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Abstract

Variational Graph Autoencoders (VGAEs) are powerful models for unsupervised learning of
node representations from graph data. In this work, we systematically analyze modeling node
attributes in VGAEs and show that attribute decoding is important for node representation
learning. We further propose a new learning model, interpretable NOde Representation
with Attribute Decoding (NORAD). The model encodes node representations in an inter-
pretable approach: node representations capture community structures in the graph and
the relationship between communities and node attributes. We further propose a rectifying
procedure to refine node representations of isolated notes, improving the quality of these
nodes’ representations. Our empirical results demonstrate the advantage of the proposed
model when learning graph data in an interpretable approach.

1 Introduction

Graph data are ubiquitous in real-world applications. Graph data contain rich information about graph
nodes. The community structure among graph nodes is particularly interesting. Such structures are modeled
by traditional models such as the stochastic blockmodel (SBM) (Wang & Wong, 1987; Snijders & Nowicki,
1997) and its variants, which assign a node to one or multiple communities.

Learning node representations are widely investigated in document networks. One typical branch is Relational
Topic Model (RTM) (Chang & Blei, 2009) and its variants (Panwar et al., 2021; Bai et al., 2018). In such
models, the links and node attributes are decoded from the node representations, which are learned from
documents with rich textual information. RTM-based models often provide interpretable representations due
to their carefully-designed graphical models. However, the effectiveness of the RTM-based models highly
relies on the text richness of the dataset.

On par with the RTM-based models, Variational Graph Autoencoder (VGAE) (Kipf & Welling, 2016)
utilizes Graph Neural Networks (GNNs) to learn node vectors that encode information that can be used for
reconstructing the graph structure. This model is further improved in multiple aspects. Mehta et al. (2019); Li
et al. (2020); Sarkar et al. (2020) adopt different priors to learn node representations for different applications.
Hasanzadeh et al. (2019) introduce a hierarchical variational framework to VGAE and modify the link decoder.
Pan et al. (2018; 2019); Tian et al. (2022b) adopt the training scheme of generative adversarial networks
(GANs) (Goodfellow et al., 2014) to encode the node latent representations. Tian et al. (2022a) employs
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a masked autoencoder to learn node representations for heterogeneous graphs. Following VGAE, most of
its variants only use node attributes in the encoder but do not decode node attributes. Though some other
models (Mehta et al., 2019; Cheng et al., 2021) use separate decoder heads to generate graph edges and
node attributes. There is no systematic approach to analyzing how node attributes should be used to learn
representations in the VGAE framework better.

In this work, we analyze VGAE using the information-theoretic framework by Alemi et al. (2018) and show
the theoretical strengths of different model constructions. The analysis indicates that appropriate modeling
of node attributes benefits a large class of link prediction tasks. Node attributes not only help to overcome
the limitation of structure node representations by breaking symmetric structures in the graph (Srinivasan &
Ribeiro, 2019), but also provide rich information for link prediction.

We further devise a new representation learning model, interpretable Node Representation with Attribute
Decoding (NORAD), which learns interpretable node representations from the graph data. To exploit node
attributes, the model includes a specially designed decoder for node attributes. The model can learn good
representations for nodes with low degrees. When there are isolated nodes in the graph, their representations
are generally hard to learn. We show that their representations can be better learned by attribute decoding.
We also propose a rectification procedure to refine representations of isolated nodes.

We conduct extensive experiments to evaluate and diagnose our model. The results show that node
representations learned by our model perform well in link prediction and node clustering tasks, indicating the
good quality of these representations. We also show that the learned node representations capture community
structures in the graph and the relationship between communities and node attributes.

Our contributions can be summarized as follows:

• we systematically examine VGAE through an information-theoretic analysis;
• we propose a new model NORAD, which includes a specially designed attribute decoder and a

refinement procedure for representations of isolated nodes; and
• we conduct extensive experiments to study the quality and interpretability of node representations

learned by NORAD.

2 Preliminaries

Let G = (A, X) denote an attributed graph with n nodes, A ∈ R
n×n is the binary adjacency matrix of the

graph, and X = (xi)
n
i=1 ∈ R

n×D denotes node attributes, with xi being the attribute vector of node i. We
consider the problem of jointly modeling A and X. The goal is to learn interpretable node representations
Z = (zi)

n
i=1 ∈ R

n×K that can better explain the data. Then Z provides essential information for downstream
tasks such as node clustering.

Graph Neural Networks. GNN is a type of neural network designed to extract information from graph
data. It typically consists of multiple layers, each of which runs a message-passing procedure to encode
information into a node’s vector representation. Let H = gnn(A, X; φ) denote the network function of an
L-layer GNN, which is typically defined by H(0) = X,

H(l) = σ
(

H(l−1)W(l) + AH(l−1)V(l)
)

, l = 1, . . . , L,

and H = H(L). Here σ(·) is the activation function. W(l) and V(l) are the network weights for the l-th layer.
We denote all network weights with φ.

Variational Graph Autoencoder. VGAE (Kipf & Welling, 2016) learns node representations in an
unsupervised approach based on variational auto-encoder (VAE) (Kingma & Welling, 2013). In VGAE, the
prior distribution p(Z) over node presentations Z is a standard Gaussian distribution. And the generative
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model p(A|Z) is defined as

p(A|Z) =

n
∏

i=1

n
∏

j=1

p(Aij |zi, zj), p(Aij = 1|zi, zj) = sigmoid(z⊤
i zj). (1)

VGAE is a type of variational autoencoder (Kingma & Welling, 2013). It defines its variational distribution
q(Z|A, X) to be a Gaussian distribution Gaussian(Z;µ,σ2), which is defined by a GNN.

