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Abstract

Recently, a new trend of exploring training sparsity has emerged, which removes
parameters during training, leading to both training and inference efficiency im-
provement. This line of works primarily aims to obtain a single sparse model
under a pre-defined large sparsity ratio. It leads to a static/fixed sparse inference
model that is not capable of adjusting or re-configuring its computation complexity
(i.e., inference structure, latency) after training for real-world varying and dynamic
hardware resource availability. To enable such run-time or post-training network
morphing, the concept of ‘dynamic inference’ or ‘training-once-for-all’ has been
proposed to train a single network consisting of multiple sub-nets once, but each
sub-net could perform the same inference function with different computing com-
plexity. However, the traditional dynamic inference training method requires a
joint training scheme with multi-objective optimization, which suffers from very
large training overhead. In this work, for the first time, we propose a novel alter-
nating sparse training (AST) scheme to train multiple sparse sub-nets for dynamic
inference without extra training cost compared to the case of training a single
sparse model from scratch. Furthermore, to mitigate the interference of weight
update among sub-nets without losing the generalization of optimization, we pro-
pose gradient correction within the inner-group iterations to reduce their weight
update interference. We validate the proposed AST on multiple datasets against
state-of-the-art sparse training methods, which shows that AST achieves similar or
better accuracy, but only needs to train once to get multiple sparse sub-nets with
different sparsity ratios. More importantly, comparing with the traditional joint
training based dynamic inference training methodology, the large training overhead
is completely eliminated without affecting the accuracy of each sub-net. Code is
available at https://github.com/mengjian0502/AST.

1 Introduction

For Deep Neural Networks (DNNs), sparsification (i.e., pruning) has been widely explored in the last
decade aiming to reduce the computational and memory cost by removing unimportant parameters.
Early works of DNN pruning focused on exploring the post-training sparsity [10, 7, 11] to improve
the inference efficiency, which prunes a well-trained dense model followed by additional fine-tuning
to recover accuracy. Recently, exploring in-training sparsity has emerged as a promising technique
to improve the training efficiency by pruning parameters during training [3, 4, 9, 19, 14]. The
success of these in-training sparsification methods is mainly rewarded from the prune-and-regrow
technique, which periodically and aggressively eliminates the unimportant non-zero weights from the
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Figure 1: (a) Individually train multiple sub-nets from scratch. (b) Jointly train multiple sub-nets for
dynamic inference. (c) The proposed alternating sparse training (AST) scheme.

model, and then regrows certain portion of the pruned candidates back. Until now, such in-training
sparsity works primarily focused on training a single sparse model under a pre-defined sparsity ratio,
generating a static and fixed sparse network. In other words, the sparsity ratio has to be pre-calculated
before training depending on the target hardware resources and application requirement. However,
obtaining multiple sparse models (towards storage/energy vs. accuracy trade-off) from the same
model architecture requires extra fine-tuning or training overhead.

To enable run-time or post-training network morphing, the concept of ‘dynamic inference’ or ‘training-
once-for-all’ has emerged recently [24, 2]. Slimmable Neural Network (S-Net) [24] and its optimized
counterpart (US-Net) [22] allow the model to switch between different architectures among the
pre-defined sub-net candidates with different channel widths. Such run-time dynamics allows users to
tune the tradeoffs between model complexity and inference accuracy. To mitigate the weight update
interference, S-Net/US-Net forces the smaller sub-net to be completely nested by the larger sub-net.
Based on that, OFA [2] and BigNAS [23] are extended to support a much larger number of sub-nets
across more dimensions (e.g., depth, width, kernel size, and resolution). However, all prior methods
rely on a joint training scheme with multi-objective optimization, which requires minimizing the loss
of all sub-nets collectively. Specifically, all sub-nets have to perform forward and backward passes
in each mini-batch iteration, resulting in much larger training overhead compared to the individual
network training.

To address these concerns, we propose a novel alternating sparse training (AST) method for dynamic
inference which aims to train multiple sparse sub-nets at one training procedure without extra training
cost, compared to training a single sparse model independently [3, 4, 9, 19, 14]. To generate and
sparsely train each sub-net, we adapt the prune-and-regrow scheme from the in-training sparsity
method [14], as it achieves high training sparsity among other schemes. AST alternately trains
sub-nets with different sparsity values for different mini-batch iterations, as illustrated in Figure 1.
Inspired by the implicit regularization of SGD that was revealed by [18, 16], we further demonstrate
such alternating training scheme for dynamic inference helps to maximize the inner product of
gradients between the consecutive mini-batch iterations (i.e., sub-nets in our case). However, even
with the help of the implicit regularization, we find that negative inner products still remain, which
represents the conflicting gradient direction between each two sub-nets. Such phenomenon causes
the interference of weight update, while it is helpful to escape from local minima and improve
generalization of optimization for individual network training by mini-batch SGD [6, 1]. To mitigate
the interference of weight updates between sub-nets but without losing the generalization, we further
propose gradient correction to remove the conflicting gradient direction between sub-nets only within
inner-group iterations, which is defined as N consecutive mini-batch iterations, where N is the
number of sub-nets (e.g., N = 2 as shown in Figure 1).

