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Abstract

Hyperspectral image (HSI) with narrow spectral bands

can capture rich spectral information, but it sacrifices its

spatial resolution in the process. Many machine-learning-

based HSI super-resolution (SR) algorithms have been pro-

posed recently. However, one of the fundamental limita-

tions of these approaches is that they are highly dependent

on image and camera settings and can only learn to map

an input HSI with one specific setting to an output HSI

with another. However, different cameras capture images

with different spectral response functions and bands num-

bers due to the diversity of HSI cameras. Consequently, the

existing machine-learning-based approaches fail to learn to

super-resolve HSIs for a wide variety of input-output band

settings. We propose a single Meta-Learning-Based Super-

Resolution (MLSR) model, which can take in HSI images

at an arbitrary number of input bands’ peak wavelengths

and generate SR HSIs with an arbitrary number of out-

put bands’ peak wavelengths. We leverage NTIRE2020 and

ICVL datasets to train and validate the performance of the

MLSR model. The results show that the single proposed

model can successfully generate super-resolved HSI bands

at arbitrary input-output band settings. The results are bet-

ter or at least comparable to baselines that are separately

trained on a specific input-output band setting.

1. Introduction

Hyperspectral imaging has proven effective in solving

numerous computer vision tasks, including image segmen-

tation, object recognition, material sensing, and surface

characterization in different domains like remote sensing,

astronomy, materials science, and biology [14, 19, 26, 42].

HSI can capture rich spectral information by capturing

bands near multiple peak wavelengths with a narrow band-

width. However, HSI is often in low spatial resolution [53],

as more filters need to be accommodated in the optical sen-

sor mosaic. This drawback hinders the use of HSI for appli-

cations that require high resolution (HR) HSI. Many efforts

have been devoted to the study of HSI SR. Among all of

Figure 1: The overall architecture of our proposed MLSR.

It takes in an HSI with one bands setting, super-resolve it

with RGB guidance, and generate HR HSI with another

bands settings. The Red arrows on the left spectral response

curves represents the peak wavelengths.

them, the fusion-based HSI SR recently gains a lot of atten-

tion due to its outstanding performance and accessibility of

HR RGB. It leverages simultaneously collected HR multi-

spectral image to spatially super-resolve the low resolution

(LR) HSI [18, 25, 40, 43, 45, 50]. Both optimization based

and deep-learning based approaches have been proposed for

fusing high spatial frequency information in RGB with LR

HSI to generate HR HSI.

Despite the moderate success of fusion-based HSI SR, it

is limited to fixed input-output band settings, making it im-

practical in real-world settings. Different HSI cameras can

image at different peak wavelengths. Hence, existing SR

models that are trained to operate with a fixed set of input-

output wavelengths are often fairly restrictive for broad ap-

plication with other HSI cameras [10, 47, 55]. This project

proposes a meta-learning-based SR model to address those

two limitations. Meta-learning [20] is a broad definition of a

wide range of methods that can learn to learn. In this paper,

instead of MAML-like methods, ºmetaº refers to a module

in the proposed structure whose weight is the output of an-

other network that takes in other information as input. The

question we want to answer in this paper is: ªCan a sin-

gle meta-learning-based machine learning model perform

SR on HSI with bands at arbitrary input peak wavelengths

and output SR image bands at another arbitrary wavelengths
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setting.º This work answers this question by demonstrating

how a single SR model can be trained on HSIs with differ-

ent input-output band numbers and peak wavelengths. The

core component of MLSR is a meta weight prediction mod-

ule that maps from wavelengths to the weights of the meta

wavelengths convolution layer. The meta block takes the

responsibility of fusing and unmixing spectrum information

during the encoding and decoding of different input-output

bands, which frees the backbone from taking care of both

spatial SR and spectrum encoding/decoding.

This paper introduces a new task: RGB-guided HSI

super-resolution with arbitrary input-output bands. This

task requires flexible input formats, spectral-domain under-

standing, retrieval at arbitrary spectrum position, and super-

resolved reconstruction. We systematically train and evalu-

ate our proposed MLSR on multiple datasets (i.e., NTIRE

2020 and ICVL) and compare it with the state-of-the-art

spatial and spectral joint super-resolution approaches [32].

