Atos: A Task-Parallel GPU Scheduler for Graph Analytics

Yuxin Chen*
University of California, Davis
Davis, California, USA

Benjamin Brock
University of California, Berkeley
Berkeley, California, USA

Serban Porumbescu
University of California, Davis
Davis, California, USA

yxxchen@ucdavis.edu brock@cs.berkeley.edu sdporumbescu@ucdavis.edu
Aydin Bulug Katherine Yelick John D. Owens
Lawrence Berkeley National University of California, Berkeley University of California, Davis
Laboratory Berkeley, California, USA Davis, California, USA
Berkeley, California, USA yelick@berkeley.edu jowens@ece.ucdavis.edu
abuluc@lbl.gov
ABSTRACT ACM Reference Format:

We present Atos, a task-parallel GPU dynamic scheduling frame-
work that is especially targeted at dynamic irregular applications.
Compared to the dominant Bulk Synchronous Parallel (BSP) frame-
works, Atos exposes additional concurrency by supporting task-
parallel formulations of applications with relaxed dependencies,
achieving higher GPU utilization, which is particularly significant
for problems with concurrency bottlenecks. Atos also offers im-
plicit task-parallel load balancing in addition to data-parallel load
balancing, providing users the flexibility to balance between them
to achieve optimal performance. Finally, Atos allows users to adapt
to different use cases by controlling the kernel strategy and task-
parallel granularity. We demonstrate that each of these controls is
important in practice.

We evaluate and analyze the performance of Atos vs. BSP on
three applications: breadth-first search, PageRank, and graph col-
oring. Atos implementations achieve geomean speedups of 3.44x,
2.1x, and 2.77x and peak speedups of 12.8x, 3.2x, and 9.08x across
three case studies, compared to a state-of-the-art BSP GPU imple-
mentation. Beyond simply quantifying the speedup, we extensively
analyze the reasons behind each speedup. This deeper understand-
ing allows us to derive general guidelines for how to select the
optimal Atos configuration for different applications. Finally, our
analysis provides insights for future dynamic scheduling framework
designs.

CCS CONCEPTS

+ Computing methodologies — Massively parallel algo-
rithms; « Theory of computation — Parallel computing models;
- Software and its engineering — Software prototyping.

KEYWORDS

GPU, irregular workloads, task-parallel, asynchrony, speculation,
graph algorithms

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP °22, August 29-September 1, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9733-9/22/08.
https://doi.org/10.1145/3545008.3545056

Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydin Bulug, Katherine
Yelick, and John D. Owens. 2022. Atos: A Task-Parallel GPU Scheduler for
Graph Analytics. In 51st International Conference on Parallel Processing (ICPP
'22), August 29-September 1, 2022, Bordeaux, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3545008.3545056

1 INTRODUCTION

Bulk-synchronous parallel (BSP) programming [27] is the tradi-
tional model for GPU applications. It is a natural fit for statically
schedulable, regular problems, such as many dense-matrix, image-
analysis, and structured-grid computations. Programming envi-
ronments like NVIDIA’s CUDA and Khronos’s SYCL support this
relatively simple model, which maps efficiently to the massive
fine-grained parallelism on GPUs and can deliver near-peak perfor-
mance.

However, some important problems are instead irregular, with
frequent control flow branches, non-unit-stride memory accesses,
variable amounts of work across loop iterations, and dynamically
varying degrees of parallelism. Algorithms that operate on graphs or
trees or those with recursive formulations often exhibit such irreg-
ularity. These more naturally use a task-based programming model.
Programming systems like Legion [2], PTask [22], and StarPU [1]
use tasking on the CPU to feed GPUs with kernels to mask the
latency of communication and keep the GPU busy. In contrast, we
consider the problem of very fine-grained tasking where (tradition-
ally) a set of similar application-level tasks are aggregated to form
a data-parallel GPU task. This idea is used in state-of-the-art GPU
graph libraries like Gunrock [28], where the application-level tasks
are vertices or edges. In Gunrock and similar frameworks, each
frontier in a graph sweep is launched as a separate GPU kernel
in the BSP model. In practice, this may result in insufficient paral-
lelism, uneven finish times, and high kernel launch overhead for
small frontiers.

To address the above issues, we present of Atos, a task-scheduling
framework for GPUs, that is adaptable to different usage scenarios:

e It supports both expensive and inexpensive frontiers by pro-
viding persistent and non-persistent task schedulers. The
persistent scheduler is a GPU kernel that runs continuously
to minimize launch overhead.

o It allows the user to trade off task and data parallelism by se-
lecting the worker size, which is the number of GPU threads
within each worker, and the number of items in each task.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3545008.3545056
https://doi.org/10.1145/3545008.3545056

e R R I

ICPP °22, August 29-September 1, 2022, Bordeaux, France
ICPP ’22, August 29-September 1, 2022, Bordeaux, France

° I usesas1 are sétg ueue, w ances oad more
. eue, w ances ore
u1 a 1S r ueue enou
‘%/ than a 1str1 u € gjeue et 1s st enoug’l?rl

ers c

or ers oc
su onous executlon across frontiers to max-
on acr SS rontlers to max-
€Serving cross-
e most Cross-

0 It su orts a nc ro
111 sm b
?mz%avar e ara 1sm o rese’:i(vm
ontier ori erm an us mrmmrzmg oVerwor
ms on a varlet

We ssttuél}’ﬁl%r & %ag ms on a varl e Ofgfaﬁﬁgatase
that stresst g tﬁ? OAnCE 8§ ﬁt gaiagtat’ﬁlw Hhess gﬂg&%ﬁt}tms

ave neste e ism wi ut en encies, an
ave neste € 1sm Wl oul er-10 e encies; and e
abllh,[to rell ose e encies comes e cost o f 0SS
ability tQ relax t ose e enc1e omes a cost 0SSl
overwor]lé us a secon e e in er is tra&ie §‘
OVETrWOr us a or t €€ 1N t 1s er is t €0
between 1n cas &1 elhsm and over
b tween 1n elism an OVETW r c r t e
Or] tﬁl t11} ra&leo n a som ew e t manner,
a r1 S €ofl in a SO ew eren manner,
W we 1scuss anél analyze 1n§ ion é
WIS WE 1scuss an ana ze iR &S
ur co. uttrons in
ur con HHSES HET

2 @@v@@m@ & @&?@f&‘l‘%&i GPU taskparailel framewonk that
&xplores 2 broad design space of possible taskparatiel in-

Plemeniations:
2 &&&Wﬁmﬁﬂb&@&%@sﬁmmm&t@%
Mﬂmﬁﬂiﬁgﬁm "
% SRZAHOR APPHCIIORS 25 &
f&r é&&@ﬂ@féﬁ&ﬁl With 2 EPU tagk-paraiel ffgg

Work; and
A delailed anabysis of 3 performance that high-
Tights the impact of @@ammmmm@m
soheduler snd 3t the level:

2 A DYNAMIC, IRREGULAR APPLICATION
PATTERN

Ates handles a broad set of applications with fine-grained task

and data parallelism, but we choose to focus hete on a particularly

challlenging class of irtegular nested loops with the following forim:

Listing 1 A program with nested loops, expressed with a frontier
abstraction.

in_frontier = initialize()
while (stop condition not met): // outer loop
for (i in in_frontier): // inner loops
for (j = 0 to workload(i).size()):
out_frontier.append(f(in_frontier[i], j))
cudaDeviceSynchronize()
in_frontier = out_frontier

The inner loops produce data parallehsm that may be flattened
as THNESE! i BS ProHsad ﬂpt”& lismithappands fotisacd
Bt 4 Gh ot Gvanerk kB hAn Mariieh mafalleiiie.anpie,
ipplemanda daf iualieload halomcingiteshausa fisaupls,
(e presilgRs srosearegrrrh NGy rasipat enleaRipg sdass:
SRHIE G PUALYSS BRY beotedite ffzfastxsdtﬁfglbﬂts}t&oe&e%mtéﬁg
AR NEEpss OSPpBALnAR 1618RS ShFQNifkloop iterations,
whishyryibsreatid oRRRTLANSEs SO Bk RATANEHSIbwing forms of
dygﬁﬁﬁp]?}}%%t@é}smwéh%e or more of the following forms of

dynamrc irregular parallelism:

[e num er o tasks varies across outer ontlers orﬂé
. num tas s va es acr outer ntlers
nerate utput ta
ner? 1ca ut ut tas
uce rs no
uce rom eac 1n ut tas 1S not

Yuxin Chen, et al.
Yuxin Chen, et al.