(µ,σ) = gnn(A, X). (2)

The output of the GNN is split into µ and σ, representing the mean and standard derivation, respectively.
VGAE maximizes the Evidence Lower Bound (ELBO) of the marginal log-likelihood log p(A) to learn the
encoder and the decoder:

Lg = Eq(Z|A,X)

[

log p(A|Z) + log p(Z) − log q(Z|A, X)
]

. (3)

After the encoder is learned, its mean µ can be used as deterministic node representations. Note that node
features X are not decoded in this model. Therefore, µ mostly represents structural information of nodes but
not attribute information, though the µ is also computed from X.

3 An Information-Theoretic Analysis of Attribute Decoding

In this section, we analyze VGAE from the perspective with the rate-distortion theory (Alemi et al., 2018)
and consider the mutual information between the encoding Z and observed data (A, X). Let p∗(A, X) be
the data distribution and H be its entropy, which is a constant. Let Iq = I[(A, X); Z] denote the mutual
information between (A, X) and Z. Note that Iq is defined from the encoder distribution q(Z|A, X) and the
data distribution. The maximization of the ELBO

Le = Eq(Z|A,X)

[

log p(A, X|Z) + log p(Z) − log q(Z|A, X)
]

(4)

can be viewed as indirect maximization of the mutual information I[(A, X); Z] under a rate constraint (Alemi
et al., 2018). We further decompose I[(A, X); Z] as follows:

I[(A, X); Z] = I[A; Z] + I[X; Z] + I[A; X|Z] − I[A; X] (5)

In this decomposition, the last term I[A; X] is a constant decided by the data. The first term is the
information about A from Z, and the second is the information about X. The third term I[A; X|Z] is the
information between A and X that cannot be explained by Z. When Z is lossless encoding, I[A; X|Z] = 0.

The decomposition above is derived from the encoder distribution q(Z|A, X). Still, it helps us to design the
decoder p(A, X|Z), which approximates q(A, X|Z) when maximizing the ELBO Le. One variant of VGAE
(Mehta et al., 2019; Cheng et al., 2021) assumes p(A, X|Z) = p(X|Z)p(A|Z). In this case, the conditional
mutual information I[A; X|Z] tends to be zero. The conditional independence assumption may require Z to
have extra bits so that Z can explain A and X separately. In this model choice, the lower bound becomes

La = Eq(Z|A,X)

[

log p(A|Z) + log p(X|Z) + log p(Z) − log q(Z|A, X)
]

. (6)

Other possible variants that do not have the assumption, the decoder p(A, X|Z) can be decomposed as
p(X|Z)p(A|X, Z), then it is more flexible and should fit the data better. However, Z is less capable of
explaining A because part of the information is encoded in X. A similar issue happens in the decomposition
p(A, X|Z) = p(A|Z)p(X|A, Z).

Another variant, Graphite (Grover et al., 2019), takes a totally different approach: it only lets Z encode A
and conditions the entire model on X. Therefore, the ELBO is

Lc = Eq(Z|A,X)

[

log p(A|X, Z) + log p(Z|X) − log q(Z|A, X)
]

≤ I[A; Z|X]. (7)
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Figure 1: The plate representation of our framework. Here (δ, u, s) are the prior parameters.

In this case, the optimal encoding Z only encodes the part of A that cannot be explained by X. This results
in Z only containing a small portion of the information about A.

In the ELBO Lg of the basic VGAE, there is no decoding of X, which means that the encoder has no incentive
to encode any information about X.

Our analysis shows that the simple formulation La with conditional independence assumption is better if
we want Z to maximally encode information about (A, X). Though we are not the first to discover this
formulation, our analysis of different formulations helps deepen the understanding of VGAE variants.

Fix the bias of model fitting in link prediction. Node representations of VGAE are often used in link
prediction tasks. Therefore, the given adjacency matrix is Â, which is sparser than the true adjacency matrix
A. In this case, we must do model fitting with Â instead of A.

Model training based on Â is biased because actual edges missing from Â are mixed with non-edges. This
issue has been studied by Liang et al. (2016); Liu & Blei (2017) in different contexts. Specifically, the bias is
due to the term Eq

[

log p(Â|Z)
]

, which leads Z to treat missing edges and non-edges equally. However, in
some datasets, X and A are strongly correlated, and X is observed for all graph nodes. In this case, encoding
information in X helps improve the link prediction performance, so we consider a modified ELBO:

Lα = Eq(Z|A,X)

[

log p(Â|Z) + α log p(X|Z) + log p(Z) − log q(Z|A, X)
]

. (8)

In a link prediction task, we set the ratio factor α > 1 so that model training can pay more attention to node
features. Note that this modified ELBO is still a lower bound of Iq −H when X is discrete and log p(X|Z) < 0.

If we set α = 0, it is equivalent to VGAE. If Â = A in a representation learning task, we still use the normal
ELBO and set α = 1.

4 Interpretable Node Representation with Attribute Decoding

In this section, we introduce our new model, NORAD, to learn node representations. The proposed model has
two goals. The primary goal is to learn high-quality node representations that best preserve the information
of the attributed graph, and the secondary goal is to make the learned representations interpretable.
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We will use the formulation Lα in Equation (8) to construct our model. We need to specify four distributions:
the encoder q(Z|A, X), the prior p(Z), the decoder p(A|Z), and the decoder p(X|Z). We illustrate the
graphical model of our framework in Figure 1.

