inf

x∈C,ui∈Ui

{
∂hk

∂xi
Fi,slf (xi, ui)

}
(3)

The IRSI γ̂k
i models the worst-case impact from the

self-dynamics of sub-system Si on the safety constraint
hk(x) ≥ 0. The non-negative value of γ̂k

i indicates that the
sub-system Si is intrinsically resilient-safe with respect to
constraint hk(x) ≥ 0 as the self-dynamics do not contribute
to the safety violation of hk(x) ≥ 0 for any ui ∈ Ui.
The negative value of γ̂k

i indicates that the self-dynamics
of Si can potentially cause violation to the safety constraint
hk(x) ≥ 0 in the presence of attack or fault (the smaller
γ̂k
i is, the more detrimental Si intrinsically is in violating

hk(x) ≥ 0).
However, when γ̂k

i is not available or not easy to compute,
we may instead approximate it by finding a bound γk

i ∈ R
such that for all x ∈ C and ui ∈ Ui

∂hk

∂xi
Fi,slf (xi, ui) ≥ γk

i . (4)

By Definition 1, we have γ̂k
i ≥ γk

i for any γk
i satisfying (4).

Now we define the RSIs related to the coupled-dynamics
of vulnerable sub-systems {Si : i ∈ N2} as follows:

Definition 2. For each k = 1, . . . ,K , we define a coupled
resilient-safety index (CRSI) for all vulnerable sub-systems

Si with respect to function hk as

β̂k = inf
x∈C,ui∈Ui

{∑
i∈N2

∂hk

∂xi
Fi,cpl(x, ui)

}
(5)

The CRSI β̂k models the worst-case impact from coupled
dynamics of vulnerable sub-systems on the safety constraint
hk(x) ≥ 0. The non-negative value of β̂k indicates that
the coupled-dynamics of the vulnerable sub-systems do not
contribute to the safety violation of hk(x) ≥ 0 for any
ui ∈ Ui where i ∈ N2. The negative value of β̂k indicates
that the coupled-dynamics of the vulnerable sub-systems can
potentially cause violation to the safety constraint hk(x) ≥ 0
in presence of attack or fault (the smaller β̂k is, the more
detrimental the coupled-dynamics of the vulnerable sub-
systems are in violating hk(x) ≥ 0).

However, when β̂k
i is not available or not easy to compute,

we may approximate it by finding βk ∈ R such that for all
x ∈ C and ui ∈ Ui∑

i∈N2

∂hk

∂xi
Fi,cpl(x, ui) ≥ βk (6)

By Definition 2, we have β̂k ≥ βk for any βk satisfying (6).
Next, we present our main result based on the IRSI and

CRSI given in Definition 1 and 2. We derive a sufficient
condition for control policies in the protected sub-systems
such that system S satisfies all the safety constraints. The
result is formalized below.

Theorem 1. Suppose there exist constants αk
i ∈ [0, 1] and a

control policy µi : Rn → Ui for each i ∈ N1 such that the
following holds for all i ∈ N1 and k = 1, . . . ,K:

∂hk

∂xi
Fi(xi, x−i, ui) ≥ αk

i

−ηki (hk(x))− βk −
∑
j∈N2

γk
j


(7)

where γk
j , βk are given in Eqns. (4) and (6), ηki is an

extended class K function and
∑

i∈N1
αk
i = 1 for each

k = 1, . . . ,K . Then the interconnected system S is safe with
respect to C for all t ≥ 0 by taking control policy µi at each
i ∈ N1 given that x(0) ∈ C.

