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Abstract

Data-heterogeneous federated learning (FL) sys-

tems suffer from two significant sources of con-

vergence error: 1) client drift error caused by

performing multiple local optimization steps at

clients, and 2) partial client participation error

caused by the fact that only a small subset of the

edge clients participate in every training round.

We find that among these, only the former has

received significant attention in the literature. To

remedy this, we propose FedVARP, a novel vari-

ance reduction algorithm applied at the server

that eliminates error due to partial client partic-

ipation. To do so, the server simply maintains in

memory the most recent update for each client

and uses these as surrogate updates for the non-

participating clients in every round. Further, to

alleviate the memory requirement at the server,

we propose a novel clustering-based variance re-

duction algorithm ClusterFedVARP. Unlike

previously proposed methods, both FedVARP

and ClusterFedVARP do not require additional

computation at clients or communication of addi-

tional optimization parameters. Through extensive

experiments, we show that FedVARP outperforms

state-of-the-art methods, and ClusterFedVARP

achieves performance comparable to FedVARP

with much less memory requirements.

1 INTRODUCTION

Large-scale machine learning applications rely on numerous

edge-devices to contribute their data, to learn better perform-

ing models. Federated Learning (FL) is a recent paradigm

[Konečnỳ et al., 2016, McMahan et al., 2017] for distributed

learning in which a central server offloads some of the com-

putation to the edge-devices or clients, and the clients in

return get to retain their private data, while only communi-

cating the locally learned model to the server. For instance,

when training a next-word prediction model [Hard et al.,

2018], FL allows a client to enjoy suggestions supplied by

thousands of other clients in the same federation without

ever explicitly revealing its own personal text history.

Typical FL applications are targeted towards low-power

mobile phones that have severely limited uplink (client to

server) bandwidth. This necessitates the need for novel algo-

rithms to reduce the frequency of communication required

to train FL models. The first and the most popular algorithm

in this setting is FedAvg [McMahan et al., 2017], which

reduces communication frequency by requiring clients to

perform multiple local computations in each round. In each

round of FedAvg, clients first download the current global

model, and run several steps of SGD on their private data

before sending back their local updates to the server. The

server then updates the global model using the average of

the local updates sent by the clients.

A subtle yet important feature that distinguishes FL sys-

tems from traditional data-center settings is the presence of

heterogeneity in local data across clients. While FedAvg

improves communication-efficiency at the clients, it also

leads to an additional error caused by this heterogeneity,

colloquially known as client drift error [Karimireddy et al.,

2019]. Informally, allowing clients to perform multiple local

steps causes local models to drift towards their individual

local minimizers, which is inconsistent with the server ob-

jective of minimizing the global empirical loss [Khaled

et al., 2020, Wang and Joshi, 2021, Stich, 2019]. Despite

recent advances [Pathak and Wainwright, 2020, Woodworth

et al., 2020], a comprehensive theory regarding the useful-

ness of local steps remains elusive. Nonetheless, performing

multiple local steps remains the most popular option for

clients participating in FL due to its superior performance

in practice.

Another defining characteristic of FL systems is partial

client participation. Given the scale of FL [Kairouz et al.,
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2019], it is unrealistic to expect all the clients to participate

in every single round of FL training. For instance, clients

may participate only when they are plugged into a power

source and have access to a reliable wifi connection [McMa-

han et al., 2017]. In practice, we observe that only a small

fraction of the total number of clients participate in any

given round. This variance in client participation gives rise

to what we term as partial client participation error. This

error further compounds the effect of data heterogeneity as

the global model is consistently skewed towards the data

distributions of the participating clients in every round.

While error due to client drift has been well-established

[Karimireddy et al., 2019, Acar et al., 2021, Khaled et al.,

2020], we find that partial client participation error has

not received similar attention. This is seen by the fact that

several methods for mitigating client drift such as [Pathak

and Wainwright, 2020, Zhang et al., 2020] cannot be di-

rectly extended to the partial client participation case. This

is surprising, as our results indicate that error due to partial

participation, rather than client drift, dominates the con-

vergence rate of FedAvg (Theorem 1). For smooth non-

convex functions, we quantify the effect of the various noise

sources (stochastic gradient noise, partial client participa-

tion, and data heterogeneity across clients) on the error

floor of FedAvg, and observe that the dominant error is

contributed by partial client participation.

Our Contributions. Keeping in mind the observation that

partial client participation is the dominant source of error,

we design a novel aggregation strategy at the server that

completely eliminates partial client participation error. Our

algorithm keeps the local SGD procedure unchanged and

only modifies the server aggregation strategy. As a result,

our approach does not introduce any extra computation at

the clients or lead to any additional communication between

the clients and the aggregating server. Furthermore, we also

design a more server-friendly approach to our algorithm

that allows the server to flexibly choose the amount of error

reduction based on its system constraints. We summarize

our main contributions below.

