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Abstract

We pursue tractable Bayesian analysis of gen-
eralized linear models (GLMs) for categorical
data. GLMs have been difficult to scale to
more than a few dozen categories due to non-
conjugacy or strong posterior dependencies when
using conjugate auxiliary variable methods. We
define a new class of GLMs for categorical
data called categorical-from-binary (CB) mod-
els. Each CB model has a likelihood that is
bounded by the product of binary likelihoods,
suggesting a natural posterior approximation.
This approximation makes inference straightfor-
ward and fast; using well-known auxiliary vari-
ables for probit or logistic regression, the prod-
uct of binary models admits conjugate closed-
form variational inference that is embarrassingly
parallel across categories and invariant to cat-
egory ordering. Moreover, an independent bi-
nary model simultaneously approximates multi-

ple CB models. Bayesian model averaging over
these can improve the quality of the approxima-
tion for any given dataset. We show that our
approach scales to thousands of categories, out-
performing posterior estimation competitors like
Automatic Differentiation Variational Inference
(ADVI) and No U-Turn Sampling (NUTS) in the
time required to achieve fixed prediction quality.

1 Introduction

We consider the problem of modeling categorical data in-
formed by covariates using the machinery of generalized
linear models (GLMs). Because our intended big data ap-
plications may involve rare events or little data for some
quantities of interest, we take a Bayesian approach in order
to estimate distributions over unknown parameters given
available data, and then average over these distributions
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when making predictions. While many generalized linear
models for categorical data have been proposed, Bayesian
analysis of these models remains difficult with substantial
active research due to the need for methods that are simul-
taneously accurate, tractable, and scalable.

The most common modeling choice for categorical data is
multi-class logistic regression, which uses a softmax (a.k.a.
multi-logit) function to produce category probabilities. The
softmax likelihood is not conjugate to any standard prior
over weight parameters (such as Gaussian), so estimat-
ing posteriors over weights requires expensive sampling
methods (Hoffman et al., 2014) or non-conjugate varia-
tional optimization methods (Wang & Blei, 2013; Braun &
McAuliffe, 2010; Kucukelbir et al., 2017). Recent auxiliary
variable methods (Polson et al., 2013) have yielded conju-
gate conditionals amenable to Gibbs sampling, but closed-
form variational updates for multiple categories require
stick-breaking (Linderman et al., 2015). Stick-breaking im-
poses an asymmetric order over categories, yet in many
cases it is unnatural to view category selection as a sequen-
tial process. In practice, this asymmetry complicates prior
specification and inference quality (Zhang & Zhou, 2017).

An alternative model is multi-class probit regression,
whose link function is the cumulative distribution func-
tion of the Normal distribution. The probit admits conju-
gate inference under a well-known auxiliary variable rep-
resentation (Albert & Chib, 1993; Held & Holmes, 2006).
However, multi-class probit models encode strong poste-
rior dependence among entries of the auxiliary parame-
ter vectors. This dependence requires one-entry-at-a-time
sampling instead of joint sampling (Johndrow et al., 2013),
yielding poor mixing performance as the number of cate-
gories grows. Furthermore, implementations often require
picking a “base category”; this choice can impact the prac-
tical results of inference (Burgette et al., 2021). Finally, the
multinomial probit lacks closed-form category probabili-
ties (Johndrow et al., 2013), which has prevented adoption
within more complicated models (Holsclaw et al., 2017).

Motivated by difficulties that arise from these previous ef-
forts (summarized in Table 1), we present a new class of
categorical models – categorical-from-binary (CB) mod-
els1 – whose defining feature is that each one’s likelihood

1Code: github.com/tufts-ml/categorical-from-binary
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Table 1: Assessment of categorical regression models in terms of the presence (X) or absence (✗) of desirable features
for fast, scalable Bayesian inference. Rows: PGA refers to Pòlya-Gamma augmentation (Polson et al., 2013). SB-Softmax
refers to softmax regression with a stick-breaking link function (Linderman et al., 2015). MNP+ACA stands for multino-
mial probit with Albert & Chib (1993) augmentation. IB refers to our proposed independent binary regression (Sec. 2.2).
The first two rows are categorical models, the next three rows are categorical models with augmentation, and the last
two rows are not categorical models, but in this paper we show how (and justify why) they can be used for approximate
inference. See Sec. F.1 for an extended version of this table caption.

Model Inference Feature

Invariance to Latent Auxiliary Closed-form Conditional Closed-form Embarassingly
category linear variable likelihood conjugacy variational parallel across
ordering regression independence inference categories

Softmax X ✗ X X ✗ ✗ ✗

MNP X ✗ X ✗ ✗ ✗ ✗

Softmax+PGA X X X X X ✗ ✗

SB-Softmax+PGA ✗ X X X X X ✗

MNP+ACA X X ✗ ✗ X X ✗

IB-Probit+ACA X X X X X X X

IB-Logit+PGA X X X X X X X

can be lower-bounded by the likelihood of an independent
binary model. To perform approximate posterior estima-
tion for such models, we fit the independent binary model
via coordinate-ascent variational methods, taking advan-
tage of well-known closed-form updates for binary logit
or probit models. This approach is scalable to thousands
of categories, even more so because it is embarrassingly

parallel across categories, meaning we can fit a separate
model for each category with no inter-worker communica-
tion overhead (Foster, 1995). Even without parallelization,
we demonstrate heldout predictions of comparable predic-
tion quality to other categorical GLMs in far less time (see
Fig. 3), with competitive likelihoods only slightly below
the expensive gold standards. Our accurate predictions are
possible via a Bayesian model average (BMA) over mem-
bers of our CB model class which we can deploy cheaply
using only one posterior fit for the surrogate model. Our ex-
periments reveal that our proposed methods offer a promis-
ing first-line approach for fast Bayesian analysis of big cat-
egorical data, especially when the number of categories is
large.

1.1 Problem formulation

Consider a given training set of N paired observations,
{(xi, yi)}Ni=1, where each observation (indexed by i) con-
sists of xi ∈ RM , a (fixed) vector of covariates, and integer
yi ∈ {1, ...,K}, indicating which of the K categories i be-
longs to. We treat yi as a random variable generated as:

yi ∼ Cat(si), si = (si1, . . . siK)T ∈ ∆K−1, (1.1.1a)

si = f(ηi), ηi = BTxi. (1.1.1b)

Here, B ∈ RM×K are unobserved regression weights,
whose matrix-vector product with covariates xi yields the

so-called linear predictor ηi. The function f : RK →
∆K−1 maps the real-valued vector ηi to a vector si of K
non-negative values that sum to one. We refer to this model
as a categorical regression or a generalized linear model
(GLM) for categorical data. Note that f need not be invert-
ible, so the model need not be identifiable (i.e., there may
exist B1 6= B2 which yield identical distributions over yi).

We wish to pursue Bayesian inference, treating the param-
eter B as a random variable with prior π(B). We use a
Gaussian prior in practice. Our primary interest is the pre-

diction task: given N training pairs (xi, yi) and a new co-
variate vector x∗, we wish to make probabilistic predic-
tion of the new category label y∗ via the posterior predic-
tive p(y∗|{yi}Ni=1) =

∫
p(y∗|B)p(B|{yi}Ni=1)dB. This

prediction requires the completion of a posterior estima-

tion task: given a fixed training set of size N , estimate
p(B|{yi}Ni=1). To keep the formal statements of both tasks
simple, we treat covariates as fixed knowns and suppress
conditioning on xi in notation. We stress that our focus is
on the posterior predictive, as category outcomes y∗ are rel-
evant to applications while the weights B are intermediate
quantities whose non-identifiability can make assessment
challenging; large differences in parameter space may not
imply notable changes in prediction quality.

Contributions. Our contribution is to define a class of cat-
egorical models (choices of the function f ) that we call
categorical-from-binary models. Using this class, we show
that a well-justified approximation is possible such that
posterior estimation enjoys all the beneficial properties in
Table 1. To our knowledge, out of all previous models
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listed in Table 1, only our approach yields tractable cate-
gory probabilities, provides scalable yet closed-form vari-
ational optimization, is invariant to category order, and can
be integrated into more complex graphical models. We fur-
ther provide a prediction method that averages across mod-
els to obtain accurate categorical predictions from our ap-
proximate posterior.

2 Models

2.1 Overview

Bayesian inference for categorical regressions (Eq. (1.1.1))
is difficult, in the sense that no current approach has all
the features given in Table 1. In contrast, Bayesian in-
ference for binary regression is far more straightforward.
Using Pòlya-Gamma augmentation (Polson et al., 2013) for
logistic regression, or the Normal augmentation of Albert
& Chib (1993) for probit regression, one may obtain con-
ditionally conjugate models and closed-form variational in-
ference (Durante & Rigon, 2019; Consonni & Marin, 2007;
Armagan & Zaretzki, 2011; Fasano et al., 2019). These
properties extend to regression models for K-bit binary
vectors that treat each bit independently (see Sec. 2.2). In
fact, if each bit were to indicate the presence of a particu-
lar category, then every desirable inferential feature listed
in Table 1 would be present. We would like to exploit
this collection of features for categorical modeling. The
problem is that independent binary regression allows for
multiple non-zero bits while categorical models require ex-
actly one non-zero bit. To address this problem, we con-
struct categorical models around independent binary mod-
els (Sec. 2.3), which enables the efficient posterior estima-
tion (Sec. 3).

2.2 A model for independent binary vectors

Consider a general univariate binary regression likelihood
(Albert & Chib, 1993) of the form

(

y i |

(

β
ind∼ Bernoulli

(
H(

(

η i)
)
, i = 1, ..., n (2.2.1)

where (

y i ∈ {0, 1} are binary response random variables,

the linear predictor (

η i = xT
i

(

β is formed from known co-

variates xi ∈ RM and unknown parameters

(

β ∈ RM , and
H is an arbitrary cdf that is referred to as an inverse link
function. Logistic regression sets H to be the standard lo-
gistic cdf and probit regression sets H to the standard Gaus-
sian cdf. We use the breve notation to distinguish random
variables here from those in later categorical models. For
additional intuition about Eq. (2.2.1), see Sec. A.

Now let us consider modeling binary vectors: ŷi =
(ŷi1, ..., ŷiK) ∈ {0, 1}K , i = 1, 2, . . . , N . Crucially, each
ŷi is a K-bit vector, and not a one-hot vector: any number
of entries could be 1 or 0. Taking the product of binary re-
gression likelihoods of the form in Eq. (2.2.1), we obtain a

model which we call independent binary (IB) regression,

ŷik | β̂k
ind∼ Bernoulli

(
H(η̂ik)

)
(2.2.2)

independently across each k = 1, 2, . . . ,K, with each lin-
ear predictor η̂ik = xT

i β̂k formed from known covariates
xi ∈ RM and unknown parameters β̂k ∈ RM . The likeli-
hood for an observation under a K-bit IB model is

pIB(ŷi | B̂)=

K∏

k=1

H(η̂ik)
ŷik
(
1−H(η̂ik)

)1−ŷik , (2.2.3)

where B̂ = (β̂1, ..., β̂K) ∈ RM×K is a matrix of weights
for each combination of covariate and category. IB is a
class of models, each member defined by a chosen H .
When H is the standard logistic or standard Gaussian cdf,
we respectively obtain the IB-Logit or IB-Probit models.

2.3 Categorical-from-binary models

Suppose now that we are interested in regression models
for categorical (one-of-K) data, i.e. yi ∼ Cat(si1, . . . siK)
where yi ∈ {1, ...,K} and si ∈ ∆K−1. We restrict our
focus to categorical models which are related to IB models
(Eq. (2.2.2)) in the following manner:

Definition 2.3.1. A categorical-from-binary (CB)
model is a GLM for categorical data yi ∈ {1, ..,K} which
always assigns a higher likelihood to a category k than an
IB model does to the corresponding one-hot vector. That
is, CB models obey the likelihood bound

pCB(yi | B) > pIB(ŷi = eyi
| B̂ = B) (2.3.1)

for all observations yi ∈ {1, ...,K}, covariates xi ∈ RM ,
and weights B ∈ RM×K , and where eyi

is the one-hot
indicator vector with value of 1 only at entry yi. △

To construct a CB model, we must construct a function f
for the relation pCB(yi | B) = f(ηi), where ηi = BTxi,
such that the bound in Eq. (2.3.1) is satisfied. We begin
by choosing a cdf H (e.g. standard Gaussian or standard
Logistic) to specify a concrete IB model (e.g. IB-Probit or
IB-Logit). We refer to the chosen IB-model as the base of
a CB model. We then define h : RK → RK such that
h(ηi) =

(
H(ηi1), . . . , H(ηiK)

)T
. CB models construct f

via the composition f = g ◦ h for some function g defined
below. This composition means that CB category probabil-
ities are determined by the vector output of h, whose entries
define the probabilities of “success" at each of the K bits
of the IB model: H(ηik) = pIB(ŷik = 1 | βk) for all k.

2.4 Concrete categorical-from-binary likelihoods

After selecting a specific cdf H , fully specifying a con-
crete CB model for categorical data requires identifying the
transformation g which maps the IB probabilities of suc-
cess h(ηi) into the simplex ∆K−1 in a way that satisfies
the bound in Eq. (2.3.1). We now provide two such spec-
ifications. First, the marginalization construction assumes
the probability of the kth category is proportional to the
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probability of success in the k-th bit of the IB model. Sec-
ond, the conditioning construction requires the IB model to
assign non-zero probability only to valid one-hot vectors,
and then assumes that the probability of the kth category
equals the probability of its one-hot representation.

CB construction via marginalization. A categorical-

from-binary-via-marginalization (CBM) model produces
category probabilities by normalizing the marginal prob-
abilities of success {H(ηik)}Kk=1 from an IB model:

pCBM(yi = k | B) =
H(ηik)∑K
ℓ=1 H(ηiℓ)

. (2.4.1)

for all categories k ∈ {1, . . . ,K}.
CB construction via conditioning. A categorical-from-

binary-via-conditioning (CBC) model produces category
probabilities from an IB model by conditioning on the
event that the vector has exactly one positive entry:

pCBC(yi=k | B) =

H(ηik)
∏

j 6=k

(1−H(ηij))

K∑

ℓ=1

H(ηiℓ)
∏

j 6=ℓ

(1−H(ηij))

(2.4.2)

for categories k = 1, ...,K. A CBC model is an IB model
truncated to the space of one-hot vectors. A CBC model
can also be expressed as a normalized odds model (see Sec.
B.2).