The main highlight of our approach is that only one sin-

gle trained model can achieve SR at arbitrary input-output

HSI bands settings while the standard deep-learning meth-

ods need to train one model for each setting. In most cases,

the proposed MLSR outperforms baseline methods.

2. Related Works

2.1. HSI Super-resolution

Existing HSI SR algorithms can be broadly classified

into two approaches: single HSI SR and MSI-HSI fusion-

based SR. The former assumes that no auxiliary MSI image

like HR RGB is available and solely operate on the input LR

HSI data [1, 5, 17, 21, 28, 33, 44, 49]. Unlike single-image

scheme, fusion-based methods take advantage of both the

high spatial resolution in the multispectral image (MSI), and

the high spectral resolution in the HSI. The core idea is to

guide the HSI SR with the high spatial resolution informa-

tion captured by the MSI images. Fusion approaches in-

clude Bayesian-based approaches [2,8,11,31], tensor-based

approaches [12, 18, 43, 51, 54], matrix factorization-based

approaches [6,13,30,46], and deep-learning-based methods

[10, 24, 47, 55, 56]. Moreover, researchers have been study-

ing the application of image prior in this domain [24, 39].

2.2. Spectral Interpolation

Spectral interpolation has been explored extensively in

spectroscopy for estimating the reflectance or transmittance

spectra where fine-grained measurement is not available. To

this end, several interpolation methods including linear, cu-

bic, PCA-based methods have proven effective for spectral

interpolation [23, 48]. Furthermore, according to [36], cu-

bic interpolation has been established as an effective and

adequate spectral interpolation technique, which shows that

a more nonlinear model for interpolation does not boost

the performance any further. More recently, deep-learning-

based methods have also been proposed for jointly learning

spectral-spatial super-resolution [32]. Recent works have

also explored RGB to HSI mapping with deep-learning and

achieved remarkable performance [4,27,38]. However, they

can only work on RGB to produce HSI with specific settings

and do not have any input-output flexibility.

2.3. Meta Strategy in Image Super-Resolution

Meta-learning [20] has attracted significant attention in

recent years. Weight prediction network or hypernetworks

is an essential component of meta-learning [20]. Hypernet-

works [7, 15] are neural networks that predict the weight

of another neural network based on some auxiliary infor-

mation or embeddings. Hypernetworks are usually used in

multi-task learning and synthesizing predictive models by

conditioning an embedding of the support dataset [34, 35].

In this scenario, the target network’s weights are not learned

during the training process; instead, it is predicted by an-

other network. For example, Hu et al. [22] proposed a

meta-upsample module for SR tasks and made the upsample

scale arbitrary and continuous. Cai et al. [9] used a hyper-

network to predict the classifier’s weight to migrate to new

categories without re-train few-shot learning. Our proposed

MLSR also applied this mechanism which will be explained

in the next section.

2.4. End-to-End SSSR

There are several works [32, 52] exploring spatial and

spectral SR recently. They find that compared to spatial

and spectral SR separately, the end-to-end model can avoid

spectral distortion and spatial inconsistency and lead to bet-

ter overall results. Yi’s method [52] bases on optimization,

while Mei et al. [32] focuses on deep-learning models and

discusses about the best way to combine spatial and spectral

SR stages. As they show us some good results, these meth-

ods are fixed to a certain strict setting and cannot be applied

on multiple datasets with different settings.

3. MLSR

In this section, we introduce the proposed MLSR.

Fig. 2 shows the overall architecture. It mainly con-

sists of five parts: Spectrum-Oriented Feature Extrac-

tion (SOFE), Wavelength-2-Weight Network (W2WNet),

Spectrum-Oriented Bands Reconstruction (SOBR), a back-

bone network, and an upsampler.