}ma

o T ecosto eac inner oo tas mes4 5 in Llstln
o eac znn
var slze 1sn
g(oo boun wor oa .slze ne 51s not
o?a wor, ma var T e outer oo asa oo -carrie
o Tota »}){)Cre ma e outer o 51Earne
en ence s namlc ratron
or e sonfe S across
some encres ara e executlono tas ac, os
ron 1ers can avior, 1n u e tot
ron eerrs0 am be avior, inclu the tota.
ero tas s rocesse

The pattern in Listing 1 is not speciﬁc to graph algorithms. Atos
collldeaprriteddrivsdistange of pobbpuuifithis glspnalgbritlisysatitos,
¢nalddityg reddiessingawhe of neftddead s tfirtcitsb phetoin sl patietad
itichadirigally witingtheliereltidle otdthirefyjautts] photplesarendeaiog
dypelimicalycvhsRilyes vdikide modtlrsibjestagesngsjeireadydeainic
pipdénsingneinddReydyavdlgrritbonssividlstagenilaquicenpptatino
prstessitipPageRinka tivelnbsokdensed idamsig dlgoritupsatation

pattern to PageRank, such as federated learning algorithms.

2.1 Performance Challenges of Dynamic,

2.1 f’é‘i%‘r‘lﬁﬁl‘l)@é"éﬁmfenges of Dynamic,
Traditmgﬁfammgns of such applications usually

cha s. of kernels, with ker el corres onfl%,
SR %me?tfi‘tls safiichepltion gl onch

aseﬁe (0] ternes %’ f}eac ! erne orreggon 1’1&, eaker efgfll":?% ronous
RO O“Sr‘a over EO“ er t%ee ? 6%1?
SB/I% roni ath arr eﬁne ms ra elize.o
etw en 1 era rm1 ron leC

s 1st [9) wor asse Ftw n1
eJ;nretH atlon iing tﬂg u r[catl 1ons % 1eve
Tess ve er?r rmanc vpe IZ(t n‘hﬁnlé’e% 1m ané/
rmance

“}7 Ighlc ir ﬁ aﬁapp 1cat10ns ac 1eve 1 pressrve per
we g fa I
0

ee erformance challenges wi is ap
A ron 1 ro em |he runtime o eriab e sum
eb nt1m rme
xe COSES o) romza 1on arrrer us
c s s

IlC I' l.Zatl(%:l’l arrler
COS am

tt m m ro ess t
ron 1er esrze 1 u ron ers acrossr erat,l sma
1n ut ron

s1 n1 can over

trers across erat %
rogram. on
5{ g ;g ronti r%
xe co s dompnate
ormnate

e
Ill Ca, overt etlme O

ormance conse

Err or ance COI’ISE uences

ove rocessm COst; Efr Sl
Vera ocessm cost t 1S S i};ém canta
1t1n or compu a 10 er orm1
tt1n or waltm c]()) utatlon r
ntier may not be far
sma rontrer ma no be lar nou
eav rocessm units'idle
WOi roces units e 4j
da ance CEalSe o rr lar nature o WOlllg(t tﬁ\
Because
mner op, € c1en assr Igl %IErrea S 1S crit1
?5 mn t reia s 1S c 1t1c
af computl
er. ormanc t1c

men 1s n ea
Tegt is 1n easi
n ,1s 1n

%)al?ancm

cause wo
becaus wor ro u
Gre usu ,1m

e en e §
are u nte w1t ‘[f((

i H%g?;cgrgﬂ%é

a COm

cm m utetw kX assr nm t at
nt1 owe er t ﬁtl - anc1n t%c 1
ent a even em ma
e run 1me cos ue ma be
time cost 0 t tec n1

an orgerr cfi“tween nc 0 eraﬁon in ri?era fo%lwr

1 every opera-
n or. etwe ever m 1teratlonzw1tt every opgra-
alrs may be indepertdent.

oss o concurrenc ortu ;les
erat1

10n1n 1te 0nl+ , even

iterationi 1. eve a1rs ma be 1n e en t.
ere ax this cross- ron ror erm wa onsl er
é’ ax thi con 1

1{1 1n two wa ts lé’ ut 1S ose
! b 1Pe tsrons ‘¥wo 1S
(Eom uta; 1<lgn s (%men 0{'607‘ erlrtz acroslsloté7 &f
to S tet at ater 1ter ons 1s not n
ar;l,rer erations anél‘ T 8 miss Lﬁf tron or retr (té

Cros§- ron
Eliems whose orm n'is as ne
emstw oset E rmulation is as ne
e erations. 1 Two ﬁ%
m earlier 1tera}t1 ns and to rF air t e misspeculation or retr

0 reordering across
computation 1f 1t 1s incorrec
computation if it is incorrect.

o g e W

Alos: ATastParallel GPU Sehedutlar for Graph Analytics

3 OUR TASK-PARALLEL PROGRAMMING

MODEL AND DESIGN SPACE
Our programming model allows implementations of task-paraliel
formulations of the workloads we discussed in Seetion 2, with
a focus on providing solutions to BSP’s thiee challenges: simall-
frontier, load-imbalance, and loss of concuirency opportumnities. We
wse the following terminology:

worker: one or a group of GPU tlhreads.

task: ome or mote pieces of work that are schedulled as a single

womiitt i Quir Sysitenm.
application fumction ff(): the code that processes each task.

Listing 2 SPMD code of each thread worker in Atos.

for each worker:
while not queue.empty():
task = queue.concurrent_pop(task.size())
new_tasks = f(task)
queue. concurrent_push(new_tasks)

At a h'igl? 1levell, our mo((ilell maintains a queue off tasll(<s. Work-
erf‘\gefcﬁlgg ass?ggm%lt eoteh maintaing %%th%%lg,oan?%ﬁ Ylfwlky
ers fetch a rask from the queue, process the task, and add newly
enerated tasks (1f any) t6 the qtieue. The prograin runs untl
srereleg il AR gl Do YR
er a sto - Lhis
TOMm
rogramyning model addresses the performance challengees from

Section 2.1:
o We can implement 'sttin gwj,[flllqasin e erneIlinvoc tion,
e We can implement Listi with a e Kernel invocation,
avoidin tiple Jlauncties of sm Tnels.
avoidin tiple Iaunches of s ab ernegb
o:Ira ar stuis implicitly load ecause workers
e Task parallelism is implici al —b% workers
can run indepen entt asks dnd sta s require
ependen

ance
anced becaus
us a

can run 1n asks and stay busy even if tasks require

ther A ShoR sopditianis act r.thg, duete is empty (LiSting,

even if I

ta ountts 0, Worll<<.

moun

L

or. N .
[IT:ann % as no %ar synchronization; instea %16 rogram-
o Listin as n oba nchronization; instead the pr am-
mer conttr S sche ng of work, allowing more x]b e
er controls the scheduling o , all exible
ependencies an us mo

S WOT owing more
epen

e opportunities fOr concurrency.
encies and thus more opportunities for concurrency.

ing task dependencies 1h AISS's Progiamming model:
tasks themselves (Fum Hside 2 Worksn) are exscited sy ;
bt different tasks (Ar95S Workers) are @%@&&é@&;ﬁm -
For this sxechtion model £ Work. tasks are only added to the
e
i S SHPPORLS (&&= 9 &raphs:
mgwﬁ@%ﬂ%g ications considered in this pa-
et (@nd we bekieve most & ithis): Ados & be d
i & straightforvard Way {9 DAGS by Jdding (Rlommo) coumters for
each jioin: the last worker {9 reach the jom would continye the
compiation beyond the join. This stratsgy doss put 2 hirden on
the prosrammet. but the overall advaniage of this ApProach is {9

ot iaskbased & ioRs that are generated dynamicaily
%ﬁﬁ@m@é{ {9 Legion (2], Mﬁ%ﬂ; jg%;%ﬂ; € that fust
; ém%é@ﬁ&ﬁ@w EHaph i ARVARCE): .
 The primary fosys of this PABEr 15 Bow £ best implement List-
ing 2 on the EPY- We identify below the four key design desisions
i st 45 Pl RtatoR.

Relaxing barriers A BSP implementation separates work in

each iteration with a global bartier. Can we benefit from

ere
ifferen

ICPP 22, August 29-Sepiamber 1, 2022, Bordeau, France

Weiker size We can dhoose what GPU resourees we assign
to each woilker. What is the worker size that yields the best
peiformance?