Proof. According to (2) we can compute ∂hk

∂x F (x, u) for
each k = 1, . . . ,K as

∂hk

∂x
F (x, u) =

N∑
i=1

∂hk

∂xi
Fi(xi, x−i, ui)

=
∑
i∈N1

∂hk

∂xi
Fi(xi, x−i, ui) +

∑
i∈N2

∂hk

∂xi
Fi(xi, x−i, ui)

≥
∑
i∈N1

αk
i [−ηki (hk(x))− βk −

∑
j∈N2

γk
j ]

+
∑
i∈N2

∂hk

∂xi
[Fi,slf (xi, ui) + Fi,cpl(xi, ui)]

=−
∑
i∈N1

αk
i η

k
i (h

k(x)) +
∑
i∈N2

(∂hk

∂xi
Fi,slf (xi, ui)− γk

i

)



+
( ∑

i∈N2

∂hk

∂xi
Fi,cpl(x, ui)− βk

)
≥−

∑
i∈N1

αk
i η

k
i (h

k(x))

where the last inequality holds by Eqn. (4) and (6). Since that
ηki is an extended class K function and αk

i ∈ [0, 1], we have
that

∑
i∈N1

αk
i η

k
i is also an extended class K function. Thus

∂hk

∂x F (x, u) ≥ −ηk(hk(x)). Using the property of control
barrier function [1] and the assumption that x(0) ∈ C, we
have that the coupled system satisfies that hk(x) ≥ 0 for all
k = 1, . . . ,K and t ≥ 0. Therefore we have that system S
is safe with respect to C.

In Theorem 1, constant αk
i specifies the weight on each

protected sub-system Si to satisfy the safety constraint
hk(x) ≥ 0. For example, αk

i = 1 means that sub-system Si is
solely obligated to compensate for the impacts of vulnerable
sub-systems on the safety constraint hk(x) ≥ 0 while other
protected sub-systems do not contribute in the compensation.
Parameter αk

i for i = 1, . . . ,m and k = 1, . . . ,K are chosen
in a way so that the condition (7) is satisfied.

Theorem 1 implies that if the approximated RSIs γk
i

and βk for the vulnerable sub-systems are known, then the
control policies in the protected sub-systems that guarantee
system’s safety can be calculated without knowing the exact
models of the vulnerable sub-systems. This is useful since
the control input ũi employed in a sub-system compromised
by adversarial attack is usually unknown. However, from
Theorem 1, it is clear that one should use true values of RSIs,
i.e., γ̂k

i and β̂k as γk
i and βk so that condition (7) is less

restrictive. RSIs or their approximations can be computed
either numerically or analytically. Below we present a simple
example for which we find the closed-form expressions for
γk
i and βk. This will help us to gain some insights on RSIs.

Example: Consider a system S : ẋ = Ax+Bu where

A =

a11 . . . a1N
...

. . .
...

aN1 . . . aNN

 , B =

b11 . . . 0
...

. . .
...

0 . . . bNN


Here A ∈ RN×N , B ∈ RN×N , x = [x1 . . . xN ]⊤ ∈ Rn and
u = [u1 . . . uN ]⊤. Matrix A represents the system matrix for
a synchronization dynamics with aii = −

∑N
j=1,j ̸=i aij < 0.

We consider that the system is given one ellipsoid safety
constraint C = {x ∈ RN : h(x) ≥ 0} where h(x) = 1 −∑N

i=1 cix
2
i and ci > 0. Let the constraints on input be Ui ∈

[−1, 1]. Let N1 = {1, . . . ,m} and N2 = {m + 1, . . . , N}.
Then, we can write

∂h

∂xi
Fi,slf (xi, ui) = −2cixi(aiixi + biiui)

= −2ciaii(xi +
biiui

2aii
)2 +

b2iiciu
2
i

2aii

β =
N∑

i=m+1

(
− 2cixi

N∑
j=1,j ̸=i

(aijxj)
)

≥
N∑

i=m+1

2ci|aii| min
x∈C

(xixj)

Then with some efforts it can be shown that γi = − b2iici
2|aii|

and β = − cmax
N2

cmin

∑N
i=m+1 |aii| satisfy the conditions (4)

and (6) respectively where cmax
N2

is the maximum value
in {cm+1, . . . cN} and cmin is the minimum value in
{c1, . . . , cN}. The expression of γi implies that γi is in-
versely related to the magnitude of the eigenvalue of the
self-dynamics of that sub-system Si (i.e. the higher the
magnitude of eigenvalue or faster decreasing the dynam-
ics, the lower γi). This indicates that a sub-system with
fast decreasing self-dynamics plays less significant role in
violating the safety constraint under fault or attack. Now,
the expression of β implies that the higher the coupling (i.e.
|aii| = |

∑N
j=1,j ̸=i aij | for i ∈ N2), the higher the magnitude

of β becomes. Therefore, the sub-systems that have higher
couplings will be critical in violating the safety constraint
under fault or attack.