3.1. Formulation and Motivation

The overall architecture is motivated by performing SR

on HSIs with different input settings and output HR bands

on demand. A feature extraction layer with fixed parame-

ters does not have the flexibility to handle input with vari-

able channels. To precisely extract features in each band,
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Figure 2: The architecture of MLSR. (a) The overview of the whole model. (b) Structure of SOFE. (c) Structure of SOBR.

(d) Structure of W2WNet. MLSR consists of three stages: SOFE in the head, backbone and upsample in the body and SOBR

in the tail. Light blue dashed rectangles surround inputs, and the golden dashed rectangle marks the output.

we need a meta module with a full understanding of wave-

lengths information to predict the feature extractor corre-

sponding to each image band. Each band has a unique

spectral response curve. Since the peak wavelengths are

the most prominent properties for each band, we use it as a

identifier in this work for simplicity. Our design also takes

advantage of fusion-based HSI SR by incorporating high-

resolution spatial information from HR RGB which guides

LR HSI during the SR process. The backbone is formed

by residual dense blocks [57] which shows superior perfor-

mance on RGB SR. Like the feature extraction layer, the

output layer also leverages meta-learning to effectively re-

construct an arbitrary number of image bands given the cor-

responding peak wavelengths.

We denote the low spatial and spectral resolution image

as Z̃ ∈ R
h×w×s and the LR RGB image as Ỹ ∈ R

h×w×3

where h,w, and s stand for height, width and number of LR

HSI bands. We denote the high spatial and spectral reso-

lution HSI as Z ∈ R
H×W×S and the HR RGB image as

Y ∈ R
H×W×3, where H ,W , and S stand for height, width

and number of HR HSI bands. Moreover, as peak wave-

lengths of the input and output spectral bands are made vari-

able in our method, they are denoted as λin ∈ R
s+3, where

λin =[λhsi, λrgb], λhsi ∈ R
s, λrgb ∈ R

3 , [,] denotes con-

catenation operation, and λout ∈ R
S . The λhsi and λrgb

are input wavelengths of the LR HSI and RGB bands.

The objective of MLSR is solving:

Z = g(Z̃, Y, λin, λout|ϕ, θ) (1)

where g stands for the overall model inference, ϕ represents

the weight of the hypernetwork W2WNet, and θ represents

parameters of all other parts in MLSR.

3.2. W2WNet

Given peak wavelengths and bandwidth indicators,

W2WNet is to predict the weights of the meta wave-

length embedding convolution (Meta-WEC) module. Dur-

ing training, the spectrum information naturally embedded

in each image band can be encoded into the parameters of

the W2WNet and extracted at inference. This design allows

flexibility in the input/output formats. It enables the Meta-

WEC to filter out noise from other bands and keep distinct

features for a particular band in extraction and reconstruc-

tion. The meta module in W2WNet proves the possibility

of building a general cross-dataset model for HSI images.

The input of W2WNet is two scalars: corresponding

peak wavelength of an HSI band and a binary digit indi-

cating whether this band is from an HSI or RGB image. In

our experiment, a 1x1 convolution layer in Meta-WEC can

filter out noisy information and extract bands’ features. To

make the model compact and highly efficient, we decide

to use the 1x1 convolution layer. Better performance can

be achieved by swapping in a larger module. We use this
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simple network to demonstrate the advances of our meta-

network. Since the required storage of information is small,

we used two fully-connect layers to store the bands’ knowl-

edge. Fig. 2(d) shows the structure of the W2WNet, where

the ªweightº block represents the predicted weights for the

Meta-WEC. W2WNet1 and W2WNet2 take input and out-

put wavelengths, respectively.

3.3. SOFE

SOFE generates feature representation from each input

band corresponding to its specific spectrum information

(i.e., wavelength and bandwidth). It consists of a feature

extraction module and a meta wavelength embedding con-

volution (Meta-WEC) module. Meta-WEC follows a sim-

ilar Meta mechanism as [22]. The weights of Meta-WEC

are the output of W2WNet.

We loop through the input LR HSI bands and apply our

feature extractor to each band independently. The feature

extractor module consists of eight Residual Blocks. Af-

ter extracting the generic features, we use the Meta-WEC

module, a 2D convolution with a 1 × 1 kernel, to encode

wavelengths information into the feature of each band cor-

respondingly. This operation essentially embeds a band’s

spectrum information into its feature representation. This

design makes the model more robust in terms of input-

output formats.