Proposition 2.4.1. CBC and CBM models are categorical-

from-binary (CB) models satisfying Definition 2.3.1.

Proof. Deferred to Appendix Sec. B.3 to save space.

Example 2.4.1. To illustrate the strategies taken by the
CBM and CBC models in forming a categorical regression
from an IB regression, contrast how they assign probability
to the first of K = 3 categories.

pCBM(y = 1 | B) ∝ pIB

(
ŷ ∈

{
(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)

}
| B

)

pCBC(y = 1 | B) = pIB

(
ŷ = (1, 0, 0)

∣∣∣∣ ŷ ∈
{
(1, 0, 0), (0, 1, 0), (0, 0, 1)

}
,B

)

The distinction can be understood through a voting
metaphor. The conditioning strategy of CBC models forces
the K independent binary models to agree on a single
“vote", the marginalization strategy of CBM models allows
multiple votes across the K independent bits. △

From model classes to models. Both CBC and CBM are
model classes, generating different models as H varies. For
instance, by taking H to be the standard Gaussian cdf we
can generate the CBC-Probit and CBM-Probit models (for
which IB-Probit is the base), and by taking H to be the
standard Logistic cdf, we can generate the CBC-Logit and
CBM-Logit models (for which IB-Logit is the base).

2.5 Related work

Diagonal orthant models. Our work is inspired by the di-

agonal orthant (DO) models proposed by Johndrow et al.
(2013). What we call the CBC likelihood is equivalent to
the marginal likelihood of the DO model (integrating away
auxiliary variables). Johndrow et al. further proposed using
independent binary regressions (as we do) to perform scal-
able Bayesian computation for categorical data. Johndrow
et al. argued for IB approximation based on a claimed iden-
tification equivalence of point estimated weights between
IB and DO models.

In a recent non-archival workshop paper (Wojnowicz et al.,
2021), we clarified that IB should be viewed as a separate,
surrogate model (see also Sec. B.4). This paper extends
that early line of work, offering a more coherent view of
surrogate bounds, expanding to include many possible cdfs
(not just probit) for IB approximations, and introducing our
BMA approach to effective predictions. We also simplify
inference, as neither the auxiliary variables in Johndrow
et al.’s DO model (nor the auxiliary variables in (Wojnow-
icz et al., 2021)’s SDO model) are needed to relate IB mod-
els to categorical models.

In summary, building on the IB inference strategy first sug-
gested by Johndrow et al., we contribute the following ad-
vances: (1) We clarify that doing inference on a relevant
categorical model via an IB model requires an approxi-

mation. (2) We justify this approximation via surrogate
likelihood bounds. (3) We expand the class of categorical
models suitable for IB approximation, showing that both

CBC and CBM models should be included to obtain high-
quality predictions (see Sec. 5.1). (4) We focus on opti-
mization approaches to posterior estimation, which may be
more scalable than Johndrow et al.’s Gibbs sampling.

Three-step augmentation. Galy-Fajou et al. (2020) pur-
sue conjugate inference for multi-class Gaussian process
classification using a categorical likelihood that is identi-
cal to CBM-Logit. They obtain exact inference (without
any IB approximation) using a model augmentation strat-
egy with three hierarchical levels. This strategy also applies
without Gaussian processes. However, our approach re-
mains conceptually simpler and appears more scalable due
to parallelization and use of the probit link. Future work is
needed to assess the tradeoffs in practice.2

One-vs-rest classification. At a high-level, our IB approx-
imation is similar to a common generic heuristic for build-
ing multi-class classifiers known as a one-versus-rest (or
one-versus-all) ensemble. One-vs-rest schemes fit K sep-
arate binary classifiers to distinguish each class from all
others, and then make a one-of-K prediction by taking the
class corresponding to the classifier with largest predicted

2We discovered this paper just before publication.
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score or probability. Empirically, one-vs-rest schemes can
deliver accuracies on par with one-of-K classifiers for non-
linear kernel methods (Rifkin & Klautau, 2004). Due to
simplicity and computational speed, widely-used software
packages support this scheme (Pedregosa et al., 2011) and
efforts to classify 10,000 image classes have called one-
vs-rest “the only affordable option” (Deng et al., 2010).
However, to our knowledge there has not yet been sta-
tistical justification for one-vs-rest schemes in terms of a
true multi-class likelihood, leading to concerns about co-
herency (Murphy, 2012). Our framework provides proba-

bilistic one-vs-rest approximations of categorical models.

3 Posterior estimation

We now develop our methodology for approximating a
CB model’s posterior over weights, p(B|{yi}Ni=1). The key
insight is this: we can provably optimize a lower bound on
the likelihood of a CB model by instead performing tra-
ditional variational inference for the IB model. First, we
establish that after integrating away the weights B, the
marginal likelihood of a CB model is lower-bounded by
the marginal likelihood of an IB model. Second, we ar-
gue that a mean-field variational posterior q(B) estimated
to approximate the IB model is also a suitable approxima-
tion for a CB model. This suggests a straightforward co-
ordinate ascent variational inference algorithm (IB-CAVI),
which uses the efficient conjugate updates for logit or pro-
bit binary models discussed in Sec. 2.1.

3.1 Marginal likelihood bounds

For any dataset y = {yi}Ni=1, any CB likelihood and any
choice of prior with density π(B), we obtain

pCB(y) =

∫
π(B)

N∏

i=1

pCB(yi | B) dB (3.1.1a)

>

∫
π(B)

N∏

i=1

pIB(ŷi = eyi
| B) dB (3.1.1b)

= pIB(Ŷ = E(y)), (3.1.1c)

which follows from the likelihood bound relating CB to IB
(Eq. (2.3.1)) and monotonicity of the integral. Here, Ŷ =
(ŷi)

N
i=1, and E(y) represents a one-hot representation of

the categorical training data y, stacking all one-hot vectors
{eyi
}Ni=1.

3.2 Variational surrogate bounds

Variational inference (Wainwright et al., 2008; Blei et al.,
2017) deterministically approximates a posterior distribu-
tion by finding the member Q ∈ Q of a tractable family of
distributions which maximizes a lower bound on the loga-
rithm of the evidence (the marginal likelihood of the data).
This lower bound is known as the evidence lower bound or
“ELBO”.

For categorical-from-binary (CB) models, the evidence of
interest is pCB(y) =

∫
pCB(y|B)π(B) dB, where π de-

notes the prior density on B. This quantity is intractable
for both CBC and CBM models (as defined in Sec. 2.4)
because they lack a conjugate prior. For instance, a Gaus-
sian prior is not conjugate, since the logarithm of the joint
density pc(yi | B)π(B) does not yield a quadratic in B,
where c is in {CBC,CBM} and π is a Gaussian density.

Bayesian inference for a model with an intractable
marginal likelihood can sometimes be provided through a
conventional variational approach. If we select Q as any
distribution over B ∈ RM×K , and let q(·) be the density
of Q, then the traditional lower bound of the log of the ev-
idence, which we denote ELBOCB ≤ log pCB(y), follows
from Jensen’s inequality:

ELBOCB(q) = Eq [log pCB(y | B)] − DKL(q(B) ‖ π(B)), (3.2.1)

where DKL is the Kullback-Leibler divergence. Unfortu-
nately, this lower bound is still intractable to compute. The
energy term Eq[log pCB(y | B)] contains N expectations
that lack closed-form expression (expected log sums of K
nonlinear quantities), due to the normalizing constants of
the categorical models (Eqs. (2.4.1) and (B.2.2)). While
Monte Carlo approximations to this integral are possible
that can enable gradient-based learning of q(B), given a
fixed computational budget the quality of these approxi-
mations becomes increasingly suspect in high dimensions,
such as when the number of categories grows.

Instead, we define a surrogate objective LCB(q) that lower
bounds the log marginal likelihood for any CB model:

log pCB(y)
(3.1.1)
> log pIB(Ŷ = E(y)) (3.2.2a)

≥ ELBOIB(q; Ŷ = E(y)) := LCB(q). (3.2.2b)

We call this a surrogate lower bound because there are
two bounds at work: the bound relating CB to IB in
Eq. (3.2.2a) and the traditional ELBO (via Jensen’s in-
equality) in Eq. (3.2.2b). (Recall from Eq. (3.1.1) that the
the former bound requires that the CB model and its IB base
have the same prior density π over weights.) This yields a
surrogate objective LCB(q) which is exactly the traditional
ELBO applied to the IB model. As justified by this sur-
rogate, we can solve our Bayesian inference problem for
categorical regression by applying well-known variational
inference scheme for binary regression on a one-hot trans-
formation of the categorical data.

3.3 Procedure for posterior estimation

We now outline scalable procedures for closed-form co-
ordinate ascent variational inference (CAVI) that will es-
timate an optimal approximate posterior q∗(B) under
the surrogate objective ELBOIB. Especially in high-
dimensional settings, these procedures are far more scal-
able than the difficult task of directly optimizing the truly-
categorical model (via the objective ELBOCB).

Closed-form CAVI procedures for univariate binary re-
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gression (Eq. (2.2.1)) are well-known when the prior

on weights

(

β is Gaussian and the function H corre-
sponds to either logit or probit regression, as reviewed in
Sec. 2.1. Both involve augmenting observed binary data

(

y ∈ {0, 1}N with auxiliary variables (

z ∈ RN such that
the augmented model is conditionally conjugate while the
original model is preserved through marginalization. In
particular, we can obtain a conditionally conjugate model
by either constructing (

z via truncated normal augmentation
for probit regression (Albert & Chib, 1993) or via Pòlya-
Gamma augmentation for logistic regression (Polson et al.,
2013). Extrapolating from this univariate binary model to
the K independent bits of the IB model (Eq. (2.2.3)), we
immediately obtain conditional conjugacy by augmentation
with a matrix Ẑ ∈ RN×K whose kth column ẑk uses the
relevant univariate augmentation strategy.

Our variational approximation of the augmented K-bit IB
model assumes a mean-field factorization: q(Ẑ, B̂) =

q(Ẑ)q(B̂). Under this choice, deriving a coordinate ascent
algorithm to find the q that optimizes LCB(q) in Eq. (3.2.2)
follows the standard variational recipe (Blei et al., 2017).
First, because both prior and likelihood are independent
across categories k, our mean-field posterior also simpli-
fies as independent across categories without further ap-
proximation: q(Ẑ, B̂) =

∏K
k=1 q(ẑk)q(β̂k). From there,

one exploits known applications of CAVI to univariate bi-
nary models specific to the chosen link function, either
logit (Durante & Rigon, 2019) or probit (Consonni &
Marin, 2007; Armagan & Zaretzki, 2011; Fasano et al.,
2019). Procedurally, from a suitable initial value of q, each
factor of q is updated to maximize ELBOIB while holding
others fixed, using closed-form updates arising from condi-
tional conjugacy. For concrete realizations of the required
updates for a K-bit IB model, see Sec. D for the probit link
and Sec. E for the logit. Since this posterior estimation pro-
cedure operates by doing CAVI for a surrogate IB model,
we call it IB-CAVI (independent binary coordinate ascent

variational inference).

After iterating updates to each factor until convergence, the
resulting variational density q∗ over B̂ is a local maximum
of the ELBOIB (Ormerod & Wand, 2010). By Eq. (3.2.2),
q∗(B̂) is therefore a local maximum of a surrogate bound
on the CB model, and thus we can treat q∗(B̂) as an ap-
proximation to the ideal (intractable) posterior pCB(B|y)
of the categorical model.

Our IB-CAVI procedure is not specific to a particular
CB model. One optimization run can produce a posterior
q∗ suitable for multiple CB target models, as long as the
IB model is a base. For example, performing CAVI for the
IB-Probit model provides a q∗ suitable for any CB-Probit
model (CBM-Probit, CBC-Probit, etc.).

Runtime cost of IB-CAVI. The per-iteration runtime cost
for logit models is O(M3K + NM2K) (see Alg. 3 and
Sec. E.4), where K is the number of categories, M is the
number of features, and N is the number of training exam-
ples. For probit models, the per-iteration runtime drops to
O(NMK), with further reductions under sparsity (Alg. 2
and Sec. D.4). When the Gaussian prior π(B) is chosen to
be independent across category-specific weights, under ei-
ther link function our IB-CAVI approach is embarrassingly

parallel across categories. This makes our IB-CAVI ap-
proach particularly suitable for data with hundreds or thou-
sands of categories. For example, to fit the IB-Probit in
parallel, each worker solves a single category’s binary re-
gression problem to convergence at cost O(NM) per iter-
ation.

4 Prediction via Bayesian Model Averaging

Given a posterior over weights q∗(B) via the IB-CAVI pro-
cedure from Sec. 3, how can we make useful predictions

of the category labels y∗ ∈ {1 . . .K} for new observa-
tions with covariates x∗? Clearly we must employ a truly-
categorical CB likelihood to obtain valid predictions, as the
IB likelihood can produce any K-bit vector, not just a 1-of-
K choice. However, empirical investigations in Sec. B.5.1
(see esp. Fig. B.1), with further results in Fig. 1, suggest
that there are substantial dataset-specific tradeoffs in ap-
proximation quality (IB can approximate CBC better than
CBM on some data, and vice versa on other data) and
goodness-of-fit. Needing to select a specific CB likelihood
(CBC or CBM) in advance for a dataset would be challeng-
ing.

To avoid this problem, we exploit the fact that our IB-
CAVI procedure produces a posterior q∗ suitable for multi-

ple CB likelihoods. Thus, to make predictions we perform
a Bayesian model average over all applicable CB likeli-
hoods. We find this significantly improves prediction qual-
ity at no additional training cost.

We model the problem with two random variables. First, let
c ∈ {CBM,CBC} indicate the selected model, with given
prior probabilities p(c) = πc ∈ (0, 1) such that

∑
c πc = 1.

We recommend a uniform setting: πCBM = πCBC = 0.5.3

Second, we have the predicted quantity of interest ∆ (such
as future category label y∗), for which pc(∆|B) is known.
Following Madigan et al. (1996), our BMA prediction pro-
cedure forms the posterior predictive for ∆ given training
data y via the sum rule,

p(∆|y) =
∑

c

p(∆|c,y) p(c|y)︸ ︷︷ ︸
wc

. (4.0.1)

3In case of an intercepts-only model, one might consider set-
ting the prior weight on CBM to 1.0; see Prop. B.4.2.
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Code and Data Availability

Open-source python code for reproducing experiments
can be found at https://github.com/tufts-ml/
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simulated datasets and open-access real datasets (Detxer-
gent, Glass, and Frog Calls, Cybersecurity events) used in
this work, along with any preprocessing used.

