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ABSTRACT ACM Reference Format:

We present Atos, a task-parallel GPU dynamic scheduling frame-
work that is especially targeted at dynamic irregular applications.
Compared to the dominant Bulk Synchronous Parallel (BSP) frame-
works, Atos exposes additional concurrency by supporting task-
parallel formulations of applications with relaxed dependencies,
achieving higher GPU utilization, which is particularly significant
for problems with concurrency bottlenecks. Atos also offers im-
plicit task-parallel load balancing in addition to data-parallel load
balancing, providing users the flexibility to balance between them
to achieve optimal performance. Finally, Atos allows users to adapt
to different use cases by controlling the kernel strategy and task-
parallel granularity. We demonstrate that each of these controls is
important in practice.

We evaluate and analyze the performance of Atos vs. BSP on
three applications: breadth-first search, PageRank, and graph col-
oring. Atos implementations achieve geomean speedups of 3.44x,
2.1x, and 2.77x and peak speedups of 12.8x, 3.2x, and 9.08x across
three case studies, compared to a state-of-the-art BSP GPU imple-
mentation. Beyond simply quantifying the speedup, we extensively
analyze the reasons behind each speedup. This deeper understand-
ing allows us to derive general guidelines for how to select the
optimal Atos configuration for different applications. Finally, our
analysis provides insights for future dynamic scheduling framework
designs.
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1 INTRODUCTION

Bulk-synchronous parallel (BSP) programming [27] is the tradi-
tional model for GPU applications. It is a natural fit for statically
schedulable, regular problems, such as many dense-matrix, image-
analysis, and structured-grid computations. Programming envi-
ronments like NVIDIA’s CUDA and Khronos’s SYCL support this
relatively simple model, which maps efficiently to the massive
fine-grained parallelism on GPUs and can deliver near-peak perfor-
mance.

However, some important problems are instead irregular, with
frequent control flow branches, non-unit-stride memory accesses,
variable amounts of work across loop iterations, and dynamically
varying degrees of parallelism. Algorithms that operate on graphs or
trees or those with recursive formulations often exhibit such irreg-
ularity. These more naturally use a task-based programming model.
Programming systems like Legion [2], PTask [22], and StarPU [1]
use tasking on the CPU to feed GPUs with kernels to mask the
latency of communication and keep the GPU busy. In contrast, we
consider the problem of very fine-grained tasking where (tradition-
ally) a set of similar application-level tasks are aggregated to form
a data-parallel GPU task. This idea is used in state-of-the-art GPU
graph libraries like Gunrock [28], where the application-level tasks
are vertices or edges. In Gunrock and similar frameworks, each
frontier in a graph sweep is launched as a separate GPU kernel
in the BSP model. In practice, this may result in insufficient paral-
lelism, uneven finish times, and high kernel launch overhead for
small frontiers.

To address the above issues, we present of Atos, a task-scheduling
framework for GPUs, that is adaptable to different usage scenarios:

e It supports both expensive and inexpensive frontiers by pro-
viding persistent and non-persistent task schedulers. The
persistent scheduler is a GPU kernel that runs continuously
to minimize launch overhead.

o It allows the user to trade off task and data parallelism by se-
lecting the worker size, which is the number of GPU threads
within each worker, and the number of items in each task.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3545008.3545056
https://doi.org/10.1145/3545008.3545056

e R R I

ICPP °22, August 29-September 1, 2022, Bordeaux, France
ICPP ’22, August 29-September 1, 2022, Bordeaux, France

° I usesas1 are sétg ueue, w ances oad more
. eue, w ances ore
u1 a 1S r ueue enou
‘%/ than a 1str1 u € gjeue et 1s st enoug’l?rl

ers c

or ers oc
su onous executlon across frontiers to max-
on acr SS rontlers to max-
€Serving cross-
e most Cross-

0 It su orts a nc ro
111 sm b
?mz%avar e ara 1sm o rese’:i(vm
ontier ori erm an us mrmmrzmg oVerwor
ms on a varlet

We ssttuél}’ﬁl%r & %ag ms on a varl e Ofgfaﬁﬁgatase
that stresst g tﬁ? OAnCE 8§ ﬁt gaiagtat’ﬁlw Hhess gﬂg&%ﬁt}tms

ave neste e ism wi ut en encies, an
ave neste € 1sm Wl oul er-10 e encies; and e
abllh,[ to rell ose e encies comes e cost o f 0SS
ability tQ relax t ose e enc1e omes a cost 0SSl
overwor]lé us a secon e e in er is tra&ie §‘
OVETrWOr us a or t €€ 1N t 1s er is t €0
between 1n cas &1 elhsm and over
b tween 1n elism an OVETW r c r t e
Or] tﬁl t11} ra&leo n a som ew e t manner,
a r1 S €ofl in a SO ew eren manner,
W we 1scuss anél analyze 1n§ ion é
WIS WE 1scuss an ana ze iR &S
ur co. uttrons in
ur con HHSES HET