Additionally, as the bands in RGB image has wider

bandwidth and embeds spectral information in a wider

range than narrow-band HSI bands, following the previ-

ous work [21], we pass each band of the paired LR RGB

to SOFE in parallel as well. After SOFE, we merge the

spectrum-informed feature maps for each band by taking

the average to form a general embedding. When we train

our model on five input bands, LSTM learns that band 0 is

followed by bands 7. However, when we train our model

on seven input bands, band 0 is followed by band 5. The

LSTM is not able to correctly capture the correlation be-

tween image bands.

We can calculate the spectrum-informed feature maps

generated by SOFE modules as follow:

B =
1

s+ 3

s+3∑

i=1

Conv(R0([Z̃, Ỹ ]i),W
i
in) (2)

where Conv denotes Meta-WEC1, B ∈ R
h×w×G stands

for the spectrum-informed feature map, W i
in represents the

weights of Meta-WEC for each LR HSI or LR RGB band

where i is the index of the concatenated LR HSI and LR

RGB bands, R0 means the feature extraction module in

SOFE, and G represents the channel number of the feature

map extracted in the last step. Conv denotes the Meta-WEC

applied on the features of ith band and takes matrix W i
in as

its weights. W i
in is the output from W2WNet1 with wave-

length λi
in as its input.

3.4. Backbone and Upsampler

The backbone uses a deep neural network to learn deep

features and map LR representation B to HR representation

D (figure 2). We use eight Residual Dense Blocks (RDB)

proposed by Zhang et al. [57] as our backbone module. This

module is widely adopted in all kinds of SR tasks and has

shown strong performance. We add a skip connection over

the whole backbone to resolve the gradient vanishing prob-

lem caused by the deep network [16, 57]. We use eight lay-

ers of RDB in the backbone, which is half of the layers than

the original proposed Residual Dense Network.

We use sub-pixel upsampling layer proposed by Shi et

al. in [37] as our upsampler. After upsampling, the general

embedding C becomes D ∈ R
H×W×G, which have the

same spacial size as Z. Then D and Y are concatenated

together along the channel dimension, and the result feature

map E contains both high spectral resolution information

from D and high spatial information from Y .

The feature map D is a general embedding which con-

tains the HR bands’ knowledge for all covered spectrum

wavelength range, and the module SOBR can be viewed as

a filter to extract a single band at a given wavelength.

After the upsampling module, the feature map D already

has the same spatial size as HR RGB. As HR RGB contains

more fine-grained HR information and can provide guid-

ance for the final output, feature map D is concatenated

with it before going to SOBR.

3.5. SOBR

SOBR reconstructs the output image bands guided by

required spectrum (i.e., wavelength and band) information,

backbone generated HR embedding, and high-resolution

spatial information from HR RGB. SOBR consists of Meta-

WEC2 and a reconstruction module consisting of four

Residual Blocks.

SOBR extract features from the upsampled general em-

bedding for each output band given its peak wavelength.

W2WNet generates the weights for Meta-WEC2 based on

the wavelengths. The output of SOBR is a single band of

HR HSI, and SOBR generates S bands for the SR HSI. The

operation in SOBR can be represented as follow:

Z = CatSk=1R1(Conv([D,Y ],W k
out)) (3)

where Cat denotes the concatenate operation, Conv de-

notes Meta-WEC2. D denotes the upsampled output of the

backbone module, R1 stands for the reconstruction mod-

ule in SOFE, and W k
out is the weight of Meta-WEC2 for

kth output band. We apply the reconstruction model after

Meta-WEC2 to alleviate the high-level discrepancies in the

reconstructed features.
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4. Experiments

4.1. Datasets

Most of the popular HSI datasets are poorly organized

and lack diversity due to their limited size and object types.

Because of its generalizability and flexibility, the proposed

MLSR can not be properly trained on those tiny datasets.