• We analyze the convergence of FedAvg and highlight

that the dominant term in the asymptotic error floor comes

from the partial participation of clients.

• In Section 3, we propose FedVARP (Federated VAriance

Reduction for Partial Client participation), a novel aggre-

gation strategy applied at the server to eliminate partial

participation variance. FedVARP uses the fact that the

server can store and reuse the most recent update for each

client as an approximation of its current update. This al-

lows the server to factor in contributions even from the

non-participating clients when updating the global model.

• To relax the storage requirements of FedVARP, we de-

vise a novel clustering based aggregation strategy called

ClusterFedVARP in Section 4. ClusterFedVARP

in based on the observation that instead of storing

unique latest updates for each client, we can cluster

clients and store a single unified update that applies

to all the clients in that cluster. We show that as long

as the heterogeneity within a cluster is sufficiently

bounded, ClusterFedVARP can significantly reduce

partial client participation error, while being more storage-

efficient.

• We conduct extensive experiments on vision and language

modeling FL tasks that demonstrate the superior perfor-

mance of FedVARP over existing state-of-the-art meth-

ods. Further, we show that ClusterFedVARP performs

comparably to FedVARP, with much less storage require-

ments in practice.

For the purpose of theoretical analysis, throughout this paper

we assume that in each round, the server uniformly selects

a subset of clients from the total pool of clients. In practice,

our algorithms can also be combined with non-uniform and

biased client sampling strategies [Cho et al., 2020, Chen

et al., 2020] for greater empirical benefits. Furthermore we

note that the idea of reusing client updates has also been

considered in a recent work MIFA [Gu et al., 2021], albeit

in the context of dealing with arbitrary client participation.

Owing to this similarity, we have a detailed comparison of

our algorithm with MIFA in Section 3.1. While outside the

scope of this work, we believe designing server aggregation

strategies to deal with arbitrary client participation is an

open and challenging direction for future work.

2 PROBLEM SETUP

We use the following notations in the remainder of the paper.

Given a positive integer m, the set of numbers {1, 2, . . . ,m}
is denoted by [m]. Lowercase bold letters, for e.g., x,y,

are used for vectors. Vectors at client i are denoted with

subscript i, for e.g., xi. Vectors at time t are denoted with

superscript t, for e.g., y(t).

We consider optimizing the following finite sum of functions
in a Federated Learning (FL) setting.

min
w∈Rd

f(w) =
1

N

N∑

i=1

fi(w) (1)

where fi(w) , Eξi∼Di
[`(w, ξi)] is the local objective of

the i-th client. Here `(·, ·) is the loss function, and ξi repre-

sents a random data sample from the local data distribution

Di. N is the total number of clients in the FL system. Note

that our formulation can be easily extended to the case where

client objectives {fi(·)} are unequally weighted.

We begin by recalling the FedAvg algorithm. At round t,
the server selects a random subset of clients S(t) and sends
the global model w(t) to these clients. The selected clients
run LocalSGD (Algorithm 1) for τ steps. These clients
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then send back their updates ∆
(t)
i = (w(t)−w

(t,τ)
i )/ηcτ to

the server (ηc is the client learning rate), which aggregates
them to update the global model as follows:

w
(t+1) = w

(t) − η̃s
1

|S(t)|

∑

i∈S(t)

∆
(t)
i (2)

where η̃s = ηsηcτ , with ηs being the server learning rate.

Algorithm 1 LocalSGD(i,w(t), τ, ηc)

1: Set w
(t,0)
i = w(t)

2: for k = 0, 1 . . . , τ − 1 do

3: Compute stochastic gradient ∇fi(w(t,k)
i , ξ

(t,k)
i )

4: w
(t,k+1)
i = w

(t,k)
i − ηc∇fi(w(t,k)

i , ξ
(t,k)
i )

5: end for

6: Return (w(t) −w
(t,τ)
i )/ηcτ

Note that due to the data heterogeneity, randomly sampling

S(t) inherently introduces some variance within our FL

system, which we term as the partial participation error.

We characterize the effect of this partial participation error

on the convergence bound of FedAvg in the next section.

2.1 CONVERGENCE ANALYSIS OF FEDAVG

Before stating our convergence bound, we make the follow-

ing standard assumptions.

Assumption 1. (Smoothness). Each local objective func-

tion is L-Lipshitz smooth, that is, ‖∇fi(x)−∇fi(y)‖ ≤
L ‖x− y‖, for all i ∈ [N ].