V. ALGORITHMIC COMPUTATION OF RSIS AND CONTROL
POLICIES

In this section we present algorithms to compute the
control policies and associated RSIs i.e. γk

i and βk. Our
proposed algorithms are based on sum-of-squares (SOS)
optimization. Later, we present two special classes of systems
for which RSIs can be computed more efficiently.

In the remainder of this section, we make the following
assumption on the system dynamics and the given safety
constraints.

Assumption 1. We assume that F (x, u) is polynomial in
x and u, and hk(x) is polynomial in x for k = 1, . . . ,K
respectively.

Based on the above assumption, we now aim to compute
IRSI γ̂k

i and CRSI β̂k using SOS optimization. However, in
general IRSI and CRSI are difficult to compute. Therefore
we relax the condition and focus on finding approximated
values of IRSI and CRSI. Specifically, we find γk

i and βk

so that inequalities (4) and (6) are reasonably tight. For that
we first show how to translate conditions (4) and (6) into
SOS constraints. Then we minimize γk

i and βk in the SOS
formulation to make (4) and (6) reasonably tight.

Following results formalize our computation method of γk
i

for each i ∈ N2 and k ∈ {1, . . . ,K}.

Lemma 1. Suppose Assumption 1 holds and ps(x, ui),
wj(x, ui) and vj(x, ui) are SOS polynomials where j =
1, 2, . . . , ri and s = 1, . . . ,K . For i ∈ N2 and k ∈
{1, . . . ,K} if γk

i is the solution to the sum-of-squares
program:

min
γk
i

− γk
i (8a)

s.t.
∂hk

∂xi
Fi,slf (xi, ui)− γk

i −
K∑
s=1

ps(x, ui)h
s(x)



−
ri∑
j=1

(
wj(x, ui)(ui,j − ui,j) + vj(x, ui)(ui,j − ui,j)

)
is SOS (8b)

then γk
i satisfies Eqn. (4). Furthermore γk

i = γ̂k
i when

expressions in (8b) is quadratic.

Proof. Let γk
i be the solution to SOS program (8). Since

ps(x, ui), wj(x, ui) and vj(x, ui) are SOS polynomials, we
have that

∑k
s=1 ps(x, ui)h

s(x) ≥ 0 for all x ∈ C and∑ri
j=1

(
wj(x, ui)(ui,j − ui,j) + vj(x, ui)(ui,j − ui,j)) ≥ 0

for all ui ∈ Ui. Thus any γk
i rendering constraint (8b) an

SOS satisfies that

∂hk

∂xi
Fi,slf (xi, ui) ≥ γk

i , ∀x ∈ C, ui ∈ Ui

Now suppose the case when expressions in (8b) is quadratic.
Assume that γk

i ̸= γ̂k
i . Then γ̂k

i > γk
i by the definition of

γ̂k
i . Since for quadratic polynomial SOS and non-negativity

is equivalent [36], γ̂k
i is also feasible to constraint (8b).

However, this contradicts the optimality of γk
i to SOS

program (8). Hence γk
i = γ̂k

i in this case.

Similarly we use the following result to compute βk for
each k ∈ {1, . . . ,K}.