Overall, compared to the sparse training and dynamic inference works, AST achieves both training
efficiency with sparsity (against dynamic inference) and inference dynamics with multiple sparse
sub-nets (against individual sparse training). We conduct comprehensive experiments on CIFAR-10,
CIFAR-100 and ImageNet datasets with various DNN models and sparsity granularities. Compared to
the SoTA sparse training on CIFAR, the proposed AST algorithm achieves similar or better accuracy
while training multiple sparse sub-nets all at once (reduced training cost). Furthermore, compared to
the dynamic inference method, AST consistently achieves better accuracy on all the experiments.
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2 Related Works and Background
2.1 Sparse Training
As summarized in [8], sparse training works mainly can be categorized into three groups according to
the time point the sparsity is applied: 1) Post-training sparsification [3, 4, 9, 19, 14], which removes
the weights by fine-tuning based on a pre-trained model; 2) Before-training [11, 20] sparsification,
which obtains a sparse model before the main training procedure; and 3) In-training sparsification,
which removes weights during the training process from scratch [14, 26, 4, 3].

In-training sparsification Different from post-training and before-training sparsification, exploit-
ing sparsity during training only requires a single training process from scratch. The pruning topology
is gradually perfectized along with the weights optimization. Compared to the before-training sparsifi-
cation, pruning the model during training makes the gradient visible to the algorithms, so the reflection
of the gradient can be used to correct the final pruning decision, leading to better accuracy compared
to post-training. Motivated by this, the prune-and-regrow technique [3] periodically removes the
unimportant non-zero weights from the sparse model and regrows certain pruned weights back during
each mini-batch iteration of training process. As a representative work, RigL [4] first prunes a certain
ratio r based on weight magnitude as:

w
′

= TopK(|w|, s− r), (1)

where TopK(v, k) returns the weight/activation tensor retaining the top k-proportion of elements
from v, and s is the targeted sparsity ratio. After that, the r proportion of new connections are
re-generated based on the gradient magnitude in the same mini-batch iteration:

w = w
′

+ TopK(gi!=w
′
,s+r) (2)

By doing so, such prune-and-regrow scheme optimizes the sparse connection with a fixed sparsity
ratio r during the entire training process. Based on this, recent works develop different weight
importance criterion to perform prune-and-regrow. SNFS [3] uses the momentum magnitude of
weight to do pruning. MEST [26] uses the sum of weight and gradient magnitude to indicate the
importance of weights for pruning, and further randomly select weights to grow back. In addition,
GraNet [14] employs the same rule as Rigl but adopts a smaller sparsity as initialization (e.g., 0.5)
and gradually prunes the model to the target sparsity (e.g., 0.8, 0.9) by following a cosine decay. In
addition, more similar to our work, [19, 16] propose to alternately train a dense model and one of
its sparse variant (i.e., sub-net) returning both an accurate dense model and a sub-net. However, the
rationality behind it is not clearly described. Overall, the objective of our work is obtaining multiple
sparse sub-networks with the same amount of training effort as the individual network sparsification.
More recently, based on the in-training sparsification mechanism, [13] proposes dynamic sparse
training ensemble method to independently generate multiple sparse sub-nets for ensemble. Such
method is orthogonal to our work which could be further combined to improve accuracy.

2.2 Joint Training for Dynamic Inference

Dynamic inference works [24, 22, 23, 2, 21] primarily aim to train a single network which consists of
multiple sub-nets to perform inference independently. Since the weights of the sub-nets are partially
shared between each other, they can be switched at run-time permitting dynamic inference accuracy-
complexity trade-off. Such concept is firstly proposed by Slimmable Neural Network (S-Net) [24] and
its optimized counterpart (US-Net) [22], which train a single neural network executable at different
channel-widths. Inspired by S-Net, OFA [2] and BigNAS [23] are proposed to construct a dynamic
DNN that includes a much larger number of sub-nets across many more dimensions (e.g., depth,
width, kernel size, and resolution) . Note that, as revealed by [2], to enable sub-nets switching with
un-compromised individually inference accuracy, the structures of sub-nets are defined by a subset
rule: the smaller sub-net must be the completely subset of the larger sub-net. Specifically, this line of
works train a network in a joint training fashion, which can be expressed as:

min EW

(

∑N

i=1
L(f(X, {Wi});Y ),

)

(3)

where X is the mini-batch of inputs with corresponding targets Y , and N is the number of sub-nets.
L(·; ·) calculates the cross-entropy loss of DNN output and target. f(X, {Wi}) computes the output
of sub-net parameterized by {Wi}. However, such method consumes much larger training time
compared to training a single individual model, since all sub-nets have to perform forward and
backward once in each mini-batch iteration as shown in Eq. 3.
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Figure 2: Alternating sparse training (AST): The subset network (sub-net) are iteratively activated
throughout the training. The model only learns the active connections of each sub-net, leading to the
one-time-trained multiple sub-nets.

3 Sparse Train Once Get More

3.1 Rationale of Alternating Sparse Training (AST)

Different from joint training for dynamic inference such as S-Net [24] and US-Net [22], which
updates all sub-nets in each mini-batch iteration, we propose the alternating sparse training (AST)
scheme which trains multiple sub-nets in an alternating fashion over time, where a single sub-net is
trained in one iteration. Note that, the sub-net is defined a part weight of the network, which can run
inference independently. All the sub-nets are partial shared with each other within a single network.
As shown in Figure 2, assuming we have three sub-nets with different sparsity ratio (e.g., sub-net 1
< sub-net 2 < sub-net 3), such training scheme will start to train the sub-net 1 in the first iteration
followed by the training of the sub-net 2, and sub-net 3 in the second and third iteration, respectively.
It only updates the active connections while ignoring the disabled weights (i.e., pruned for current
sparse sub-net), then repeatedly switches sub-nets every three consecutive iterations until the training
completes.