Assumption 2. (Unbiased gradient and bounded lo-

cal variance). The stochastic gradient at each client

is an unbiased estimator of the local gradient, i.e.,

Eξi∼Di
[∇fi(w, ξi)] = ∇fi(w) and its variance is

bounded Eξi∼Di
‖∇fi(w, ξi)−∇fi(w)‖2 ≤ σ2, for all

i ∈ [N ].

Assumption 3. (Bounded global variance). There exists a

constant σg > 0 such that the difference between the local

gradient at the i-th client and the global gradient is bounded

as follows: ‖∇fi(w)−∇f(w)‖2 ≤ σ2
g , for all i ∈ [N ].

Following previous work [McMahan et al., 2017, Karim-

ireddy et al., 2019, Wang et al., 2020], we model partial

client participation as uniformly sampling a subset of clients

without replacement from the total pool of clients.

Theorem 1 (FedAvg Error Decomposition). Under As-
sumptions 1, 2, 3, suppose in each round the server ran-
domly selects M out of N clients without replacement to
perform τ steps of local SGD. If the client learning rate
ηc, and the server learning rate ηs are chosen such that
ηc ≤ 1

8Lτ
, ηsηc ≤ 1

24τL , then the iterates {w(t)} generated
by FedAvg satisfy

min
t∈{0,...,T−1}

E

∥
∥
∥∇f(w(t))

∥
∥
∥

2

≤ O

(
f(w(0))− f∗

ηsηcτT

)

+O

(
ηsηcLσ

2

M
+ η

2
cL

2(τ − 1)σ2

)

︸ ︷︷ ︸
stochastic gradient error

+O

(
ηsηcτL(N −M)σ2

g

M(N − 1)

)

︸ ︷︷ ︸
partial participation error

+O
(
η
2
cL

2
τ(τ − 1)σ2

g

)

︸ ︷︷ ︸
client drift error

,

where f∗ = argmin
x
f(x).

Remark 1. Our result shows that the total error floor of

FedAvg can be decomposed into three distinct sources of

error: 1) stochastic gradients; 2) partial client participation;

and 3) client drift. Stochastic gradient error arises due to the

variance of local gradients (quantified by σ2 in Assumption

2) and is unavoidable unless each local objective has a finite

sum structure. The cause for both partial participation error

and the client drift error lies in data-heterogeneity present

among clients (quantified by σg in Assumption 3). Setting

M = N (full participation) gets rid of the error due to

partial participation. Similarly, setting τ = 1 (FedSGD)

eliminates the client drift error.

Our analysis closely follows [Wang et al., 2020] with the

difference that we sample clients without replacement in-

stead of sampling with replacement. A full proof is provided

in the supplementary material for completeness.

Corollary 1. Setting ηc = 1√
TτL

and ηs =
√
τM ,

FedAvg converges to a stationary point of the global ob-

jective f(w) at a rate given by,

min
t∈{0,...,T−1}

E

∥
∥
∥∇f(w(t))

∥
∥
∥

2

≤ O
(

1√
MτT

)

︸ ︷︷ ︸

stochastic gradient error

+ O
(√

τ

MT

)

︸ ︷︷ ︸

partial participation error

+ O
(
1

T

)

︸ ︷︷ ︸

client drift error

Remark 2. Note that in this case the convergence rate of

FedAvg is dominated by the error due to partial partic-

ipation resulting in the leading O
(√

τ
MT

)
term whereas

client drift error decays at a much faster O
(
1
T

)
rate. This

is primarily due to the fact that client drift error is scaled

by η2c whereas the partial participation error is scaled by

ηsηcτ as seen in Theorem 1. In practice, ηc is usually set

much smaller than ηs and hence the total error due to data-

heterogeneity is dominated by the variance due to partial

client participation rather than client drift.

Previous works such as [Karimireddy et al., 2019, Li et al.,

2020a, Acar et al., 2021] h ave proposed regularizing the

local objectives at clients with a global correction term that

prevents client models from drifting towards their local

minima. In effect, this regularization artificially enforces

similarity among the modified client objectives such that

the effect of data-heterogeneity (σg) is completely elimi-

nated. However, doing so requires clients to modify the local
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procedures that they run on their devices to incorporate the

global correction term. This either requires additional com-

putation at devices (as in [Acar et al., 2021]) or additional

communication between client and server (as in [Karim-

ireddy et al., 2019]). Our goal, on the other hand is to just

tackle the variance arising from partial client participation

in FL. As a result, our proposed algorithm only modifies the

server update procedure without requiring clients to perform

any additional computation or communication. Since partial

participation variance dominates the convergence rate of

FedAvg, eliminating this variance allows us to enjoy the

same rates of convergence as FedDyn [Acar et al., 2021]

and SCAFFOLD [Karimireddy et al., 2019]. We discuss our

proposed algorithm and its benefits in greater detail in the

next section.