A Background: General binary regression

Here we obtain an additional interpretation for the
“success" probability in a general binary regression
model (Eq. (2.2.1)) if we are willing to make a few
additional assumptions. When H is the cdf of a dis-
tribution H that is a location family with a symmetric
density (so H could be Gaussian, Logistic, Cauchy,
Laplace, Student-t, and so on), a simple argument re-

veals the further interpretation that P(

(

y i = 1 | (

β) =

P{drawing a positive value fromH when its mean is xT
i

(

β}.
We formalize this in Prop. A.0.1.

Proposition A.0.1. Let Hµ be a symmetric location-scale

family of probability measures that has a density hµ which

is continuous almost everywhere with respect to Lebesgue

measure. LetHµ have expected value µ and variance fixed

to 1. Let z ∼ Hµ, and denote the cdf of Hµ by Hµ. Then

H0(µ) = P(z ≥ 0).
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Proof.

P(z ≥ 0) = 1−Hµ(0)

=

∫ ∞

0

hµ(x) d x by Riemann integrability

=

∫ ∞

0

h0(x− µ) d x as a location-scale family with unit variance

=

∫ ∞

−µ

h0(u) d u by substituting u = x − µ

= 1−H0(−µ)
= H0(µ). by symmetry

B Categorical-from-binary (CB) models

B.1 Impossibility of exactness in the likelihood bound

Proposition B.1.1. Equality cannot be achieved in the like-

lihood bound of Eq. (2.3.1).

Proof. By way of contradiction, suppose that

pCB(yi = k | B) = pIB(ŷi = ek | B̂ = B) (B.1.1)

Summing these terms over k = 1, . . . ,K must yield a
value of 1, since the left hand side is a probability distribu-
tion over the K categories. This says that pIB(Υ | B) = 1,
where we define Υ ( {0, 1}K as the space of one-hot en-
coded vectors. So by countable additivity,

pIB(Υ
c | B) = 0 (B.1.2)

At the same time, we must have that

0 < pIB(v | B) < 1, ∀v ∈ {0, 1}K (B.1.3)

Eq. (B.1.3) follows immediately from Eq. (2.2.3), because
a cdf H satisfies that H(x), 1 − H(x) ∈ (0, 1) for any
finite real-valued x, and pIB(v | B) is the product of K
such terms.

Now Eqs. (B.1.3) and (B.1.2) contradict, so the hypothesis
in Eq. (B.1.1) is false.

B.2 The CBC model as a normalized odds model

In the main paper, the CBC model was given as:

pCBC(yi=k | B) =

H(ηik)
∏

j 6=k

(1−H(ηij))

K∑

ℓ=1

H(ηiℓ)
∏

j 6=ℓ

(1−H(ηij))

(B.2.1)

where ηik = xT
i βk.

A CBC model has an alternate expression as a normalized

odds model:

pCBC(yi = k | B) =
H(ηik)/

(
1−H(ηik)

)
∑K

ℓ=1 H(ηiℓ)/
(
1−H(ηiℓ)

)

(B.2.2)

Here we show that the two representations for the
CBC model (Eqs. (B.2.1) and (B.2.2)) are equal. Observe

p(yi = k | B)
(2.4.2)
=

H(ηik)
∏

j 6=k

(
1−H(ηij)

)

K∑

ℓ=1

H(ηiℓ)
∏

j 6=ℓ

(
1−H(ηij)

)

1
=

H(ηik)
∏

j 6=k

(
1−H(ηij)

)

K∑

ℓ=1

H(ηiℓ)(
1−H(ηiℓ)

)
K∏

j=1

(
1−H(ηij)

)

2
=

H(ηik)/
(
1−H(ηik)

)

K∑

ℓ=1

H(ηiℓ)/
(
1−H(ηiℓ)

)

Equality (1) just multiplies by 1 = a
a in the numerator and

denominator, and Equality (2) just cancels.

B.3 Membership of CBC and CBM models in the

CB class.

Proposition B.3.1. CBC and CBM models are

categorical-from-binary (CB) models.

Proof. We begin with CBM models. For any k = 1, ...,K,

pIB(ŷi = ek | B̂ = B) < pCBM(yi = k | B)

holds if

wk

∏

j 6=k

(1− wj) <
wk∑K
ℓ=1 wℓ

(B.3.1)

for wk ∈ (0, 1), k = 1, ...,K. The implication follows
from the IB and CB likelihood equations (Eqs. (2.4.1)
and (2.2.3)) and the fact that any cdf H maps into (0, 1).
Some algebra reduces Eq. (B.3.1) to

(
K∑

ℓ=1

wℓ

)
∏

j 6=k

(1− wj)


 < 1 (B.3.2)

We establish Eq. (B.3.2) by induction on K. Without loss
of generality, we assume k = 1.

• (Base.) We show Eq. (B.3.2) holds for K = 2:

w1(1− w2) + w2(1− w2)
(w1<1)
< (1− w2)(1 + w2)

(w2<1)
< 1.

• (Step.) We show that if Eq. (B.3.2) holds for some
K then it holds for K + 1. We define αk,K :=∑K

ℓ=1 wℓ

∏
j 6=k(1− wj) and assume αk,K < 1. Now

αk,K+1 = αk,K︸ ︷︷ ︸
< 1 by hypoth.

(1− wK+1) + wK+1

∏

j 6=k

(1− wj)

︸ ︷︷ ︸
< 1

< (1− wK+1) + wK+1 = 1.
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Now we proceed to CBC models. We must show that for
any k = 1, ...,K,

pIB(ŷi = ek | B̂ = B) < pCBC(yi = k | B) (B.3.3)

By the likelihood equations for the IB and CBC models
(Eqs. (2.2.3) and (2.4.2)), we can write

pCBC(yi = k | B) =
pIB(ŷi = ek | B̂ = B)

pIB(Υ | B̂ = B)
, (B.3.4)

where Υ ⊂ {0, 1}K is the space of one-hot encoded vec-
tors. Now take any v ∈ Υc. Then

pIB(Υ | B)
subadditivity

≤ pIB({0, 1}K | B)− p(v | B)

Eq. (B.1.3)
< pIB({0, 1}K | B) = 1.

So the denominator of Eq. (B.3.4) is non-negative and less
than one, which implies Eq. (B.3.3).

B.4 Impossibility of exact inference on a CBM or

CBC model via inference on an IB model

As discussed in Sec. 2.1, efficient Bayesian inference ex-
ists for IB models. As a result, we would like to relate
CB models to IB models in such as way as to obtain effi-
cient inference for the categorical models.

Here we consider whether an exact relation exists. In
Sec. B.4.1, we show that whereas CBC and CBM mod-
els are non-identifiable, IB models are identifiable (see
Def. B.4.1). Now suppose there were an identifiability con-
straint such that a CB model under the identifiability con-
straint provided the same probabilities as an IB model ap-
plied to one-hot-encoded category representations. Then
there would be no need to consider approximate inference,
as inference on the regression weights B̂ for the IB model
would be exactly equivalent to inference on the regression
weights for the (identified) CB model.

Unfortunately, no such identifiability constraint exists for
either CBC or CBM models. While previous work
(Johndrow et al., 2013) has suggested that the CBC model
can be identified via the IB model, Prop. B.4.2 shows that
this cannot be true. On the other hand, while Prop. B.4.2
may elicit hope that the CBM model could be identified via
an IB model, Sec. B.5.1 reveals empirically that this is no
longer true once covariates are introduced.

B.4.1 CAN CB MODELS BE IDENTIFIED VIA

IB MODELS?

Let us begin with a general definition of identifiability.

Definition B.4.1. [(Cole, 2020) pp.35] A likelihood
p(· | θ) with parameter θ is globally identifiable if
p(· | θ1) = p(· | θ2) implies that θ1 = θ2. A model is
locally identifiable if there exists an open neighborhood in
the parameter space of θ such that this is true. Otherwise a
model is non-identifiable. △

For models considered in the main body of this paper, iden-
tifiability requires

pm(· | B1) = pm(· | B2) =⇒ B1 = B2 (B.4.1)

where m can take the value of either IB, CBC, or
CBM models.

We now investigate the identifiability of these models in
the simplest possible scenario: the intercepts-only (no co-
variates) setting. In this setting, M = 1, xi = 1 for all
i = 1, 2, . . . , N , and the regression matrix simplifies to a
vector β ∈ RK . Although this setting is simple, it is suffi-
cient to provide some insight about identifiability.

Proposition B.4.1. The CBC and CBM models are non-

identifiable in the intercepts-only setting.

Proof. Let (p1, . . . , pK) be a probability mass function
over K categories. Then we can construct regression
weights βCBM,βCBC ∈ RK for the two models by taking
the kth entry of each vector to be given by

βCBM
k ∈

{
H−1(rpk)

}

r∈(0,minℓ 1/pℓ)

(B.4.2)

βCBC
k ∈

{
H−1

(
spk

1 + spk

)}

s>0

(B.4.3)

where Eq. (B.4.3) follows from setting the model’s cate-
gory probabilities in (B.2.2) to pk. Therefore Eq. (B.4.1)
is not satisfied for any open neighborhood of the parameter
space.

Now let us consider the IB model, specifically in the case
where we use it to do inference with one-hot encoded
representations of categorical data, ŷi = eyi

for yi ∈
{1, . . . ,K}. If we set

pIB(1, 0, 0 . . . , 0) = p1

pIB(0, 1, 0 . . . , 0) = p2

...

pIB(0, 0, 0 . . . , 1) = pK

and pIB(v) = 0 for all vectors v ∈ {0, 1}K that are not one-
hot, then we have transformed (p1, . . . , pK) into a proba-
bility mass function over K-bits. Via Eq. (2.2.2), this pmf
implies a unique vector of regression weights β̂IB ∈ RK ,
with kth entry given by

β̂IB
k = H−1(pk) (B.4.4)

So unlike the CBC and CBM models, the IB model is iden-
tifiable (and globally so), at least when we apply it only to
one-hot encoded data.

Remark B.4.1. If we consider the special case where
p1, ..., pK are the empirical category frequencies in a K-
class intercepts-only dataset, pk = 1

N

∑N
i=1 1yi=k, then

Eqs. (B.4.2), (B.4.3), and (B.4.4) give the maximum like-
lihood estimators. Note in particular that since CBC and



Easy Variational Inference for Categorical Models via an Independent Binary Approximation

CBM models are non-identifiable, the maximum likelihood
estimators are not unique. △

So whereas the CBC and CBM models are non-identifiable,
the IB model is globally identifiable. Moreover, CBC and
CBM models are “built from" IB models in the sense de-
scribed in Sec. 2.4. These observations give rise to a natu-
ral question. Does the IB model give an identifiability con-

straint for the CBC or CBM models? That is, given a set of
regression weights B that produce an equivalent likelihood
for the categorical model, can we choose a representative
by setting B = B̂MLE, where B̂MLE is the maximum like-
lihood estimate of the regression weights of an IB model
given one-hot encoded representations of categorical data?
We address this question mathematically in Prop. B.4.2 for
the intercepts-only case, and empirically in Sec. B.5.1 for
the with-covariates case.

Proposition B.4.2. In the intercepts-only setting, the

IB model gives an identifiability constraint for the

CBM model, but not for the CBC model.

Proof. For the CBM model, take r=1 in Eq. (B.4.2), and
we obtain (B.4.4). For the CBC model, we require

H−1(pk) ∈
{
H−1

(
spk

1 + spk

)}

s>0

=⇒ ∃s > 0 : pk =
s− 1

s
=⇒ pk = 1/K.

Since the empirical probabilities are not always uniform,
the IB model cannot provide an identifiability constraint
for the CBC model.

Remark B.4.2. From Prop. B.4.2, it follows that in the
intercepts-only setting, B̂MLE, the maximum likelihood es-
timate of the regression weights of an IB model given one-
hot encoded representations of categorical data, is an MLE
for the CBM model, but not for the CBC model. △

B.5 Evaluating CB models as targets of an

IB approximation

In this section, we evaluate two different classes of
CB models (CBC and CBM) in terms of how well they
serve as targets of an IB approximation. In Sec B.5.1, we
make an evaluation in terms of “soft" predictions (i.e. like-
lihood). In Sec. B.5.2, we make an evaluation in terms of
“hard" predictions (i.e. misclassification rates).

B.5.1 SOFT PREDICTIONS

Now we evaluate the quality of CBC and CBM as targets
of an IB approximation with respect to soft predictions (the
probability vectors produced by a categorical likelihood).

Methodology. We generate two datasets using the data
generation technique of Section G.1.1, fixing in both the re-
sponse predictability at σhigh = 0.1 to create a challenging

problem. The smaller dataset has K=3,M=1, N=1800.
The larger dataset has K=20,M=40, N=12000.

For each dataset, we perform gradient descent (using auto-
matic differentiation of the relevant likelihoods from mul-
tiple initialization seeds) to estimate B̂CBC

MLE and B̂CBM
MLE , the

MLEs for the CBC-Probit and CBM-Probit models, respec-
tively. Similarly, we estimate B̂IB

MLE, the MLE for the IB-
Probit model when it is fit on one-hot encoded representa-
tions of the categorical data.

Then, for each example i in the training data, we compute
the categorical probability vector si ∈ ∆K−1 using the
weights that minimize the truly-categorical CB likelihood,
as well as probability vector ŝi ∈ ∆K−1 corresponding to
the weights estimated to minimize the IB likelihood. (Re-
call that vector si can be produced given weights B via
Eq. (1.1.1)). Suppose k is the class with the highest proba-
bility in the vector ŝi: we wish to compare the signed error
between the “ideal” sik and our approximations ŝik in or-
der to assess the quality of our IB approximation.

Results. Figure B.1 demonstrates two important points:

1. The MLE for the IB model is not an exact MLE
for the either the CBC or CBM models. As a re-
sult, neither of the two models is a globally identified
IB model. (If they were, then the signed error would
always equal 0.) This provides an empirical refutation
that IB gives an identifiability constraint for CB mod-
els. Previously, Johndrow et al. (2013) suggested that
such a relationship might hold (at least for CBC mod-
els). Prop. B.4.2 proved that such a relationship can-
not hold for CBC models in the intercepts-only set-
ting (M = 0), and these results provide an empiri-
cal refutation for CBC models in the with-covariates
setting (M ≥ 1). Moreover, while Prop. B.4.2 re-
vealed that the identification relationship does hold for
CBM models in the intercepts-only setting (M = 0);
it apparently does not hold in general.