Lemma 2. Suppose Assumption 1 holds and ps(x, ui),
wi,j(x, u) and vi,j(x, u) are SOS polynomials where i ∈ N2,
j = 1, 2, . . . , ri and s = 1, . . . ,K . For k ∈ {1, . . . ,K} if
βk is the solution to the sum-of-squares program:

min
βk

− βk (9a)

s.t.
∑
i∈N2

∂hk

∂xi
Fi,cpl(x, ui)− βk −

k∑
s=1

ps(x, ui)h
s(x)

−
∑
i∈N2

ri∑
j=1

(
wi,j(x, u)(ui,j − ui,j)

+ vi,j(x, u)(ui,j − ui,j)
)

is SOS (9b)

then βk satisfies Eqn. (6). Furthermore βk = β̂k when
expressions in (9b) is quadratic.

Proof. Let βk be the solution to SOS program (9). Since
ps(x, u), wi,j(x, u) and vi,j(x, u) are SOS polynomials, we
have that

∑k
s=1 ps(x, ui)h

s(x) ≥ 0 for all x ∈ C and∑
i∈N2

∑ri
j=1

(
wi,j(x, u)(ui,j−ui,j)+vi,j(x, u)(ui,j−ui,j)

)
for all ui ∈ Ui and i ∈ N2. Thus βk satisfies that∑

i∈N2

∂hk

∂xi
Fi,cpl(x, ui) ≥ βk, ∀x ∈ C, ui ∈ Ui, i ∈ N2

We note that βk = β̂k when expressions in (9b) is quadratic
using arguments similar to the proof of Lemma 1.

We note that the computation of CRSIs involves full state
and all the vulnerable sub-systems. Since |N2| < |N |,
our compositional approach will be less computationally
expensive compared to a monolithic approach.

Now we present our algorithm for computing control
policies given the approximated IRSI and CRSI, i.e. γk

i and
βk. To do so, we translate the condition given in (7) as SOS
constraint and formulate an SOS program to compute the
control input ui for each i ∈ N1. The following lemma
presents the result.

Lemma 3. Suppose γk
i and βk are given for each i ∈ N2

and k ∈ {1, . . . ,K}. Suppose the following expressions are
SOS for each i ∈ N1 and k ∈ {1, . . . ,K}.

∂hk

∂xi
[fi,slf (xi) + gi,slf (xi)τi(x) + fi,cpl(xi, x−i)

+ gi,cpl(xi, x−i)τi(x)]− αk
i

(
− ηki (h

k(x))− βk

−
∑
j∈N2

γk
j

)
−

K∑
s=1

λs(x)h
s(x), (10a)

τi,j(x)− ui,j , ui,j − τi,j(x), ∀j = 1, . . . , ri, (10b)

where λs(x) is an SOS polynomial and τi,j(x) is a polyno-
mial in x for i ∈ N1, j = 1, . . . , ri and s = 1, . . . ,K . Then
condition (7) is satisfied for x ∈ C when ui is chosen as
ui = τi(x) = [τi,1(x) · · · τi,ri(x)]T for all i ∈ N1.

Proof. Since λs(x) is an SOS polynomial, we have that
λs(x)h

s(x) ≥ 0 implying
∑K

s=1 λs(x)h
s(x) ≥ 0 for all

x ∈ C. When Eqn. (10) is an SOS, we thus have that

∂hk

∂xi
Fi,slf (xi, τi(x)) + Fi,cpl(x, τi(x))

− αk
i

(
− ηki (h

k(x))− βk −
∑
j∈N2

γk
j

)
≥ 0

holds for all x ∈ C. By choosing ui = τi(x) for all i ∈ N1,
we recover the condition in Eqn. (7).

Algorithm 1 Solution algorithm for finding control policy
1: Input: Dynamics F . Functions {hk}Kk=1. Constants
{αk

i }, {ui,j}, {ui,j}.
2: Output: {γk

i }i∈N2
, βk, and control inputs {ui}.

3: Solve the SOS programs in Eqn. (8) and (9) to calculate
γk
i and βk for each for each i ∈ N2 and k ∈ {1, . . . ,K}.