The rationale behind AST is inspired by the findings in Reptile [18], which is a meta-learning
algorithm originally aiming to learn an initialization of a model from multiple tasks for fast adaption
on new tasks. It shows that mini-batch SGD imposes an implicit regularization to maximize the
dot-product of consecutive mini-batches. In the following, we will show how this proof adapts to our
case. Assuming that we alternately train two sub-nets, sub-net 1 and sub-net 2 with two consecutive
mini-batches B1 and B2 respectively, according to the Taylor Series, the gradient of sub-net 2 g2
calculated by SGD can be expressed by:

g2 = L
′

(w2) = L
′

(w1) + L
′′

(w1)(w2 − w1) +O(||w2 − w1||
2)

= L
′

(w1) +H1(w2 − w1) +O(α2)

= L
′

(w1)− αH1g2 +O(α2) (using w2 − w1 = αg2)

Where H1 is Hessian of the sub-net 1 and α is the current learning rate. Similar to Reptile, the term

αH1g2 serves to maximize the dot-product of the consecutive sub-nets, where the expectation can be
expressed as:

E1,2[αH1g2] =
1

2
E1,2[

∂

∂w1

(g1 · g2)] (4)

Thus, −αH1g2 is the direction that serves to maximize the inner product of two consecutive mini-
batches, which means to improve the gradient alignment of two sub-nets towards better learning
generalization. Such proof can be easily adapted to more than two sub-nets. The detailed explanation
of Eq. 4 is relegated into the Appendix.

3.2 Proposed AST with Gradient Correction on Consecutive Inner-group Sub-nets (AST-GC)

Although the implicit regularization of mini-batch SGD helps to maximize the inner product gradient
of consecutive sub-nets as discussed in Section 3.1, we indeed observe that there still remain
partial number of negative inner product during training, causing conflicting direction of weight
updates among sub-nets as shown in Figure 4. However, in terms of optimizing a network by
mini-batch SGD, the noise caused by such conflicting gradient direction helps to escape from saddle
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.

points or local minima and improve the generalization as well [6, 1]. Due to that, inspired by the
gradient projection method, which is used in multi-task learning [25] and continual learning [12],
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Figure 4: The ratio of negative and positive
inner product of two sub-nets during the
AST process on CIFAR-10 by using wide
ResNet-32.

we propose a gradient correction technique to remove
the conflicting gradients within the inner-group itera-
tions during training, meanwhile allow the gradient to
have negative direction for the inter-group sub-nets. As
shown in Figure 3, the inner-group iterations is defined
as the consecutive sub-nets within N mini-bath itera-
tions, where N is the total number of sub-nets (e.g.,
N=3 as shown in Figure 3). In contrast, inter-group rep-
resents the relationship between inner-group iterations.
Specifically, the gradient correction adapts a simple pro-
cedure within the inner-group sub-nets: if the gradients
between two consecutive sub-nets are in conflict (i.e.,
their cosine similarity is negative), we project the gra-
dient of current sub-net onto the normal plane of the
gradient of its prior sub-net. Otherwise, the original
gradient is unchanged. Considering two sub-nets in
inner-group iterations with the gradient gi and gj respectively, the technique can be mathematically
illustrated as:

gi =

{

gi −
gi·gj
||gj ||2

gj , if gi · gj < 0

gi, otherwise
(5)

By doing so, the proposed gradient correction within inner-group iterations have two benefits: 1) it
could guarantee that all sub-nets within the consecutive inner-group are updated in the non-conflicting
direction, reducing the weight interference between each other; 2) the normal update using the
mini-batch SGD between inter-group sub-nets will help to improve the generalization of the model.

3.3 Sparse Sub-net Training

Another important aspect of our AST scheme is to generate and train ªsparseº sub-nets. Following
most sparse training works, we adopt the prune-and-regrow scheme from GraNet [14] as the backbone
technique. Specifically, AST starts from a random initialized sparse model, and then applies prune-
and-regrow mechanism as described in Eq. 1 and Eq. 2 for each training iteration with the sub-net
specific sparsity ratio. The pseudocode of the proposed AST algorithm is relegated into the Appendix.
Given to the fact that alternating training scheme switches the sub-net per iteration, the following
questions arises: 1) What is the optimal architecture relationship between sub-nets? 2) How the
pruning should be scheduled for each sub-net? We address these two questions with the following
observations:

Observation 1: Enabling the freedom of exploring unique architectures of each sub-net elevates the
learning capacity of AST over the S-Net.

To validate this observation, we generalize the sub-net relations into the following two categories:

• Completely subset (CS): As proposed by S-Net [24], the high-sparsity models are fully
contained in the low-sparsity models (Figure 5(a)). Under the context of prune-and-regrow,
the regrowing process is only performed in the lowest sparsity model, while the rest of
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Figure 5: Different relationships between
three subnets Gi, Gj , and Gk: Completely
subset (CS) and Non-disjoint (ND).

Table 1: Averaged accuracy and standard devia-
tions between different AST training schemes on
CIFAR-10 dataset (three times experiments each).

Dataset CIFAR-10

ResNet-32 Dense Model Acc. = 94.88

Pruning Ratio 70% 95% 98%

Completely Subnet (CS) 93.69± 0.12 93.43± 0.03 92.49± 0.17

Non Disjoint (ND) 94.47± 0.10 93.78± 0.09 92.76± 0.21

the sub-nets rigorously extend the sparsity from the previous low-sparsity model by using
magnitude-based pruning only. The one-time regrow guarantees the fully-subset relation-
ships among different sub-nets.