3 THE FEDVARP ALGORITHM AND ITS

CONVERGENCE ANALYSIS

3.1 PROPOSED FEDVARP ALGORITHM

SAGA [Defazio et al., 2014] was one of the first variance-

reduced SGD algorithms that achieved exponential conver-

gence rate for single node strongly convex optimization by

maintaining in memory previously computed gradients for

each data point. Inspired by the SAGA algorithm [Defazio

et al., 2014], we propose a novel algorithm FedVARP (Al-

gorithm 2) to tackle variance arising due to partial client

participation in FL. The main novelty in FedVARP lies

in applying the variance reduction correction globally at

the server without adding any additional computation or

communication at clients. We elaborate on further details

below.

Similar to FedAvg, in each round of FedVARP, the
server selects a random subset S(t) of clients that perform

LocalSGD and send back their updates ∆
(t)
i to the server.

Recall that in FedAvg the global model is updated just

using the average of the {∆(t)
i }i∈S(t) (see 2). However this

adds a large variance to the FedAvg update as client data
is heterogeneous and the number of selected clients could
be much smaller than the total number of clients N . The
key to reducing this variance is to approximate the updates
of the clients that do not participate. We propose that the
server use the latest observed update for each client as the

approximation for its current update. Let {y(t)
i }Ni=1 repre-

sent a state for each client maintained at the server. After
every round, we perform the following update (we initialize

y
(0)
i = 0 for all i ∈ [N ]),

y
(t+1)
j =

{

∆
(t)
j if j ∈ S(t)

y
(t)
j otherwise

, for all j ∈ [n] (3)

This ensures that y
(t)
i maintains the latest observed update

from the i-th client in round t. Note that this implementation

requires the server to maintain O (Nd) memory which can

be expensive in a federated setting. In Section 4 we outline

a more practical algorithm ClusterFedVARP to reduce

the storage requirement.

Given {y(t)
i }Ni=1, we can reuse the latest observed updates

of all clients and ∆
(t)
i ’s of participating clients to compute

a variance reduced aggregated update,

v
(t) =

1

|S(t)|

∑

i∈S(t)

(

∆
(t)
i − y

(t)
i

)

+
1

N

N∑

j=1

y
(t)
j , (4)

which is used to update the global model as follows,

w
(t+1) = w

(t) − η̃sv
(t)

. (5)

Algorithm 2 FedVARP

1: Input: initial model w(0), server learning rate ηs, client

learning rate ηc, number of local SGD steps τ , η̃s =

ηsηcτ , number of rounds T , initial states y
(0)
i = 0 for

all i ∈ [n], y(0) = 0

2: for t = 0, 1, . . . , T − 1 do

3: Sample S(t) ⊆ [N ] uniformly without replacement

4: for i ∈ S(t) do

5: ∆
(t)
i ← LocalSGD(i,w(t), τ, ηc)

6: end for

7: // At Server:

8: v(t) = y(t) + 1
|S(t)|

∑

i∈S(t)

(

∆
(t)
i − y

(t)
i

)

9: w(t+1) = w(t) − η̃sv
(t)

10: y(t+1) = y(t) + 1
N

∑

i∈S(t)

(

∆
(t)
i − y

(t)
i

)

11: //State update

12: for j ∈ [N ] do

13: y
(t+1)
j =

{

∆
(t)
j if j ∈ S(t)

y
(t)
j otherwise

14: end for

15: end for

Note that FedVARP gives higher weight to current client
updates as compared to previous client updates which allows
it to enjoy the additional unbiased property,

ES(t)

[

v
(t)

]

= ES(t)




1

|S(t)|

∑

i∈S(t)

∆
(t)
i



 . (6)

This implies that in expectation FedVARP performs the

same update as FedAvg. This simplifies our analysis con-

siderably and allows us to set y
(0)
i = 0 without any com-

plications in theory or practice. We further highlight the

importance of server-based SAGA in comparison to related

work.

Comparison with MIFA. Closely related to this work,

[Gu et al., 2021] proposed the MIFA algorithm to deal with

arbitrary device unavailability in FL. MIFA also maintains

in memory the latest observed updates for each client and in-

stead applies a SAG-like [Schmidt et al., 2017] aggregation
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of these updates. Unlike FedVARP, MIFA assigns equal

weights to both the current and previous updates, making

it a biased scheme. This complicates their analysis signifi-

cantly, which requires additional assumptions such as almost

surely bounded gradient noise and Hessian Lipschitzness.