2 @@v@@m@ & @&?@f&‘l‘%&i GPU taskparailel framewonk that
&xplores 2 broad design space of possible taskparatiel in-

Plemeniations:
2 &&&Wﬁmﬁﬂb&@&%@sﬁmmm&t@%
Mﬂmﬁﬂiﬁgﬁm "
% SRZAHOR APPHCIIORS 25 &
f&r é&&@ﬂ@féﬁ&ﬁl With 2 EPU tagk-paraiel ffgg

Work; and
# A delailed anabysis of 3 performance that high-
Tights the impact of @@ammmmm@m
soheduler snd 3t the level:

2 A DYNAMIC, IRREGULAR APPLICATION
PATTERN

Ates handles a broad set of applications with fine-grained task

and data parallelism, but we choose to focus hete on a particularly

challlenging class of irtegular nested loops with the following forim:

Listing 1 A program with nested loops, expressed with a frontier
abstraction.

in_frontier = initialize()
while (stop condition not met): // outer loop
for (i in in_frontier): // inner loops
for (j = 0 to workload(i).size()):
out_frontier.append(f(in_frontier[i], j))
cudaDeviceSynchronize()
in_frontier = out_frontier
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pattern to PageRank, such as federated learning algorithms.
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3 OUR TASK-PARALLEL PROGRAMMING

MODEL AND DESIGN SPACE
Our programming model allows implementations of task-paraliel
formulations of the workloads we discussed in Seetion 2, with
a focus on providing solutions to BSP’s thiee challenges: simall-
frontier, load-imbalance, and loss of concuirency opportumnities. We
wse the following terminology:

worker: one or a group of GPU tlhreads.

task: ome or mote pieces of work that are schedulled as a single

womiitt i Quir Sysitenm.
application fumction ff(): the code that processes each task.

Listing 2 SPMD code of each thread worker in Atos.

for each worker:
while not queue.empty():
task = queue.concurrent_pop(task.size())
new_tasks = f(task)
queue. concurrent_push(new_tasks)

At a h'igl? 1levell, our mo((ilell maintains a queue off tasll(<s. Work-
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ers fetch a rask from the queue, process the task, and add newly
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Weiker size We can dhoose what GPU resourees we assign
to each woilker. What is the worker size that yields the best
peiformance?

Data vs. Task Paralielism We expect to leverage the paral-
lelism between tasks. We can also choose the size of our
tasks, and within each task, potentially leverage data pai-
alllelism. Wihat is the right balance between task and data

Ketnel strategy Listing 2 is written in a “persistent” style,
implementable with a single kennel eall. We could alterna-
tively interchange its outer and inner loops, making one
“diserete” kennel ealll per iteration. Which is best for optinal
performance?

3.1 Relaxing Barriers

As discussed in Seetion 2, many applications have the nested loop
strueture from Listing 1 and their BSP implementations may lose
concutrency oppertunities because of the global bartier between
the outer loops. I many cases, we con remove the barrier and relax
the outer loop dependensy while still computing the cotrect resullt.
Heow? Consider twe tasks A and B that, in 2 BSP implementation,
ate ordered: A is in an iteration that precedes B and thus must run
before B.

o One peossibility is to speculate that we can compute A and
B at the same time, or even in the order B then A, witheut
changing the correctness of the computation. If our speeu-
lation is correct, then we expose more concutrency. If our
speculation is incorrect, then we must fix it. This fix might
be cheap or costlly.
o A second possibbility is & probilem formulation that is tobust
to computing items out of order. This iis alse callled Dijikstra’s
don’'t care non-determinism [11].
In either case, we can relax global bartiers and expose additional
concutrency; depending on the problem and dataset, we may see
significant performance gains. Howevet, telaxing battiers may in-
cur additional costs: the cost of performing incorrectly speculated
werk, the cost of repaiting incorrectly speculated weork, and less
predictable convergence rates when compared to the BSP coun-
terpart. Overall, if the performance improvements from increased
coneurency outweigh these costs, we can deliver performance

gaiins.

Related work: Hassaan et al. [16] studied unerdered and ox-
dered versions of several slgorithins, demonstrating & tradeofi be-
tween parallelism and work efficiency. However, the relaxed bai-
ter formulations we study differ from unordered ones. Consider
breadth-first search (BFS). Both Hassaan et 4l and we begin wiith 2
work-efficient Dijkstra BES, but they compare to a work-inefficient
Belliman-Ford BFS, while we compate to a relaxed (speculative)
Dijkstia BES (Section 5.1). The speculative Dijkstra BES is more
work-efficient than Bellman-Ford BFS. Empitically, speculative Di-
jkstra's workload is within 2 small constant factor of that of BSP
Dijkstra, which is #edges (see Table 4). This is much smaller than
Belliman-Ford's workload of diameter x #edges. Kulkarni et all. [19]
studied an abstraction and rumtime scheme for workloads with opti-
mistie parallelism, which differ from the relaxing batriers we study
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tasks can run in parallel and stops a task the moment it violates a
dependency. In contrast, we allow the computation to commit, even
if it violates a dependency, and only fix the mistake afterwards.