4.1 The prior distribution

We assign a prior such that the representation zi of node i is a sparse vector. We use a prior that separately
decides the sparse pattern and non-zero values in zi. Let C = (ci)

n
i=1 be the random binary vectors indicating

the sparse pattern, and let V = (vi)
n
i=1 be the random real value vectors deciding non-zero entries of Z. Both

of them have the same dimension as Z. Then

cik ∼ Bernoulli(δ), vik ∼ Gaussian(u, s), where i = 1, . . . , n; k = 1, . . . , K (9)

Here δ = 0.5, u = 0, s = 1, and Z = C ⊙ V with ⊙ being the Hadamard product. The prior p(Z) in our
framework is equivalent to p(C, V). We can view zi as i-th node’s membership assignment in K communities.
Each entry of zi is from a spike and slab distribution: the spike indicates whether the i-th node belongs
to the corresponding community, while the slab indicates the (positive or negative) strength of i-th node’s
membership in the community.

4.2 The conditional distribution of the adjacency

We then define the generative process of graph edges. We use the OSBM (Latouche et al., 2011) to define the
decoder for A. In OSBM, two nodes’ community memberships indicate how they interact. We use parameter
B ∈ R

K×K to indicate the interactions between different communities. A large value in the entry Bkk′ means
a node in community k has a higher chance of connecting with a node in community k′, and vice versa.
Formally, we define the graph edge distribution as follows:

pB(Aij = 1|zi, zj) = sigmoid(z⊤
i Bzj), pB(A|Z) =

n
∏

i=1

n
∏

j=1

pB(Aij |zi, zj). (10)

Here B is learned together with other parameters.

The OSBM distribution is important for the NORAD model to encode meaningful community structures in the
graph into node representations. To explain the graph structure A, z⊤

i Bzj needs to be large for connections
and small for non-edges. While the model can freely decide the B matrix, later experiments indicate that
the learned B has relatively large positive diagonal elements. It means that the nodes belonging to the
same communities (having positive entries corresponding to these communities) tend to have a connection in
between.

4.3 The conditional distribution of attributes

We also define an interpretable decoder for node attributes. Here we first focus on binary attributes:
xi ∈ {0, 1}D is a binary vector.

We assume that each zi independently generates xi: p(X|Z) =
∏

i∈V p(xi|zi). Then we design an Attention-
based Topic Network (ATN) to consider the community-attribute relation in p(xi|zi). We use θ to denote
the network parameters in ATN.

Similar to topic models, ATN assumes that each community is represented as an embedding vector. All
such embedding vectors are in a matrix T ∈ R

K×d′

. Each attribute also has an embedding vector, and
all attributes’ vectors are denoted in a matrix U ∈ R

d′×D. We compute attention weights from the two
embedding matrices to decide the probabilities of the node’s attributes from the two embedding matrices.
We first compute the aggregated community vector

gi = relu(T⊤zi). (11)
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Algorithm 1 Variational EM for NORAD

Input: network graph G = (A, X), initialized model and variational parameters (θ, φ) and blockmodel B,
iteration steps T e, T m, ratio factor α, regularization factor γ.
Output: learned model and variational parameters (θ, φ) and blockmodel B.
repeat

[E-step]
Fix blockmodel B
for t = 1, . . . , T e do

Compute (η,µ,σ) = gnn(X, A; φ).
Sample C ∼ Bernoulli(η), V ∼ Gaussian(µ,σ2) via reparameterization tricks.
Compute Hadamard product Z = C ⊙ V.
Compute loss L(θ, φ) = α log pθ(X|Z) + log pB(A|Z) + log p(C, V) − log qφ(C, V|A, X).
Update (φ, θ) by maximizing L(φ, θ) via SGD.

end for
[M-step]
Fix parameters (φ, θ)
for t = 1, . . . , T m do

Compute (η,µ,σ) = gnn(X, A; φ).
Compute Hadamard product Z = η ⊙ µ.
Compute loss L(B) = log pB(A|Z) − γ‖B‖.
Update B by maximizing L(B) via SGD.

end for
until convergence of the ELBO L(φ, θ, B)

Then we use the vector gi as a query to compute attention weights against attribute vectors U.

λi = sigmoid

(

g⊤
i WqW⊤

k U√
d′′

)

. (12)

Here the parameters Wq and Wk both have size (d′ × d′′). We apply the sigmoid function, instead of softmax
in standard attention calculation, to get binary probabilities λi.

We denote the procedure above as λi = atn(zi; T, U, W), then we have

p(xi|zi) =
D

∏

d=1

p(xid|zi), p(xid = 1|zi) = λid. (13)

The calculation in (11) and (12) capture the interaction between communities and “topics” in X. The U
matrix has a shape such that d′ is much smaller than D, which means that it must capture correlations
among node attribute entries, and each row of U can be viewed as a topic. The three matrices T, Wq, and
Wk roughly decides how community components in zi activate these topics. Our experiment later does
indicate the topic structure in U.

For node features that are not binary, we can devise appropriate distributions and parameterize them with
λi.

4.4 The encoder

NORAD’s encoder is designed for two purposes: computing node representations and model fitting through
variational inference, which we will discuss right after this subsection.