Thus mainly two datasets are compared on: NTIRE2020 [4]

and ICVL [3], both of which contain more than 200 images.

NTIRE2020: The NTIRE 2020 dataset [4] is currently

considered as the most comprehensive HSI dataset. The

HSIs are captured by a Specim IQ mobile hyperspectral

camera. At every 10nm between 400nm and 700nm, an

image band is captured by a distinct filter. Thus an image in

NITRE has 31 bands with 512× 482 spatial dimension.

ICVL: The ICVL dataset was released in 2016 [3].

The hyperspectral images were captured by the Specim PS

Kappa DX4 hyperspectral camera. Each original HSI con-

sists of 519 bands from 400nm to 700nm with a step size of

1.25nm. The 519 bands are downsampled to 31 bands, and

the step size becomes 10nm. The dimension of processed

HSI in the ICVL dataset is 1392× 1300× 31.

4.2. Training Details

As this paper focuses on HSI SR with arbitrary input-

output settings, the experiments are carefully designed to

support the claim. There are three types of experiments in

total, which are: 1. Use evenly sampled LR input bands

to predict all possible SR bands. 2. Use completely ran-

domly sampled input bands to predict all possible SR bands.

3. Use central LR bands to predict SR bands on the sides.

Since the first experiment is more standardized and easier

to compare with baseline methods, it is selected as the main

experiment, while the other two are studied in the auxiliary

experiments subsection. The rest of this subsection are de-

tails of the main experiment.

MLSR is trained and evaluated on two datasets,

NTIRE2020 and ICVL. For NTIRE2020, we follow the

same organization of training and evaluation datasets of the

NTIRE2020 competition [4]. For ICVL, 40 images are se-

lected as evaluation set, while the rest are training set.

For each dataset, five sub-datasets are made by evenly

sampling five to nine bands from all 31 bands in the origi-

nal LR HSI images. A series of sub-datasets are made for

each dataset to train MLSR as they share the same domain

knowledge while yet have different input band number and

peak wavelengths.

Since each output band is generated independently, the

output bands’ peak wavelengths are set to the same as HR

HSI, 31 in our case, to let W2WNet2 learn as much output

pattern as possible. For one trained model, it can be applied

to various input bands’ combinations and output HR HSI

bands at any requested peak wavelengths. All sub-datasets

of a dataset are trained simultaneously and each batch is

randomly sampled from one of these sub-datasets. During

the evaluation, one sub-dataset is used each time to generate

a PSNR/SSIM pair. The SR capability of model is evaluated

on multiple scales: ×2, ×3 and ×4.

Each LR input image pair(RGB and HSI) is cropped

to a 50 × 50 patch randomly while keeping the contents

of RGB and HSI the same. For data augmentation, each

patch is applied 90◦ rotation, horizontal and vertical flip

randomly with 50% possibility. All the models are trained

from scratch since the input channel number is not compat-

ible with normal RGB models, and thus pre-train technique

cannot be applied. The learning rate is set to 10−4 initially

and will decrease by half every 20 epochs. Moreover, for

loss function, we followed previous works [22, 29] and ap-

plied L1 loss for better convergence. The graphic cards we

use are eight RTX 2080ti or RTX 1080ti with 11GB of video

memory. The corresponding batch size for ×2, ×3 and ×4
are 64, 32, and 32. Each model is trained for approximately

200 epochs, and training takes one and a half days, two

days, and two and a half days for these three scales.

4.3. Baseline methods

To the best of our knowledge, there is no HSI super

resolution algorithm that can support arbitrary input-output

band settings. To compare the performance of MLSR, we

carefully developed several baseline methods that have been

trained and tested on specific input-output band settings

(i.e., 5 or 7 specific input bands to all 31 bands). Base-

lines can learn a specific input-output setting better since it

does not have to learn to do SR in a new setting. In Table

1, baselines can be classified into two categories: two-stage

methods and one-stage methods. The former do spectral

and spatial SR separately, while the latter do both at the

same time.