3.2 Worker Size

Previous task-parallelism work [1, 7, 8, 22] uses the whole GPU as a
single worker. They maintain a task dependency graph on the CPU
side and orchestrate the execution by launching a CUDA kernel for
each task when dependencies are satisfied. We use GPU-wide-worker
to describe such an organization. Tasks in those GPU-wide-worker
task-parallel frameworks are usually very large to better utilize the
entire GPU’s resources. This organization is easy to program and
has low scheduling overhead.

However, the GPU-wide-worker scheme is a poor match when
task dependencies require finer management. Consider the follow-
ing extreme example: Task A and Task B both contain 10,000 data
items, and only a single data item in B depends on a single item in A.
A GPU-wide-worker implementation must wait for A to complete
before beginning work on B, even though most of the data items
can be processed independently and concurrently. We use the term
false dependency to describe the situation when a data item has all
its dependencies satisfied, but cannot be processed because another
data item in the same task has unresolved dependencies. One can
reduce such false dependencies by decomposing a large task into
many smaller tasks to expose more parallelism. As a result, work-
ers should be smaller, matching the size of tasks and allowing full
utilization of the GPU’s resources. This approach has motivated a
number of recent task-parallelism frameworks [4, 23, 26, 29], which
use workers sized as either warps or Cooperative Thread Arrays
(CTAs). The resulting additional complexity in scheduling many
smaller workers motivates also moving scheduling decisions from
the CPU to the GPU.

Most task-parallelism frameworks only provide one worker size.
Our framework provides thread-, warp-, and CTA-sized workers,
to support tasks of different size and different synchronization re-
quirements. The only prior work that uses multiple granularities is
Whippletree [23]. Whippletree’s thread and warp worker sizes are
primarily a programming model concept and suffer from synchro-
nization penalties at the implementation level. In Whippletree’s
implementation, threads are still synchronized within entire CTAs,
suffering from false dependencies if tasks require finer synchro-
nization than at CTA granularity.

For graph analytics frameworks in particular, data-parallel bulk-
synchronous execution models are by far the most common on
GPUs because of their high GPU utilization and effective use of data-
parallel load-balancing techniques (e.g. Gunrock [28], cuGraph [12],
Medusa [30], SIMD-X [20], GraphBLAST [10]). Current multi-GPU
task-based asynchronous graph libraries—Groute [5], Lux [18], and
Galois [17]—use a data-based bulk-synchronous model for the com-
putation kernels launched on each GPU.

3.3 Balance Between Data and Task Parallelism

Many parallel applications have work items that require different
amounts of processing. Traditional BSP applications address this

Yuxin Chen, et al.

challenge with explicitly coded data-parallel load balancing tech-
niques. We describe two different approaches in the context of List-
ing 1: One widely used technique is load balancing search [9], which
dynamically computes the prefix-sum of workload(i).size() for
i € in_frontier, then flattens the two for-loops into one big array
and redistributes the work in the array to each CUDA thread (see
Baxter [3] for details). Another popular data-parallel load balancing
technique separates the work in in_frontier into different buck-
ets based on workload(i).size() and launches a separate kernel
with the best processing strategy for that size for each bucket [21].

Task parallelism is a natural fit for these irregular applications.
Workers in our framework do not directly synchronize with each
other. One of the primary advantages of this lack of coordination is
that it allows workers to attend to any available work items as soon
as they become available (“implicit task-parallel load balancing”).

Task parallelism and data parallelism are not exclusive—
individual tasks of sufficient size may also exploit data parallelism in
their execution. Thus we consider a continuous spectrum with pure
task-parallel and pure data-parallel load balancing at the extremes,
and expect that the optimal trade-off will be application-dependent.
Our framework supports two worker sizes larger than a thread
(warp and CTA) and offers the programmer the ability to exploit
data parallelism within each warp-sized or CTA-sized task. In the
framework, workers operate on tasks asynchronously, but an in-
dividual worker itself is executed synchronously. Therefore, we
can use a worker’s capacity as a parameter to control the trade-
off between data and task parallelism. Given a fixed number of
threads available, increasing a worker’s capacity reduces the total
number of workers available for a given application. At the same
time, an increase in worker capacity results in more opportunities
to perform data-parallel load balancing within each worker. In the
extreme, setting a worker’s capacity to the entire GPU leaves no
room for task parallelism and is equivalent to the BSP model. We
found that data-parallel load balancing inside the worker combined
with task-parallel load balancing provided by Atos results in better
overall load balancing (Section 6). We are not aware of any previous
work that combines these two types of load balancing.