The encoder qφ(Z|A, X) is computed by a GNN, whose parameters are collectively denoted by φ. Since Z is
computed from C and V, we use qφ(C, V|A, X) instead, this can be further represented as qφ(Z|A, X) =
qφ(V|A, X)qφ(C|A, X) by using mean-field distribution. In the variational distribution, V and C are
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respectively sampled from Bernoulli and Gaussian distributions, which are parameterized by a GNN.

qφ(C|A, X) ∼ Bernoulli(η), qφ(V|A, X) ∼ Gaussian(µ,σ2). (14)

We use a GNN to compute these distribution parameters from X and A.

(η,µ,σ) = gnn(A, X; φ). (15)

Here η, µ, and σ are all matrices of size n × K. The output of the GNN has size n × (3K), then it is split
into the three matrices. All parameters of the two variational distributions are network parameters of the
GNN.

Deterministic node representations Z◦ are computed from η and µ directly.

Z◦ = µ ⊙ 1(η > 0.5). (16)

Here 1(η > 0.5) gets a binary matrix indicating which elements are greater than the threshold 0.5.

4.5 Model fitting through variational inference

In this section, we discuss the learning procedure of our model. Besides the ELBO we have discussed in the
previous section, we also add regularization terms over the parameter B.

L(θ, φ, B) = Eqφ(C,V|A,X)

[

log pB(A|C, V) + α log pθ(X|C, V) + log p(C, V) − log qφ(C, V|A, X)
]

+ γ‖B‖.

(17)

The hyper-parameter α controls the strength of the attribute decoder. We maximize the objective L(θ, φ, B)
with respect to model parameters (θ and B) and variational parameters φ. The objective gradient is estimated
through Monte Carlo samples from the variational distribution. Note that the random variable C is binary,
and we use the Gumbel-softmax trick (Jang et al., 2016), then we can estimate the gradient of the objective
efficiently through the reparameterization trick.

We find alternatively updating (θ, φ) and B in a variational-EM fashion gives better optimization performance.
In our optimization procedure, we fix B and update (θ, φ) for a few iterations at E-step, and then fix model
and variational parameters (θ, φ) and optimize B for a few iterations at M-step. The parameters are all
optimized with SGD. The intuition behind this is that the training of B needs to depend on somewhat clear
relations between different communities. The training procedure is shown in Algorithm 1.

4.6 Rectifying representations of isolated nodes

In the training process, the representations of isolated nodes are learned to predict zero connections from
these nodes. As we have analyzed, representations learned in this approach are biased. Here we use the
rectification strategy to post-process the learned representations of isolated nodes. For an isolated node i, we
first compute the deterministic node representation z◦

i from Equation (16) and then update z◦
i through ATN

to improve the recovery of xi. The update rule is shown as follows:

z◦
i = z◦

i + ǫ∇z◦

i
log pθ(xi|z◦

i ), (18)

where ǫ is the updated learning rate. We run the update for multiple iterations and obtain the final represen-
tation. Empirically, 50 to 100 iterations usually give a clear improvement of these nodes’ representations.

5 Experiments

In this section, we study the proposed model with real datasets. The first aim of the study is to examine
the quality of node representations: whether the model learns node representations of high quality and how
each component contributes to the learning. We examine our model through extensive ablation studies and
sensitivity analysis. The second aim is to examine the interpretability of learned node representations. We
look into the data and show how learned representations encode interpretable structures in the data.
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DeepWalk VGAE KernelGCN DGLFRM VGNAE NORAD

Cora
AUC 84.6±0.01 92.6±0.01 93.1±0.06 93.4±0.23 94.9±0.43 95.6±0.56
AP 88.5±0.00 93.3±0.01 93.2±0.07 93.8±0.22 94.9±0.39 96.1±0.44

Citeseer
AUC 80.5±0.01 90.8±0.02 90.9±0.08 93.8±0.32 96.0±0.74 95.6±0.28
AP 85.0±1.00 92.0±0.02 91.8±0.04 94.4±0.73 96.1±0.89 96.5±0.19

Pubmed
AUC 84.2±0.02 94.2±0.76 94.5±0.03 94.0±0.08 95.0±0.26 97.1±0.25
AP 87.8±1.00 94.0±0.88 94.2±0.01 95.0±0.35 94.7±0.36 97.3±0.28

DBLP
AUC 80.4±0.65 90.8±0.37 93.6±0.22 93.7±0.41 91.8±0.34 96.3±0.22
AP 83.1±0.55 91.4±0.44 93.9±0.18 94.0±0.54 92.6±0.26 97.0±0.18

OGBN-arxiv
AUC OOM 87.2±1.37 OOM 91.2±0.38 92.3±5.03 94.5±0.22
AP OOM 88.7±1.17 OOM 92.0±0.31 92.8±4.12 94.6±0.20

Wiki-cs
AUC OOM 92.1±0.99 93.1±0.85 92.8±0.90 95.3±0.43 96.0±0.22
AP OOM 91.5±0.94 93.0±1.22 93.0±1.07 94.5±0.55 96.0±0.23

Table 1: Performance comparison of all models in the link prediction task: We use unpaired t-test to compare
models’ performance values. Not significantly worse than the best at the 5% significance level are bold.