2. Neither CBC models nor CBM models are uniformly
dominant as a target of an IB approximation. For the
smaller dataset, the CBM model is superior to CBC;
the approximation error is lower in the top right panel
than the top left panel. However, for the larger dataset,
the CBC model is superior to CBM; the approxima-
tion error is lower in the bottom left panel than the
bottom right panel. Thus, either of the {CBC,CBM}
models can provide superior performance to the other
as targets of an IB approximation. The relative advan-
tage depend on properties of the data.

Figure B.1 also provides information on the amount of er-
ror incurred by using an IB approximation. For similar re-
sults in the context of IB-CAVI algorithm, see Table G.1.
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where y are observed random variables, u = (uv)
V
v=1 are

unobserved random variables, pCB is a CB likelihood, and
π is a prior density. This strategy can be applied to the
CBC and CBM models, but it is also extensible to more
complicated graphical models, such as hierarchical mod-
els or models with variable selection priors (such as the
normal-gamma prior (Brown & Griffin, 2010) which gen-
eralizes Bayesian lasso, or the horseshoe prior (Carvalho
et al., 2009), for which a conditionally conjugate formula-
tion exists (Makalic & Schmidt, 2015)). We summarize our
VI strategy in Algorithm 1.

Algorithm 1: IB-CAVI for approximate Bayesian infer-

ence on any model with a CB likelihood. Given N ob-
served categorical responses y ∈ {1, ...,K}N and covari-
ates X ∈ RN×M

1. Form the matrix of one-hot encoded responses Ey =
(eTy1

, . . . , eTyN
)T ∈ RN×K .

2. Take the IB model MIB which is the base

(see Sec. 2.3) of the CB model, and use it
to compute surrogate complete conditionals:
{log pMIB(uv | u−v,Ey)}.

3. Take Q to be a mean-field family with factoriza-
tion: q(u1, ..., uV ) =

∏V
v=1 qv(uv). (The regression

weights B̂ are included in this set, as are auxillary
variables Ẑ if augmentation is used. If the CB likeli-
hood is embedded within a more complicated graph-
ical model, there may be other unobserved random
variables as well.)

4. Define the objective: LM(q) = Eq[log
pMIB (Ey,u)

q(u) ].

5. Optimize LM(q) using optimal coordinate as-
cent updates (Blei et al., 2017)): qv(uv) ∝
exp

{
Eq−v

[
log pMIB(uv |u−v,Ey)

]}
. If the com-

plete conditional is an exponential family with natu-
ral parameter ηv , so is its optimal update, with natural
parameter given by

νv = Eq−v
[ηv(u−v,Ey)] (C.0.1)

The updates in Algorithm 1 will yield a density q∗ that
is a local maximum of the ELBO of the surrogate model
(Ormerod & Wand, 2010), and therefore a local maxi-
mum of a surrogate bound on the intended truly categor-
ical model. For a CB model with a probit or logit link, a
Gaussian prior on the regression weights, and use of ap-
propriate augmentation, all conditionals enjoy closed-form
updates in Eq. (C.0.1), and the objective function LM is
also available in closed-form, which is useful for conver-
gence monitoring. For details, see Secs. D and E.

D Variational inference for CB-Probit

Models

Here we present closed-form variational inference for CB-
Probit models. The inference follows naturally from our
IB-CAVI procedure in Algorithm 1.

D.1 Distributional preliminaries

D.1.1 ENTROPY FACTS ABOUT MULTIVARIATE

GAUSSIAN

If p, q are the densities of two different d-variate Gaussian
distributions with parameters µp,Σp and µq,Σq , respec-
tively, then the entropy is given by

H[q] =
1

2
log

[
(2πe)d|Σq|

]
(D.1.1)

The KL divergence is given by

KL
(
q
∣∣∣∣ p

)
=

1

2

[
log

|Σp|
|Σq|

− d

+ (µq − µp)
T
Σ

−1
p (µq − µp) + tr

(
Σ

−1
p Σq

)]
(D.1.2)

The cross-entropy of two multivariate Gaussians can then
be determined from (D.1.1) and (D.1.2) via the relation

H[q, p] = H[q] + KL
(
q
∣∣∣∣ p
)

(D.1.3)

D.1.2 UNIVARIATE NORMALS TRUNCATED TO

POSITIVE OR NEGATIVE REALS

The univariate truncated normal distribution T N (µ, σ2,Υ)
results when a normal distributionN (µ, σ2) is truncated to
some set Υ ⊆ R. Note that the parameters µ, σ2 denote the
mean and variance of the parent normal distribution; i.e. if
X ∼ T N (µ, σ2,Υ) then E[X] 6= µ (unless Υ = R).

If we assume that the truncation set is an interval Υ =
(a, b) for a, b ∈ R, then the distribution T N (µ, σ2, (a, b))
has p.d.f.

f(x;µ, σ2, a, b) =
φµ,σ2(x)

Φµ,σ2(b)− Φµ,σ2(a)
1a≤x≤b(x)

where φµ,σ2 and Φµ,σ2 denote the pdf and cdf, respectively,
of a univariate normal distribution with mean µ and vari-
ance σ2.

We will work with distributions truncated to the posi-
tive or negative reals, and so we define special notation:
N+(µ, σ

2) := T N (µ, σ2, [0,∞)) and N−(µ, σ2) :=
T N (µ, σ2, (−∞, 0)). In particular, we will work with ran-
dom variables of the form T+ ∼ N+(µ, 1) and T− ∼
N−(µ, 1). Based on this construction, it is straightforward
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to derive

fT+(x) =
φ(x− µ)

1− Φ(−µ)
1x≥0, fT−(x) =

φ(x− µ)

Φ(−µ)
1x<0

E[T+] = µ+
φ(−µ)

1− Φ(−µ)
, E[T−] = µ− φ(−µ)

Φ(−µ)
(D.1.4)

Var[T+] = 1− µ(E[T+]− µ)− (E[T+]− µ)2 (D.1.5)

Var[T−] = 1− µ(E[T−]− µ)− (E[T−]− µ)2 (D.1.6)

H[T+] = ln
(√

2πe [1− Φ(−µ)]
)
− µφ(−µ)

2(1− Φ(−µ))
(D.1.7)

H[T−] = ln
(√

2πeΦ(−µ)
)
+

µφ(−µ)

2Φ(−µ)
(D.1.8)

where we use φ and Φ to refer to the pdf and cdf, re-
spectively, of the standard normal distribution, and where
H[X] = −

∫
f(x) ln f(x) dx represents the differential en-

tropy of a random variable X with density f .

Remark D.1.1. (Representation in terms of perturbation

of parent mean) It is sometimes convenient to express the
expectation of a truncated random variable as a perturba-
tion of the expectation of its parent (pre-truncated) Gaus-
sian random variable. To this end, for Ts ∈ {T+, T−}, we
write

E[Ts] = µ+ δs(µ), δs(µ) :=





φ(−µ)
1− Φ(−µ) , s = +

− φ(−µ)
Φ(−µ) , s = −

(D.1.9)

which holds by Eq. (D.1.4). △
Remark D.1.2. (Second moments) For Ts ∈ {T+, T−},
we have

E[T
2
s ] = Var[Ts] + E

2
[Ts]

1
= 1 − µ(E[Ts] − µ) − (E[Ts] − µ)

2
+ E

2
[Ts]

= 1 − µE[Ts] +��µ
2 −✘✘✘E

2
[Ts] + 2µE[Ts] −��µ

2
+✘✘✘E

2
[Ts]

= 1 + µE[Ts] (D.1.10)

where (1) holds by (D.1.5) and (D.1.6). △

D.2 Models

D.2.1 CB-PROBIT MODEL

A Bayesian CB-Probit model is a categorical GLM which
generates smulti-class outcomes yi ∈ {1, ...,K}, i =
1, ..., N by

βk
iid∼ N (µ0,Σ0) (D.2.1a)

pik = any CB-Probit category probabilities (D.2.1b)

yi ∼ Cat(pi1, . . . piK). (D.2.1c)

The form for the category probabilities in Eq. (D.2.1b)
depends on the choice of CB model; for instance, for the
CBM-Probit and CBC-Probit models we have

pCBM−Probit
ik =

Φ(xT
i βk)∑K

ℓ=1 Φ(x
T
i βℓ)

pCBC−Probit
ik =

Φ(xT
i βk)

∏
h 6=k

(
1− Φ(xT

i βh)
)

∑K
ℓ=1 Φ(x

T
i βℓ)

∏
h 6=ℓ

(
1− Φ(xT

i βh)
)

for standard Gaussian cdf Φ, known covariates xi ∈ RM ,
and unknown parameters B ∈ RM×K ( βk is used to des-
ignate the K-th column of B).

D.2.2 IB-PROBIT MODEL

The base model for a CB-Probit model is an IB-Probit
model. With a Gaussian prior, the model is:

βk
iid∼ N (µ0,Σ0), k = 1, ...,K

ŷik | βk
ind∼ Bernoulli

(
Φ(xT

i βk)
)
, i = 1, ..., N

(D.2.2)

for known covariates xi ∈ RM and unknown parameters
B ∈ RM×K ( βk is used to designate the K-th column
of B). The binary responses ŷik are the k-th element of
ŷi ∈ {0, 1}K , where ŷi = eyi

is the one-hot indicator
vector with value of 1 only at entry yi ∈ {1, . . . ,K}.

D.2.3 AUGMENTED IB-PROBIT MODEL

Following Albert & Chib (Albert & Chib, 1993), we may
foster inference on the independent binary probit regression
model by instead working with an augmented model.

βk
iid∼ N (µ0,Σ0), k = 1, ...,K

zik | βk
ind∼ N (xT

i βk, 1), i = 1, . . . , N

ŷik =

{
1 zik ≥ 0

0 otherwise,
i = 1, . . . , N

(D.2.3)

where we have introduced augmented variables zik. We use
Z ∈ RN×K to represent the matrix whose (i, k)th entry is
zik, and zk to represent the kth column of Z. As we will
see in Sec. D.3.1, the augmented model is nice to work
with, as it has exponential family complete conditionals.

D.3 Variational inference

Algorithm 2 provides closed-form coordinate ascent vari-
ational inference (CAVI) for the augmented IB-Probit
model. By Eq. (3.2.2), this gives closed-form CAVI for
any CB-Probit model.

D.3.1 COMPLETE CONDITIONALS

The augmented IB-Probit model (Eq. (D.2.3)) contains
Bayesian linear regression on the auxiliary variables zk. In
this way, we obtain the complete conditionals

zik | β1, ...,βK , ŷik ∼





N+

(
xT

i βk , 1

)
, ŷik = 1

N−

(
xT

i βk , 1

)
, otherwise

(D.3.1)
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Algorithm 2: Independent Binary Coordinate Ascent Variational Inference (IB-CAVI) for CB-Probit models

Input:

y ∈ {1, . . . ,K}N : N responses from K categories
X ∈ RN×M : Matrix whose ith row (i = 1, . . . , N )

gives the covariates associated with response yi.
Output:

{(µ̃k, Σ̃k)}Kk=1: Parameters for
q(B) =

∏
kN (βk|µ̃k, Σ̃k), variational density†

(Eq. (D.3.3)) on regression weights
{{η̃ik}Kk=1}Ni=1: Parameters for

q(z) =
∏

i

∏
k T N (zik|η̃ik, 1,Υik), variational density†

(Eq. (D.3.3)) on auxiliary variables

Hyperparameters / Settings:

(µ0,Σ0) : Mean and covariance of prior density†

on weights, π(B) =
∏

kN (βk|µ0,Σ0)

{µ̃(0)
k }Kk=1 : Initial variational mean
on regression weights

Termination condition : e.g. number of iterations
or convergence threshold on ELBOIB−Probit

† : Here N and T N refer to densities rather than measures.

1 for k ← 1 to K do

2 Σ̃k ←
(
Σ

−1
0 +XTX

)−1

// Set Σ̃k for q(βk|·, Σ̃k) via Eq. (D.3.5b)

3 while termination condition not satisfied do

4 for i← 1 to N do

5 η̃ik ← xT
i µ̃k // Update q(zik|η̃ik) via Eq. (D.3.7)

6 Eq[zik]←





η̃ik +
φ(−η̃ik)

1− Φ(−η̃ik)
, ŷik = 1

η̃ik −
φ(−η̃ik)
Φ(−η̃ik)

, otherwise
// Expectation computed via Eq. (D.3.6)

7 end

8 µ̃k ← Σ̃k

(
Σ

−1
0 µ0 +XTEq[zk]

)
// Update q(βk|µ̃k, ·) via Eq. (D.3.5a)

9 (Optional) Compute ELBOIB−Probit via (D.3.8)
10 end

11 end
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where N+ and N− are truncated normal distributions de-
fined in Section D.1.2, and

βk | zk ∼ N (µk,Σk),

µk = Σk

(
Σ

−1
0 µ0 +X

T
zk

)
,

Σk =

(
Σ

−1
0 +X

T
X

)−1

D.3.2 VARIATIONAL FAMILY

We take the mean-field variational family for the aug-
mented IB-Probit model (Eq. (D.2.3)) to have density given
by

q(B,Z)
(1)
= q(B)q(Z)

(2)
=

K∏

k=1

q(βk)︸ ︷︷ ︸
N (µ̃k, Σ̃k)

N∏

i=1

q(zik)︸ ︷︷ ︸
T N (η̃ik, 1,Υik)

(D.3.3)

where Υik =

{
R+, ŷik = 1

R−, ŷik = 0
(D.3.4)

Equality (1) is by mean-field assumption. Equality (2)
holds without any additional assumption. Since the com-
plete conditionals are both exponential families, the op-
timal variational factors with respect to the lower bound
ELBOIB are in the same exponential families, with natural
parameters given by the variational expectation of the natu-
ral parameters of the corresponding complete conditionals
(as in Eq. C.0.1).

D.3.3 COORDINATE ASCENT UPDATES

Here we derive the parameters for the updates, using the
notation of Eq. (D.3.3).

Updates to {q(βk)}Kk=1 Since the natural parameters of
a multivariate Gaussian are the precision and precision-
weighted mean, we reparametrize the surrogate complete
conditional for each βk in Eq. (D.3.2) before taking varia-
tional expectations of the parameters. Hence, the optimal
update to each q(βk | µ̃k, Σ̃k) with respect to the objective
ELBOIB is given by

Σ̃
−1
k = Eq−βk

[
Σ

−1
0 +X

T
X

]
= Σ

−1
0 +X

T
X

Σ̃
−1
k µ̃k = Eq−βk

[
Σ

−1
0 µ0 +X

T
zk

]

= Σ
−1
0 µ0 +X

T
Eqzk

[zk]

where Eq[zk] is given explicitly below.