• Non disjoint (ND): Each sparse sub-net performs prune-and-regrow individually to optimize
the overall pruning decision during training. As depicted in Figure 5(b), sub-nets can freely
exploit their own architectures while the intersections remain non-empty. Compared to the
CS scheme, the non-disjoint AST empowers the subset networks with more architecture
freedom. Figure 6 shows the layer-wise sparsity gap and non-overlap between two ND-
trained sub-nets that target different final sparsity values (sf ). The non-overlap is computed
by XORing the binary sparse masks between sub-nets, the percentages of ª1º in the resultant
tensor represents the level of non-overlap. Apparently, the distinction of connections is
larger than the sparsity difference, which implies the existence of the unique connections
generated by the ND prune-and-regrow in each sub-net.

Figure 6: Layer-wise sparsity and the connection dissimilarity between two ResNet-32 sub-nets
trained by the non-disjoint (ND) AST scheme.

With the ND scheme, we observe that the small amount of architecture freedom shown in Fig-
ure 6 can lead to the improved overall performance: Table 1 summarizes the accuracy of the wide
ResNet-32 [26] trained by different AST schemes on CIFAR-10 dataset. Assisted by the compre-
hensive architecture exploration, the non-disjoint AST scheme achieves higher accuracy compared
to the conservative completely-subset (CS) training. Thus, in this work, we use ND-scheme for all
experiments.

Figure 7: Stabilized training of 98% subnetwork
rewarded from the extended adjustment period ∆τ .

Observation 2: Intermittent sparsity incre-
ment among sub-nets stabilizes AST process. As
introduced in Section 2.1, the sparsity of the
in-training sparsification method is periodically
updated (e.g., 1,000 iterations) based on a pre-
defined sparsity schedule [14]. Regarding the
AST scheme, the sub-net model architectures
are consecutively switched and trained, but the
successive architecture switching does not im-
ply the necessity of consecutive sparsity update
of each sub-net. On the contrary, the intensive
sparsity increment of all sub-nets could desta-
bilize the training. In this work, the sparsity of
each sub-net increases periodically, but the spar-
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Table 2: CIFAR-10/100 accuracy and training cost comparison with SoTA works on wide ResNet-32.

Dataset CIFAR-10 Acc. (%) CIFAR-100 Acc. (%)
Train.
Cost

ResNet-32 Dense Model Acc. = 94.88 Dense Model Acc. = 74.94

Pruning Ratio 90% 95% 98% 90% 95% 98%

Individual Training

Lottery Ticket [5] 92.31 91.06 88.78 68.99 65.02 57.37 3×
SNIP [11] 92.59 91.01 87.51 68.89 65.22 54.81 3×
DSR [17] 92.97 91.61 88.46 69.63 68.20 61.24 3×

GraNet [14](si = 0%) 94.12 94.02 92.98 73.18 72.56 69.89 3×
MEST [26](si = 90%) 92.12± 0.13 90.86± 0.11 88.78± 0.26 69.35± 0.36 67.85± 0.23 62.58± 0.31 3×

MEST+EM[26](si = 90%) 92.56± 0.07 91.15± 0.29 89.22± 0.11 70.44± 0.26 68.43± 0.32 64.59± 0.27 3×
MEST+EMS[26](si = 90%) 93.27± 0.14 92.44± 0.13 90.51± 0.11 71.30± 0.31 70.36± 0.05 67.16± 0.25 3×

Training once for all

Jointly-Trained [24](si = 0%) 92.59± 0.21 92.58± 0.25 92.48± 0.24 70.40± 0.14 69.32± 0.84 66.85± 0.59 3×
AST(si = 0%) 93.51± 0.06 93.44± 0.08 92.44± 0.04 73.12± 0.10 72.39± 0.14 68.06± 0.21 1×
AST(si = 90%) 92.32± 0.06 92.19± 0.11 91.34± 0.04 69.82± 0.12 69.22± 0.07 66.37± 0.15 1×

AST+GC(si = 0%) 93.88± 0.19 93.70± 0.28 92.69± 0.09 73.41± 0.04 72.57± 0.15 68.42± 0.15 1×
AST+GC(si = 90%) 92.90± 0.13 92.88± 0.10 91.97± 0.18 70.11± 0.39 70.01± 0.54 67.15± 0.31 1×

sity increment of each sub-net is intermittently performed with the adjustment period ∆τ . In the
meantime, sub-nets are still consecutively switched during the ∆τ . Figure 7 shows the CIFAR-10
validation accuracy of an AST-trained ResNet-32 sub-net with final sparsity of 98%. During the early
stage of training with high learning rate, the stabilized validation accuracy indicates the effectiveness
of the extended adjustment.

4 Experiments

4.1 Settings

The proposed AST method is thoroughly verified with multiple datasets, including CIFAR-10, CIFAR-
100, and ImageNet. We use similar training scheme as prior works [14, 26], which employed 160
epochs for CIFAR-10/100 and 100 epochs for ImageNet training. The multiple sparse sub-nets are
trained from scratch and pruned by the proposed AST algorithm. The cosine annealing learning rate
schedule is employed with 0.1 initial learning rate for the CIFAR datasets training. For ImageNet
dataset, we introduce extra 5 epochs for the initial warmup training. The pruning candidates are
globally selected while the first layer remains dense. Regarding the regrowing process, the percentage
of regrow candidates gradually decrease from 0.5 to 0.0 with cosine annealing schedule. In the
meantime, the extended adjustment period between sub-nets is set to 100 and 400 for CIFAR and
ImageNet experiments, respectively. While we believe a more fine-grained hyperparameter tuning
could lead to better accuracy, we choose the above scheme for simplicity and reproducibility. The
reported sub-net accuracy values are obtained from a single background model checkpoint. In all
experiments, we report the average accuracy with its variation in 3 runs.