Data vs. Task Paralielism We expect to leverage the paral-
lelism between tasks. We can also choose the size of our
tasks, and within each task, potentially leverage data pai-
alllelism. Wihat is the right balance between task and data

Ketnel strategy Listing 2 is written in a “persistent” style,
implementable with a single kennel eall. We could alterna-
tively interchange its outer and inner loops, making one
“diserete” kennel ealll per iteration. Which is best for optinal
performance?

3.1 Relaxing Barriers

As discussed in Seetion 2, many applications have the nested loop
strueture from Listing 1 and their BSP implementations may lose
concutrency oppertunities because of the global bartier between
the outer loops. I many cases, we con remove the barrier and relax
the outer loop dependensy while still computing the cotrect resullt.
Heow? Consider twe tasks A and B that, in 2 BSP implementation,
ate ordered: A is in an iteration that precedes B and thus must run
before B.

o One peossibility is to speculate that we can compute A and
B at the same time, or even in the order B then A, witheut
changing the correctness of the computation. If our speeu-
lation is correct, then we expose more concutrency. If our
speculation is incorrect, then we must fix it. This fix might
be cheap or costlly.
o A second possibbility is & probilem formulation that is tobust
to computing items out of order. This iis alse callled Dijikstra’s
don’'t care non-determinism [11].
In either case, we can relax global bartiers and expose additional
concutrency; depending on the problem and dataset, we may see
significant performance gains. Howevet, telaxing battiers may in-
cur additional costs: the cost of performing incorrectly speculated
werk, the cost of repaiting incorrectly speculated weork, and less
predictable convergence rates when compared to the BSP coun-
terpart. Overall, if the performance improvements from increased
coneurency outweigh these costs, we can deliver performance

gaiins.

Related work: Hassaan et al. [16] studied unerdered and ox-
dered versions of several slgorithins, demonstrating & tradeofi be-
tween parallelism and work efficiency. However, the relaxed bai-
ter formulations we study differ from unordered ones. Consider
breadth-first search (BFS). Both Hassaan et 4l and we begin wiith 2
work-efficient Dijkstra BES, but they compare to a work-inefficient
Belliman-Ford BFS, while we compate to a relaxed (speculative)
Dijkstia BES (Section 5.1). The speculative Dijkstra BES is more
work-efficient than Bellman-Ford BFS. Empitically, speculative Di-
jkstra's workload is within 2 small constant factor of that of BSP
Dijkstra, which is #edges (see Table 4). This is much smaller than
Belliman-Ford's workload of diameter x #edges. Kulkarni et all. [19]
studied an abstraction and rumtime scheme for workloads with opti-
mistie parallelism, which differ from the relaxing batriers we study

ICPP °22, August 29-September 1, 2022, Bordeaux, France

tasks can run in parallel and stops a task the moment it violates a
dependency. In contrast, we allow the computation to commit, even
if it violates a dependency, and only fix the mistake afterwards.

3.2 Worker Size

Previous task-parallelism work [1, 7, 8, 22] uses the whole GPU as a
single worker. They maintain a task dependency graph on the CPU
side and orchestrate the execution by launching a CUDA kernel for
each task when dependencies are satisfied. We use GPU-wide-worker
to describe such an organization. Tasks in those GPU-wide-worker
task-parallel frameworks are usually very large to better utilize the
entire GPU’s resources. This organization is easy to program and
has low scheduling overhead.

However, the GPU-wide-worker scheme is a poor match when
task dependencies require finer management. Consider the follow-
ing extreme example: Task A and Task B both contain 10,000 data
items, and only a single data item in B depends on a single item in A.
A GPU-wide-worker implementation must wait for A to complete
before beginning work on B, even though most of the data items
can be processed independently and concurrently. We use the term
false dependency to describe the situation when a data item has all
its dependencies satisfied, but cannot be processed because another
data item in the same task has unresolved dependencies. One can
reduce such false dependencies by decomposing a large task into
many smaller tasks to expose more parallelism. As a result, work-
ers should be smaller, matching the size of tasks and allowing full
utilization of the GPU’s resources. This approach has motivated a
number of recent task-parallelism frameworks [4, 23, 26, 29], which
use workers sized as either warps or Cooperative Thread Arrays
(CTAs). The resulting additional complexity in scheduling many
smaller workers motivates also moving scheduling decisions from
the CPU to the GPU.

Most task-parallelism frameworks only provide one worker size.
Our framework provides thread-, warp-, and CTA-sized workers,
to support tasks of different size and different synchronization re-
quirements. The only prior work that uses multiple granularities is
Whippletree [23]. Whippletree’s thread and warp worker sizes are
primarily a programming model concept and suffer from synchro-
nization penalties at the implementation level. In Whippletree’s
implementation, threads are still synchronized within entire CTAs,
suffering from false dependencies if tasks require finer synchro-
nization than at CTA granularity.

For graph analytics frameworks in particular, data-parallel bulk-
synchronous execution models are by far the most common on
GPUs because of their high GPU utilization and effective use of data-
parallel load-balancing techniques (e.g. Gunrock [28], cuGraph [12],
Medusa [30], SIMD-X [20], GraphBLAST [10]). Current multi-GPU
task-based asynchronous graph libraries—Groute [5], Lux [18], and
Galois [17]—use a data-based bulk-synchronous model for the com-
putation kernels launched on each GPU.

3.3 Balance Between Data and Task Parallelism

Many parallel applications have work items that require different
amounts of processing. Traditional BSP applications address this

Yuxin Chen, et al.

challenge with explicitly coded data-parallel load balancing tech-
niques. We describe two different approaches in the context of List-
ing 1: One widely used technique is load balancing search [9], which
dynamically computes the prefix-sum of workload(i).size() for
i € in_frontier, then flattens the two for-loops into one big array
and redistributes the work in the array to each CUDA thread (see
Baxter [3] for details). Another popular data-parallel load balancing
technique separates the work in in_frontier into different buck-
ets based on workload(i).size() and launches a separate kernel
with the best processing strategy for that size for each bucket [21].

Task parallelism is a natural fit for these irregular applications.
Workers in our framework do not directly synchronize with each
other. One of the primary advantages of this lack of coordination is
that it allows workers to attend to any available work items as soon
as they become available (“implicit task-parallel load balancing”).

Task parallelism and data parallelism are not exclusive—
individual tasks of sufficient size may also exploit data parallelism in
their execution. Thus we consider a continuous spectrum with pure
task-parallel and pure data-parallel load balancing at the extremes,
and expect that the optimal trade-off will be application-dependent.
Our framework supports two worker sizes larger than a thread
(warp and CTA) and offers the programmer the ability to exploit
data parallelism within each warp-sized or CTA-sized task. In the
framework, workers operate on tasks asynchronously, but an in-
dividual worker itself is executed synchronously. Therefore, we
can use a worker’s capacity as a parameter to control the trade-
off between data and task parallelism. Given a fixed number of
threads available, increasing a worker’s capacity reduces the total
number of workers available for a given application. At the same
time, an increase in worker capacity results in more opportunities
to perform data-parallel load balancing within each worker. In the
extreme, setting a worker’s capacity to the entire GPU leaves no
room for task parallelism and is equivalent to the BSP model. We
found that data-parallel load balancing inside the worker combined
with task-parallel load balancing provided by Atos results in better
overall load balancing (Section 6). We are not aware of any previous
work that combines these two types of load balancing.

3.4 Kernel Strategy

Traditional GPU kernels divide a variable amount of input work into
fixed-size CTAs and launch a kernel over a CTA count proportional
to the amount of input work. Persistent kernels [14] decouple the
relationship between data size and launched CTAs. A persistent
kernel launches only enough CTAs to fill the GPU. These CTAs
remain resident for the entire kernel and run a loop that maps
naturally to the task-parallelism model in Listing 2.

Advantages of persistent kernels Persistent kernels reduce
kernel launch overhead and CPU/GPU communication. This is
particularly significant when many small kernels are required. The
persistent kernel approach reduces CPU involvement in favor of
programmer-written GPU logic within the persistent kernel.

Disadvantages of persistent kernels GPU workers in the per-
sistent kernel concurrently pop from a shared queue; this requires
atomic operations to ensure exclusive pops. Persistent kernels have
higher register usage than discrete kernels (requiring extra registers
to maintain the queue loop).

Atos: A Task-Parallel GPU Scheduler for Graph Analytics
Atos: A Task-Parallel GPU Scheduler for Graph Analytics

Intuitively, if a discrete-kernel apphcatipn suffers from large

Incot bRt @ inars 0k S5l E stedey sa fperei dpege
fﬁﬁ@bﬁ‘wbéﬁﬁré@fﬁé’&t%é%gﬁ?%@ pEiley a%B%‘iﬂﬁﬁ?&t

e gp@%@%@

At ,t
£y fé ::;. %f a%@é’&fé’é élﬁ@f %%

- 11Se grsmtent kernels [4, 8, 23, 25,
26, 29] but none of them pr0v1de both and/or expose that decision

R AN AR 6.5, we discuss the results of our
experiments with respect to this choice.