3.4 Kernel Strategy

Traditional GPU kernels divide a variable amount of input work into
fixed-size CTAs and launch a kernel over a CTA count proportional
to the amount of input work. Persistent kernels [14] decouple the
relationship between data size and launched CTAs. A persistent
kernel launches only enough CTAs to fill the GPU. These CTAs
remain resident for the entire kernel and run a loop that maps
naturally to the task-parallelism model in Listing 2.

Advantages of persistent kernels Persistent kernels reduce
kernel launch overhead and CPU/GPU communication. This is
particularly significant when many small kernels are required. The
persistent kernel approach reduces CPU involvement in favor of
programmer-written GPU logic within the persistent kernel.

Disadvantages of persistent kernels GPU workers in the per-
sistent kernel concurrently pop from a shared queue; this requires
atomic operations to ensure exclusive pops. Persistent kernels have
higher register usage than discrete kernels (requiring extra registers
to maintain the queue loop).
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Intuitively, if a discrete-kernel apphcatipn suffers from large
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R AN AR 6.5, we discuss the results of our
experiments with respect to this choice.

Listing 3 Atos framework APIs

template<typename T, typename COUNTER_T>
struct Queues {

Listi?ig"% Aolidsiﬁa&ewgﬁgquofgity, int num_queues, int iteration);

temptatelagpehynename tfpenbiebaURTER, TEyPename. . . Args>
structhQaéuesveid launchThread (bool ifPersist, int numBlock,

inforumThyead, A0t shaorMer_$izgpatit§l, iR? Adm_4U8Ges; 3R®) iteration);

template<typenafe F1, typename F2, typename... AFgs>
—-hest__ veid launeh\fiﬁFeaébqesolfﬁepérgistlnin@uwaﬂnaqbck
int AumThread, int sharesiamssiee, FRTFTT, FR2FD2, ARESS. . - aPES);

tefplate<ippehblieHES I Zkyptranears  Fiyptraneame ggstypename. .. Args>
=-hest_- veid launehWbip(ResbliiReepssse, inhtnruRbIskK,
int AuRThread, int shareWeemsizge FE17F1 FR2F22 AREgs. . . a66Y);

Template<int FETCH_SIZE, typename FT, typename FZ, Typename... ATgs

__host__ void launchCTA (bcol 1fPers1st 1nt numBlock
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so we can be confident that our results are meanmgful Also, when
run on particular datasets, their BSP implementations exhibit one
or more of the challenges described in Section 2.1.
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struct BFS {
int_num_nodes;

Li§Hig-4%tos-based relaxed BFS (worker size: warp)

stinktrgesth;
QreuABMVABEEStS;
int num_edges;
BER(Gegr;csr, int capacity, int num_queues) {
in€Skdepthssr;
Queekligkr1igts(capacity, num_queues);
cudaMalloc(&depth, sizeof(int) * num_nodes);

BFS(Csr _csr, int capacity, int num_queues) {
csr = &_csr;

voidrRi$star tatpeaphcheyBlagh, qietiedynThread) {
varklbsteckadephare{zeomyiBiock, nownhbaeay, ¢, BFSWarp(), *this);

3

void BFSStartWarp(int numBlock, int numThread) {
templaER176¥RENANACKAEERXTD nukBlockyPROATAr843eToS BREWarp(), *this);
class BFSWarp {

Jpublic:

__device__ void operator() (VertexId node, BFS bfs) {
tempYattextgpdapib vebtexdapthinededypename SizeT = int>
clas8ipeEwapgeoffset = bfs.csr.get_neighbor_list_start(node);

pub%izeT neighborlen = bfs.csr.get_neighbor_list_length(node);

__Gevikdnt ibew opeMitoriyevertagiahhentenpritemsy ftem + 32) {

veVegkaaldepehghbars=depenehbegqt_neighbor (node_offset + item);
siYertasld_ekdsdepthpsatepiglintbigngdepthistnaiahheroddspth + 1);
siéT(nbdeABBENer deptl. ¢sh) gbfsnuepkbbstsiReshengER(ABaGHDOr) ;
For (int item = LANE; item < neighborlen; item = item + 32) {
__g¥peuat(heighbor = bfs.csr.get_neighbor (node_offset + item);

}  VertexId old_depth = atomicMin(bfs.depth + neighbor, depth + 1);

¥ if (old_depth > depth + 1) bfs.worklists.push_warp(neighbor);
T
__syncwarp();
}
b
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the importance (rank) of nodes in a graph

first kernel pushes a fraction of the residue of each vertex on the
frontier to its neighbors. The second kernel aggregates all ver-
tices with residue > € and adds them to the frontier. Having two



%‘%% {i\u us; 3§e ember 1|, %or%eaux Firance
3 ust 29- er ) , BordeauX, France
AuBust 29-5e tem er 1, 2022, Bordeaux, France
P u er 1,2022, B ordeaux France

AN
‘ii
E

‘QJ en, et al.
uxin Cherm, et al.
Yuxin Chen, et al

Yuxin Chen, et al.