4.2 Main Results

CIFAR-10 and CIFAR-100. Table 2 shows the CIFAR-10/100 accuracy of the proposed AST
algorithm, where we used the wide ResNet-32 model that was employed in [26]. Following the
typical high sparsity results reported previously, we train three sub-nets with 90%, 95%, and 98%
sparsity from scratch all at once with identical epochs as prior works. Given the fact that the high
initial sparsity is beneficial to the overall memory saving of the training process, we report the results
with both dense (si = 0%) and highly sparse (si = 90%) initial models. Compared to the prior
individually-trained SoTA works [14, 26], the proposed AST+GC algorithm obtains three highly
sparse models through one-time training with negligible accuracy degradation. The resultant 3×
total training cost reduction frees the model from energy-urged extra training, leading to power and
latency benefits. The joint training scheme [24] requires multiple forward pass in each iteration, the
increased computational cost leading to the averaged-yet-suboptimal performance. In addition to the
reduced training cost, the proposed AST method outperforms the joint-training scheme [24] by up to
1.3% and 2.9% inference accuracy, while achieving up to 2.63× training cost reduction on CIFAR-10
and CIFAR-100 datasets, respectively. We also verify the AST scheme with more sub-nets and large
sparsity gaps in Section 4.4.

ImageNet-2012. We further evaluate the proposed method with ResNet-50 on ImageNet in Table 3.
It is noticeable that the 0.5× and 0.25× model of the jointly-trained S-Net [24] corresponding to
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Table 3: ImageNet accuracy and training cost comparison with SoTA works on ResNet-50.

Method ImageNet-2012

ResNet-50 Dense model Acc. = 76.8

Prune Ratio 80% 90%

Individual Training

Top-1 Acc. (%) Training Cost Top-1 Acc. (%) Training Cost (×e18)

SNIP [11] 69.7 1.67 62.0 0.91
SET [15] 72.9 0.74 69.6 0.32
DSR [17] 73.3 1.28 71.6 0.96
RigL [4] 74.6 0.74 72.0 0.39

MEST + EM [26] 75.8 0.74 73.6 0.39
GraNet [14] 76.0 1.18 74.5 0.80

Training once for all

Jointly-Trained [24](si = 50%) 71.90.5× 1.19 65.00.25× 1.19
AST (si = 50%) 72.6 0.59 72.3 0.41

AST + GC (si = 50%) 73.2 0.59 73.1 0.41
AST + GC (si = 80%) 72.6 0.37 72.5 0.13

Table 4: Inference acceleration and negligible accuracy drop of the proposed AST algorithm with
structured fine-grained sparsity on ResNet-18 model.

Dataset CIFAR-10 Acc. (%)
Training Cost

N:M Sparse Pattern Dense Model 2:4 3:4 7:8 15:16

Individually Trained (SR-STE) [27] 95.07 94.89 94.47 94.25 93.92 2.33e+16 (3.95×)
AST + GC - 94.63 94.26 94.31 93.79 5.91e+15 (1×)

Inference Time / 10K images (sec) 1.40 1.01 0.67 0.66 0.63 -

72.98% and 92.23% weight sparsity, the averaged overall sparsity (82.6%) is less than our targeted
sparsity (85%). The proposed AST training scheme outperforms the joint-training scheme by 7.5%
inference accuracy with 80% highly sparse initial models. Compared to the individual training
scheme, the proposed AST scheme achieves a comparable or even better performance to SNIP [11]
and SET [15], while reduces the total training cost up to 2.38×. In addition, compared to AST
without gradient correction (GC), AST+GC improves accuracy by 0.6% and 0.8% respectively. The
experimental results with different settings and models are shown in the Appendix.

4.3 Extend to Structured Fine-grained Sparsity

Demonstrating the sparsity-induced speedup on GPU has now emerged as a feasible solution to depict
the effectiveness of pruning algorithms. The recent Nvidia Ampere architecture is equipped with the
Sparse Tensor Cores to accelerate the neural network computation on GPU with N :M structured
fine-grained sparsity [27]. Varying the group size M and the number of sparse elements N leads to
different overall sparsity values. Motivated by this, we extend the proposed AST algorithm to train
multiple sub-nets with different N :M sparsity patterns all at once. Specifically, the prune-and-regrow
is performed based on the group-wise summed weight or gradient magnitude. Powered by the
open-sourced Nvidia-ASP library, the convolution computation can be accelerated when the sparse
weight group size M is divisible by 4 (e.g., 4, 8, 16). The proposed AST algorithm collectively
trains four ResNet-18 sub-nets with 2:4, 3:4, 7:8, and 15:16 sparse patterns, corresponding to 50%,
75%, 87.5%, and 93.75% overall sparsity, respectively. Starting from scratch, the percentage of the
N :M sparse groups is gradually increased from 0% to 100% within each sub-net. Compared to the
individually trained dense model, the proposed AST scheme achieving up to 2.3× inference speed
up on GPU with 4× less training efforts and negligible accuracy loss, as shown in Table 14. The
inference time is measured on a Nvidia 3090 GPU with FP32 data precision.