For deep-learning-based models, SepSSJSR1 and

SimSSJSR [32] are selected. SepSSJSR1 is a two-stage

method, while SimSSJSR is a one-stage method. They are

completely retrained on the same datasets using the same

training method during the experiments. Since the two

deep-learning-based methods have fixed structures and can

only be trained and evaluated on a fixed input setting, one

separate model needs to be trained for each band setting,

although it is not fair for MLSR.

As similar works are limited even with simplification,

besides methods mentioned above, several original base-

lines are designed as well. Each baseline method’s input

needs to be flexible to compare impartially, especially the

band’s number. However, all existing parametric meth-

ods, including deep-learning-based ones, cannot provide

this flexibility. Therefore, some non-parametric methods

have to be selected. They interpolate inputs with various

bands number to a fixed higher spectral resolution LR HSI
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NTIRE2020 ICVL

Stage1 Stage2
Input

Bands

Scale ×2
PSNR/SSIM

Scale ×3
PSNR/SSIM

Scale ×4
PSNR/SSIM

Scale ×2
PSNR/SSIM

Scale ×3
PSNR/SSIM

Scale ×4
PSNR/SSIM

Linear EDSR

5

37.26/0.973 32.92/0.929 31.31/0.897 44.69/0.991 42.80/0.983 42.18/0.978

Linear RDN 38.62/0.981 35.76/0.956 35.41/0.948 44.80/0.992 43.06/0.984 42.43/0.979

Cubic EDSR 35.66/0.960 31.72/0.917 30.33/0.882 43.48/0.990 41.66/0.981 40.77/0.975

Cubic RDN 36.35/0.968 34.05/0.941 33.94/0.931 43.62/0.990 41.47/0.981 40.71/0.976

SepSSJSR1∗ 40.48/0.972 31.68/0.848 32.29/0.853 48.08/0.992 44.28/0.980 43.18/0.973

SimSSJSR∗ 37.63/0.949 30.27/0.796 30.23/0.786 44.24/0.980 39.82/0.955 39.27/0.943

MLSR 41.77/0.985 39.56/0.966 38.07/0.966 47.89/0.993 46.59/0.992 45.94/0.991

Linear EDSR

7

38.52/0.976 33.38/0.930 31.56/0.900 45.02/0.993 43.04/0.984 42.37/0.979

Linear RDN 39.30/0.984 36.89/0.959 36.55/0.951 45.34/0.993 43.33/0.985 42.65/0.980

Cubic EDSR 39.06/0.975 33.47/0.930 31.60/0.898 45.34/0.993 43.21/0.984 42.51/0.979

Cubic RDN 40.37/0.984 36.97/0.959 36.70/0.951 45.55/0.993 43.34/0.985 42.72/0.980

SepSSJSR1∗ 41.23/0.973 31.94/0.852 32.51/0.856 48.85/0.993 44.31/0.980 43.23/0.972

SimSSJSR∗ 39.13/0.960 30.79/0.812 30.75/0.805 44.83/0.982 41.04/0.959 39.90/0.950

MLSR 42.06/0.985 39.57/0.966 38.12/0.966 48.03/0.993 46.58/0.992 46.10/0.991

Table 1: Evaluation results on NTIRE2020 and ICVL. Step1 and Step2 stand for the spectral interpolation and spatial super-

resolution method, respectively. * denotes methods that train one model for each setting.

and then send the result to a following spatial SR model to

generate the HSI with high spectral and spatial resolution.

As a result, those original baselines are all two-stage meth-

ods in spectral and spatial SR order.

In the first stage, Cubic and Linear are chosen since they

can guarantee the ªone pipeline for all settingsº target. Each

pixel in the input HSI is treated as a spectrum curve, and

the value in different bands are some sample points on the

curve. The spectral interpolation aims to resample more

densely on the curve. In the second stage, a modified ver-

sion of Enhanced Deep Super-Resolution network (EDSR)

[29], and Residual Dense Network (RDN) [57] are applied.