DeepWalk VGAE KernelGCN DGLFRM VGNAE NORAD

Cora
NMI 40.0±1.26 42.6±2.64 44.2±1.07 48.0±2.02 51.1±0.84 50.3±3.72
ACC 56.5±1.71 56.7±4.49 60.9±2.43 63.1±4.11 67.5±2.29 66.5±5.89

Citeseer
NMI 13.2±1.55 15.5±2.83 25.6±2.56 28.8±1.63 35.6±3.76 38.9±1.18
ACC 38.8±2.12 36.1±2.38 52.8±4.36 51.9±2.38 57.8±4.41 64.5±1.17

Pubmed
NMI 28.5±0.73 30.1±2.56 28.6±1.27 25.0±4.21 26.2±0.47 24.5±5.97
ACC 67.1±0.54 67.6±2.88 68.6±0.82 65.2±3.64 64.1±0.37 61.1±6.36

DBLP
NMI 19.7±1.76 23.6±2.70 30.5±0.56 30.0±2.66 26.0±3.40 40.2±4.59
ACC 54.8±1.31 47.8±2.81 56.0±2.61 55.8±3.19 52.4±6.66 64.4±6.09

OGBN-arxiv
NMI OOM 7.3±2.15 OOM 9.4±2.55 9.0±2.15 10.3±1.64
ACC OOM 10.3±1.15 OOM 11.2±0.89 10.4±0.97 11.1±0.69

Wiki-cs
NMI OOM 21.2±5.66 34.1±5.20 20.4±6.69 24.6±1.10 34.1±1.57
ACC OOM 29.9±3.63 39.1±3.86 30.4±4.33 33.7±1.01 39.4±2.24

Table 2: Performance comparison of all models in the node clustering task: We use unpaired t-test to compare
models’ performance values. Not significantly worse than the best at the 5% significance level are bold.

Datasets. We use seven benchmark datasets, including Cora, Citeseer, Pubmed, DBLP, OGBL-collab,
OGBN-arxiv, and Wiki-cs (Morris et al., 2020; Hu et al., 2020; Mernyei & Cangea, 2020). The details of
these datasets can be found in Table 8 in Appendix.

Baselines. We benchmark the performance of NORAD against existing models that share the same traits
as ours. The experiment setups and the implementation details of our model are shown in Appendix A.2. We
consider five baseline methods. (1) DeepWalk (Perozzi et al., 2014) learns the latent node representations
by treating truncated random walks sampled within the network as sentences. (2) VGAE (Kipf & Welling,
2016) is the first variational auto-encoder based on GNN. (3) KernelGCN (Tian et al., 2019) proposes a
learnable kernel-based framework, which decouples the kernel function and feature mapping function in the
propagation of GCN; (4) DGLFRM (Mehta et al., 2019) adopts IBP and Normal prior when encoding the
node representations and adds a perceptron layer to the node representations before decoding the edges.
(5) VGNAE (Ahn & Kim, 2021) shows that L2 normalization on node hidden vector in GCN improves the
representation quality of isolated nodes.

5.1 Link prediction and node clustering

We consider the quality of node representations in link prediction and node clustering tasks. In particular,
we pay attention to the representations of isolated nodes in sparse graphs. In the link prediction task, all
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VGAE KernelGCN DGLFRM VGNAE NORAD
Hits@10↑ 26.98±0.12 OOM 28.75 ±0.68 31.24±0.19 31.56±0.23
Hits@50↑ 44.76±0.98 OOM 46.19±1.37 46.76±0.88 47.38±1.09
Hits@100↑ 51.44±0.70 OOM 51.49±0.15 51.39±0.42 51.40±0.25

Table 3: Performance comparison of all models on OGBL-collab dataset: We use unpaired t-test to compare
models’ performance values. Not significantly worse than the best at the 5% significance level are bold.

models predict the missing edges of the graph based on the training data, including node attributes and
links. We evaluate our model and the baselines regarding Area Under the ROC Curve (AUC) and Average
Precision(AP) on six datasets. We follow the data splitting strategy in Kipf & Welling (2016) and report the
mean and standard deviation over 10 random data splits. For Wiki-cs, since all models yield high performance
by following the data splitting strategy in VGAE as mentioned in (Mernyei & Cangea, 2020), we lower
down the training ratio and use split ratio: train/val/test: 0.6/0.1/0.3. The results are reported in Table 1.
Note that an “OOM” entry means that the corresponding model cannot run on that dataset because of the
out-of-memory issue. Since the results on OGBL-collab use different metrics, we report the metric Hits@K,
K=10, 50, 100 following (Hu et al., 2020) in Table 3. Given that KernelGCN requires transformation on the
adjacency matrix, the computation memory cost is too high to scale it to large networks, e.g., OGBN-arxiv
and OGBL-collab.

The table shows that NORAD significantly outperforms the baselines on almost all datasets, illustrating the
superior capability of our model in encoding graph information. The advantage is more obvious on DBLP,
which has relatively rich node attributes and links.

In the node clustering task, we generate the node representations from different learning models and then use
K-means to obtain the clustering results. We set the hyperparameter in K-means as the number of classes in
each dataset. We compare the clustering performance with the node embeddings learned from the baselines
above. We compare NORAD against the baselines in terms of Normalized Mutual Information (NMI) and
Accuracy (ACC) on six datasets. Before calculating ACC, we use the Hungarian matching algorithm (Kuhn,
1955) to match the K-means predicted cluster labels with true labels. We report the mean and standard
derivation over 10 runs. The results can be found in Table 2.

In the node clustering task, NORAD works better on Cora, Citeseer, DBLP, OGBN-arxiv, and Wiki-cs
against almost all baselines. For Citeseer and DBLP, NORAD significantly outperforms all five baselines;
this can be explained by the fact that these two datasets provide more node information or edge information
than the other two. Our performance on Pubmed is not as competitive as on other datasets. One possible
reason is that Pubmed has the least node information among all the six datasets, and node attributes are not
informative about node classes.