4.4 Ablation Study

AST with more than 3 sub-nets. We also verify the effectiveness of the proposed AST scheme
for training different number of subset networks. Table 5 shows the CIFAR-10 performance of
AST by training 2, 3, 4, 5 sparse sub-networks collectively based on ResNet-18. Compared to the
individually-trained baseline sparse model, training more sub-nets with AST reduces the total training
effort with the cost of the marginally degraded accuracy, especially in the high sparsity models (e.g.,
98% sparsity). Given the tradeoffs between accuracy and total training cost, training three sub-nets
have the best overall performance. The flexibility of training a large number of sub-nets all at once
enables the proposed AST algorithm to select suitable architecture for different power budgets.
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Figure 8: AST with extended training effort on
CIFAR-10 with wide ResNet-32 [26].

Table 5: ResNet-18 training results of AST (160
epochs) with various sparsity values and num-
bers of sub-nets for CIFAR-10 dataset.

Dataset CIFAR-10 Acc. (%)

Sparsity
Indiv.

trained
2

sub-nets
3

sub-nets
4

sub-nets
5

sub-nets

70% 95.11 94.88 94.75 94.79 94.81
80% 94.94 - - 94.81 94.73
90% 94.93 - - - 94.85
95% 94.88 - 94.67 94.63 94.47
98% 94.50 94.76 94.26 94.22 94.18

Table 6: ImageNet accuracy with different sparsity combinations on ResNet-50.

Method ImageNet-2012

ResNet-50 Dense Model Acc. = 76.8

Prune Ratio 50% 90% 50% 95% 80% 90%

AST+GC (s = 0%) 74.68 73.26 - - - -

AST+GC (s = 0%) - - 74.21 71.07 - -

AST+GC (s = 50%) - - - - 73.2 73.1

AST+GC (s = 80%) - - - - 72.6 72.5

AST sub-nets with different sparsity difference. Besides the collective training of highly sparse
models, learning the largely-varied subset architectures is also essential. As shown in Table 5 and 6,
the proposed AST algorithm is still able to optimize the model performance with the large sparsity
gaps (e.g., 50% vs. 95%).

Extended AST training efforts. As shown in Figure 2, AST iteratively selects different sub-net for
each mini-batch iteration. Even though the batch shuffling is employed to the training, each sub-net
cannot be fully trained by the whole training set inside each epoch. A straight-forward solution is
extending the total training efforts (epochs). Assume the unit training cost is 160 epochs (1×), we
evaluate the AST performance with three wide ResNet-32 [26] sub-nets with different training effort,
as shown in Figure 8. Compared to the individually trained GraNet [14] baseline (total=3×), AST
achieves the same accuracy in all three sparse models with only ∼2× averaged total training effort.

5 Conclusion

In this work, we first propose Alternating Sparse Training (AST) scheme to train multiple sparse
neural networks all at once. Then, we demonstrate the benefits of gradient correction (GC) with
theoretical analysis and experimental results. As one of the earliest research works in this domain, the
AST algorithm achieves high accuracy and high training efficiency without any repeated or ensembled
training steps [24]. Inspired by the prune-and-regrow scheme [14], the proposed AST-GC scheme
exploits multiple sparse sub-nets simultaneously while achieving comparable or even higher accuracy
against the individually-trained SoTA methods. Obtaining multiple models with AST brings practical
benefits to the energy-driven hardware computation along with superior performance on accuracy.

Impact and limitation. In the current work, AST can work well on a certain number of sub-nets.
Extending it to support a larger number of sub-nets is an interesting direction. In addition, to enlarge
the practical efficiency for both training and dynamic inference, we will further apply quantization
and investigate more structured sparsity pattern upon AST. Currently, we have demonstrated the
practical value for dynamic inference on GPU with Nividia Ampere architecture by using N:M
structured sparsity pattern. We would like to further demonstrate the actual efficiency of AST on
more hardware platforms, such as CPU, mobile/IoT devices, specific hardware accelerators, etc.
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [No]

(c) Did you include any new assets either in the supplemental material or as a URL? [No]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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Algorithm 1 The pseudocode of AST.

Require: Model weight W , number of sub-nets N , initial sparsity si, target sparsity [s1f , ..., s
N
f ],

gradual pruning frequency ∆T , extended adjustment period ∆τ .

1: random initialize W with initial sparsity si
2: for each training iteration t do
3: get current number of training iterations tc
4: switching to current sub-net Wi where i ← tc mod (N ∗∆τ)
5: training Wi ← SGD(Wi)
6: if (t mod ∆T == 0) then
7: gradual pruning with the pruning rate produced by Eq. 6 with target sparsity sif
8: prune-and-regrow by Eq.1 and Eq.2
9: if i ! = 0 then

10: gradient correction within the inner-group by Eq.4
11: end if
12: end if
13: end for

6 Appendix

6.1 Algorithm

The pesudocode of AST is presented in Algorithm 1. To generate and sparsely train each sub-net, AST
adapts the gradual pruning scheme combining with prune-and-regrow from GraNet [14]. Specifically,
given initial sparsity si, target sparsity sf , gradual pruning frequency ∆T , starting and end epoch of
gradual pruning t0 and tf , pruning iterations n, the pruning rate of each pruning iteration is defined
as:

st = sf + (si − sf )(1−
t− t0

n∆t
), t ∈ t0, t0 + ∆t, ..., t0 + n∆t (6)

6.2 Detailed explanation of rational of AST

Following the proof of Reptile [18], the expectation of αH1g2 can be further expressed as the gradient
inner product of two consecutive sub-nets:

E1,2[αH1g2] = E1,2[αH2g1]

=
1

2
E1,2[αH1g2 + αH2g1]

=
1

2
E1,2[

∂

∂w1

(g1 · g2)]

As shown in Eq.6.2, it is clear to see that the term −αH1g2 is the direction hat serves to maximize
the inner product of two consecutive mini-batches. Thus, it proves that the proposed AST has implicit
regularization to alignment the weight update between sub-nets.