Since they do not use HR RGB, for the fairness of compar-

ison, they are both modified to fusion-based methods sim-

ilarly to MLSR. LR RGB bands are concatenated with LR

HSI initially, and the HR RGB bands are concatenated with

the output feature map after the upsampling module in the

tail. EDSR and RDN are selected because they have shown

superior RGB SR performance, and both are widely used as

baselines in recent SR papers. Moreover, as the backbone of

MLSR is a modified version of RDN, using it as the second

stage baseline model can better support the effectiveness of

the proposed structure.

4.4. Model Performance

Following the common practice, we evaluate the MLSR

on three scales, i.e., 2×, 3×, 4×. For each scale and each

dataset, one model is trained and evaluated. For evaluation,

peak signal-to-noise ratio (PSNR), and structure similarity

(SSIM), which are the two most widely used quantitative

picture quality indices (PQIs), are adopted.

Figure 3: Average PSNR over input band number with scal-

ing factor ×3.

Table 1 shows the evaluation results on MLSR and base-

line methods. It is clear that for both datasets and un-

der most settings, MLSR gets the same level or better re-

sults than baseline models. Fig. 4 shows two examples of

the resulting SR bands comparison and the corresponding

residual error map. The figure clearly shows that though

the two baselines proposed by [32] are good at predicting

low-frequency parts, they are not working well on high-

frequency parts like edges, which leads to bad results.

It can be observed that the number of input bands largely

influences the performance of baseline methods. With

fewer input bands, the spectral-spatial SR becomes more

challenging. To evaluate the impact of the input band num-

ber on the performance, the input band number varies from

5 to 9 using equidistant sampling. As shown in Fig. 3, the
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Figure 4: Predicted HSI bands by different methods and their absolute error map. Band 3 is selected in the upper image, band

20 selected in the lower image. The the scaling factor is ×3.

average PSNR of the output HR HSIs from MLSR is much

higher than the baselines. As the number of input bands de-

creases, the PSNRs of the baselines decrease rapidly. How-

ever, MLSR only drops slightly and can maintain high per-

formance across the numbers of input bands.

4.5. Auxiliary Experiments: Spectral Extrapolation
and Randomized Input Bands

Extrapolate: Experiment 1 Experiment 2

Baseline 30.26/0.675 29.27/0.671

MLSR 36.40/0.970 35.99/0.970

Table 2: The performance (PSNR/SSIM) of baseline and

MLSR for spectral extrapolation and spatial SR task in two

experimental settings. The scaling factor is ×2.

Since the proposed task requires the model to understand

the spectrum and reconstruct HR bands at requested peak

wavelengths, it is necessary to know how the model pre-

dicts bands whose peak wavelengths are outside of all the

training bands’ wavelengths. This part is similar to extrap-

olation, which is generally considered a more challenging

problem than interpolation due to the lack of guidance on

both sides [41]. Two experiments are designed to evalu-

ate the performance of MLSR on spatial SR with spectral

extrapolation on LR HSI. In the first experiment, MLSR is

asked to generate the last ten bands using only the first 21

bands of the LR input. The second experiment uses the mid-

dle 21 bands of the LR input to generate the five bands on

each side of the HR output. Both experiments are done on

NTIRE with the scaling factor ×2. MLSR is compared with

the best performing baseline: the Cubic+RDN, and Table 2

shows the results. Although compared to spectral interpola-

tion, the performance decreases, MLSR is still much better

than the baseline on extrapolation.

Input Bands Index Baseline MLSR

2,5,11,20,28 29.75/0.860 38.64/0.976

7,19,21,25,29 23.57/0.649 38.38/0.975

8,12,15,20,21 22.27/0.437 38.02/0.973

1,4,9,12,19,28 30.91/0.875 38.63/0.976

5,6,8,17,19,20,25 28.09/0.663 38.36/0.975

6,7,9,10,11,12,15,17,22 24.53/0.587 38.07/0.973

Table 3: The performance (PSNR/SSIM) of baseline and

MLSR with randomly selected HSI bands. The scaling fac-

tor is ×2, and the baseline method is Cubic+RDN.