Thus, in standard parameterization, we update

µ̃k = Σ̃k

(
Σ

−1
0 µ0 +X

T
Eqzk

[zk]

)
(D.3.5a)

Σ̃k =

(
Σ

−1
0 +X

T
X

)−1

(D.3.5b)

where Eq[zk] ∈ RN has i-th entry given by

Eq[zik] =





η̃ik +
φ(−η̃ik)

1− Φ(−η̃ik)
, ŷik = 1

η̃ik − φ(−η̃ik)

Φ(−η̃ik)
, otherwise

(D.3.6)

by properties of the truncated normal distribution (Section
D.1.2). Recall that φ and Φ refer to the pdf and cdf, respec-
tively, of the standard normal.

Updates to {q(zik)}ik In (D.3.1), we saw that the sur-
rogate complete conditional for each zik has the form
T N (ηik, 1,Υik), where Υik is defined as in (D.3.4). But
since each such distribution is in the exponential family
with natural parameter ηik, the optimal update for each
q(zik) is given by

η̃ik = E[xT
i βk] = x

T
i µ̃k (D.3.7)

D.3.4 THE EVIDENCE LOWER BOUND

We provide the evidence lower bound for the IB-Probit
model, ELBOIB, in the case of independentN (µ0,Σ0) pri-
ors on βk for k = 1, ...,K. Using Ŷ ∈ {0, 1}N×K to
represent the matrix whose ith row is the one-hot encoded
vector ŷi = e(yi), we have

ELBO(q) = Eq[log p(Ŷ ,Z,β)]︸ ︷︷ ︸
energy

+−Eq[log q(X,B)]︸ ︷︷ ︸
entropy

=

K∑

k=1

[ N∑

i=1

Eq[log p(ŷik, zik | βk)]

︸ ︷︷ ︸
(A)

+ Eq[log p(βk)]︸ ︷︷ ︸
(B)

+

−
N∑

i=1

Eq[log q(zik)]

︸ ︷︷ ︸
(C)

+ −Eq log[q(βk)]︸ ︷︷ ︸
(D)

]
(D.3.8)

Term (A) is given by a sum whose ith summand is
Eq [log p(ŷik, zik | βk)]

= Eq

[
log

{
1√
2π

exp

(
− 1

2
(zik − x

T
i βk)

2

)(
1
1ŷik=0

zik<0 1
1ŷik=1

zik≥0

)}]

= − 1
2 log 2π − 1

2E(zik − xT
i βk)

2

−
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭
1
2Eq

[
1ŷik=0 log 1zik<0 + 1ŷik=1 log 1zik≥0

]

= − 1
2 log 2π − 1

2Eq [z
2
ik] + Eq [zik]x

T
i Eq [βk] − 1

2Eq [(x
T
i βk)

2]
1
= − 1

2 (log 2π + 1) − 1
2 η̃ikEq [zik] + Eq [zik]η̃ik − 1

2Eq [(x
T
i βk)

2]
2
= − 1

2 (log 2π + 1) + 1
2Eq [zik]η̃ik − 1

2

(
xT

i Σ̃kxi + η̃2
ik

)

3
= − 1

2 (log 2π + 1) + 1
2 η̃ikδŷik (η̃ik) − 1

2x
T
i Σ̃kxi

where

δŷik (η̃ik) : =





φ(−η̃ik)

1 − Φ(−η̃ik)
, ŷik = 1

− φ(−η̃ik)

Φ(−η̃ik)
, ŷik = 0

Equation (1) holds by Eq. (D.3.7) and by Eq. (D.1.10),
(2) holds by applying the second moment decomposition
Eq[W

2] = Varq[W ] + E2
q[W ] in the case where W =

xT
i βk, and (3) holds by applying Eq. (D.1.9) to express
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Eq[zik] as a perturbation of η̃ik. Recall that φ and Φ are the
pdf and cdf, respectively, of the standard normal distribu-
tion.

Term (B) is the negative cross-entropy of two Gaussians.
For instance, in the special case of aN (0, I) prior, we have

Eq[log p(βk)] = −
M

2
log(2π)− 1

2
Eq[β

T
k βk]

1
= −M

2
log(2π)− 1

2

(
tr(Σ̃k) + µ̃T

k µ̃k

)

where (1) holds since Eq[β
T
k βk] =

M∑

m=1

Eq[β
2
km] =

M∑

m=1

Varq[βkm] + E2
q[βkm].

Term (C) is the sum of entropies of truncated normal dis-
tributions, where the i-th element in the sum is

• the entropy of N+(x
T
i µ̃k, 1) when ŷik = 1, in which

case the entropy is given by Eq. (D.1.7)

• the entropy of N−(xT
i µ̃k, 1) when ŷik = 0, in which

case the entropy is given by Eq. (D.1.8).

Term (D) is the entropy of the multivariate Gaussian
N (µ̃k, Σ̃k), which is given by

−Eq log[q(βk)] =
1

2
ln |Σ̃k|+

M

2
(1 + ln 2π)

D.4 Computational complexity

The inference requires a one-time up-front computation
of complexity O(M3 + M2N) due to the inversion in
step Eq. (D.3.5b). Note that often the matrix X will be
sparse, in which case the complexity of this up-front step
can be reduced. Note that this up-front inversion could be
avoided (at the cost of losing information about correla-
tions across the M covariates) by tweaking the variational
family in Eq. (D.3.3) to make a stronger (fully-mean field)
variational assumption q(B) =

∏M
m=1

∏K
k=1 q(βmk),

where each q(βmk) is the density of a univariate Gaussian
N (µ̃mk, σ̃

2
mk). Inference would proceed identically as be-

fore, except that the variational covariance for the kth cat-
egory Σ̃k would become a diagonal M × M covariance
matrix whose mth entry is given by σ̃2

mk = [(Σ0)mk +∑N
i=1 x

2
im]−1. With this simplification, the up-front com-

putation would have complexity O(MNK).

Afterwards, the computational complexity for a single
CAVI update is O(MNK), where M is the number of co-
variates, N is the number of samples, and K is the number
of categories. The complexity for each substep of a single
CAVI update is given in the Table D.1 .

Moreover, the entire inference procedure (across all itera-
tions) is embarassingly parallel over the K categories, so

Variable Step Per-iteration Note
complexity

B covariance pre-multiplied Σ̃k = Σ
MxM

is the same for all k

(D.3.5b) and constant over iterations.
B mean O(MNK) µ̃

MxK

= Σ
MxM

XT

MxN
Eq [Z]

NxK

(D.3.5a) the first two terms can be
pre-multiplied

Z (D.3.7) O(MNK) η̃
NxK

= X
NxM

µ̃
MxK

Z (D.3.6) O(NK) We suppress the complexity of
evaluating the
Gaussian cdf.

Table D.1: The computational complexity of CAVI updates

for IB-Probit. B is the matrix of regression weights and Z

are auxiliary variables added for conditional conjugacy.

distributed computation can reduce the complexity for the
all CAVI steps to O(MNI), where I is the number of
CAVI iterations.

D.5 Sparsity considerations

When N×K is large, the matrix η̃ may not fit into memory.
However, when the design matrix X is sparse , η̃ may be
highly sparse ; indeed, η̃ik = 0 whenever at least one of
{µ̃mk,Xim} is 0 for all m = 1, ...,M . In this setting,
we can represent Eq[Z] efficiently, since we can see from
Eq. (D.3.6) that only two values are possible when ηik = 0.

Eq[zik] =

{
2φ(0), ηik = 0, yi = k

−2φ(0), ηik = 0, yi 6= k
(D.5.1)

Define

Eq[Z]∗ : (Eq[Z]∗)ik =

{
(Eq[Z])ik, ηik 6= 0

0, ηik = 0

Eq[Z]† : (Eq[Z]†)ik =

{
1, ηik = 0, yi = k

0, otherwise

Eq[Z]‡ : (Eq[Z]‡)ik =

{
1, ηik = 0, yi 6= k

0, otherwise

Then we can avoid representing Eq[Z] as a large dense N×
K matrix of floats by rewriting Eq. (D.3.6) in matrix form
as

Eq[Z] = Eq[Z]∗ + 2φ(0)

(
Eq[Z]† − Eq[Z]‡

)

E Variational inference for CB-Logit

Models

Here we present closed-form variational inference for CB-
Logit models. The inference follows naturally from our
IB-CAVI procedure in Algorithm 1.

E.1 Distributional preliminaries

Definition E.1.1. A non-negative random variable X has
a Pòlya-Gamma distribution (Polson et al., 2013) with pa-
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rameters b > 0 and c ∈ R, denoted as X ∼ PG(b, c), if

X
D
=

1

2π2

∞∑

r=1

γr
(r − 1/2)2 + c2/(4π2)

where the γr ∼ Gamma(b, 1) are independent Gamma ran-

dom variables, and where
D
= indicates equality in distribu-

tion. △

The density of a PG(b, c) random variable can be written
as (Polson et al., 2013):

f(x; b, c) = coshb(c/2)e−
c2

2 xg(x; b, 0) (E.1.1)

where g(x; b, 0) is the density of a PG(b, 0) random vari-
able

g(x; b, 0) =
2b−1

Γ(b)

∞∑

n=0

(−1)n Γ(n+ b)

Γ(n+ 1)

(2n+ b)√
2πx3

e−
(2n+b)2

8x

So f is constructed from g via an exponential tilt and a
renormalization.

The expectation of a Pòlya-Gamma random variable is
given by (Polson et al., 2013) as

E[X] =
b

2c
tanh(c/2) =

b

2c

ec − 1

ec + 1

E.2 Models

E.2.1 CB-LOGIT MODEL

A Bayesian CB-Logit model is a categorical GLM which
generates multi-class outcomes yi ∈ {1, ...,K}, i =
1, ..., N by

βk
iid∼ N (µ0,Σ0) (E.2.1a)

pik = any CB-Logit category probabilities (E.2.1b)

yi ∼ Cat(pi1, . . . piK). (E.2.1c)

The form for the category probabilities in Eq. (E.2.1b)
depends on the choice of CB model; for instance, for the
CBM-Logit and CBC-Logit models we have

pCBM−Logit
ik =

L(xT
i βk)∑K

ℓ=1 L(x
T
i βℓ)

pCBC−Logit
ik =

L(xT
i βk)

∏
h 6=k

(
1− L(xT

i βh)
)

∑K
ℓ=1 L(x

T
i βℓ)

∏
h 6=ℓ

(
1− L(xT

i βh)
)

for standard Logistic cdf L, known covariates xi ∈ RM ,
and unknown parameters B ∈ RM×K ( βk is used to des-
ignate the k-th column of B).

E.2.2 IB-LOGIT MODEL

The base model for a CB-Logit model is an IB-Logit
model. With a Gaussian prior, the model is:

βk
iid∼ N (µ0,Σ0), k = 1, ...,K

ŷik | βk
ind∼ Bernoulli

(
L(xT

i βk)
)
, i = 1, ..., N

(E.2.2)

for known binary responses ŷik, known covariates xi ∈
RM and unknown parameters B ∈ RM×K ( βk is used
to designate the K-th column of B). We write Ŷ ∈
{0, 1}N×K to represent the matrix with one-hot encoded
rows such that Ŷi,k = 1 if the ith outcome was the kth cat-
egory (i.e. if yi = k), and ŷk to represent the kth column
of Ŷ .

E.2.3 AUGMENTED IB-LOGIT MODEL

The main idea is to introduce auxiliary latent variables
ωk = (ω1k, ..., ωNk) with Polya-Gamma distribution to
make the model of Eq. (E.2.2) fully conditionally conju-
gate. The model is fully conditionally conjugate in the
sense that the complete conditionals and the priors form
conjugate pairs; that is p(βk | wk, ŷk) is in the same fam-
ily (Gaussian) as p(βk), and each p(wik | βk, ŷk) is in the
same family (PG) as p(wik). Thus, inference on the aug-
mented model is easy. Marginalizing over these auxillary
variables in the posterior distribution yields the desired tar-
get posterior on B = (β1, ...,βK). We use Ω ∈ RN×K to
represent the matrix whose kth column is ωk.

We now form the augmented model. Conditional on each
βk, we take {(ŷik, ωik)}Ni=1 to be independent random
pairs such that ŷik and ωik are also independent, where

βk
iid∼ N (µ0,Σ0), k = 1, ...,K

ŷik | βk
ind∼ Bernoulli

(
exp{xT

i βk}
1 + exp{xT

i βk}

)
, i = 1, ..., N

ωik | β ind∼ PG(1,xT
i βk)

(E.2.3)

The augmented posterior density for the kth binary logistic
regression is given by

p(βk,ωk | ŷk) ∝
[ N∏

i=1

p(ŷik | βk)p(ωik | βk)

]
p(βk)

And clearly∫

R
N
+

p(βk,ωk | ŷk)dωk = p(βk | ŷk)

which is the target posterior density for the k binary logistic
regression.

A straightforward argument (see Section F.3.1) reveals that
the complete conditionals for the kth binary logistic regres-
sion are given by

(ωik | βk) ∼ PG(1,xT
i βk) (E.2.4a)

(βk | ŷk,ωk) ∼ N (µωk
,Σωk

) (E.2.4b)

where

Σωk
=

(
XTWωk

X +Σ
−1
0

)−1

(E.2.5)

µωk
= Σω

(
XTκk +Σ

−1
0 µ0

)
(E.2.6)
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and

κk = (ŷ1k −
1

2
, ..., ŷNk −

1

2
)T (E.2.7a)

Wωk
is the diagonal matrix of ωik’s (E.2.7b)

Another straightforward argument (see Section 2 of (Choi
et al., 2013)) reveals that the complete conditionals (E.2.4)
for the Bayesian logistic regression model under Pòlya-
Gamma augmentation form a valid Gibbs sampler.

E.3 Variational inference

We are able to easily construct a mean-field variational
inference algorithm using these complete conditionals
(E.2.4), since the complete conditionals are in the exponen-
tial family. Algorithm 3 provides closed-form coordinate
ascent variational inference (CAVI) for the augmented IB-
Logit model. By Eq. (3.2.2), this gives closed-form CAVI
for any CB-Logit model.