5.2 Ablation study

In this section, we do ablation studies to understand the benefit of each model’s component in the link
prediction task. Specifically, we investigate different variants of the decoder for A and X, respectively, and
the benefits of employing representation rectification for isolated nodes. The results are tabulated in Table 4,
and implementation details can be found in Appendix A.2.

We compare our edge decoder against two variants, whose results are shown in the second and third rows in
Table 4. The first variant constructs the decoder by p(A, X|Z) = p(X|Z)p(A|X, Z), that is, we first decode
X from Z and then decode A from Z and decoded X. We find that this model is less capable of explaining
the adjacency matrix because it mainly encodes information of node features. The decoding of the adjacency
matrix depends on decoded features X, whose dimension is much higher than Z and likely to cause extra
errors. The second variant uses the dot product decoder p(A|Z) from the VGAE model. It essentially uses
an identity matrix as B. The dot product decoder in the second variant shows much worse performance
than our decoder. This result shows the benefit of learning the block model B, which can control connection
densities within/between the same/different communities.
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Model Variants Cora Citeseer
NORAD 95.6±0.56 95.6±0.28
construction w/ p(A|X, Z) 94.5±0.42 94.3±0.76
VGAE decoder p(A|Z) 90.4±1.21 89.9±1.01
w/o decoder p(X|Z) 94.6±0.58 93.4±0.99
NRTM decoder p(X|Z) 95.3±0.41 94.0±0.42
TAN decoder p(X|Z) 95.0±0.69 94.7±0.55
w/o rectification 95.0±0.62 95.0±0.29

Table 4: AUC of link prediction on Cora and Citeseer using different model variants.

We then investigate the power of using different node decoders p(X|Z). Specifically, we choose decoders
proposed by Neural Relational Topic Model (NRTM) (Bai et al., 2018) and Topic Attention Networks (TAN)
(Panwar et al., 2021). In addition, the effect of the node decoder absence is also considered. We find that our
ATN decoder performs better than the decoders in other works. Moreover, we can see that using the node
decoder significantly contributes to model performance. Interestingly, the richer the node attributes are, the
more the model can benefit from utilizing a node decoder.

Finally, we study how rectifying the representations of the isolated nodes brings additional performance
rise to our model. Even though only a small portion of the nodes are isolated, we still observe a non-trial
improvement in the performance, which indicates the effectiveness of rectification. We give a more thorough
analysis of it under the circumstance when graphs are sparse in the next section,

5.3 Attribute decoding for sparse graphs

Our experiments show strong evidence that decoding attribute benefits node representation learning when
graphs are sparse. We create sparser graphs by masking out more edges during training. Specifically, we
use different training ratios (TRs) and keep 20%, 40%, 60%, and 80% edges in the training set. For the
remaining edges, 1/3 are used for validation, and 2/3 are used for testing. We again choose Cora and Citeseer
datasets for analysis. Results are reported in Table 5. This result shows that more benefit is gained from the
node decoder ATN when graphs are sparser.

We then consider the case of strengthening the node decoder by using α values greater than 1. We run the
same experiment as above but varying α values in Equation (17) and then report our observations in Table 6.
We see that large α values slightly increase the performance for sparse graphs.

Suggesting links for isolated nodes is often considered as the cold-start problem (Schein et al., 2002), which is
important in recommender systems. Here we examine the benefit of the rectification procedure proposed in
Equation (18) by checking the isolated node representations. We consider datasets with different sparsity. A
lower training ratio indicates more isolated nodes exist. The details of isolated nodes for each dataset can be
found in Table 9 in Appendix. The results in Figure 2 show that our rectification procedure greatly improves
the quality of isolated nodes’ representations.

5.4 Interpretability of node representations

We inspect node representations learned by our model qualitatively and interpret them in the application
context. Specifically, we focus on two questions: whether representations capture community structures in
the data and whether representations explain node attributes from the perspective of community structures.

Alignment between community membership and node classes. We visualize a few example com-
munities detected from the graph and correspond them to node labels. The visualization is through the
following steps. (1) We first obtain node representations Z from a trained model and compress them into
two-dimensional vectors by using t-SNE (Van der Maaten & Hinton, 2008). (2) Then we take 10% of the
nodes and choose 2 representative communities (corresponding to two entries in a node vector). Note that we
perform the dimension reduction in full data, then randomly take a subset of the compressed data. (3) In the
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6 Related Work

The stochastic blockmodel (Wang & Wong, 1987; Snijders & Nowicki, 1997) is frequently used for detecting
and modeling community structure within network data. Later variants of SBM make different assumptions
on the node-community relationships (Airoldi et al., 2008; Miller et al., 2009; Latouche et al., 2011). For
example, the mixed membership stochastic blockmodel (MMSB) (Airoldi et al., 2008) assumes each node
belongs to a mixture of communities. The overlapping stochastic blockmodel (OSBM) (Latouche et al., 2011)
assumes each node can belong to multiple communities with the same strength.