Listing 3 Atos framework APIs

template<typename T, typename COUNTER_T>
struct Queues {

Listi?ig"% Aolidsiﬁa&ewgﬁgquofgity, int num_queues, int iteration);

temptatelagpehynename tfpenbiebaURTER, TEyPename. . . Args>
structhQaéuesveid launchThread (bool ifPersist, int numBlock,

inforumThyead, A0t shaorMer_$izgpatit§l, iR? Adm_4U8Ges; 3R®) iteration);

template<typenafe F1, typename F2, typename... AFgs>
—-hest__ veid launeh\fiﬁFeaébqesolfﬁepérgistlnin@uwaﬂnaqbck
int AumThread, int sharesiamssiee, FRTFTT, FR2FD2, ARESS. . - aPES);

tefplate<ippehblieHES I Zkyptranears Fiyptraneame ggstypename. .. Args>
=-hest_- veid launehWbip(ResbliiReepssse, inhtnruRbIskK,
int AuRThread, int shareWeemsizge FE17F1 FR2F22 AREgs. . . a66Y);

Template<int FETCH_SIZE, typename FT, typename FZ, Typename... ATgs

__host__ void launchCTA (bcol 1fPers1st 1nt numBlock

m%wmmwm%

MH@%M@%W@M s
%MM&W%@MMM&M%
I WT%WW&&&?@BE@]@%@‘%;@%E
ikl ans dRt FRIRSHIEIALY, Jarideen
GgseshmaneRe

it RS, ReHRRIRS S AE aI
CheQUaRENRN) MR ¥aRINIAEAT ead, the FETCH_SIZE should
b%ﬁmm@@mﬁﬁwﬁﬂmﬁm

dhasnivie
il 26 ShaR Tk et
gfios axdrallocate vaemblas.

QME W@mmﬁﬁﬁp@% RGNS
bR %ﬁ%@%&%&a@wmﬁ“‘%ﬁn g

g v;"'z HUS
Wﬁﬁ? HeR ekl
Arbmadaipdating their depth values. If the depth of a neighbor

5 INMPIIREFCASE SPWIESto the queue. Lastly, we pass
ﬂ%ﬁﬁmmm A REB BOTeRNS £ the

so we can be confident that our results are meanmgful Also, when
run on particular datasets, their BSP implementations exhibit one
or more of the challenges described in Section 2.1.

ICPP °22, August 29-September 1, 2022, Bordeaux, France
ICPP °22, August 29-September 1, 2022, Bordeaux, France

struct BFS {
int_num_nodes;

Li§Hig-4%tos-based relaxed BFS (worker size: warp)

stinktrgesth;
QreuABMVABEEStS;
int num_edges;
BER(Gegr;csr, int capacity, int num_queues) {
in€Skdepthssr;
Queekligkr1igts(capacity, num_queues);
cudaMalloc(&depth, sizeof(int) * num_nodes);

BFS(Csr _csr, int capacity, int num_queues) {
csr = &_csr;

voidrRi$star tatpeaphcheyBlagh, qietiedynThread) {
varklbsteckadephare{zeomyiBiock, nownhbaeay, ¢, BFSWarp(), *this);

3

void BFSStartWarp(int numBlock, int numThread) {
templaER176¥RENANACKAEERXTD nukBlockyPROATAr843eToS BREWarp(), *this);
class BFSWarp {

Jpublic:

__device__ void operator() (VertexId node, BFS bfs) {
tempYattextgpdapib vebtexdapthinededypename SizeT = int>
clas8ipeEwapgeoffset = bfs.csr.get_neighbor_list_start(node);

pub%izeT neighborlen = bfs.csr.get_neighbor_list_length(node);

__Gevikdnt ibew opeMitoriyevertagiahhentenpritemsy ftem + 32) {

veVegkaaldepehghbars=depenehbegqt_neighbor (node_offset + item);
siYertasld_ekdsdepthpsatepiglintbigngdepthistnaiahheroddspth + 1);
siéT(nbdeABBENer deptl. ¢sh) gbfsnuepkbbstsiReshengER(ABaGHDOr) ;
For (int item = LANE; item < neighborlen; item = item + 32) {
__g¥peuat(heighbor = bfs.csr.get_neighbor (node_offset + item);

} VertexId old_depth = atomicMin(bfs.depth + neighbor, depth + 1);

¥ if (old_depth > depth + 1) bfs.worklists.push_warp(neighbor);
T
__syncwarp();
}
b

5.1 Breadth-First Search
e psm@lﬂqrfﬁgtwelaxed -barrier BFS (‘ Speculative

§5’r§¥£‘ kehoars it B

i ‘“‘-'~T Iﬁpﬁces ifgﬂ%{;;
8@5 €tf €5

e
ef%‘**ﬁ??%%ﬁ%ﬁ%%%

t%gr&g anecxus %"'
bl f&&@%ﬁ%ﬂfﬁ%%%ﬂ RYs

dirk mﬁ%ﬁlﬁ

%wmmgwm@smm e

1
%‘? ﬁ"ga%aﬁér gy %ﬁ;ﬁg@% s %@%@

af 0r1t

r@gmﬁ@&ﬁ%@@%ﬁ%%&m&%
Q% ﬁgﬁlﬁﬁr};j@%onstramts and differs from SSSP

ellman-Ford.
the importance (rank) of nodes in a graph

first kernel pushes a fraction of the residue of each vertex on the
frontier to its neighbors. The second kernel aggregates all ver-
tices with residue > € and adds them to the frontier. Having two

%‘%% {i\u us; 3§e ember 1|, %or%eaux Firance
3 ust 29- er) , BordeauX, France
AuBust 29-5e tem er 1, 2022, Bordeaux, France
P u er 1,2022, B ordeaux France

AN
‘ii
E

‘QJ en, et al.
uxin Cherm, et al.
Yuxin Chen, et al

Yuxin Chen, et al.

PR
OTTURII 4 SDCCULAlIVE BIRS - f !
OI TN 2 Sypecaive ™) YuxtmChenetat
1thm 2 Sbeculative BES
€ TNitlariZation a: goTLenim 1
th §1auzatlon as L orltnm T
IR Ial1Zat] -
Teratization—as—teorrthmt—

DA

vertex.dist+1
vertex.dist+]
vertex.dist+1)

,,,,,, D
____neighber dist-atomicMin(Zneighbor di T
neighbor—dist:

vertex.distfl)

if vert

frontier.append(neighbor)

_dist+ 1

Oritinm 3 BUIK SVNICHTONOUS FAafCRATIK

OITHINT) DK SVIICOTONOOS PAaPeRAIK

Alforithm ulk Synchronous PafeRank
P INTtialiZatl 7 (=]

{arization
G :

*lambda%/lambda*vertex ne1ghborLeng
m%ams lambda*vertex.neighborLen
fl da)/lambda*vertex.neighborLen)

Cu

frontier annend{ ertex)

cudaDeviceSynchronize()

OTIthim 4 ZASVNCHTOoNnous BaocKank
O TN 4 AASVIICATONOUS AP CRANK
1thm 4 Asynchro 'mn%PaEPKank
Me 1N ranzzm—on 3 \1gorionm 3 O
s Tgoronm
s RiRronous PageRank -

éom thm 3
tex,0
t Q

tit phice ¢ '\um’f: G ﬁ ViV %C %ﬁ;_suégsize :

S e — HET gt on

a ehuween thescolor QQQID‘I’\mPY\f and conilict i we E” 'S Zgg on:
QVIICHTOTIOUS BES . & chetk: e abl¢Eptices)
FrotOPrg b Tor-check 10 o check startiRangel? Check Size):

14 if residuelcheck—id%G-total verti psilon:

U
empt:
o *zﬁlemwg
\ B ‘y,,

, vertex.dist+1
vertex.dist+1
vertex.dist+1)

, vertex.dist+1)

MAhRe oY T
managl NCro
managing asgnc ron

The above three graph algorithms show different approaches to
managing asynchrony that can all be addressed within the Atos

15 The abﬁvetthremgmphcalgréﬁltbnqlsvsl'JtGwsdlfferent approaches to

: chronous algorithm; (2) BFS:
) Graph Coloring:

f{éﬁgpller

(Ver510n 11. 1 168) W1th the -03 flag and gee 9 3. 0 W1th the -03 flag.
All results ignore transfer time and are averaged over 20 runs.