Proposition E.3.1. An optimal mean-field coordinate

ascent variational inference algorithm for estimat-

ing the posterior of the IB-Logit model with Pòlya-

Gamma augmentation (Eq. (E.2.3)) by using a member of

the variational family whose density factorizes as

q(Ω,B) = q(Ω)q(B) (E.3.1)

can be obtained by taking the variational family to have the

further factorization

q(Ω,B) =

K∏

k=1

q(βk)︸ ︷︷ ︸
N (βk; µ̃k, Σ̃k)

N∏

i=1

q(ωik)︸ ︷︷ ︸
PG(ωik; b̃ik, c̃ik)

(E.3.2)
with parameter updates given by

b̃ik = 1 (E.3.3a)

c̃ik =

(
xT
i Σ̃kxi + (xT

i µ̃k)
2

)1/2

(E.3.3b)

Σ̃k =

(
XTWEq [ωk]X +Σ

−1
0

)−1

(E.3.4a)

µ̃k = Σ̃k

(
XTκk +Σ

−1
0 µ0

)
(E.3.4b)

where WEq [ωk] is the N×K diagonal matrix with diagonal

entries

Eq[ωik] =
b̃ik
2c̃ik

ec̃ik − 1

ec̃ik + 1
(E.3.5)

and where κk was defined in Eq. (E.2.7a).

Proof. The complete conditionals (E.2.4) are in the expo-
nential family. For the Gaussian this is well-known. For the
PG(1, ci) distribution, this is immediate from Eq. (F.3.1).

Due to the membership of the complete conditionals in the
exponential family, we can can apply Eq. (C.0.1) to deter-
mine that the optimal variational updates are in the same
exponential family, with parameters given below. The ad-
ditional independence structure in the variational family is
obtained without further approximation by application of a
known recipe (Blei et al., 2017).

Updating the variational distribution on β. By
Eq. (C.0.1), the optimal variational distribution at any up-
date is Normal. The natural parameters of N (a,B) are
given by

η̃(a,B) = (B−1,B−1a) := (η̃N
1 , η̃N

2 ). (E.3.6)

For the variational normal distribution on βk, we find that
the the first coordinate of the natural variational parameter
is given by:

η̃N
1 = Eq−βk

[ηN
1 ]

(E.3.6)
= Eq−βk

[Σ−1
ωk

]

(E.2.5)
= Eq−βk

[XTWωk
X +Σ

−1
0 ]

= XTWEq [ωk]X +Σ
−1
0

and therefore, by inverting the natural parameter transfor-
mation (E.3.6)

Σ̃k = (η̃N
1 )−1 =

(
XTWEq [ωk]X +Σ

−1
0

)−1

Similarly, the second coordinate of the natural variational
parameter is given by

η̃N
2 = Eq−βk

[ηN
2 ] = Eq−βk

[Σ−1
ωk

µωk
]

(E.2.6)
= Eq−βk

[XTκk +Σ
−1
0 µ0]

= XTκk +Σ
−1
0 µ0

and therefore, by inverting the natural parameter transfor-
mation (E.3.6)

µ̃k = (η̃N
1 )−1η̃N

2 = Σ̃k

(
XTκk +Σ

−1
0 µ0

)

Updating the variational distribution on Ω. By
(E.2.4a), the complete conditional on each ωik has a PG
distribution. Moreover,

ηPG
ik (cik) = c2ik (E.3.7)

is a natural parameter for the PG(1, cik) distribution, as is
immediate from (F.3.1).

Thus, we apply Eq. (C.0.1) to determine that the optimal
variational update is also PG with natural parameter given
by
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Algorithm 3: Independent Binary Coordinate Ascent Variational Inference (IB-CAVI) for CB-Logit models

Input:

y ∈ {1, . . . ,K}N : A vector of N conditionally independent
responses from K categories

X ∈ RN×M : A matrix whose ith row (i = 1, . . . , N )
gives the covariates associated with response yi.

Output:

{(µ̃k, Σ̃k)}Kk=1: Parameters for q(B) =
∏

kN (βk | µ̃k, Σ̃k),
variational density† (Eq. (E.3.2)) on regression weights

{{c̃ik}Kk=1}Ni=1: Parameters for q(Ω) =
∏

i

∏
k PG(ωik | 1, c̃ik),

variational density† (Eq. (E.3.2)) on auxiliary variables

Hyperparameters / Settings:

(µ0,Σ0) : Mean and covariance of prior density†

on weights, π(B) =
∏

kN (βk|µ0,Σ0)

{(µ̃(0)
k , Σ̃

(0)
k )}Kk=1 : Initial variational parameters

on regression weights
Termination condition :

e.g. number of iterations, or
convergence threshold on ELBOIB−Logit

† : Here N and PG refer to densities rather than measures.

1 for k ← 1 to K do

2 κk ← (ŷ1k − 1
2 , ..., ŷNk − 1

2 )
T ; // where ŷik := 1 iff yi = k (Sec. E.2.2)

3 while termination condition not satisfied do

4 for i← 1 to N do

5 c̃ik ←
(
xT
i Σ̃kxi + (xT

i µ̃k)
2

)1/2

; // Update q(ωik | 1, c̃ik) via Eq. (E.3.3b)

6 Eq[ωik]←
1

2c̃ik

ec̃ik − 1

ec̃ik + 1
; // Expectation computed via Eq. (E.3.5)

7 end

8 Wk ← diag. matrix from (Eq[ωik])
N
i=1;

9 Σ̃k ←
(
XTWkX +Σ

−1
0

)−1

; // Update q(βk|·, Σ̃k) via Eq. (E.3.4a)

10 µ̃k ← Σ̃k

(
XTκk +Σ

−1
0 µ0

)
; // Update q(βk|µ̃k, ·) via Eq. (E.3.4b)

11 (Optional) Compute ELBOIB−Logit via (E.3.9)
12 end

13 end
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η̃PG
ik

Eq. (C.0.1)
= Eq−ωik

[ηPG
ik ]

(E.3.7)
= Eq−ωik

[c2ik]

= Varq−ωik
[cik] + Eq−ωik

[cik]
2

(E.2.4a)
= Varqβk

[xT
i βk] + Eqβk

[xT
i βk]

2

= xT
i Varqβk

[βk]xi + (xT
i Eqβk

[βk])
2

= xT
i Σ̃k xi + (xT

i µ̃k)
2

and therefore, by inverting the natural parameter transfor-
mation (E.3.7)

c̃ik =

(
xT
i Σ̃k xi + (xT

i µ̃k)
2

)1/2

(E.3.8)

where it suffices to take the positive square root since the
density of PG(1, c) is symmetric around c = 0.

E.3.1 THE EVIDENCE LOWER BOUND

Here we provide an expression for the ELBO.

Proposition E.3.2. The Evidence Lower

Bound (ELBO) for the IB-Logit with Pòlya-

Gamma augmentation (Eq. (E.2.3)) when using the

mean-field variational approximation (E.3.1) is given by

ELBO[q(B,Ω)] =

K∑

k=1

ELBO[q(βk,ωk)]

where

ELBO[q(βk,ωk)] =
1

2
d+

1

2
log |Σ̃k|+

1

2
log |Σ−1

0 |

− 1

2
(µ̃k − µ0)

T
Σ

−1
0 (µ̃k − µ0)−

1

2
tr(Σ−1

0 Σ̃k)

+
N∑

i=1

(ŷik −
1

2
)xT

i µ̃k − log
[
1 + exp(−c̃ik)

]
− 1

2
c̃ik

(E.3.9)

and where d is the number of rows of B.

Proof.

ELBO[q(B,Ω)]

= Eq(B,Ω)[log p(Ŷ ,B,Ω)]− Eq(B,Ω)[log q(B,Ω)]

=

K∑

k=1

[
Eq(βk)[log p(βk)]

+

N∑

i=1

Eq(βk)Eq(ωik)[log p(ŷik, ωik | βk)]

− Eq(βk)[log q(βk)]

−
N∑

i=1

Eq(βk)Eq(ωik)[log q(ωik)]

]

=

K∑

k=1

[
− KL

(
qβk

(βk)
∣∣∣∣ pβk

(βk)
)

+
N∑

i=1

Eq(βk)Eq(ωik)[log p(ŷik, ωik | βk)

− log q(ωik)]

]
(E.3.10)

The first term is the negative KL divergence between two
Gaussians, which is well-known (and is given by the first
line of Eq. (E.3.9)).

For the second term, we read Lemma 1 of (Durante &
Rigon, 2019) from right to left to obtain

Eq(ωik)[log p(ŷik, ωik | βk)− log q(ωik)] = log p̄(ŷik | βk)

= (ŷik −
1

2
)xT

i βk −
1

2
c̃ik

− 1

4
c̃ik

−1
tanh(

1

2
c̃ik)

[
(xT

i βk)
2 − c̃ik

2]

− log
[
1 + exp(−c̃ik)

]
(E.3.11)

where log p̄(ŷik | βk) ≤ log p(ŷik | βk) is the well-
known quadratic lower-bound given by (Jaakkola & Jor-
dan, 2000).4

Taking the expectation w.r.t qβk
of Eq. (E.3.11), we obtain

Eq(βk)Eq(ωik)[log p(ŷik, ωik | βk)− log q(ωik)]

= (ŷik −
1

2
)xT

i µ̃k −
1

2
c̃ik − log

[
1 + exp(−c̃ik)

]

(E.3.12)

where the third term in the sum disappears since
Eq(βk)[(x

T
i βk)

2] = c̃ik
2, as we saw in the argument lead-

ing to Eq. (E.3.8).

Taking the sum of Eq. (E.3.12) across N observations pro-
duces the second term in Eq. (E.3.10).

4That is, the exact ELBO for the IB-Logit model after Pòlya-
Gamma augmentation has a summand which can be expressed as
the expected value of the the well-known quadratic lower-bound
given by (Jaakkola & Jordan, 2000).
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E.4 Computational complexity

The complexity for each iteration of CAVI for an IB-Logit
model is O(M3K + NM2K). Details on each substep
are given in Table E.1. Note in particular that, unlike with
the IB-Probit model, the IB-Logit model requires a matrix
inversion at each step of inference, rather than just once
up-front. This increases the per-iteration complexity from
O(MNK). (Recall that Sec. D.4 provides more informa-
tion on the complexity of CAVI for IB-Probit.)

If one imposes an additional variational assumption beyond
that given in Eq. E.3.1, namely that each category’s regres-
sion weights are independent across covariates, q(βk) =∏M

m=1 q(βmk), then the additional computational com-
plexity imposed by IB-Logit over IB-Probit can be avoided.
This strategy may make sense when the choice of link
(Logit over Probit) is more important than modeling the
correlations in regression weights across covariates.

As with the IB-Probit model, the entire inference proce-
dure (across all iterations) is embarassingly parallel over
the K categories. Thus, distributed computation over K
nodes can reduce the complexity for the entire inference
procedure toO((M3+NM2)I), where I is the number of
CAVI iterations. Recall also that sparsity of the matrix X

can reduce the complexity of these steps.

Variable Step Per-iteration Note
complexity

B covariance (E.3.4a) O(M3K + NM2K) matrix inversion
B mean (E.3.4b) O(MNK + M2K) covariance matrix

not pre-computable
Ω (E.3.3) O(NM2 + NMK) X

NxM
Σ̃

MxM
XT

MxN

and X
NxM

µ̃
MxK

Table E.1: The computational complexity of CAVI updates

for IB-Probit. B is the matrix of regression weights and Ω

are auxiliary variables added for conditional conjugacy.

F Alternative methods for Bayesian

inference in categorical GLMs

In this section, we provide further information about al-
ternative approaches to Bayesian inference for categorical
GLMs. For orientation, see Table 1, for which an extended
caption is given in Sec. F.1. In particular, the first five rows
of Table 1 provide alternative approaches to CB-Models
with IB-CAVI.

• In Sec. F.2, we describe automatic differentation vari-
ational inference, which can be used for Bayesian in-
ference with the softmax model (row 1). We include
this approach in our experiments.

• We do not consider the MNP models (rows 2 and 5)
due to the lack of closed-form category probabilities,
which can complicate inference in high dimensions.

• In Sec. F.3, we provide the construction of a
Gibbs sampler for the softmax (more specifically,
for the multi-logit model, which is the softmax
model but with one category’s vector of regression
weights fixed to 0 for identifiability) after Pòlya-
Gamma augmentation (row 3). We include this
approach in our experiments. We cannot con-
struct closed-form CAVI for softmax after Pòlya-
Gamma augmentation , as we show in Sec. F.4.

• In Sec. F.5, we consider the stick-breaking construc-
tion of the softmax (row 4). We highlight the category
asymmetry of this method, which causes us to not con-
sider this approach further in our experiments.

F.1 Extended caption for Table 1

An extended caption for Table 1 follows. See the main
body of the text for citations for these methods.

Further details on columns:

• Category symmetry refers to symmetric han-
dling of categories.

• Latent linear regression reports the exis-
tence of latent auxiliary variables zi, one for which
observation, for which the regression weights β have
a linear regression likelihood. (This enables easy ex-
tensibility, e.g. to hierarchical models or variable se-
lection priors.)

• Auxiliary variable independence is sat-
isfied when the latent auxiliary variables, one for each
observation, are conditionally independent across cat-
egories given all observations and all other unob-
served random variables. (Non-existence of such aux-
iliary variables is considered to meet the criterion.)

• Closed-form likelihood refers to closed-
form category probabilities in the marginal likelihood.

• Conditional conjugacy refers to the state
whereby a (non-trivial) conjugate prior exists for each
complete conditional.

• Closed-form variational inference

refers to the existence of a known coordinate ascent
variational inference algorithm with closed-form
updates.

• Embarassingly parallel across

categories refers to the state where the inference
can be performed separately on each category’s
regression weights.
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Further details on specific cells: The lack of closed-
form CAVI for Softmax+PGA is reviewed in Sec. F.4. The
category asymmetry of the SB-Softmax+PGA method is
discussed in Sec. F.5. The latent linear regression property
of IB-CAVI can be exploited for closed-form hierarchical
modeling, as mentioned in Sec. C, but we do not consider
such models in this paper.

F.2 Automatic differentiation variational inference

Automatic differentiation variational inference (ADVI)
(Kucukelbir et al., 2017) is a generic variational inference
method that applies to a large class of Bayesian models. Its
objective function is known as the ADVI evidence lower
bound (ADVI ELBO):

L(λ) = EN (ǫ;0,I)

[
log p

(
y, T−1

(
S−1
λ (ǫ)

))

+ log

∣∣∣∣ det JT−1

(
S−1
λ (ǫ)

)∣∣∣∣
]
+H[q(ζ;λ)] (F.2.1)

where λ are the variational parameters, T : Θ→ RP , θ 7→
ζ is a differentiable bijection to give the model parameters
θ unbounded support, and Sλ : RP → RP , ζ 7→ ǫ is a
(deterministic) standardization function.