PR
OTTURII 4 SDCCULAlIVE BIRS - f !
OI TN 2 Sypecaive ™) YuxtmChenetat
1thm 2 Sbeculative BES
€ TNitlariZation a: goTLenim 1
th §1auzatlon as L orltnm T
IR Ial1Zat] -
Teratization—as—teorrthmt—

DA

vertex.dist+1
vertex.dist+]
vertex.dist+1)

,,,,,, D
____neighber dist-atomicMin(Zneighbor di T
neighbor—dist:

vertex.distfl)

if vert

frontier.append(neighbor)

_dist+ 1

Oritinm 3 BUIK SVNICHTONOUS FAafCRATIK

OITHINT ) DK SVIICOTONOOS PAaPeRAIK

Alforithm ulk Synchronous PafeRank
P INTtialiZatl 7 (=]

{arization
G :

*lambda%/lambda*vertex ne1ghborLeng
m%ams lambda*vertex.neighborLen
fl da)/lambda*vertex.neighborLen)

Cu

frontier annend{ ertex)

cudaDeviceSynchronize()

OTIthim 4 ZASVNCHTOoNnous BaocKank
O TN 4 AASVIICATONOUS AP CRANK
1thm 4 Asynchro 'mn%PaEPKank
Me 1N ranzzm—on 3 \1gorionm 3 O
s Tgoronm
s RiRronous PageRank -

éom thm 3
tex,0
t Q

tit phice ¢ '\um’f: G ﬁ ViV %C %ﬁ;_suégsize :

S e — HET gt on

a ehuween thescolor QQQID‘I’\mPY\f and conilict i we E” 'S Zgg on:
QVIICHTOTIOUS BES . & chetk: e abl¢Eptices)
FrotOPrg b Tor-check 10 o check startiRangel? Check Size):

14 if residuelcheck—id%G-total verti psilon:

U
empt:
o *zﬁlemwg
\ B ‘y,,

, vertex.dist+1
vertex.dist+1
vertex.dist+1)

, vertex.dist+1)

MAhRe oY T
managl NCro
managing asgnc ron
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 Algorithm 5 Bulk Synchronous speculative Graph Coloring

2 #1591 8 1ization

23 yépf]r tier = G.all_vertices()
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56 # bl Sy col ring
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# Assign each lor different from neighbors'
0 _for vertex i
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1% forl Hehil %?Ui%lg}é% XA
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B! V%}@i(ﬁ@l\%elgﬁﬂ#‘%ﬁ% Qforbldden[color] == false)
1 vertex.color = find_min_color(forbidden[color] == false)
136 cudabDeviceSynchronize()
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it out_frontier = _KERNEL

130 _for vertex inm fEpNEiers
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23 out_frontier.append(vertex)

225 cudaDeviceSynchronize
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6.1 Experlmental Overview

QVe evzﬁuap etﬁnales}én prlnc1ﬁes &1scussed in Section 3 using three
Wesialuatethedesignprineiplassiscussed intestion Ausingase-
implementatioar siariants based o & cosbinationsof Akos eanfiged
ratiomsr (1]t peksist- 3R tariilized plersistenti kernels withinvarfrsized,
wiogkersoHlhasing daaparatleljoad balanringmithin(a) vwaskes-
insterdronlycusmpdmplicitiask-pasallghload balaacing () [ pexsish-
workersizerFEECHiS R whilizes pessistautrkesnets with & Tids-
sizedewerkets-{A) “diparstesworkexesiz BETCHASIZES mtilines 1disd
aseterdkemeleand (74T sizashwiopkensidBoth CTAvamanteubelqad)
halaneing seare[2dd (@ datarperallohlnadihalanginglterhnique)-
igﬁidﬁgyorkers in conjunction with implicit task-parallel load bal-
anclag.BFS and PageRank, we compare the performance of our im-
plEeBESiand PagrRanlckwWesiompane the perfonmanece af purisp-
Pementationsriodewaiackliz8h astaterofithesastsingleaGRLI BSRt-
hased graph- Sramewerkowbich extensively Gsesdatasparalielload:-
balaneing techninyes|Bor Graph Golorag fawmbheks independenty
sehgraphimeloringsalgorighm isoratcomparahle ssowe faithifitlbe
implementasha- BiSPigraph solering usipgrthe same spacylatives
greedy graph coleting algerithmaQun HSPrimplementationiuss,
Quagabks husketihased. data-parallel load balancing method [28],
described in Section 3.3.
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a large amount of work per iteration). In contrast, Gunrock on
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Table 3: Summary of performance challenges for each case
study.