Atos: A Task-Parallel GPU Scheduler for Graph Analytics

Atos: A Task-Parallel GPU Scheduler for Graph Analytics
Atos: A Task-Parallel GPU Scheduler for Graph Analytics

 Algorithm 5 Bulk Synchronous speculative Graph Coloring

2 #1591 8 1ization

23 yépf]r tier = G.all_vertices()

& ORI L”G“Eiﬁr%'ﬂﬁces()

£ forVYeheCalein frbntier:

56 # bl Sy col ring

o r}”’ﬁ’t]a?f“%‘ra}%—%‘i’bﬁ‘?@ empty():

B whlﬁd&%gqneq@&n\ﬁ ?P’ém%t%%” different from neighbors'

Assign each lor different from neighbors'
0 _for vertex i

1! for V&%%%Q%%’PPM?& Pe?] = {03
112 ff]% %rr@?j nejghbors:
1% forl Hehil %?Ui%lg}é% XA

ors
B! V%}@i(ﬁ@l\%elgﬁﬂ#‘%ﬁ% Qforbldden[color] == false)
1 vertex.color = find_min_color(forbidden[color] == false)
136 cudabDeviceSynchronize()

Y c‘bo%‘f)]e]ﬁ%ESVﬁ H‘%?ﬁ g@sc colors collide with neighbors'
148 pytafrontign & bk nhose colors collide with neighbors'
it out_frontier = _KERNEL

130 _for vertex inm fEpNEiers

26! forf Yertedehhon ol Frypitiey-neighbors:

242 for hieigRERF- ﬁ%l%riei“%%@ﬁ%r%‘ﬂor
28 if QORI PP G b Lor :
23 out_frontier.append(vertex)

225 cudaDeviceSynchronize

B ARty shibRytier

26 in_frontier = out_frontier

Algonithm 6 Asynchronous speculative Graph CToloring

ame 1nT on_as

1
2 SR BRARN 192490 W%s A]gomthm 5

2 #Start graph co

4 _vml_l_e__n_qt__f_r_%bkekm}_xo. ____________________

P whﬁ‘lJ\%thQ"r%%ﬁeYﬂ W)color different from neighbors'

56 #8405 E‘Té earcw%g'rté?p% olor different from neighbors'

o vertbVer bt idr p é

B if iddenlG. max egree] = {0}

& OB ok ey e Ws

4 for! N LIRS §Ie kY shbo

st Veiies feRHhei J i ealer Qforbldden[color] == false)
112 VBRI o 13ppen nhk\’vﬁrt%&or forbldden[color] == false)
153 # Mrﬁt\i%mb%%%n\mcﬁgv%@t%r collide with neighbors'

13 # %th‘?w */gr\fq EXhoke colors collide with neighbors'

i elsteReY artek % Vertex

156 ViR dieighbor, i qertex. neighbors:

it forl hetghbRr i%l%rte%‘%’e% Horsalor:

1 if Vertblecarpend vy r.color:

1% frontier.append(vertex)

6.1 Experlmental Overview

QVe evzﬁuap etﬁnales}én prlnc1ﬁes &1scussed in Section 3 using three
Wesialuatethedesignprineiplassiscussed intestion Ausingase-
implementatioar siariants based o & cosbinationsof Akos eanfiged
ratiomsr (1]t peksist- 3R tariilized plersistenti kernels withinvarfrsized,
wiogkersoHlhasing daaparatleljoad balanringmithin(a) vwaskes-
insterdronlycusmpdmplicitiask-pasallghload balaacing () [pexsish-
workersizerFEECHiS R whilizes pessistautrkesnets with & Tids-
sizedewerkets-{A) “diparstesworkexesiz BETCHASIZES mtilines 1disd
aseterdkemeleand (74T sizashwiopkensidBoth CTAvamanteubelqad)
halaneing seare[2dd (@ datarperallohlnadihalanginglterhnique)-
igﬁidﬁgyorkers in conjunction with implicit task-parallel load bal-
anclag.BFS and PageRank, we compare the performance of our im-
plEeBESiand PagrRanlckwWesiompane the perfonmanece af purisp-
Pementationsriodewaiackliz8h astaterofithesastsingleaGRLI BSRt-
hased graph- Sramewerkowbich extensively Gsesdatasparalielload:-
balaneing techninyes|Bor Graph Golorag fawmbheks independenty
sehgraphimeloringsalgorighm isoratcomparahle ssowe faithifitlbe
implementasha- BiSPigraph solering usipgrthe same spacylatives
greedy graph coleting algerithmaQun HSPrimplementationiuss,
Quagabks husketihased. data-parallel load balancing method [28],
described in Section 3.3.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

ICPP 22, August 29-September 1, 2022, Bordeaux, France
Table 1: Runtime With23peedup sopirringPobBSPuT thé
PrapRRhranftiaR mdlﬂsmdﬁps m}mﬂﬂgtwqxsp%aﬂkb
Tl ahaedmmsiuiiprRa S8 rio ibn
pypphiese @ERSHany éhaesxmmnlemmht;ﬂmuﬁitam
types are s (scale- fre@}landlrﬁiﬂfééhﬂhké! Runtime unit: ms

Dataset BSP persist warp _persist CTA discrete CTA
m—ﬁmmﬁm%%gmwwwﬂx 107 (x142)

holpaweod 2009° Appiipationp BRISFRSEGURAdRL E0A _ ddi6dped OBTA

S VETRENTONg (OO)

dl orena gs(arp

S
mem PRt disadiayyp

Qﬁ@i“ﬁre]ournal s Bfs

sjaelbi%jSﬂfﬁQPx%s 9675 2%149(58&2'7‘% Rl 6374 (xD3B)

Table 2}1{3%4 iy of’ s é‘h %g’f" : Piments.
i hingd 2

Graph tyjpey %gg-frep} mﬁ% llﬁé%gg
roadNet_cam 9.11 4.18 (xz 18) 3.52 (xz 58) 12.0 (x0.75)

Table 2: Summary of datasgts used in oﬁféxpei:gihen s;‘.:raph

Taple L ¢l 48N ' i 0202 14 ph
SOC-L1ve)or
typel R § tkhle-Fréd) and (meé’h ke v
maocmmna_2Z00% SAIVE TITIVD 0 00,320 0,70% o
zoad usa™ 23 QM 57M 5800 .Magn Mag. Avg.
DR ca™ Veryses Fdges Diaw. dndee owdeg dogrge
_%Eﬁl%ejoumalls Ver[4m DA, 1?&% 0 W,% ﬁegi D

shﬁlb’WaﬁﬁfﬁQﬁ%S st B 20 iBlots7 oblse7]19,5
i W 2 3045 1698 105
Gunr'é

h@@k*et basﬁ%at&%rall%xggoad?wgncmgﬁﬁiethodz [28],

eUéalDCUIUH 31~’9M 5M 849 12 12 2
We Tun the three case studies on three scale-iree and two mesh-

likewfatpget sHdablee)cusd §mm§6§etﬁr@é@aﬁlmfr&pﬁﬁ@wm%@§ﬁ
fardaaminett erinsretomssin diab

like fsga Qﬁkﬁg@tﬁ;}qgm@zp the runtime (speedup) results
G2fouPerflormanicesGhitlienges in Three Study

6.2 @eséormance Challenges in Three Stud

£ fesdormansce Ghallenges.in Thigs § pe;zorxance
cﬂm}ftagé’asr?ﬁngsedse@ Sasbinticd. 4 g«bsébdﬁfhémsppeﬁbms@%
mmmm&mmmmmmm
b inhdisrhie fed@itiedbwdtichinfoamsaeizehvicgsp
%@Mﬁm@e@mm&@eﬁﬁmﬁs@&ﬂnﬂe Agosithmm iiveothe BSP
prirfgyaveraelrie paighRalnl¢isil] thhire o alionohinsthevwevbiees:-
deghoesidadb slduet iBraldas: Tistinae dgonithmpimecherdian’
stabeloyesialywstiond acivhiiee dntishyaniapinrishiphtie sentiesn
rhgate dike astaghbe v id o amesh Wi dbope s ewichimel drpcdugrest,
sedlehfteskddbehdendens we e Hagraalepriancmis highellbopntmate
R iikantighdrpb!

be muabsi wigor de gy 0¢ amddB hereqel b shdeg pte
pmmmmmmmﬁm@mmmmowpmm@@
pﬁm@%&@g&fw@eﬁﬁ%ﬁg@ﬁmwwmﬁ@mﬂlm@lwe
TBRS: dodt heehburewekdgesbtighr ahiroughfintedndicalesthe
gaespsanitimidédmmidevibidennl Hironiitproblertlbifriee
hidiide sadlietres ddbasese Have dobigh athpiewlipagion) saal ik
mmmmmmmmm@wmm

Iaumlgtr eﬁfl&ﬂft isgratipRshanttdrighay cago dagsee Cleadsek bn

a large amount of work per iteration). In contrast, Gunrock on

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Table 3: Summary of performance challenges for each case
study.