4: Initialization: Flag ← 1.
5: for i ∈ N1 do
6: Solve (10) using γk

i and βk for all k = 1, . . .K.
7: if Line 6 is feasible then
8: ui ← τi.
9: else

10: Flag ← 0.
11: break
12: end if
13: end for
14: if Flag = 1 then
15: return {γk

i }, {βk} and {ui}.
16: else
17: No Solution found.
18: end if



Now we present Algorithm 1 that uses the above results
to find the control policies in the protected sub-systems.
First the approximated RSIs γk

i and βk are calculated using
Lemma 1 and 2 for each vulnerable sub-system and safety
constraint. Then control policy µi for each i ∈ N1 is
calculated from line 5 to line 12. If the SOS conditions in
Eqn. (10) is feasible for all i ∈ N1 and k ∈ {1, . . .K}, the al-
gorithm returns the control policies for all the protected sub-
systems. We remark that Algorithm 1 can be implemented
in an offline manner and it can calculate the control policy
for each protected sub-system in parallel.

It may be possible that there exists no control policy that
guarantees safety of the system depending on the cardinality
of N1 or the ranges of U and C or the model dynamics
F (x, u). In that case Algorithm 1 fails to find a control
policy that guarantees safety. However, it may happen that
Algorithm 1 can find a control policy for some set C̃ ⊂ C. In
such scenario one need to modify the algorithm and search
for the set C̃. In that case the system S will maintain safety
for all t ≥ 0 if x(0) ∈ C̃. Note that line 6 of Algorithm 1
is dependent on the weights {αk

i }, therefore these weights
need to be assigned carefully to find a solution. Parameters
{αk

i } can also be incorporated as design parameters in the
algorithm by taking linear search over [0, 1] with the cost of
additional computational complexity.

Here we make a remark on the case when any of the safety
constraints is local to a sub-system. Suppose there exist k̃ ∈
{1, . . . , k} and ĩ ∈ {1, . . . , N} such that hk̃ : Rnĩ → R is
local to sub-system Sĩ which can be written as hk̃(xĩ). This
implies ∂hk̃

∂xj
is a vector with all entries being zero for j ̸= ĩ.

If ĩ ∈ N1, then we have
∑

j∈N2
γ̂k̃
j = β̂k̃ = 0. This implies

|N1| − 1 conditions in Theorem 1 are trivially satisfied
and can be omitted from the SOS program. However, if
ĩ ∈ N2, then our approach can be modified to obtain
less conservative SOS formulation. In this case, instead of
calculating γk̃

ĩ
(note, γ̂k̃

j = 0 for j ̸= ĩ) and βk̃, we can
impose the following constraint directly in each of the SOS
program: ∂hk̃

∂xĩ
Fĩ(xĩ, x−ĩ, uĩ) ≥ −ηk̃ĩ (h

k̃(xĩ)) for all x ∈ C
and uĩ ∈ Uĩ. This condition is less conservative than the
constraint γk̃

ĩ
+ βk̃ ≥ −ηk̃

ĩ
(hk̃(xĩ)) obtained via Theorem 1.

We note that ∂hk̃

∂xĩ
Fĩ(xĩ, x−ĩ, uĩ) ≥ −ηk̃ĩ (h

k̃(xĩ)) introduces

infeasibility if the impact of compromised uĩ ∈ Uĩ on hk̃(xĩ)
cannot be compensated by the system states. For an example
see Section VI.

Now we present two special cases where the IRSI γ̂k
i and

CRSI β̂k can be obtained efficiently..
1) LTI System with Half-Plane Constraint: Consider sys-

tem S be given as

S : ẋ = Ax+Bu, (11)

where

A =

A11 . . . A1N

...
. . .

...
AN1 . . . ANN

 , B =

B11 . . . 0
...

. . .
...