Another experiment is conducted to evaluate further the

model’s ability to perform spectral HR reconstruction on

more diverse input configurations. The model outputs the

whole 31 bands with randomly selected 5 to 9 bands from

the spectrum of LR HSI as input. With the random selec-

tion, the input bands can cluster together and can be un-

evenly distributed. As a result, interpolation and extrapo-

lation are conducted at the same time. As shown in Ta-

ble 3, the performance of MLSR is consistently better than

the baseline on all randomly selected input formats with the

scaling factor ×2. Moreover, a single MLSR model to per-

form all the experiments in Table 3 is trained. The results

prove that the proposed W2WNet can learn the knowledge
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(a) The PSNR of different methods across different bands with LR

HSIs with 5 input bands. The gray vertical dash lines highlights

the band’s indices that is part of the input LR HSI.

(b) Illustration of PSNR curves for different number of input bands

for MLSR and Cubic-RDN baseline. The input HSI bands’ indices

are highlighted by the small triangles with the same color.

Figure 5: Performance of MLSR and baselines across dif-

ferent parts of the spectrum with the scaling factor ×3.

embedded in the spectrum instead of the statistical bias in

the predefined wavelengths and settings.

4.6. Performance over Output Bands

So far, it is well proved that the total number of input

bands impacts the performance. In this subsection, how the

input bands’ distribution affect the output bands is studied.

Fig. 5a shows the band-wise PSNR of MLSR and base-

lines with five input bands. The scaling factor is set to ×3.

The baseline models find local maxima at the same bands

used in the input (highlighted by the vertical dash line in

Fig. 5a). As the distance to the nearest input band index in-

creases, there is a fairly sharp decrease in the baseline mod-

els’ performance. Overall, the performances of the base-

line models are dictated by the input LR HSI bands’ loca-

tions. The proposed MLSR consistently outperforms all the

baseline models across all the bands. While the difference

in performance between MLSR and the baseline models is

relatively low at the input bands’ indices, the main advan-

tage of MLSR can be observed at indices further away from

these bands. Overall the proposed MLSR gives a relatively

more flat response curve and can generate superior spectral-

spatial super-resolved HSI at intermediate wavelengths.

Fig. 5b shows the PSNR of MLSR and one top-

performing baseline (i.e., Cubic RDN) across all the bands

as the number of input band number changes with the scal-

ing factor ×3. Again, the performance of the baseline

model is primarily dictated by choice of the input bands,

and the shape of the PSNR curve varies significantly as the

input band number changes. Surprisingly, the shape of the

PSNR curve of the proposed MLSR model almost remains

the same as the number of input bands and the input band

indices changes. Overall, it indicates that MLSR is agnostic

to the input band settings and provides a consistent, flatter,

and higher response across the spectrum.

4.7. Ablation Study

To prove the effectiveness of W2WNet and Meta-WEC,

Meta-WECs are replaced with an ordinary 1 × 1 convolu-

tion, removes the W2WNet, and keeps all other parts the

same. The scaling factor is set to ×2, the input bands num-

ber is five, and the dataset is NTIRE2020. The first ex-

periment in Table 4 only replaces the Meta-WEC in SOFE,

while the second replaces Meta-WECs in both SOFE and

SOBR. Also, to prove that 1 × 1 kernel is a better choice

for Meta-WEC than other settings like widely-used 3 × 3,

the same experiment as above is done with the Meta-WEC

kernel’s size set to 3× 3.

Experiment Results

Replace Meta-WEC in SOFE 39.13/0.978

Replace Meta-WEC in SOFE and SOBR 27.76/0.917

Replace Meta-WEC 1×1 kernel by 3×3 39.93/0.980

MLSR Original 41.77/0.985

Table 4: Ablation study results(PSNR/SSIM).

5. Conclusion

This paper proposes a Meta fusion-based framework for

spectral understanding, retrieval, and high-resolution HSI

reconstruction. The proposed W2WNet and Meta-WEC

modules adaptively learn spectral information in each im-

age band and enrich its feature map. Our model has shown

significant flexibility and robustness in generating arbi-

trary input-output bands within the same domain knowl-

edge datasets. It is the first step toward cross-dataset HSI

SR with diverse domain knowledge. Extensive experiments

show the superiority of our novel design.
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