Furthermore, due to this bias, MIFA requires all the clients

to participate in the first round, which is unrealistic in many

FL settings. We compare the performance of FedVARP

with MIFA in our experiments (see Section 5) and show that

FedVARP consistently outperforms MIFA.

Comparison with SCAFFOLD. SCAFFOLD [Karim-

ireddy et al., 2019] is one of the first works to identify

the client drift error and it proposes the use of control vari-

ates to correct it. This requires clients to apply a SAGA-like

variance reduction correction at every local step. This leads

to a 2x rise in communication as the clients now need to

communicate both the global model as well as the global

correction vector to the server. In FedVARP, clients per-

form LocalSGD and are agnostic to any aspect of how the

variance reduction is applied at the server. This saves the

cost of communicating the update to the global correction

vector while maintaining the same rate of convergence as

SCAFFOLD.

Hence, we see that server-based SAGA variance reduc-

tion is especially suited for the federated setting. It avoids

extra computation or communication at the clients (as in

SCAFFOLD) or unrealistic client participation scenarios (as

in MIFA).

3.2 CONVERGENCE ANALYSIS OF FEDVARP

Theorem 2 (Convergence of FedVARP). Suppose the func-
tions {fi} satisfy Assumptions 1, 2, 3. In each round of

FedVARP, the server randomly selects |S(t)| = M (out
of N ) clients, for all t, without replacement, to perform
τ steps of local SGD. If the server and client learning
rates, ηs, ηc respectively, are chosen such that ηsηc ≤
min

{
M3/2

8LτN
, 5M
48τL ,

1
4Lτ

}

and ηc ≤ 1
10Lτ

, then the iterates

{w(t)} generated by FedVARP satisfy

min
t∈{0,...,T−1}

E

∥
∥
∥∇f(w(t))

∥
∥
∥

2

≤ O

(
f(w(0))− f∗

ηsηcτT

)

+O

(
ηsηcLσ

2

M
+ η

2
cL

2(τ − 1)σ2

)

︸ ︷︷ ︸
stochastic gradient Error

+O
(
η
2
cL

2
τ(τ − 1)σ2

g

)

︸ ︷︷ ︸
client drift error

,

where f∗ = argmin
x
f(x).

We defer the proof and the exact convergence rate of

FedVARP to our supplementary material. We observe that

FedVARP successfully eliminates the partial participation

error, while retaining the stochastic sampling error and client

drift error. This is to be expected as we do not modify the

LocalSGD procedure at the clients to control these errors.

Reduction to SAGA. Note that in the case when σ = 0,

τ = 1 and M = 1 our algorithm reduces exactly to the

SAGA algorithm [Defazio et al., 2014]. Setting ηc = 1
8LN

and ηs = 1 we get a rate ofO
(
N
T

)
for non-convex loss func-

tions. Our rate is slightly worse than the rate of O
(

N2/3

T

)

obtained in [Reddi et al., 2016] because we use the same

sample i(t) to update both w(t) and yi(t) . [Reddi et al.,

2016] instead draw two independent samples i(t) and j(t),
where i(t) is used to update the model w(t) and j(t) is used

to update yj(t) . For a fixed w(t), this effectively ensures

independence between w(t+1) and {y(t+1)
j }Nj=1 which we

believe leads to the theoretical improvement in their conver-

gence rates.

4 CLUSTER FEDVARP, AND ITS

CONVERGENCE ANALYSIS

While FedVARP successfully eliminates partial client par-

ticipation variance, it does so at the expense of maintaining

a O (Nd) memory of latest client updates at the server.

This storage cost can quickly become prohibitive since

both N and d can be large in federated settings [Kairouz

et al., 2019, Reddi et al., 2021]. To remedy this, we pro-

pose ClusterFedVARP, a novel server-based aggrega-

tion strategy to reduce partial client participation variance

while being storage-efficient.

ClusterFedVARP is based on the simple observation
that we can reduce storage cost by partitioning our set of N
clients into K disjoint clusters and maintaining a single state
for all the clients in the same cluster. In other words, instead
of maintaining N states for N clients, we maintain just K
cluster states with clients in the same cluster sharing the
same state. Assuming that there exists such a clustering of
clients, our algorithm proceeds as follows. Let ci ∈ [K] be
the cluster identity of the i-th client. We initialize all cluster

states to zero, that is, y
(0)
k = 0 for all k ∈ [K]. Different

from FedVARP, we now use the cluster states of clients to
compute v(t), i.e.,

v
(t) =

1

|S(t)|

∑

i∈S(t)

(

∆
(t)
i − y

(t)
ci

)

+
1

N

N∑

j=1

y
(t)
cj

. (7)