0 . . . BNN



Aij ∈ Rni×nj , and Bii ∈ Rni×ri . We consider hk(x) =
a⊤k x where ak ∈ Rn for all k = 1, . . . ,K and set C is
compact. We show that IRSI γ̂k

i can be computed using a
linear program when Ui = {ui : w⊤ui ≥ 0}. For each
i ∈ N2, if γk

i = a⊤k Fi,slf (x
∗
i , u

∗
i ), where (x∗

i , u
∗
i ) is the

solution to the following linear program:

min
xi,ui

a⊤k Fi,slf (xi, ui) (12a)

s.t. a⊤k x ≥ 0, ∀k (12b)

w⊤ui ≥ 0 (12c)

then γk
i = γ̂k

i as given in Definition 1. Let P be the
polyhedron induced by the constraints in Eqn. (12). We have
that γ̂k

i is attained at some vertex of P . Similarly we can
consider the computation of CRSI β̂k. For each sub-system
i ∈ N2, if βk =

∑
i∈N2

a⊤k Fi,cpl(x
∗, u∗

i ), where [x∗, u∗
i ] is

the solution to the following linear program:

min
x,ui

∑
i∈N2

a⊤k Fi,cpl(x, ui) (13a)

s.t. a⊤k x ≥ 0, ∀k (13b)

w⊤ui ≥ 0 (13c)

then βk = β̂k as given in Definition 2.
2) Monotone System with Hyperrectangle Constraints:

In the following, we consider monotone systems under
hyperrectangle constraints. Consider system (2) and a safety
set C = [x, x], where x, x ∈ Rn. We consider x ≤ x element-
wise, and thus C is a hyperrectangle.

Definition 3 (Monotonicity [37]). Function F (x, u) is mono-
tone with respect to x and u if

x ≤ x′ and u ≤ u′ =⇒ F (x, u) ≤ F (x′, u′) (14)

where the order relation ≤ is compared element-wise.

Monotonicity of a function F (x, u) can be shown by
verifying the signs of ∂F

∂x and ∂F
∂u [37]. Using Definition

3, Eqn. (4) and (6), we have the following result:

Lemma 4. Consider system (2) and a hyperrectangle safety
set C = [x, x]. If functions F̃i,slf (x, ui) =

∂hk

∂xi
Fi,slf (xi, ui)

and F̃i,cpl(x, ui) = ∂hk

∂xi
Fi,cpl(x, ui) are monotone with

respect to x and u as given in Definition 3, then for i ∈ N2

and k = 1, . . . ,K we have γ̂k
i = F̃i,slf (x, ui) and β̂k =∑

i∈N2
F̃i,cpl(x, ui).

VI. CASE STUDY

In this section, we illustrate our proposed approach using
an example on the temperature regulation in a circular build-
ing consisting of N rooms [38]. For each room i = 1, . . . , N ,
we denote its temperature as xi following dynamics

ẋi =
1

δ
(w(xi+1+xi−1−2xi)+y(Te−xi)+ z(Th−xi)ui),

where xi+1 and xi−1 are the temperatures of the neighboring
rooms, Te is the outside temperature, and Th is the heater
temperature. For rooms i = 1 and i = N , we let x0 = xN

and xN+1 = x1. In this case study, we consider N = 3, Te =
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Fig. 1: The average temperature of three rooms over 50 time
steps. Room 1 is compromised and rooms 2, 3 are protected
from failure and attack. The average temperature is depicted
using solid black line. The boundaries of set C are shown
using red dotted lines.

−1◦C, and Th = 50◦C. We additionally let U1 ∈ [0, 0.6] and
U2,U3 ∈ [−2, 2]. The coefficients w, y, and z are chosen as
w = 0.45, y = 0.045, and z = 0.09, respectively. Parameter
δ is set as δ = 0.1. We consider that the controller of room 1
is compromised via an adversarial attack. Rooms 2 and 3 are
the protected sub-systems. In the remainder of this section,
we study two scenarios.

In the first scenario, we consider that the system is given
one safety constraint x ∈ C for all time t ≥ 0, where C =
{x : h(x) ≥ 0} and

h(x) =

(∑3
i=1 xi

3
− 15

)(
20−

∑3
i=1 xi

3

)
.