6.3 Detailed experimental setup of AST

The training hyper-parameters of the compared individual sparse training works are same for CIFAR-
10 and CIFAR-100. But this line of works adapt different hyper-parameters to achieve good accuracy
on ImageNet. The report accuracy of Rigl [4] uses 4096 batchsize and trains the model on 100 epochs
with initial learning rate 1.6. GraNet [14] uses 64 bathsize, 100 training epochs, and set the initial
learning rate to 0.1. Mest [26] uses a larger 2048 batchsize and trains the model on 150 epochs with
the initial learning rate 2.048. In this case, to evaluate our method and fair compare with them, we
conduct the basic training settings like the original ResNet by using 256 batchsize and training the
model on 100 epochs with 0.1 initial learning rate. We believe a more fine-grained hyper-parameter
setting could lead to better accuracy. We only run AST on ImageNet once due to the limited resources
by using four Nvidia RTX A4000 GPUs.
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Table 7: ImageNet accuracy and training cost comparison with SoTA works on ResNet-50.

Method ImageNet-2012

ResNet-50 Dense model Acc. = 76.8

Prune Ratio 80% 90%

Individual Training

Top-1 Acc. (%) Training Cost Top-1 Acc. (%) Training Cost

SNIP [11] 69.7 1× 62.0 1×
SET [15] 72.9 1× 69.6 1×
DSR [17] 73.3 1× 71.6 1×
RigL [4] 74.6 1× 72.0 1×

GraNet [14] 76.0 1× 74.5 1×
MEST + EM [26] 75.8 1× 73.6 1×

Training once for all

Jointly-Trained [24](si = 0%) 71.90.5× 1× 65.00.25× 1×
AST + GC (si = 50%) 73.2 0.5× 73.1 0.5×
AST + GC (si = 80%) 72.6 0.5× 72.5 0.5×

Table 8: ImageNet accuracy and training cost comparison with SoTA works on ResNet-18.

Method ImageNet-2012

ResNet-18 Dense model Acc. = 69.76

Prune Ratio 80% 90%

Individual Training

Top-1 Acc. (%) Training Cost Top-1 Acc. (%) Training Cost

GraNet [14] - 1× 63.1 1×

Training once for all

AST + GC (si = 80%) 62.3 0.5× 62.1 0.5×

Table 9: CIFAR-100 accuracy and training cost comparison with SoTA works on wide ResNet-32.
Dataset CIFAR-100 Acc. (%) Training FLOPS

ResNet-32 Dense Model Acc. = 74.94% 1.37e+16 (1×)

Individual Training

Lottery Ticket [5] 68.99 65.02 57.37 -

SNIP [11] 68.89 65.22 54.81 -

DSR [17] 69.63 68.20 61.24 -

GraNet [14] 73.18 72.56 69.89 1.51e+16 (1.13×)

MEST [26] 69.35±0.36 67.85±0.23 62.58±0.31 1.47e+16 (1.07×)

MEST+EM [26] 70.44±0.26 68.43±0.32 64.59±0.27 -

MEST+EMS [26] 71.30±0.31 70.36±0.05 67.16±0.25 -

Training once for all

Jointly-Trained (si = 50%) [24] 70.40±0.14 69.32±0.84 66.85±0.59 1.45e+16 (1.09×)

AST (si = 0%) 73.12±0.10 72.39±0.14 68.06±0.21 6.47e+15 (0.48×)

AST (si = 90%) 69.82±0.12 69.22±0.07 69.37±0.15 5.03e+15 (0.38×)

AST+GC (si = 0%) 73.41±0.04 72.57±0.15 68.42±0.15 6.47e+15 (0.48×)1

AST+GC (si = 90%) 70.11±0.39 70.01±0.54 67.15±0.31 5.03e+15 (0.38×)1

1 For the wide ResNet-32 model, the step-wise and layer-wise gradient projection requires 1.86e+12
FLOPS, which is minimum compared to the majority of training.

6.4 Additional experimental results

To evaluate the effect of initial sparsity, we conduct the experiment by using 50% initial sparsity of
ResNet-50 on ImageNet as shown in Table.8. Compared to 80% initial sparsity, 50% initial sparsity
could achieve 0.6% accuracy gain on both 80% and 90% prune ratio. Furthermore, we also conduct
the experiment on the smaller ResNet-18, which achieve 62.3% and 62.1% accuracy on 80% and
90% prune ratio respectively.
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6.5 Training cost comparison

In addition to the training rounds comparison, we analyze the training cost of the proposed AST
method in terms of the detailed metrics. Table 9 summarizes the number of total FLOPs of training
multiple sparse deep neural networks. Compared to the joint-training scheme [24] or seperately
trained GraNet [14], the proposed AST algorithm achieves up to 2.63× training cost reduction, while
maintaining the similar inference accuracy as the individual training baseline. Furthermore, the
detailed computation cost of the ImageNet experiments are reported in Table 3.

6.6 The impact of different extended adjustment (EA) periods

Regarding the Observation 1, we have summarized the comparison results between the investi-
gated Completely-subset (CS) scheme and the Non-disjoint scheme (ND) in Table 1 of the original
manuscript. As a result, on CIFAR-10 dataset, the ND scheme has the outperformed performance
compared to the constrained completely-subset scheme (CS).