We observe that v(t) still enjoys the unbiased property out-
lined in 6 since,

ES(t)




1

|S(t)|

∑

i∈S(t)

y
(t)
ci



 =
1

N

N∑

j=1

y
(t)
cj

(8)

The major algorithmic difference lies in how we update the
cluster states,

y
(t+1)
k =







∑

i∈S(t)∩Ck
∆

(t)
i

|S(t) ∩ Ck|
if |S(t) ∩ Ck| 6= 0,

y
(t)
k otherwise,

(9)
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for all k ∈ [K]. For k-th cluster Ck, the cluster state is the

average update of the participating clients that belong to

cluster k, i.e., S(t) ∩ Ck. If this set is empty the cluster state

remains unchanged.

Algorithm 3 ClusterFedVARP

1: Input: initial model w(0), server learning rate ηs, client

learning rate η, local SGD steps τ , η̃s = ηsηcτ , number

of rounds T , number of clusters K, initial cluster states

y
(0)
k = 0 for all k ∈ [K], cluster identities ci ∈ [K] for

all i ∈ [N ], cluster sets Ck = {i : ci = k} for all k ∈
[K]

2: for t = 1, 2, . . . , T do

3: Sample S(t) ⊆ [N ] uniformly without replacement

4: for i ∈ S(t) do

5: ∆
(t)
i ← LocalSGD(i,w(t), τ, η)

6: end for

7: // At Server:

8: v
(t) = 1

|S(t)|
∑

i∈S(t)

(

∆
(t)
i − y

(t)
ci

)

+ 1
N

∑N

j=1 y
(t)
cj

9: w(t+1) = w(t) − η̃sv
(t)

10: //State update

11: for k ∈ [K] do

12: y
(t+1)
k =







∑

i∈S(t)∩Ck
∆

(t)
i

|S(t) ∩ Ck|
if |S(t) ∩ Ck| 6= 0

y
(t)
k otherwise

13: end for

14: end for

Note that the dissimilarity in client data across clusters is

already bounded in Assumption 3. Our motivation behind

using a clustering approach is to utilize a tighter bound

on the data dissimilarity within a cluster. We quantify this

precisely via the following assumption.

Assumption 4. (Bounded cluster variance). Let K be

the total number of clusters and Ck be the set of clients

belonging to the k-th cluster . There exists a constant

σK ≥ 0 such that the difference between the average gra-

dient of clients in the k-th cluster and the local gradient

of the i-th client in the k-th cluster is bounded as follows:
∥
∥
∥∇fi(w)− 1

|Ck|
∑

j∈Ck
∇fj(w)

∥
∥
∥

2

≤ σ2
K , for all k ∈ [K],

for all i ∈ Ck.

We see that σ2
K acts a measure of the efficacy of our clus-

tering with the goal being to achieve σ2
K � σ2

g . In practice,

there often exists metadata about clients that can be used to

naturally partition clients into well-structured clusters. For

instance, when training a next-word prediction model [Hard

et al., 2018], clients could be grouped by geographical lo-

cation depending on the local dialect. Another example is

training recommender systems for social media platforms

[Jalalirad et al., 2019] where we expect connected users to

have similar interests.

Intuitively, we expect that for K < N we will suffer an error

of O
(
σ2
K

)
when trying to approximate a client’s update by

its cluster state. This intuition is captured precisely in our

convergence result for ClusterFedVARP as stated below.

Theorem 3 (Convergence of ClusterFedVARP). Sup-
pose the functions {fi} satisfy Assumptions 1, 2, 3, 4. Fur-
ther, suppose all the clients are partitioned into K clus-
ters, each with r clients, such that N = rK. In each
round of ClusterFedVARP, the server randomly selects
|S(t)| = M (out of N ) clients, for all t, without replace-
ment, to perform τ steps of local SGD. Further, the client
learning rate ηc, and the server learning rate ηs are cho-

sen such that ηc ≤ 1
10Lτ

, ηsηc ≤ min
{√

M(1−p)
8Lτ

, M
16τL

, 1
4Lτ

}

,

where p =
(N−r

M )
(NM)

. Then, the iterates {w(t)}t generated by

ClusterFedVARP satisfy

min
t∈{0,...,T−1}

E

∥
∥
∥∇f(w(t))

∥
∥
∥

2

≤ O

(
f(w(0))− f∗

ηsηcτT

)

+O

(
ηsηcLσ

2

M
+ η

2
cL

2(τ − 1)σ2

)

︸ ︷︷ ︸
stochastic sampling error

O

(
ηsηcLτ(N −M)σ2

K

M(N − 1)

)

︸ ︷︷ ︸
cluster heterogeneity error

+O
(
η
2
cL

2
τ(τ − 1)σ2

g

)

︸ ︷︷ ︸
client drift error

We defer the proof and exact convergence rate to our sup-

plementary material. For K = N (one client per cluster)

we recover the convergence rate of FedVARP(σ2
K=N = 0).