The gradients for the ADVI objective are given in (Ku-
cukelbir et al., 2017). We assume a Gaussian mean-field
variational family on ζ ∈ Rp, the transformed unobserved
random variables, i.e. the variational parameters are λ =(
µ̃, diag(σ̃2)

)
and the variational density is given by

q(ζ;λ) =

P∏

p=1

q(ζp;λp)︸ ︷︷ ︸
N (µ̃p, σ̃

2
p)

Under this Gaussian mean field assumption, the gradients
are given by (Kucukelbir et al., 2017)

∇µ̃L = EN (ǫ;0,I)

[
∇θ log p(y,θ)︸ ︷︷ ︸

1 × p

∇ζT
−1(ζ)︸ ︷︷ ︸

p × p

+∇ζ log

∣∣∣∣ det JT−1(ζ)

∣∣∣∣
︸ ︷︷ ︸

1 × p

]
(F.2.2a)

∇ω̃L = EN (ǫ;0,I)

[(
∇θ log p(y,θ)︸ ︷︷ ︸

1 × p

∇ζT
−1(ζ)︸ ︷︷ ︸

p × p

+∇ζ log

∣∣∣∣ det JT−1(ζ)

∣∣∣∣
︸ ︷︷ ︸

1 × p

)
∇ω̃S

−1
λ (ǫ)︸ ︷︷ ︸

p × p

]
+ 1

(F.2.2b)

where we have defined ω̃ = (ω̃1, . . . ω̃p) ∈ Rp as the
element-wise log of the variational standard deviations,
ω̃p = log σ̃p. This transformation gives ω̃ unbounded real-
valued support.

In the case of categorical GLMS (Eq. (1.1.1)), the model

parameter is given by θ = vec(B). Here the model pa-
rameter θ already has unconstrained real-valued support,
so the ADVI gradients (F.2.2) simplify greatly. Since T is
the identity function, we have JT−1(ζ) = ∇ζT

−1(ζ) = Ip

and ∇ζ log

∣∣∣∣ det JT−1(ζ)

∣∣∣∣ = 0p. Therefore, the ADVI

gradients become

∇µ̃L = EN (ǫ;0,I)

[
∇θ log p(y,θ)︸ ︷︷ ︸

1 × p

]
(F.2.3a)

∇ω̃L = EN (ǫ;0,I)

[
∇θ log p(y,θ)︸ ︷︷ ︸

1 × p

∇ω̃S
−1
λ (ǫ)︸ ︷︷ ︸

p × p

]
+ 1p

(F.2.3b)

If we take Sλ to be an elliptical standardization (Kucukel-
bir et al., 2017), we obtain

∇ω̃S
−1
λ (ǫ) = diag(ǫT exp(ω̃))

=



ǫ1 exp(ω̃1)

. . .
ǫp exp(ω̃p)




So (stochastic) gradient steps to optimize the ADVI ELBO
are conceptually straightforward to compute using Monte
Carlo sampling and automatic differentiation of the joint
density with respect to the parameter θ. However, the
generic framework comes at a price. Whereas CAVI pro-
vides exact analytic solutions to each coordinate ascent up-
date, ADVI must chase gradients, and these gradients are
stochastic. As we will see, this can slow down inference;
moreover, ADVI introduces multiple optimization hyper-
parameters (learning rate, number of Monte Carlo samples,
and more). For a given problem, finding appropriate values
of these hyperparameters can be challenging.

F.3 Gibbs sampling for multi-logit regression with

Pòlya-Gamma augmentation

F.3.1 BAYESIAN BINOMIAL REGRESSION WITH

PÒLYA-GAMMA AUGMENTATION

Here we derive the complete conditionals for Bayesian
Binomial Regression with Pòlya-Gamma augmentation .
Bayesian logistic regression is a special case, and
Bayesian multiclass logistic regression is an extension (see
Sec. F.3.2). This derivation will be useful for Sec. F.4,
where we demonstrate the lack of closed-form CAVI for
softmax regression with Pòlya-Gamma augmentation .

Our derivation largely follows the simple derivation given
in Section 2 of (Choi et al., 2013), but provides some extra
detail.5 For the derivation, recall the density of a PG(b, c)

5We also make the generalization from logistic to binomial
regression explicit. Although the tweak is straightforward, this
expression is nicely more general and is also something we use
when we handle the stick-breaking multi-class logistic regression.
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random variable (Polson et al., 2013):

f(x; b, c) = coshb(c/2)e−
c2

2 xg(x; b, 0) (F.3.1)

where h(ω) := g(x; b, 0) is the density of a PG(b, 0) ran-
dom variable

g(x; b, 0) =
2b−1

Γ(b)

∞∑

n=0

(−1)n Γ(n+ b)

Γ(n+ 1)

(2n+ b)√
2πx3

e−
(2n+b)2

8x

(F.3.2)

So f is constructed from g via an exponential tilt and a
renormalization. Note that to derive the complete condi-
tionals, we will not need the form of g(x; b, 0) anywhere in
the derivation; we merely use (F.3.1).

Proposition F.3.1. For the Bayesian Binomial Regression

Model6 with Pòlya-Gamma augmentation

β ∼ N (µ0,Σ0)

yi | β ind∼ Binomial

(
ni,

exp{xT
i β}

1 + exp{xT
i β}

)
, i = 1, ..., N

ωi | β ind∼ PG(ni,x
T
i β), i = 1, ..., N

(F.3.3)

the complete conditional distributions are

(ωi | β) ∼ PG(ni,x
T
i β) (F.3.4)

(β | y,ω) ∼ N (µω,Σω) (F.3.5)

where

Σω =

(
XT

ΩωX +Σ
−1
0

)−1

(F.3.6)

µω = Σω

(
XTκ+Σ

−1
0 µ0

)
(F.3.7)

where

κ = (y1 − n1/2, ..., yN − nN/2)

Ωω is the diagonal matrix of ωi’s

(F.3.8)

Proof. That (F.3.4) is the complete conditional for ωi fol-
lows immediately from the conditional independence of ω
and y in the model. In particular, the posterior density is
given by

p(β,ω | y) ∝
[ N∏

i=1

p(yi | β)p(ωi | β)
]
p(β) (F.3.9)

Hence, clearly,

p(ωi | β,y,ω−i) ∝ p(ωi | β)
6Note that we use N to denote the number of observations

and ni to denote the number of binomial trials per observation.

It remains to show that (F.3.5) is the complete conditional
for β

p(β | ω,y) ∝
[ N∏

i=1

p(yi | β)p(ωi | β)

]
p(β)

1∝
[ N∏

i=1

e(x
T
i

β)yi

(
1 + ex

T
i

β
)ni

][
cosh

ni
(xT

i β

2

)
e
− 1

2
(xT

i
β)2ωih(ωi)

]
p(β)

2∝
[ N∏

i=1

e(x
T
i

β)yi

✘✘✘✘✘✘(
1 + ex

T
i

β
)ni

][
✘✘✘✘✘✘(
1 + ex

T
i

β
)ni

✟✟2ni e
1
2
(xT

i
β)ni

e
− 1

2
(xT

i
β)2ωi✘✘✘h(ωi)

]
p(β)

3∝ p(β) exp

{ N∑

i=1

(yi −
ni

2
)(x

T
i β) − ωi

2
(x

T
i β)

2

}
(F.3.10)

where (1) fills in forms for densities (using h(ω) :=

g(ω; 1, 0)), (2) uses that cosh(z) = 1+e2z

2ez (and absorbs
h(ωi) and 2−ni into the constant of proportionality), and
(3) reveals that the complete conditional is Gaussian.

To obtain an explicit form for the multivariate Gaussian,
we need what (Choi et al., 2013) calls a routine Bayesian
regression-type calculation:

p(β | ω,y) ∝ p(β) exp

{ N∑

i=1

(yi −
ni

2
)(x

T
i β) − ωi

2
(x

T
i β)

2

}

setting κi := yi −
ni

2

1∝ p(β) exp

{ N∑

i=1

−ωi

2

(
x

T
i β − κi

ωi

)2}

defining z := (
κ1
ω1

, ...,
κN
ωN

) and Ω := diag(ω1, ..., ωN )

2∝ p(β) exp

{
− 1

2
(z − Xβ)

T
Ω(z − Xβ)

}

3∝ p(β) exp

{
− 1

2
(X

+
z − β)

T
X

T
ΩX(X

+
z − β)

}

(F.3.11)

where (1) is by completing the square, (2) writes the
weighted sum of squares in matrix notation, and (3) iso-
lates β, using X+, the Moore-Penrose psuedo-inverse of
X .7

Thus, we see that p(β | ω,y) is proportional to the prod-
uct of two multivariate Gaussians: p(β), which has mean
µ0 and covariance Σ0, and another Gaussian, which has
mean X+z and covariance (XT

ΩX)−1. We know from
the exponential family representation of the Gaussian that
the result can be obtained by summing at the scale of nat-
ural parameters – which for the Gaussian are the precision
and precision-weighted mean. Using this, we obtain

p(β | ω,y) ∼ N (µω,Σω)

7Specifically, since XX+ = I , we use

(z − Xβ)
T
Ω(z − Xβ) = (Xβ − z)

T
Ω(Xβ − z)

=

(
X(β − X

+
z)

)T

Ω

(
X(β − X

+
z)

)

= (β − X
+
z)

T
X

T
ΩX(β − X

+
z)

.
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where

Σω =

(
Σ

−1
0 +XT

ΩωX

)−1

µω = Σω

(
Σ

−1
0 µ0 +XT

Ωω✚✚X✟✟X+z

)

= Σω

(
Σ

−1
0 µ0 +XTκ

)

Remark F.3.1. In the special case where ni ≡ 1,
Bayesian binomial regression reduces to Bayesian logistic
regression. △

F.3.2 BAYESIAN MULTI-LOGIT REGRESSION WITH

PÒLYA-GAMMA AUGMENTATION

(Held & Holmes, 2006) show that for multi-class logistic
regression with the standard, canonical (multi-logit) link,
the conditional likelihood L(βk | y,β−k) over categorical
outcomes y ∈ {1, . . . ,K}N has the form of a logistic re-
gression on the class indicators ŷik ∈ {0, 1}. This observa-
tion motivates the conversion of Bayesian multinomial re-
gression into a conditionally conjugate model. We present
the complete conditionals here as they are used to construct
a Gibbs sampler in the experiments (see Sec. G.3.2). How-
ever, in Sec. F.4 we show that the construction does not
yield closed-form CAVI updates (as reported in row 3 of
Table 1).

First, following (Held & Holmes, 2006), note that we can
represent the complete conditionals for βk, k = 1, ...,K−1
in terms of the conditional likelihoods L(βk | y,β−k)

p(βk | y,β−k) ∝ p(βk)L(βk | y,β−k)
where the conditional likelihoods satisfy

L(βk | y,β−k) ∝
N∏

i=1

K∏

k=1

pŷik

ik

∝
N∏

i=1

(γik)
ŷik(1− γik)

1−ŷik

where

γik =
exp(xT

i βk − Cik)

1 + exp(xT
i βk − Cik)

(F.3.12)

Cik := log
∑

j 6=k

exp(xT
i βj)

which reveals that the conditional likelihood
L(βk | y,β−k) has the form of a logistic regression
on class indicators ŷik.

The form of (F.3.12) and the success of Pòlya-
Gamma augmentation with standard (binary) logistic re-
gression suggests that we should construct an augmented

model for Bayesian multi-class logistic regression by tak-
ing, for i = 1, ..., N and k = 1, ...K − 1,

ωik | βk
ind∼ PG(1,xT

i βk − Cik),

a slight tweak on the construction for standard (binary)

logistic regression (F.3.3), where we had ωi | β
ind∼

PG(1,xT
i β).

Following (F.3.10), but using the conditional likelihood and
altered construction for the Pòlya-Gamma auxiliary vari-
ables8 we find
p(βk | ω,y,β−k)

∝

[ N∏

i=1

e
(xT

i
β−Cik)ŷik

(
1 + e

xT
i

β−Cik
)

]

×

[
cosh

(xT
i β − Cik

2

)
e
− 1

2
(xT

i
β−Cik)2ωikh(ωik)

]
p(βk)

∝

[ N∏

i=1

e
(xT

i
β−Cik)ŷik

✭✭✭✭✭✭(
1 + e

xT
i

β−Cik
)
]

×

[✭✭✭✭✭✭(
1 + e

xT
i

β−Cik
)

✄2e
1
2
(xT

i
β−Cik)

e
− 1

2
(xT

i
β−Cik)2ωik✘✘✘h(ωik)

]
p(βk)

∝ p(βk) exp

{ N∑

i=1

(ŷik −
1

2
)(x

T
i βk − Cik) −

ωik

2
(x

T
i βk − Cik)

2
}

(F.3.13)

Continuing to parallel the argument of Section F.3.1, using
Eq. (F.3.13) instead of Eq. (F.3.10), we find that the com-
plete conditionals are given by

βk | ωk,y ∼ N (µk,Σk) (F.3.14a)

ωik | βk ∼ PG(1,xT
i βk − Cik) (F.3.14b)

where

Σk =

(
Σ

−1
0 +XT

ΩkX

)−1

µω = Σk

(
Σ

−1
0 µ0 +XT

Ωkzk

)

for

Ωk = diag
(
ω1k, . . . , ωNk

)

zk =




ŷ1k−1/2
ω1k

+ C1k

...
ŷNk−1/2

ωNk
+ CNk




A valid Gibbs sampler is obtained by iteratively sampling
from Eqs. (F.3.14a) and (F.3.14b).

F.4 Lack of closed-form CAVI for Bayesian

multi-logit regression and

Pòlya-Gamma augmentation

Here we demonstrate the lack of closed-form CAVI
for Bayesian multi-logit regression under Pòlya-
Gamma augmentation (as reported in row 3 of Table
1). To do so, we focus on the complete conditionals for
ωik. Namely, if we would like to perform coordinate ascent

8Note that, for this example, we are unnecessarily restricting
to the case of multiclass logistic regression (ni ≡ 1). The same
argument that we make here would of course also hold for multi-
nomial regression, which is a generalization.
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variational inference (CAVI), we parallel the argument
of (E.3.8) , but with our current multi-class situation
whereby we work with the complete conditional for ωik as
PG(1, cik), where cik = xT

i βk −Cik. This differs slightly
from the standard (binary) logistic regression case, where
the complete conditional for ωi was PG(1, ci), where
ci = xT

i β. In the current case, we find by paralleling
(E.3.8) that we eventually need

Eq−ω
[cik]

2
=

(
x

T
i Eqβk

[βk] − Eq−ωik
[Cik]

)2

=

(
x

T
i Eqβk

[βk] − Eqβ−k

[
log

∑

j 6=k

exp(x
T
i βj)

])2

(F.4.1)

and while the first expectation in equation (F.4.1) is
straightforward and parallels what we computed in binary
logistic regression, the expected log-sum-exp is distinct to
the multiclass case, and has no closed form. Indeed, the ex-
pected log-sum-exp is a notorious blocker to closed-form
CAVI. Indeed, precisely this fact motivated Delta Varia-
tional Inference (Braun & McAuliffe, 2010) (Wang & Blei,
2013). For an enumeration of many bounds to this expres-
sion, see (Depraetere & Vandebroek, 2017).