Using Eqn. (8) and (9), we compute the approximated IRSI
and CRSI. We have that γ1 = −22.05 and β1 = −2.636. We
then synthesize the control input by enforcing constraint (10).
We show the average temperature

∑3
i=1 xi

3 at each time step
in Fig. 1. We observe that

∑3
i=1 xi

3 ∈ [15, 20] for all time
steps and thus h(x) ≥ 0 for all time.

In the second scenario, we consider a safety set C = {x :
hi(xi) ≥ 0, i = 1, 2, 3}. Each function hi specifies a range
for the temperature in room i. We consider h1(x1) = (16−
x1)(x1 − 10), h2(x2) = (22− x2)(x2 − 15), and h3(x3) =
(25− x3)(x3 − 14).

Since room 1 is compromised, we can only satisfy the
safety constraint h1 by regulating the temperature of rooms
2 and 3 and utilizing the coupling term w(x2 + x3 − 2x1).
To ensure the satisfaction of h1(x1) ≥ 0, we introduce the
following constraint over x2 and x3 when synthesizing the
control policies for rooms 2 and 3:

− ∂h1

∂x1

[
1

δ
(2wx1 + yx1 − z(Th − x1)u1)

]
− η1(h1(x1))
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Fig. 2: The temperature of each room 1, 2 and 3 over 50
time steps. Room 1 is compromised and rooms 2, 3 are
protected from failure and attack. The temperature of room 1
is depicted using solid black line. The temperature of room
2 is shown in blue dash line. The temperature of room 3 is
shown in red dash-dotted line.

≤ ∂h1

∂x1

[
1

δ
(w(x2 + x3) + yTe)

]
(15)

where η1(·) is a class K function. When x2 and x3 are chosen
such that constraint (15) is met regardless of u1 for any
x1 ∈ [10, 16], we have that h1(x1) ≥ 0 is satisfied. To this
end, we let u1 be chosen as the worst-case one with different
values of x1. By imposing inequality (15) as an additional
constraint when synthesizing u2 and u3, we can guarantee
the satisfaction of the safety constraint x ∈ C, even though
room 1 is compromised. We remark that constraint (15) needs
to be compatible with constraints h2(x2) ≥ 0 and h3(x3) ≥
0 to guarantee the feasibilities of u2 and u3. One can verify
that when u1 ≥ 6.2498, incorporating constraint (15) leads
to infeasibility when synthesizing u2 and u3.

Now, for the simulation we let the temperature in each
room i be at the boundary of their corresponding safety
constraint at the first time step. We then compute the inputs
u2 and u3 at each time step and depict the evolution of the
temperature in each room in Fig. 2. We plot the temperature
of room 1, 2, and 3 using black solid line, blue dash line,
and red dash-dotted line, respectively. We observe that the
temperature in each room i always satisfies that hi(xi) ≥ 0,
indicating that the safety constraint is never violated even
though the controller of room 1 is compromised.

VII. CONCLUSION

In this paper, we studied the problem of safety-critical
control synthesis of CPS with multiple interconnected sub-
systems. We considered that a set of sub-systems are vul-
nerable in the sense that their controllers may incur ran-
dom failures or malicious attacks. For the vulnerable sub-
systems we introduced resilient-safety indices (RSIs) bound-
ing the worst-case impacts of vulnerable systems towards
the specified safety constraints. The sign of RSI indicates



the contribution of vulnerable sub-system in either satisfying
or violating the corresponding safety constraint whereas
the magnitude quantifies such contribution. We provided
a sufficient condition for the control policies in the non-
vulnerable sub-systems so that the safety constraints are
satisfied in the presence of failure or attack in the vulnerable
sub-systems. We formulated sum-of-squares optimization
programs to compute the RSIs and safety-ensuring control
policies. Control policy in each sub-system can be computed
independently using our proposed algorithm. We presented
two special cases for which the RSIs can be found more
efficiently. We demonstrated the usefulness of our proposed
approach using an example on temperature regulation of
interconnected rooms.
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