On the other hand, for K = 1 we get back the FedAvg

algorithm since all clients share the same state and there

is no variance-reduction (σ2
K=1 = σ2

g). Thus, we see a

natural trade-off between storage and variance-reduction

as we vary the number of cluster states K. In practice,

ClusterFedVARP gives server the flexibility to set K
based on its storage constraints.

We see that ClusterFedVARP also allows an interesting

trade-off between the server learning rate and cluster approx-

imation error as we vary K. Our analysis shows the bound

on the server learning rate comes from trying to control

the “staleness” of a client’s state, which measures the fre-

quency with which a client’s state is updated. In FedVARP,

a client’s state is updated only when the client participates,

which happens with probability M
N

. In ClusterFedVARP

a client’s state is updated as long as any client from the same

cluster participates, which dramatically reduces staleness.

However this comes at the cost of the additional cluster het-

erogeneity error implying a trade-off between convergence

speed and error floor.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

To support our theoretical findings we evaluate our proposed

algorithms on the following FL tasks: i) image classifica-

tion on CIFAR-10 [Krizhevsky et al., 2009] with LeNet-5
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Figure 1: Experimental Results showing Training Loss and Test Accuracy for: CIFAR-10 on LeNet-5 (a,d), CIFAR-10 on

ResNet-18 (b,e), Shakespeare on RNN (c,f). For ClusterFedVARP we keep K = 55 for CIFAR-10 experiments (4.5x

storage reduction) and K = 36 for Shakespeare experiments (30x storage reduction). FedVARP outperforms baselines in

all cases while ClusterFedVARP outperforms baselines in most cases. We see greater empirical benefits for CIFAR-10

experiments due to the higher data-heterogeneity across clients.

[LeCun et al., 2015], ii) image classification on CIFAR-

10 with ResNet-18 [He et al., 2016], and iii) next charac-

ter prediction on Shakespeare [Caldas et al., 2018] with a

RNN model. In all setups, we compare the performance

of our algorithms with FedAvg, MIFA [Gu et al., 2021]

and SCAFFOLD [Karimireddy et al., 2019] (see Section 3.1

for discussion of the algorithms). We briefly describe the

datasets and the natural clustering of clients that we utilize

in these datasets.

CIFAR-10. The CIFAR-10 dataset is a natural image dataset

consisting of 60000 32x32 colour images, with each image

assigned to one of 10 classes (6000 images per class). We

create a federated non-iid split of the CIFAR-10 dataset

among 250 clients using a similar procedure as [McMahan

et al., 2017]. The data is first sorted by labels and divided

into 500 shards with each shard corresponding to data of a

particular label. Clients are randomly assigned 2 such shards

which implies each client has a data distribution correspond-

ing to either 1 or 2 classes. For ClusterFedVARP, we

group clients having the same data distribution in the same

cluster giving us 55 unique clusters.

Shakespeare. Shakespeare is a language modelling task

where each client is a role from one of the plays in The

Collective Works of William Shakespeare [Shakespeare,

2014]. We pick clients that have lines corresponding to

at least 120 characters which leaves us with 1089 unique

clients. The task is to predict the next character given an

input sequence of 20 characters from a client’s text. For

ClusterFedVARP, we group clients belonging to the

same play in the same cluster giving us a total of 36 clusters.

Experimental Details. To simulate partial client partici-

pation we uniformly sample M = 5 clients without re-

placement in every round for all algorithms. This gives us

a participation rate of 2% for CIFAR-10 experiments and

< 1% for Shakespeare as seen in practice for typical FL

settings [Kairouz et al., 2019]. We allow clients to perform

5 local epochs before sending their updates. We use a batch

size of 64 in all experiments. We fix the server learning rate

ηs to 1 and tune the client learning rate ηc over the grid

{10−1, 10−1.5, 10−2, 10−2.5, 10−3} for all algorithms. For

ResNet-18 we replace the batch normalization layers by

group normalization [Hsieh et al., 2020]. Our Shakespeare

RNN was a single layer Gated Recurrent Unit (GRU) with

128 hidden parameters and embedding dimension of 8.
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5.2 COMPARISON WITH BASELINES

Our experiments clearly demonstrate that our proposed al-

gorithms consistently outperform other baselines without re-

quiring additional communication or computation at clients.