BFS PageRank Graph Coloring
Scale-Free Load Imbalance ~ Load Imbalance ~ Load Imbalance + Small Frontier
Mesh-Like Small Frontier None None

Table 4: Upper: Workload ratio of three Atos implementa-
tions relative to Gunrock’s implementations for BFS and
PageRank. A workload ratio of n means that our implemen-
tation does n times as much work as Gunrock. Lower: the
workload ratio of four implementations relative to the in-
put graph’s total vertex count for graph coloring,.

Application: BFS Application: PageRank
Dataset persist persist discrete persist persist discrete
warp CTA CTA warp CTA CTA
soc-LiveJournal1® 1.43 1.06 1.01 0.73 0.72 0.72
holly\!v'octo(LZOO‘)S 2.26 1.19 1.07 1.08 1.18 0.9
indochina_2004° 1.28 1.00 1.00 0.76 0.73 0.75
road_usa™ 3.56 1.05 1.04 0.79 0.79 0.92
roadNet_ca™ 2.05 1.02 1.04 1.18 1.11 0.97
Application: Graph Coloring
ersist ersist discrete

Dataset BSP pwarp P CTA warp

soc-LiveJournal1® 1.17 1.00 1.74 2.78

hollywood_2009S 3.31 1.15 5.24 37.34

indochina_2004% 1.96 1.04 4.45 16.97

road_usa™ 1.22 1.00 1.46 1.41

roadNet_ca™ 2.55 1.00 1.74 2.44

mesh-like datasets does exhibit the small frontier problem, because
these datasets have high diameters and small average degree; con-
sequently, there is a large number of iterations, with little work per
iteration, leading to low throughput over many iterations.

PageRank: In Figure 2, for Gunrock PageRank, both scale-free
and mesh-like datasets do not exhibit the small frontier problem,
as they have high throughput over most of the execution time
and converge in fewer than 35 iterations (though Indochina-2004
exhibits a long flat tail in the latter half of execution).

Graph Coloring: In Figure 3, for BSP graph coloring, scale free
datasets have low throughput for more than 70% of execution time,
and thus have the small frontier problem. Mesh-like datasets termi-
nate in fewer than 40 iterations, and have short tails, and thus do
not have the small frontier problem. This is because on scale-free
datasets, the high-degree vertices will need to be recolored many
times, leading to a large number of iterations, during which the
frontier contains a few high-degree vertices with color conflicts. In
contrast, mesh-like datasets have low average degree, and are less
likely to have color conflicts.

6.3 Relaxing Barriers

As discussed in Sections 2-3, relaxing barriers exposes more con-
currency, giving higher throughput and shorter execution time.
However, relaxing barriers may result in extra work. If the perfor-
mance improvement from increased concurrency outweighs the
cost of extra work, we obtain a net performance gain.

There are two key factors influencing this tradeoff. First, we find
that in the presence of a small frontier problem, the increase in con-
currency from relaxing barriers is always more significant than the
cost of extra work. Second, on naturally unordered algorithms such

Yuxin Chen, et al.

x10° soc-LiveJournal1®

normalized throughput
normalized throughput

timeline (ms) timeline (ms)

10 x10° road-usa™ x10° roadNet-ca™
38 3
£ £
& &
S Ei
26 2
£ £
o o
8 4 &
© ©
E E
6 2 5]
2 \y 2

o
0
0 100 200 300 400 500 0 10 20 30 40 50

timeline (ms) timeline (ms)

Figure 1: Normalized throughput vs. time on BFS. The top
charts are scale-free; bottom charts are mesh-like.

x10° hollywood-2009°

normalized throughput
normalized throughput

20 40 60 80 100 120 140

timeline (ms) timeline (ms)

5% 108 road-usa™ 5% 10° roadNet-ca™
34} 34
£ £
& &
3 3
£° £3
- °
N2 82
© ©
E £
c1 c1
2 2

0 0

50 100 150 200 5 10 15 20

timeline (ms) timeline (ms)

Figure 2: Normalized throughput vs. time on PageRank.

as PageRank, one can always relax the barrier: although the barrier
gives the BSP implementation a more predictable convergence rate,
the barrier generally does not make the convergence faster.

Table 4 summarizes the extra work for three study cases. Fig-
ures 1, 2 and 3 plot the throughput of four implementations (BSP +
three Atos variants) of three study cases against timeline for four
datasets. Notably, these plots show the normalized throughput,
which is the measured throughput divided by the overwork factors
in Table 4. This gives a fair measure of overall performance, as it
incorporates both the benefits of improved concurrency (higher
absolute throughput) and the cost of extra work. Essentially, nor-
malized throughput measures “useful” throughput rather than raw
absolute throughput. We provide detailed analysis below for each
application.

Atos: A Task-Parallel GPU Scheduler for Graph Analytics

o 210 soc-LiveJournal1® 105 indochina-2004°

>

5

>
IS

=
w

normalized throughput
o

normalized throughput

et
40 60 80 100 0 100 200 300 400 500 600 700
timeline (ms) timeline (ms)

%108 road-usa™ %10° roadNet-CA™

&

normalized throughput
normalized throughput

1

o
o

20 40 60 80 100 0 2 4 6 8 10 12 14
timeline (ms) timeline (ms)

Figure 3: Normalized throughput vs. time on graph coloring.

BFS: Figure 1 shows that for the two mesh-like datasets, all 3 Atos
implementations achieve considerably higher normalized through-
put than Gunrock. Why? Table 3 shows that Gunrock on mesh-like
datasets has a severe small frontier problem. Therefore, the increase
in concurrency in the 3 Atos implementations offers a significant
performance advantage. Table 4 indicates that the persistent-warp
implementation generates 3.5x extra work vs. Gunrock, but despite
this extra work, Atos’s normalized throughput is still significantly
higher than Gunrock. Scale-free graphs, on the other hand, exhibit
more parallelism and do not suffer from the small-frontier problem.
Atos’s fastest implementations are still faster than Gunrock’s, but
not nearly as much as for the mesh networks.

On all BFS experiments, Atos’s CTA implementations are faster
than its warp ones. Atos’s CTA implementations use a combination
of task-parallel and data-parallel load balancing techniques (see
Section 6.4 for details), and thus have better load balancing than its
warp implementations, which only use task-parallel load balancing.
This leads to higher GPU utilization and hence higher absolute
throughput. Second, CTA implementations produce less extra work
than warp (see Table 4). Due to better load balancing in CTA, the
workload of each worker has lower variance. If a worker receives too
much work, there will be a long delay before the vertices’ updated
depths are visible to other workers; this increases the likelihood
that downstream vertices are first reached via other sub-optimal
paths, which leads to extra work.

PageRank: Unlike BFS, PageRank is naturally unordered, as
it satisfies Dijkstra’s don’t care non-determinism [11]. Therefore,
relaxing the barrier in the outer loop does not generate any misspec-
ulations and hence results in no wasted work. In fact, Table 4 shows
that the Atos implementations perform less work than Gunrock in
general. This is because the BSP barrier forces each vertex to be
processed at most once per iteration. By relaxing this barrier, the
Atos implementations can update certain important vertices (e.g.,
vertices with high centrality) more frequently than other vertices,
thus leading to more efficient propagation of rank.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Figure 2 shows that all three Atos implementations compact the
workload and process it with higher normalized throughput (persist-
CTA has a higher profiling cost). Though PageRank does not suffer
from the small frontier problem, the three Atos implementations
nonetheless have superior performance over Gunrock, because
relaxing the barrier increases concurrency. In addition, relaxing the
barrier lowered the overall workload in practice, even though in
theory it may lead to a more unpredictable convergence rate.