BFS PageRank Graph Coloring
Scale-Free Load Imbalance ~ Load Imbalance ~ Load Imbalance + Small Frontier
Mesh-Like Small Frontier None None

Table 4: Upper: Workload ratio of three Atos implementa-
tions relative to Gunrock’s implementations for BFS and
PageRank. A workload ratio of n means that our implemen-
tation does n times as much work as Gunrock. Lower: the
workload ratio of four implementations relative to the in-
put graph’s total vertex count for graph coloring,.

Application: BFS Application: PageRank
Dataset persist persist discrete persist persist discrete
warp CTA CTA warp CTA CTA
soc-LiveJournal1® 1.43 1.06 1.01 0.73 0.72 0.72
holly\!v'octo(LZOO‘)S 2.26 1.19 1.07 1.08 1.18 0.9
indochina_2004° 1.28 1.00 1.00 0.76 0.73 0.75
road_usa™ 3.56 1.05 1.04 0.79 0.79 0.92
roadNet_ca™ 2.05 1.02 1.04 1.18 1.11 0.97
Application: Graph Coloring
ersist ersist discrete

Dataset BSP pwarp P CTA warp

soc-LiveJournal1® 1.17 1.00 1.74 2.78

hollywood_2009S 3.31 1.15 5.24 37.34

indochina_2004% 1.96 1.04 4.45 16.97

road_usa™ 1.22 1.00 1.46 1.41

roadNet_ca™ 2.55 1.00 1.74 2.44

mesh-like datasets does exhibit the small frontier problem, because
these datasets have high diameters and small average degree; con-
sequently, there is a large number of iterations, with little work per
iteration, leading to low throughput over many iterations.

PageRank: In Figure 2, for Gunrock PageRank, both scale-free
and mesh-like datasets do not exhibit the small frontier problem,
as they have high throughput over most of the execution time
and converge in fewer than 35 iterations (though Indochina-2004
exhibits a long flat tail in the latter half of execution).

Graph Coloring: In Figure 3, for BSP graph coloring, scale free
datasets have low throughput for more than 70% of execution time,
and thus have the small frontier problem. Mesh-like datasets termi-
nate in fewer than 40 iterations, and have short tails, and thus do
not have the small frontier problem. This is because on scale-free
datasets, the high-degree vertices will need to be recolored many
times, leading to a large number of iterations, during which the
frontier contains a few high-degree vertices with color conflicts. In
contrast, mesh-like datasets have low average degree, and are less
likely to have color conflicts.

6.3 Relaxing Barriers

As discussed in Sections 2-3, relaxing barriers exposes more con-
currency, giving higher throughput and shorter execution time.
However, relaxing barriers may result in extra work. If the perfor-
mance improvement from increased concurrency outweighs the
cost of extra work, we obtain a net performance gain.

There are two key factors influencing this tradeoff. First, we find
that in the presence of a small frontier problem, the increase in con-
currency from relaxing barriers is always more significant than the
cost of extra work. Second, on naturally unordered algorithms such

Yuxin Chen, et al.
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Figure 1: Normalized throughput vs. time on BFS. The top
charts are scale-free; bottom charts are mesh-like.
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Figure 2: Normalized throughput vs. time on PageRank.

as PageRank, one can always relax the barrier: although the barrier
gives the BSP implementation a more predictable convergence rate,
the barrier generally does not make the convergence faster.

Table 4 summarizes the extra work for three study cases. Fig-
ures 1, 2 and 3 plot the throughput of four implementations (BSP +
three Atos variants) of three study cases against timeline for four
datasets. Notably, these plots show the normalized throughput,
which is the measured throughput divided by the overwork factors
in Table 4. This gives a fair measure of overall performance, as it
incorporates both the benefits of improved concurrency (higher
absolute throughput) and the cost of extra work. Essentially, nor-
malized throughput measures “useful” throughput rather than raw
absolute throughput. We provide detailed analysis below for each
application.
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Figure 3: Normalized throughput vs. time on graph coloring.

BFS: Figure 1 shows that for the two mesh-like datasets, all 3 Atos
implementations achieve considerably higher normalized through-
put than Gunrock. Why? Table 3 shows that Gunrock on mesh-like
datasets has a severe small frontier problem. Therefore, the increase
in concurrency in the 3 Atos implementations offers a significant
performance advantage. Table 4 indicates that the persistent-warp
implementation generates 3.5x extra work vs. Gunrock, but despite
this extra work, Atos’s normalized throughput is still significantly
higher than Gunrock. Scale-free graphs, on the other hand, exhibit
more parallelism and do not suffer from the small-frontier problem.
Atos’s fastest implementations are still faster than Gunrock’s, but
not nearly as much as for the mesh networks.