Variational framework (Blei et al., 2017) are frequently applied in learning graph data (Kipf & Welling, 2016;
Chen et al., 2021). The VGAE models (Kipf & Welling, 2016; Hasanzadeh et al., 2019; Mehta et al., 2019;
Sarkar et al., 2020; Li et al., 2020; Cheng et al., 2021) combine a VAE and a GNN to learn the representation
of graph data. DGLFRM (Mehta et al., 2019) replaces the Gaussian prior with Indian Buffet Process (IBP)
prior (Teh et al., 2007) to promote the interpretability of learned representations. LGVG (Sarkar et al.,
2020) extends the ladder VAE (Sønderby et al., 2016) to modeling graph data and introduces the gamma
distribution to enable the interpretability of the learned representation. But these models do not explain
the relationship between communities and attributes. Other models improve the architectures of different
components of VGAE. DGVAE (Li et al., 2020) instead uses the Dirichlet prior and shows its application in
node clustering and balanced graph cut. Cheng et al. (2021) devises a model that decodes multi-view node
attributes.

The RTM models (Nallapati et al., 2008; Chang & Blei, 2009) focus on learning meaningful topics from the
document content with the help of the relational information that resides in the document network. Various
works (Wang et al., 2017; Bai et al., 2018; Xie et al., 2021; Panwar et al., 2021) are proposed based on this
idea by either improving the graphical model or proposing a novel network architecture.

On combining the ideas of VGAEs and RTMs, our model can learn node representations that not only being
useful for performing downstream tasks such as link prediction and node clustering but also provide high
interpretability in both community-wise and topic-wise, where the former concerns the topological structure
of the network and the latter concerns the content of the documents.

7 Conclusion

In this work, we have theoretically analyzed the role of node attribute decoder in representation learning
with VGAEs. We show that the node attribute decoder helps the model encode information about the graph
structure.

We further propose the NORAD model to learn interpretable node representations. We introduce the OSBM
to the edge decoder with the aim of capturing community structure. We carefully designed the ATN to
decode node attributes, which improves the quality of node representations and makes them interpretable.
We also design a rectification procedure to refine representations of isolated nodes in the graph after model
training.

However, our model has the following limitations: (1) It needs substantial work to extend our node attribute
decoder for other types of features. (2) Although the block model improves the performance of edge decoding,
the learned matrix B, which is desinged for capturing interactions between communities, still lacks enough
interpretability.
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Dataset #Nodes #Edges #Words/#Embedding #Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,312 4,732 3,703 6
Pubmed 19,717 44,338 500 3
DBLP 17,716 105,734 1,639 4
OGBL-collab 235,868 1,285,465 128 -
OGBN-arxiv 169,343 1,166,243 128 40
Wiki-cs 11,701 216,123 300 10

Table 8: Dataset statistics

A Appendix

A.1 Datasets details

Cora. Citation network consists of 2,708 documents from seven categories. The dataset contains bag-of-
words feature vectors of length 1,433. The network has 5,278 links.

Citeseer. Citation network consists of 3,312 scientific publications from six categories. The dataset contains
bag-of-words feature vectors of length 3,703. The network has 4,732 links.

Pubmed. Citation network consists of 19,717 scientific publications from three categories. The dataset
contains bag-of-words feature vectors of length 500. The network has 44,338 links.

DBLP. Citation network consists of 17,716 papers from four categories. The dataset contains bag-of-words
feature vectors of length 1,639. The network has 105,734 links.

OGBN-collab. Collaboration network consists of 235,868 authors. The dataset contains comes with a
128-dimensional feature vector obtained by averaging the word embeddings of papers published by the authors.
The network has 1,285,465 links.

OGBN-arxiv. Citation network consists of 169,343 papers from fourty categories. The dataset contains
comes with a 128-dimensional feature vector obtained by averaging the embeddings of words in its title and
abstract. The network has 1,166,234 links.

Wiki-cs. Wikipedia-based network consists of 11,701 subjects from ten categories. The dataset contains
node feature vectors of length 300. The network has 216,123 links.

Isolated nodes in different training ratios. In Table 9, we calculate the numbers and percentages of
isolated nodes in different training set split ratios, we also get the numbers and percentages of edges that
contribute to generating the isolated nodes.

A.2 Model implementation and experimental details

In this section, we introduce the NORAD implementation and some experiments’ detailed setups.

Hyperparameters setting. For the encoder of NORAD, we choose 1-layer Graph Convolution Network
(GCN) as our encoder. Since we need to output three sets of variational parameters, we use three GCN
layers separately. Each encoder shares the same output dimension. We search the number of cluster K

over {32, 64, 128, 256} and find that our model is insensitive to K. When K becomes larger (usually 64
and above), the model gives a relatively stable performance. We choose K = 256 for all models in the
reported experiments. For other VGAE baselines, we observe a slight performance drop when increasing
the dimension of the hidden layers of the encoder. Though node representations learned by NORAD are
in a higher dimension, we argue that the actual number of effective entries is usually much smaller. For
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Training ratio
Cora Citeseer

20% 40% 60% 80% 20% 40% 60% 80%

# isolated nodes 1,370 702 336 120 2,045 1,275 737 341
% isolated nodes 50.6% 25.9% 12.4% 4.4% 61.8% 38.5% 22.3% 10.3%

#contributed edges 3,584 1,445 547 155 3,883 1,955 958 385
%contributed edges 66.0% 26.6% 10.1% 2.9% 82.1% 41.3% 20.3% 8.1%

Training ratio
Pubmed DBLP

20% 40% 60% 80% 20% 40% 60% 80%

#isolated nodes 11,220 7,196 4,290 1,964 8,290 4,664 2,628 1102
%isolated nodes 56.9% 36.5% 21.8% 10.0% 46.8% 26.3% 14.8% 6.2%

#contributed edges 19,919 9,938 5,156 2,125 19,915 7,765 3,525 1249
%contributed edges 45.0% 22.4% 11.6% 4.8% 18.8% 7.3% 3.3% 1.2%

Table 9: Isolated nodes numbers and percentages in different training ratios.