Graph Coloring: Unlike BFS and PageRank, all graph color-
ing implementations (including BSP) use a speculative approach
(greedy graph coloring) and thus all have extra work. Table 4 sum-
marizes the multiplicative factor of extra work, which is defined as
a ratio vs. the number of vertices in the graph (the lowest possible
workload). Atos’s persist warp has the least extra work; on some
datasets, the extra work is less than 1%, which means after the first
color assignment, only 1% of vertices have a color conflict and must
be recolored. Atos’s discrete warp has the most extra work (on
hollywood-2009, 37.34x). The extra work is due to the combination
of two factors:

1. Conflicts tend to arise when neighboring vertices are colored
concurrently: From Section 5.3, given a vertex, the algorithm first
checks its neighbors’ colors, then assigns a color to the vertex that
does not conflict with its neighbors. The color assignment is specu-
lative because it is done using possibly outdated color information
from the vertex’s neighbors. When neighboring vertices are colored
simultaneously, they read outdated colors from each other, leading
to conflicts and recoloring.

2. Consecutive vertices on the work queue are likely to be neighbors:
On many if not most graphs, the vertex ID is semantically meaning-
ful: vertices whose vertex ID are numerically close are more likely
to be neighbors. At the beginning of graph coloring, all vertices are
initially inserted onto the work queue in order of vertex ID.

Since consecutive vertices on the work queue tend to be assigned
colors concurrently, the above implies a high likelihood of color
conflicts. We verify that the large amount of extra work is indeed
due to semantically meaningful vertex IDs: running the exact same
experiment with randomly permuted vertex IDs, the amount of
extra work drops to less than 1.5x for all four implementations on
all datasets. ID permutation leads to the following runtime improve-
ments (in ms) on scale-free datasets:

Impl. soc-LiveJournall hollywood indochina
discrete-warp 63 — 31 274 —> 26 2073 — 222
persist-CTA 36 — 21 59 — 28 184 — 50
BSP 96 — 89 77 — 61 673 — 485

The BSP implementation has a more modest improvement because
BSP’s thread-warp-CTA load balancing scheme [21] already divides
each bucket into three individually-load-balanced subbuckets, re-
ducing inter-bucket conflicts. Persist-warp has little change as there
is almost no extra work even before permutation. Notably, after
permutation, all three Atos variants are faster than BSP implemen-
tation on scale-free datasets.

Comparing persist-warp and persist-CTA: persist-CTA has
better load balancing, allowing for more (potentially adjacent) ver-
tices to be colored simultaneously, resulting in more extra work
than persist-warp. We verify this from Table 4. Roughly speaking,
the amount of extra work for persist-CTA is more significant on

ICPP °22, August 29-September 1, 2022, Bordeaux, France

scale-free graphs, as a vertex can have a large number of neigl
bors, leading to more potential conflicts. Therefore, persist-CT.
outperforms persist-warp on mesh-like graphs, where the increase
concurrency and better load-balancing outweigh the cost of waste
work; conversely, on scale-free datasets, persist-CTA is slower tha
persist-warp, because the cost of extra work is too high (see Tables
and 4).

Comparing persist-warp and discrete-warp: Discrete-war
has more extra work than persist-warp, hurting its performanc
for two reasons.

(1) The scheduling policies of discrete and persistent kernel
are different. When kernels are launched from the CPU (discret:
kernel strategy), the kernel launched earlier always has a highe
scheduling (hardware) priority than the kernel launched later. This
effectively causes vertices to always be colored in roughly the same
order as their initial ordering (by vertex ID, which causes many
conflicts). In contrast, the persistent kernel only incurs one kernel
launch and warps within it are scheduled by the hardware scheduler,
whose decisions are much less ordered by vertex ID. Thus persist-
warp has fewer coloring conflicts caused by adjacencies and hence
less overwork.

(2) Discrete-warp has lower register usage than persistent-warp
(72 vs. 42), so persist-warp only achieves 43% occupancy per SM and
discrete-warp achieves 62%. Therefore the discrete-wrap assigns
colors to more vertices simultaneously, leading to a greater likeli-
hood of conflicts than persist-warp. Unlike our other applications,
in graph coloring, the cost of extra work largely reduces the benefit
of increased concurrency. On scale-free datasets (without random
permutation), our highest performance is achieved with lower con-
currency and less overwork (persist-warp variant), which achieves
a lower absolute throughput but a higher normalized throughput
(and hence higher performance overall).

6.4 Worker Size and Trade-off between Task-
and Data-Parallelism Load Balancing

As discussed in Section 3, Atos enables the user to trade off between
task-parallelism and data-parallelism load balancing by adjusting
the worker size and FETCH_SIZE. Atos’s persist-CTA, like persist-
warp, uses a persistent kernel to exploit task parallelism, but now
the task-parallel work units are fewer and larger (the size of a
CTA) and we can leverage more data parallelism within a CTA.
In most cases, persist-CTA outperforms persist-warp with both
higher normalized/absolute throughput, except for the graph color-
ing on scale-free datasets, where it achieves only higher absolute
throughput. Figure 4 illustrates this tradeoff for BFS and PageRank
on soc-LiveJournal (scale-free) and road_usa (mesh-like). We ex-
clude graph coloring because it can only be run with one CTA
size, due to high register usage (72) and high shared memory usage
(46 KB).

6.5 Kernel Strategy

From Section 3, the chief advantage of the persistent kernel is re-
moving the overhead associated with kernel invocation, which is
most significant for fine-grained tasks that involve many small
kernel launches. Based on the performance results in Table 1 and

Yuxin Chen, et al.

BFS soc-LiveJournalt BFS road-usa

128 2% 512 102 3 128 25
Fetch Size Feteh Size

Figure 4: Runtime (ms) heatmap plotted with different
worker size and fetch size for BFS and PageRank on soc-
LiveJournal® and road_usa™. Note only the lower triangle
is valid.

Figure 1, the performance gap between persistent kernel and dis-
crete kernel is particularly large for BFS on mesh-like graphs, which
require many small kernel launches due to the high diameter and
small workload per iteration. Graph coloring on indochina-2004
also shows a large kernel launch overhead. Using a random permu-
tation of vertex IDs (see Section 6.3), Atos’s persistent variant is
4.3x faster than its discrete variant.

7 CONCLUSION

In this paper, we present our task-parallel GPU dynamic scheduling
framework, Atos, and analyze its performance across numerous
design parameters on three case studies. Our analysis provides the
following guidelines on what applications are suitable to run in a ca-
pable task-parallel framework, as well as what Atos configurations
to use, given an application’s characteristics:

(1) If the dynamic application either exhibits the small frontier
problem or has load imbalance, Atos will have a performance
advantage.

(2) If the application exhibits the small frontier problem, it
should be run with a persistent kernel.

(3) If the application exhibits load imbalance, it should be run

with both task- and data-parallelism load balancing in tan-

dem to achieve better performance. For different applications,
the optimal tradeoff point varies.

By relaxing the outer loop dependency in the application,

Atos increases concurrency at the cost of extra work due to

mis-speculation, or less predictable convergence rates. The

optimal tradeoff between the increased concurrency and
additional cost is application-dependent. When an applica-
tion is naturally unordered (e.g., PageRank) or has the small
frontier problem (e.g., BFS on mesh-like datasets and graph
coloring on scale-free datasets), the increased concurrency
usually outweighs the cost. Conversely, on problems such
as BFS on scale-free graphs or graph coloring on mesh-like
graphs, the cost of extra work can hurt performance. The
best way to reduce extra work is application-dependent and

—~
N
=

Atos: A Task-Parallel GPU Scheduler for Graph Analytics

may include better load balancing (e.g., BFS) or reducing
concurrency (e.g., graph coloring).

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation (NSF)
under projects CCF-1823034, CCF-1823037, and OAC-1740333; by
the Department of Defense Advanced Research Projects Agency
(DARPA) under projects HR0011-18-3-0007 and FA8650-18-2-7835;
by an NVIDIA gift and hardware donations; and by the Advanced
Scientific Computing Research (ASCR) program within the Office
of Science of the DOE under contract number DE-AC02-05CH11231
and the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

REFERENCES

(1]

=
20

[13]

[14]

[15

[16]

Cédric Augonnet, Jérome Clet-Ortega, Samuel Thibault, and Raymond Namyst.
2010. Data-Aware Task Scheduling on Multi-Accelerator based Platforms. In
2010 IEEE 16th International Conference on Parallel and Distributed Systems. IEEE,
291-298. https://doi.org/10.1109/ICPADS.2010.129

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing Locality and Independence with Logical Regions. In SC’12: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE, 1-11. https://doi.org/10.1109/SC.2012.71

Sean Baxter. 2013. moderngpu: Load-Balancing Search. https://moderngpu.
github.io/loadbalance.html. Accessed: 2022-07-29.

Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan. 2018.
Juggler: A Dependence-Aware Task-Based Execution Framework for GPUs. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’18). 54-67. https://doi.org/10.1145/3178487.
3178492

Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:
An Asynchronous Multi-GPU Programming Model for Irregular Computations.
In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP °17). 235-248. https://doi.org/10.1145/3018743.
3018756

Guy E. Blelloch and Gary W. Sabot. 1990. Compiling Collection-Oriented Lan-
guages onto Massively Parallel Computers. J. Parallel and Distrib. Comput. 8, 2
(Feb. 1990), 119-134. https://doi.org/10.1016/0743-7315(90)90087-6

Daniel Cederman and Philippas Tsigas. 2008. On Dynamic Load-Balancing on
Graphics Processors. In Graphics Hardware (GH "08). 57-64. https://doi.org/10.
2312/EGGH/EGGHO08/057-064

Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. 2010. Dy-
namic Load Balancing on Single- and Multi-GPU Systems. In 2010 IEEE In-
ternational Symposium on Parallel & Distributed Processing (IPDPS 2010). IEEE.
https://doi.org/10.1109/IPDPS.2010.5470413

Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. 2014. Work-
Efficient Parallel GPU Methods for Single Source Shortest Paths. In Proceedings of
the 28th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2014). 349-359. https://doi.org/10.1109/IPDPS.2014.45

Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse: GraphBLAS: Graph algo-
rithms in the language of sparse linear algebra. ACM Transactions on Mathemati-
cal Software (TOMS) 45, 4 (2019), 1-25. https://doi.org/10.1145/3322125

Edsger W. Dijkstra. 1976. A Discipline of Programming. Pearson.

Alex Fender, Brad Rees, and Joe Eaton. 2022. RAPIDS cuGraph. In Massive Graph
Analytics. Chapman and Hall/CRC, Chapter 17, 483-493. https://doi.org/10.1201/
9781003033707-22

Assefaw Hadish Gebremedhin and Fredrik Manne. 2000. Scalable parallel graph
coloring algorithms. Concurrency: Practice and Experience 12, 12 (Nov. 2000),
1131-1146. https://doi.org/10.1002/1096-9128(200010)12:12< 1131::AID-CPE528>
3.0.CO;2-2

Kshitij Gupta, Jeff Stuart, and John D. Owens. 2012. A Study of Persistent Threads
Style GPU Programming for GPGPU Workloads. In Proceedings of Innovative
Parallel Computing (InPar ’12). https://doi.org/10.1109/InPar.2012.6339596
Shawn Hargreaves. 2004. Generating Shaders from HLSL Fragments. In ShaderX3:
Advanced Rendering with DirectX and OpenGL. Chapter 7.3, 555-568.
Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali. 2011. Ordered
vs. Unordered: a Comparison of Parallelism and Work-efficiency in Irregular
Algorithms. In Proceedings of the 16th ACM Symposium on Principles and Practice
of Parallel Programming (San Antonio, TX, USA) (PPoPP ’11). 3-12. https://doi.
org/10.1145/1941553.1941557

(17

(18

[19

[20]

[21]

[22

)
&

[24

[25

[26

[27

&
&

[29

(30]

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Vishwesh Jatala, Roshan Dathathri, Gurbinder Gill, Loc Hoang, V. Krishna Nandi-
vada, and Keshav Pingali. 2020. A Study of Graph Analytics for Massive Datasets
on Distributed Multi-GPUs. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 84-94. https://doi.org/10.1109/IPDPS47924.2020.
00019

Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and
Alex Aiken. 2017. A Distributed Multi-GPU System for Fast Graph Processing.
Proc. VLDB Endow. 11, 3 (Nov. 2017), 297-310. https://doi.org/10.14778/3157794.
3157799

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. 2007. Optimistic Parallelism Requires Abstractions. In
Proceedings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 211-222. https://doi.org/10.1145/1250734.1250759
Hang Liu and H. Howie Huang. 2019. SIMD-X: Programming and Processing
of Graph Algorithms on GPUs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 411-428. https://www.
usenix.org/conference/atc19/presentation/liu-hang

Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
Graph Traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’12). 117-128. https://doi.org/10.
1145/2145816.2145832

Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett
Witchel. 2011. PTask: Operating System Abstractions To Manage GPUs as Com-
pute Devices. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11). 233-248. https://doi.org/10.1145/2043556.2043579
Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dokter,
and Dieter Schmalstieg. 2014. Whippletree: Task-Based Scheduling of Dynamic
Workloads on the GPU. ACM Transactions on Graphics 33, 6, Article 228 (Nov.
2014), 11 pages. https://doi.org/10.1145/2661229.2661250

Gunrock team. 2017. Throughput vs. Frontier Size. https://gunrock.github.io/
docs/#/analysis/frontier_size. Accessed: 2022-07-29.

Stanley Tzeng, Brandon Lloyd, and John D. Owens. 2012. A GPU Task-Parallel
Model with Dependency Resolution. IEEE Computer 45, 8 (Aug. 2012), 34-41.
https://doi.org/10.1109/MC.2012.255

Stanley Tzeng, Anjul Patney, and John D. Owens. 2010. Task Management for
Irregular-Parallel Workloads on the GPU. In Proceedings of High Performance
Graphics (HPG ’10). 29-37. https://doi.org/10.2312/EGGH/HPG10/029-037
Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (Aug. 1990), 103-111. https://doi.org/10.1145/79173.79181
Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and
John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Transactions on
Parallel Computing 4, 1 (Aug. 2017), 3:1-3:49. https://doi.org/10.1145/3108140
Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann, and Timothy G.
Rogers. 2017. Pagoda: Fine-Grained GPU Resource Virtualization for Narrow
Tasks. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’17). 221-234. https://doi.org/10.1145/
3018743.3018754

Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph Processing
on GPUs. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014),
1543-1552. https://doi.org/10.1109/TPDS.2013.111

https://doi.org/10.1109/ICPADS.2010.129
https://doi.org/10.1109/SC.2012.71
https://moderngpu.github.io/loadbalance.html
https://moderngpu.github.io/loadbalance.html
https://doi.org/10.1145/3178487.3178492
https://doi.org/10.1145/3178487.3178492
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1016/0743-7315(90)90087-6
https://doi.org/10.2312/EGGH/EGGH08/057-064
https://doi.org/10.2312/EGGH/EGGH08/057-064
https://doi.org/10.1109/IPDPS.2010.5470413
https://doi.org/10.1109/IPDPS.2014.45
https://doi.org/10.1145/3322125
https://doi.org/10.1201/9781003033707-22
https://doi.org/10.1201/9781003033707-22
https://doi.org/10.1002/1096-9128(200010)12:12<1131::AID-CPE528>3.0.CO;2-2
https://doi.org/10.1002/1096-9128(200010)12:12<1131::AID-CPE528>3.0.CO;2-2
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1145/1941553.1941557
https://doi.org/10.1145/1941553.1941557
https://doi.org/10.1109/IPDPS47924.2020.00019
https://doi.org/10.1109/IPDPS47924.2020.00019
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.1145/1250734.1250759
https://www.usenix.org/conference/atc19/presentation/liu-hang
https://www.usenix.org/conference/atc19/presentation/liu-hang
https://doi.org/10.1145/2145816.2145832
https://doi.org/10.1145/2145816.2145832
https://doi.org/10.1145/2043556.2043579
https://doi.org/10.1145/2661229.2661250
https://gunrock.github.io/docs/#/analysis/frontier_size
https://gunrock.github.io/docs/#/analysis/frontier_size
https://doi.org/10.1109/MC.2012.255
https://doi.org/10.2312/EGGH/HPG10/029-037
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3108140
https://doi.org/10.1145/3018743.3018754
https://doi.org/10.1145/3018743.3018754
https://doi.org/10.1109/TPDS.2013.111

	Abstract
	1 Introduction
	2 A Dynamic, Irregular Application Pattern
	2.1 Performance Challenges of Dynamic, Irregular Problems

	3 Our Task-Parallel Programming Model and Design Space
	3.1 Relaxing Barriers
	3.2 Worker Size
	3.3 Balance Between Data and Task Parallelism
	3.4 Kernel Strategy

	4 Framework API
	5 Three Case Studies
	5.1 Breadth-First Search
	5.2 PageRank
	5.3 Graph Coloring

	6 Experiments and Analysis
	6.1 Experimental Overview
	6.2 Performance Challenges in Three Study Cases
	6.3 Relaxing Barriers
	6.4 Worker Size and Trade-off between Task- and Data-Parallelism Load Balancing
	6.5 Kernel Strategy

	7 Conclusion
	Acknowledgments
	References