On all BFS experiments, Atos’s CTA implementations are faster
than its warp ones. Atos’s CTA implementations use a combination
of task-parallel and data-parallel load balancing techniques (see
Section 6.4 for details), and thus have better load balancing than its
warp implementations, which only use task-parallel load balancing.
This leads to higher GPU utilization and hence higher absolute
throughput. Second, CTA implementations produce less extra work
than warp (see Table 4). Due to better load balancing in CTA, the
workload of each worker has lower variance. If a worker receives too
much work, there will be a long delay before the vertices’ updated
depths are visible to other workers; this increases the likelihood
that downstream vertices are first reached via other sub-optimal
paths, which leads to extra work.

PageRank: Unlike BFS, PageRank is naturally unordered, as
it satisfies Dijkstra’s don’t care non-determinism [11]. Therefore,
relaxing the barrier in the outer loop does not generate any misspec-
ulations and hence results in no wasted work. In fact, Table 4 shows
that the Atos implementations perform less work than Gunrock in
general. This is because the BSP barrier forces each vertex to be
processed at most once per iteration. By relaxing this barrier, the
Atos implementations can update certain important vertices (e.g.,
vertices with high centrality) more frequently than other vertices,
thus leading to more efficient propagation of rank.
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Figure 2 shows that all three Atos implementations compact the
workload and process it with higher normalized throughput (persist-
CTA has a higher profiling cost). Though PageRank does not suffer
from the small frontier problem, the three Atos implementations
nonetheless have superior performance over Gunrock, because
relaxing the barrier increases concurrency. In addition, relaxing the
barrier lowered the overall workload in practice, even though in
theory it may lead to a more unpredictable convergence rate.

Graph Coloring: Unlike BFS and PageRank, all graph color-
ing implementations (including BSP) use a speculative approach
(greedy graph coloring) and thus all have extra work. Table 4 sum-
marizes the multiplicative factor of extra work, which is defined as
a ratio vs. the number of vertices in the graph (the lowest possible
workload). Atos’s persist warp has the least extra work; on some
datasets, the extra work is less than 1%, which means after the first
color assignment, only 1% of vertices have a color conflict and must
be recolored. Atos’s discrete warp has the most extra work (on
hollywood-2009, 37.34x). The extra work is due to the combination
of two factors:

1. Conflicts tend to arise when neighboring vertices are colored
concurrently: From Section 5.3, given a vertex, the algorithm first
checks its neighbors’ colors, then assigns a color to the vertex that
does not conflict with its neighbors. The color assignment is specu-
lative because it is done using possibly outdated color information
from the vertex’s neighbors. When neighboring vertices are colored
simultaneously, they read outdated colors from each other, leading
to conflicts and recoloring.

2. Consecutive vertices on the work queue are likely to be neighbors:
On many if not most graphs, the vertex ID is semantically meaning-
ful: vertices whose vertex ID are numerically close are more likely
to be neighbors. At the beginning of graph coloring, all vertices are
initially inserted onto the work queue in order of vertex ID.

Since consecutive vertices on the work queue tend to be assigned
colors concurrently, the above implies a high likelihood of color
conflicts. We verify that the large amount of extra work is indeed
due to semantically meaningful vertex IDs: running the exact same
experiment with randomly permuted vertex IDs, the amount of
extra work drops to less than 1.5x for all four implementations on
all datasets. ID permutation leads to the following runtime improve-
ments (in ms) on scale-free datasets:

Impl. soc-LiveJournall  hollywood  indochina
discrete-warp 63 — 31 274 —> 26 2073 — 222
persist-CTA 36 — 21 59 — 28 184 — 50
BSP 96 — 89 77 — 61 673 — 485

The BSP implementation has a more modest improvement because
BSP’s thread-warp-CTA load balancing scheme [21] already divides
each bucket into three individually-load-balanced subbuckets, re-
ducing inter-bucket conflicts. Persist-warp has little change as there
is almost no extra work even before permutation. Notably, after
permutation, all three Atos variants are faster than BSP implemen-
tation on scale-free datasets.

Comparing persist-warp and persist-CTA: persist-CTA has
better load balancing, allowing for more (potentially adjacent) ver-
tices to be colored simultaneously, resulting in more extra work
than persist-warp. We verify this from Table 4. Roughly speaking,
the amount of extra work for persist-CTA is more significant on
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scale-free graphs, as a vertex can have a large number of neigl
bors, leading to more potential conflicts. Therefore, persist-CT.
outperforms persist-warp on mesh-like graphs, where the increase
concurrency and better load-balancing outweigh the cost of waste
work; conversely, on scale-free datasets, persist-CTA is slower tha
persist-warp, because the cost of extra work is too high (see Tables
and 4).