Abbreviation Full Name

NAFLD Nonalcoholic Fatty Liver Disease
DR Diabetic Retinopathy

CAD Coronary Artery Disease
AGEs Advanced Glycation End products
ICA Islet Cell Antibodies
MS Metabolic Syndrome
AIH Autoimmune Hepatitis
DN Diabetic Neuropathy
ED Erectile Dysfunction

TyG Triglyceride
BMI Body mass index
UTI Urinary Tract Infection
FSD Female sexual dysfunction
HGB Hemoglobin

Table 10: Abbreviation and the full name of learned topics.

example, we only observe 12 effective entries in the Pubmed dataset. Detailed configurations of the encoders
of the baselines and our models are shown in Table 11. For the node decoder ATN, we search (d′, d′′) over
{(128, 64), (64, 32)}. We set d′ to 128 and d′′ to 64 in our experiment.

Training and prediction. We alternatively optimize (φ, θ) and B. We first update (φ, θ) for T e steps,
then update B for T m steps, and alternate until convergence. In the implementation, we set T e = 10 and
T m = 10. We use Adam optimizers Kingma & Ba (2014) with a learning rate of 0.001. Since we use the
Gumbel-softmax Jang et al. (2016) to relax the binary vector C, in the training process, we use temperature
annealing with 0.5 to be the minimum temperature. We use the relaxed binary vector for optimizing (φ, θ),
and for optimizing B and prediction phase, we use the binary vector by truncating the Bernoulli parameters
η. For isolated node rectification, we use the same learning rate to rectify the representation of the isolated
nodes. We optimize the representation for multiple iterations and choose the number of iterations to be 50
when reporting the experiment results.

Hyperparameters VGAE KernelGCN DGLFRM VGNAE NORAD

Layer type GCN GCN GCN APPNP GCN
#Layers 2 2 2 1 1

Hidden dimension {32, 16} {32, 16} {256, 50} {128} {256}
Prior Gaussian Gaussian Gaussian+IBP Gaussian Gaussian+Bernoulli

Table 11: Encoder configuration of each model
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Ratio base w/ norm w/ ATN w/ both

Cora
20% 82.7±0.61 86.2±1.15 86.4±0.58 87.9±0.49
40% 88.5±0.71 89.8±0.52 90.7±0.44 91.2±0.51
60% 91.9±0.63 91.8±0.61 93.2±0.37 92.6±0.71
80% 94.0±0.75 93.0±1.25 95.2±0.56 93.7±1.14

Citeseer
20% 88.5±0.76 85.9±1.34 92.2±0.55 91.2±0.47
40% 91.7±0.51 90.1±1.04 93.7±0.39 93.3±0.72
60% 92.8±0.58 91.6±1.07 94.5±0.42 94.1±0.66
80% 93.9±0.62 92.8±1.09 95.6±0.48 94.8±0.70

Table 12: Performance comparison of normalization trick and ATN decoder: NORAD without ATN (denoted
as “base”), base with normalization trick (denoted as “norm”), NORAD (denoted as ATN), NORAD with
normalization trick (denoted as both).

Topic Label Top Eight Stemmed Keywords
AIH vivo, liver, releas, defect, hepat, given, content, autoimmun
DN affect, diagnos, defect, neuropathi, sex, diagnosi, drug, predict
ED 50, dysfunct, primari, suscept, interv, new, sex
TyG+BMI affect, triglycerid, adjust, women, bmi, autoimmun, particip, men
TyG+HGB suscept, drug, longterm, autoimmun, hemoglobin, loss, triglycerid, primari
TyG play, particip, class, triglycerid, loss, outcom
DN nerv, neuropathi, dysfunct, content, liver, chronic, vitro, defect
UTI vivo, excret, dysfunct, analys, urinari, play, support
Clinical Practice 50, support, particip, hypothesi, intervent, drug, singl, hemoglobin
DR affect, sex, retinopathi, loss, vivo, vitro, diagnos, defect
Clinical Practice primari, play, intervent, defect, particip, vitro, hemoglobin, drug
ED diagnos, play, dysfunct, vivo, loss, drug, particip, shown
NAFLD affect, triglycerid, hepat, suscept, outcom, autoimmun, need, fatti
HGB+FSD hemoglobin, adjust, triglycerid, dysfunct, drug, protect, women, sex

Table 13: Display of top eight words in fourteen learned latent topics from DGLFRM in Pubmed dataset.
The topic labels are abbreviations of clinical subareas related to Diabetes Mellitus. They are highly related
to the top eight stemmed keywords.

shows the classification performance. We can see that SVM trained with node representation learned by
NOARD achieves higher accuracy than other baselines, thus demonstrating the effectiveness of our model on
downstream node classification task.

VGAE KernelGCN DGLFRM VGNAE NORAD
Cora 65.24±0.73 78.21 ±1.53 83.70 ±1.85 83.74±0.92 84.79±1.12
Citeseer 57.09±0.25 64.99 ±2.02 69.10±2.70 74.79±1.11 74.04±0.98
Pubmed 85.57±0.41 80.20 ±1.37 78.53±1.59 86.36±0.46 87.91±0.29
DBLP 77.85±1.19 80.17±0.66 76.83±2.47 84.10±0.39 84.87±0.46

Table 14: Performance comparison of all models in the downstream classification task: We used an unpaired
t-test to compare models’ performance values. Not significantly worse than the best at the 5% significance
level are bold.
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