ClusterFedVARP closely matches the performance of

FedVARP in all experiments thereby highlighting the practi-

cal gains of clustering-based storage reduction. For instance,

to achieve 50% test accuracy on CIFAR-10 classification

with LeNet-5 our algorithms take less than 536 rounds while

FedAvg takes 1158 rounds giving us up to 2.1x speedup.

The benefits are especially pronounced for CIFAR-10 as

the artificial data partitioning leads to greater heterogene-

ity across clients thereby accentuating the effect of partial

participation.

Our algorithms also outperform competing variance-

reduction methods MIFA and SCAFFOLD in all exper-

iments. The performance of MIFA is severely affected

by its bias in the initial rounds of training since we do

not assume that all clients participate in the first round

of training. This again highlights the practical usefulness

of the unbiased variance-reduction applied in FedVARP

and ClusterFedVARP. While theoretically appealing

we find that modifying the LocalSGD procedure using

SCAFFOLD to mitigate client drift actually hurts perfor-

mance in practical FL settings. Our findings are consistent

with [Reddi et al., 2021] and make the case for reducing

client drift using carefully tuned local learning rates while

focusing on server-based optimization techniques to reduce

variance.

6 RELATED WORK

Convergence Analysis of FedAvg: The original FedAvg

[McMahan et al., 2017] work inspired a rich line of work

trying to analyze FedAvg in various settings [Khaled et al.,

2020, Yu et al., 2019, Li et al., 2020b]. The convergence

results closest to our setting are found in [Wang et al., 2020,

Karimireddy et al., 2019, Yang et al., 2021] that analyze

FedAvg in the presence of non-iid data as well as par-

tial client participation for non-convex objectives. We refer

readers to [Kairouz et al., 2019, Wang et al., 2021] for a

comprehensive review of convergence results in FL.

Variance Reduction. Since the inception of SAG

[Schmidt et al., 2017] and SAGA [Defazio et al., 2014], sev-

eral variance-reduction methods for centralized stochastic

problems have been proposed that do not require additional

storage. We divide these works into two broad categories

and discuss applying them in a federated context to reduce

partial client participation.

1) SVRG-style Variance Reduction. SVRG [Johnson and

Zhang, 2013] and related methods like SCSG [Lei et al.,

2017] SARAH [Nguyen et al., 2017], and SPIDER [Fang

et al., 2018] trade-off storage with computation and need to

compute the full (or a large-minibatch) gradient at regular

intervals. While these methods achieve theoretically better

rates than SAGA, applying them in a federated context

would require all clients to participate in some rounds of

training which we believe is unrealistic.

2) Momentum-based Variance Reduction. A recent line

of work explores the connection between SGD with momen-

tum and variance-reduction and proposes new algorithms

STORM [Cutkosky and Orabona, 2019] and HybridSARAH

[Tran-Dinh et al., 2019], that do not require full-batch gradi-

ent computation at any iteration. This has inspired federated

counterparts [Das et al., 2020], [Khanduri et al., 2021], [Li

et al., 2021]. [Das et al., 2020] and [Li et al., 2021] propose

to use such approaches to reduce client participation vari-

ance. However there are two drawbacks. The central server

needs to communicate two sets of global models w(t) and

w(t−1) to the participating clients, doubling server to client

communication. Secondly, participating clients need to run

local SGD for both sets of global models, thereby doubling

computation. Again while theoretically attractive we believe

such approaches are not suitable for practical FL settings.

Clustered Federated Learning and Variance Reduction.

The idea of utilizing cluster structure among clients has

given rise to the paradigm of clustered federated learning

[Ghosh et al., 2020], [Sattler et al., 2020], where separate

global models are learned for each cluster. On the other

hand, we propose to learn a single global model and use

the cluster structure for reducing the variance arising due to

partial client participation. A similar idea of sharing gradient

information while reducing variance has been explored in

N -SAGA [Hofmann et al., 2015] but their focus is on a

single node centralized setting and the analysis is restricted

to strongly convex functions. An interesting direction for

future work is to linearly combine a client’s previous state

with its cluster state to reduce staleness as done in [Allen-

Zhu et al., 2016].

7 CONCLUSION

We consider the problem of eliminating variance arising

due to partial client participation in large-scale FL systems.

We first show that partial participation variance dominates

the convergence rate of FedAvg for smooth non-convex

loss functions. We propose FedVARP, a novel aggregation

strategy applied at the server to completely eliminate this

variance without requiring any additional computation or

communication at the clients. Next we propose a more prac-

tical clustering-based strategy ClusterFedVARP that re-

duces variance while being storage-efficient. Our theoretical

findings are comprehensively supported by our experimen-

tal results which show that our proposed algorithms consis-

tently outperform existing baselines.
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