Comparing persist-warp and discrete-warp: Discrete-war
has more extra work than persist-warp, hurting its performanc
for two reasons.

(1) The scheduling policies of discrete and persistent kernel
are different. When kernels are launched from the CPU (discret:
kernel strategy), the kernel launched earlier always has a highe
scheduling (hardware) priority than the kernel launched later. This
effectively causes vertices to always be colored in roughly the same
order as their initial ordering (by vertex ID, which causes many
conflicts). In contrast, the persistent kernel only incurs one kernel
launch and warps within it are scheduled by the hardware scheduler,
whose decisions are much less ordered by vertex ID. Thus persist-
warp has fewer coloring conflicts caused by adjacencies and hence
less overwork.

(2) Discrete-warp has lower register usage than persistent-warp
(72 vs. 42), so persist-warp only achieves 43% occupancy per SM and
discrete-warp achieves 62%. Therefore the discrete-wrap assigns
colors to more vertices simultaneously, leading to a greater likeli-
hood of conflicts than persist-warp. Unlike our other applications,
in graph coloring, the cost of extra work largely reduces the benefit
of increased concurrency. On scale-free datasets (without random
permutation), our highest performance is achieved with lower con-
currency and less overwork (persist-warp variant), which achieves
a lower absolute throughput but a higher normalized throughput
(and hence higher performance overall).

6.4 Worker Size and Trade-off between Task-
and Data-Parallelism Load Balancing

As discussed in Section 3, Atos enables the user to trade off between
task-parallelism and data-parallelism load balancing by adjusting
the worker size and FETCH_SIZE. Atos’s persist-CTA, like persist-
warp, uses a persistent kernel to exploit task parallelism, but now
the task-parallel work units are fewer and larger (the size of a
CTA) and we can leverage more data parallelism within a CTA.
In most cases, persist-CTA outperforms persist-warp with both
higher normalized/absolute throughput, except for the graph color-
ing on scale-free datasets, where it achieves only higher absolute
throughput. Figure 4 illustrates this tradeoff for BFS and PageRank
on soc-LiveJournal (scale-free) and road_usa (mesh-like). We ex-
clude graph coloring because it can only be run with one CTA
size, due to high register usage (72) and high shared memory usage
(46 KB).

6.5 Kernel Strategy

From Section 3, the chief advantage of the persistent kernel is re-
moving the overhead associated with kernel invocation, which is
most significant for fine-grained tasks that involve many small
kernel launches. Based on the performance results in Table 1 and
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BFS soc-LiveJournalt BFS road-usa

128 2% 512 102 3 128 25
Fetch Size Feteh Size

Figure 4: Runtime (ms) heatmap plotted with different
worker size and fetch size for BFS and PageRank on soc-
LiveJournal® and road_usa™. Note only the lower triangle
is valid.

Figure 1, the performance gap between persistent kernel and dis-
crete kernel is particularly large for BFS on mesh-like graphs, which
require many small kernel launches due to the high diameter and
small workload per iteration. Graph coloring on indochina-2004
also shows a large kernel launch overhead. Using a random permu-
tation of vertex IDs (see Section 6.3), Atos’s persistent variant is
4.3x faster than its discrete variant.

7 CONCLUSION

In this paper, we present our task-parallel GPU dynamic scheduling
framework, Atos, and analyze its performance across numerous
design parameters on three case studies. Our analysis provides the
following guidelines on what applications are suitable to run in a ca-
pable task-parallel framework, as well as what Atos configurations
to use, given an application’s characteristics:

(1) If the dynamic application either exhibits the small frontier
problem or has load imbalance, Atos will have a performance
advantage.

(2) If the application exhibits the small frontier problem, it
should be run with a persistent kernel.

(3) If the application exhibits load imbalance, it should be run

with both task- and data-parallelism load balancing in tan-

dem to achieve better performance. For different applications,
the optimal tradeoff point varies.

By relaxing the outer loop dependency in the application,

Atos increases concurrency at the cost of extra work due to

mis-speculation, or less predictable convergence rates. The

optimal tradeoff between the increased concurrency and
additional cost is application-dependent. When an applica-
tion is naturally unordered (e.g., PageRank) or has the small
frontier problem (e.g., BFS on mesh-like datasets and graph
coloring on scale-free datasets), the increased concurrency
usually outweighs the cost. Conversely, on problems such
as BFS on scale-free graphs or graph coloring on mesh-like
graphs, the cost of extra work can hurt performance. The
best way to reduce extra work is application-dependent and

—~
N
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may include better load balancing (e.g., BFS) or reducing
concurrency (e.g., graph coloring).
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