For the Observation 2, to validate the effectiveness of the proposed extended adjustment method (EA),
we add an ablation study on various adjustment periods ∆τ , which is used to determine the frequency
of sub-nets switching. As shown in Table R1, compared to the smaller adjustment period (i.e.,
∆τ = 0, 90), ∆τ = 300 achieves the best accuracy on all three sparsity levels. The reason is that
performing sub-net switching frequently elevates the instability of model optimization.

Table 10: The impact of the extended adjustment period. Given the wide ResNet-32 and CIFAR-100
dataset, sweep the sparsity update interval from 0 epoch up to 300 steps.

Dataset CIFAR-100 Acc (%)

ResNet-32 Dense Model Acc. = 74.94

∆τ (steps) 90% 95% 98%

0 72.92±0.27 72.25±0.20 68.20±0.07

90 73.28±0.13 72.72±0.20 68.25±0.03

300 73.41±0.04 72.57±0.15 68.42±0.15

6.7 AST vs. Naive fine-tuning

We analyze the impact of fine-tuning based on the following three perspectives:

1. A short time of fine-tuning from the dense pre-trained model.

2. Start with sparse pre-training, fine-tune the high sparsity models with a short epochs, while
keep the overall training cost (time) as same as AST.

3. To further clarify the advantages of AST, we also investigate another perspective: a short
time of fine-tuning from the sparse pre-trained model.

Same as the experimental setup in the main paper, we conduct the experiments based on the wide
ResNet-32 model on CIFAR-100 dataset. Given the dense pre-trained model, we separately fine-tune
the dense model to achieve 90%, 95%, and 98% sparsity with minimum efforts. As shown in Table 11,
fine-tuning from a dense model in a short period cannot achieve comparable accuracy as the proposed
AST algorithm. Furthermore, the 160 epochs of pre-training and additional fine-tuning elevate the
overall training costs.

In addition to the dense model fine-tuning, we address the second concern of the reviewer by
performing the sparse progressive training while keeping the overall training cost to be the same as a
single AST training. With the wide ResNet-32 model, we first sparsify the model to 90% sparsity
from scratch with 60 epochs. Subsequently, we prune the 90% sparse model to 95% and then to 98%
sparsity with 50 epochs of fine-tuning. Compared to the single AST training, the total training effort
is the same (60+50+50=160 epochs). As shown in Table 12, such an individual pruning method failed
to achieve the performance as the proposed AST training method. The large accuracy gap suggests
the necessity of the proposed alternative sparsification training.
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Table 11: Fine-tune to high sparsity models from a pre-trained dense checkpoint with minimum
training effort (up to 30 epochs of fine-tuning).

Dataset CIFAR-100 Acc. (%)

ResNet-32 Dense Model Acc. = 74.94

Sparsity 90% 95% 98%

160+10 Epochs 70.06±0.08 62.56±0.15 44.47±0.86

160+20 Epochs 72.13±0.23 67.66±0.04 56.50±0.16

160+30 Epochs 72.76±0.19 68.89±0.35 59.34±0.79

AST+GC (160 epochs) 73.41±0.04 72.57±0.15 68.42±0.15

Table 12: Progressive sparse fine-tuning on CIFAR-100 dataset with wide ResNet-32 model: Start
from scratch, train a 90% sparse model with 60 epochs then fine-tuning to 95% and 98% sparsity
with 50 epochs each. The total training effort is same as a single AST run (160 epochs).

Dataset CIFAR-100 Acc. (%)

ResNet-32 Dense Model Acc. = 74.94

Sparsity 90% 95% 98%

Epoch 60 50 50

Progressive Fine-tune 71.68±0.06 71.11±0.04 68.02±0.14

AST+GC
Training Epoch = 160

73.41±0.04 72.57±0.15 68.42±0.15

Furthermore, we investigate the impact of fine-tuning based on a pre-trained sparse model. We first
fully train a sparse subnet with 90% sparsity (with 160 epochs) and prune the resultant model to 95%
and 98% with a minimum amount of fine-tuning. As shown in Table 13, fine-tuning the 90% sparse
model to 95% or 98% sparsity with up to 30 epochs cannot achieve comparable accuracy as AST,
with even higher total training effort.

The experimental results in Table 11, Table 12, and Table 13 suggest that it is difficult for individual
fine-tuning to achieve the level of high sparsity and high accuracy as the proposed AST, regardless of
the initial sparsity of the inherited model checkpoint.

Table 13: Fine-tune to high sparsity model from a pre-trained sparse checkpoint (90% sparsity) with
minimum training effort (up to 30 epochs of fine-tuning).

Dataset CIFAR-100 Acc. (%)

ResNet-32 90% Sparse Model Acc. = 73.16

Sparsity 95% 98%

160+10 Epochs 69.63±0.09 59.25±0.44

160+20 Epochs 70.95±0.20 64.49±0.23

160+30 Epochs 71.70±0.28 66.67±0.24

AST-GC (160 Epochs) 72.57±0.15 68.42±0.15
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6.8 Inference acceleration and computation reduction of AST

Table 14: Inference acceleration and negligible accuracy drop of the proposed AST algorithm with
structured fine-grained sparsity on ResNet-18 model.

Dataset CIFAR-10 Acc. (%)
Training Cost

N:M Sparse Pattern Dense Model 2:4 3:4 7:8 15:16

Individually Trained (SR-STE) 95.07 94.89 94.47 94.25 93.92 2.33e+16 (3.95×)
AST + GC - 94.63 94.26 94.31 93.79 5.91e+15 (1×)

Inference FLOPS / 10K images 5.12e+12 2.56e+12 1.28e+12 6.40e+11 3.19e+11 -
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