Thus, if one seeks variational inference with closed-form
updates, Pòlya-Gamma augmentation solves the problem
for Bayesian binomial regression, but not for Bayesian
multi-class logistic regression (or more generally Bayesian
multinomial regression), at least not when using the stan-
dard canonical (multi-logit) link.

F.5 Stick-breaking multi-class logistic regression

The stick-breaking construction of the multi-class logistic
regression regression (Linderman et al., 2015) is useful for
the purpose of exploiting Pòlya-Gamma augmentation for
efficient inference. First, the density of a categori-

cal distribution over K categories with parameter π =
(π1, ..., πk) ∈ ∆K−1 can be represented in a stick-breaking
manner as a product of K − 1 Bernoullis. The density can
be expressed as

K−1∏

k=1

π̃k
ŷik(1− π̃k)

1−ŷik (F.5.1)

where π̃k :=
πk

1−∑j<k πj
is the Bernoulli parameter and

ŷik = 1 if the ith observation is the kth category, and ŷik =
0 otherwise.

Stick-breaking multi-class logistic regression uses
Eq. F.5.1 to construct a multi-class logistic regression over
K categories as a product of K − 1 logistic regressions

K−1∏

k=1

(
ex

T
i βSB

k

1 + ex
T
i
βSB

k

)ŷik
(

1

1 + ex
T
i
βSB

k

)1−ŷik

The multinomial parameter πi has explicit form given by

πik =
ex

T
i βSB

k

1 + ex
T
i
βSB

k

∏

j<k

1

1 + ex
T
i
βSB

j

, k = 1, ...,K

(F.5.2)

where βK ≡ 0.

Label asymmetry. The stick-breaking formulation in-
duces a label asymmetry, which can complicate prior-
setting and reduce representational capacity (Zhang &
Zhou, 2017). For example, consider the case of multiclass
logistic regression (so ni = 1). In standard multinomial
regression, we have

p(ŷik = 1 | βML) =
ex

T
i βML

k

1 +
∑K−1

k=1 ex
T
i
βML

k

(F.5.3)

whereas in stick-breaking multinomial regression, we have
(via Eq. F.5.2)

P (ŷik = 1 | βSB) =
ex

T
i βSB

k

1 + ex
T
i
βSB

k

∏

j<k

1

1 + ex
T
i
βSB

j

which differs from (F.5.3) in that it clearly imposes fewer
geometric constraints on the classification decision bound-
aries for smaller k. For instance, pi1 can be larger than 50
% if xT

i β1 > 0, whereas pi2 can be larger than 50 % only
if xT

i β1 < 0 and xT
i β2 > 0. Because of label asymme-

try, predictive performance can be sensitive to how the K
different categories are ordered. The geometric constraints
implied by any given ordering of the labels can cause the
model to struggle to learn the true decision boundaries.

G Supplemental information for

experiments

Open-source python code for reproducing experiments
can be found at https://github.com/tufts-ml/
categorical-from-binary.

G.1 Data simulations

G.1.1 DATASET GENERATION

We generate simulated datasets from a categorial distribu-
tion with a softmax (multi-logit) inverse link function and
given specifications (N samples, K categories, M covari-
ates). For a given context (N,K,M ), we may generate D
different datasets by setting the random seed to a different
value.

First, we generate covariate matrices X ∈ RN×M such
that all entries are drawn i.i.d from N (0, 1). We use xi to
refer to the ith row of X for i = 1, . . . , N .

Next, we draw regression weights B ∈ R(M+1)×K in a
way that allows us to control category predictability. We
describe how to sample entries βmk for m = 0, 1, . . . ,M
and k = 1, . . . ,K. We begin by generating intercepts for
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each category by sampling β0k
iid∼ N (0, σ2

int). For covari-

ates m = 1, . . . ,M , we draw βmk
ind∼ N (0, σ2

mk), where

σ2
mk =

{
σ2

high, if k = ⌈m/S⌉
σ2

low, otherwise

for σ2
high > σ2

low and S := ⌊M/K⌋. The motivation is as
follows: We partition the M covariates into K+1 covariate
groups. Covariate groups k = 1, ...,K each have S mem-
bers that are potentially predictive of the kth category. Such
covariates have regression entries βmk ∼ N (0, σ2

high); the
relatively high variance σ2

high > σ2
low allows the regression

coefficients to escape the mean of zero. As the value of
σ2

high increases, the overall predictability of the categories
given the covariates increases. Note that there may be an
additional (k = 0)th group, with M mod K members,
which is not predictive of a specific category.

Finally, we generate categorical observations by associat-
ing the covariates and regression weights via the softmax
(multi-logit) inverse link function.

Overall, our data generating mechanism is

xim
iid∼ N (0, 1), i = 1, . . . , N, m = 1, . . . ,M

βmk
ind∼ N(0, σ2

mk), m = 0, . . . ,M, k = 1, . . . ,K

where σ2
mk =





σ2
int, if m = 0

σ2
high, if m ≥ 1 and k = ⌈m/S⌉

σ2
low, otherwise

yi | xi,B ∼ Softmax(BT .
xi)

for observations i = 1, . . . , N , covariates m = 1, . . . ,M
and categories k = 1, . . . ,K, and where

.
xi = (1,xT

i )
T

are the covariates prepended with a value of 1 to correspond
to the intercept term.

Unless otherwise specified, we fix σ2
low = 0.001 and σ2

int =
0.25. We vary σ2

high throughout the experiments to control
predictability.

G.1.2 METRICS

To estimate the predictability of categories, we estimate
the mean covariate-conditional category entropy for each
dataset:

EXH[Y | X] ≈ −
N∑

i=1

K∑

k=1

p(yi = k | xi,B) log p(yi = k | xi,B)

(G.1.1)

where p refers to the category probabilities and B refers to
the known regression weights from the true data generating
process (softmax).

The mean holdout log-likelihood for the rth prediction
method is computed by:

1

Ntest

Ntest∑

i=1

log pr(yi = k | xi,Br) (G.1.2)

where the category probability formula pr and point es-
timate for Br are determined by the values of the corre-
sponding columns for the rth row of Table G.2.9

G.2 Bayesian model averaging experiment:

Supplemental information

G.2.1 METHODOLOGY

Data generation. We generated multiple datasets from
a categorial distribution with a softmax (multi-logit) us-
ing the technique described in Sec. G.1.1. In particular,
we randomly generated 16 datasets by taking the num-
ber of categories to be K ∈ {3, 10}, the number of co-
variates to be a multiple of the number of categories via
M = aK for a ∈ {1, 2}, the number of samples to be a
multiplier on the number of parameters via N = bP for
b ∈ {10, 20, 40, 80, 160} (where recall that the number of
parameters is given by P = K(M + 1) due the presence
of an intercept), and σ2

high ∈ {0.1, 4.0} to control the pre-
dictability of the categorical observations.

Training. For each dataset, we used 80% of the data for
model training and held out the remaining 20% for evalu-
ation. We applied our IB-CAVI inference technique with
the logit link (so H was taken as the standard logistic cdf).
For each dataset, we ran IB-CAVI until the surrogate lower
bound ELBOIB had a mean value (across samples and cat-
egories) that dropped by 0.1 or less on consecutive itera-
tions.

Predictive likelihoods. Recall that we have partitioned
each dataset into training data ytrain ∈ {1, ...,K}Ntrain and
hold-out test data ytest ∈ {1, ...,K}Ntest . After training
the model on ytrain, we consider three different predictive
likelihoods for test set observations ytest

i , i ∈ 1, ..., Ntest.
In particular, we can compute pCBC(y

test
i | ytrain),

pCBM(ytest
i | ytrain), and pBMA(y

test
i | ytrain). The former two

quantities are estimated by substituting IB-CAVI’s varia-
tional posterior expectation into the relevant model’s cate-
gory probability formulae, Eqs. 2.4.1 and 2.4.2. The latter
quantity is computed from the former two quantities via
Eq. (4.0.1) using the method of Sec. 4.

9Two of the modeling strategies - namely Softmax (via

MLE) and Baserate frequency - can produce predictive
probabilities of exact or numerical zero, e.g. when a category is
observed in the test set that was never observed in the training set.
A single such instance will drive the log-likelihood metric to −∞
regardless of the log likelihoods for any other sample. To handle
this issue, we renormalize these models to produce a minimum
predictive probability of ǫ := 10−10 for each category.
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Discrepancy from true category probabilities. Since
the data is simulated, we have access to the “ground
truth" predictive likelihood ptrue(y

test
i | ytrain) for each test

set sample, obtained by substituting the true regression
weights Btrue into the softmax likelihood. We can there-
fore evaluate the performance of our three estimated pre-
dictive likelihoods by computing the discrepancy between
each approximation and this ground truth:

di := DKL
[
ptrue(y

test
i | ytrain) ‖ pM(ytest

i | ytrain)
]

where M ∈ {CBC,CBM,BMA}, DKL is the Kullback-
Leibler divergence, and i = 1, ..., Ntest. Our performance
measure for each estimated predictive likelihood is then the
mean discrepancy across the test set, i.e. 1

Ntest

∑Ntest

i=1 di.

G.2.2 RESULTS

.

Figure G.1 provides an expanded version of Figure 1. Some
patterns of interest:

• As the number of categories and covariates and pre-
dictability (K,M, σ2

high) are fixed, the error in the IB
approximation decreases as the number of samples N
increases (as a multiple b ∈ {10, 20, 40, 80, 120} on
the number of parameters).

• As the predictability of the categorical response
(σ2

high) increases, the CBC model becomes better than
CBM at serving as a target of the approximation. (To
see this, compare the left column to the right column
in Fig. 1.) Since the predictability of the dataset may
not be known in advance, this fact might seem to cre-
ate a difficult model selection problem. Luckily, the
Bayesian model averaging (BMA) tracks the relative
appropriateness of each model change by toggling the
weight on the CBC model wCBC.

• The relative advantage of the CBC model over the
CBM model also seems to increase as the number of
parameters P = K(M + 1) increases. (To see this,
compare the top rows to the bottom rows in Fig. G.1.)

Table G.1 provides more detailed information about the re-
sults shown in Fig. G.1.

G.3 Variational Bayes vs. Maximum Likelihood:

Supplemental information

G.3.1 METHODOLOGY

We generate data using the method described in
Sec. G.1.1. For this experiment, we generate
D = 10 datasets per simulation context, which is
a particular choice of K = 3,M = 2K,N ∈
{1, 100} ∗ P where P = K(M + 1) , σhigh ∈

{0.01, 0.5, 1, 2, 5, 10, 20, 50, 100}, σlow = 0.01, σint = 1.0.
The choice of M = 2K could be imagined as the number
of covariates under a light (order 2) autoregressive struc-
ture. For each dataset, we used 80% of the data for model
training and held out the remaining 20% for evaluation.

G.3.2 MODELING STRATEGIES

We compare a number of different modeling strategies:

1. Data generating process: We take the known regres-
sion coefficients Btrue and plug it into the softmax
(multi-logit) categorical probability function.

2. Softmax (via MLE): We estimate the MLE, BMLE, for
and softmax a.k.a. multi-logit model. The optimiza-
tion was computed using automatic differentiation in
jax (and default convergence parameters). We can
interpret the results of the optimization as an (approx-
imate) MLE due to the convexity of the multi-logit
function. The solver used was BFGS, which is the
only solver that jax supports10. We can make pre-
dictions on new samples by plugging in BMLE to the
multi-logit categorical probability function.

3. CB (via IB-CAVI): We compute CAVI for CB models
(specifically, the CBC-Probit and CBM-Probit) with a
N (0, I) prior using the variational technique with in-
dependent binary approximation described in the main
body of the text. We concluded convergence when the
drop in the mean ELBO (with the mean taken across
the number of samples N and categories K) was less
than 0.1 across consecutive iterations. The variational
posterior mean Eq[B] was used as a point estimate for
B, and then substituted into the category probability
formula for either the CBC-Probit or CBM-Probit.

4. Baserate frequency: We use the raw frequencies of
each category in the training set and use those as the
predicted category probabilities for test set data, re-
gardless of the value of the covariates, i.e.

p(yi = k | xi) = fk (G.3.1)

where fk is the frequency with which the kth category
was observed in the training set.

The differences between the modeling strategies are sum-
marized in Table G.2.

Training. The MLE and IB-CAVI were both initialized at
the zero matrix. For each dataset, we ran IB-CAVI until the
surrogate lower bound ELBOIB had a mean value (across
samples and categories) that dropped by 0.1 or less on con-
secutive iterations.

10as of documentation revision 1182e7aa
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Table G.1: Additional results from applying the approximate Bayesian Model Averaging technique of Sec. 4 to simulated

datasets. This table provides more detailed information about the analysis depicted in Fig. 1. wCBC gives the weight that
the technique assigns to the CBC model.

N K M σhigh wCBC Mean KL divergence to true probabilities from:
CBM CBC BMA

120 3 3 0.100 0.021 0.016 0.017 0.015
120 3 3 2.000 0.861 0.067 0.046 0.040
240 3 3 0.100 0.005 0.031 0.065 0.031
240 3 3 2.000 0.999 0.043 0.027 0.026
480 3 3 0.100 0.002 0.007 0.021 0.007
480 3 3 2.000 1.000 0.023 0.018 0.018
960 3 3 0.100 0.000 0.002 0.018 0.002
960 3 3 2.000 1.000 0.029 0.020 0.020

1920 3 3 0.100 0.000 0.002 0.008 0.002
1920 3 3 2.000 1.000 0.030 0.018 0.018
210 3 6 0.100 0.001 0.030 0.069 0.030
210 3 6 2.000 1.000 0.116 0.093 0.093
420 3 6 0.100 0.001 0.016 0.030 0.016
420 3 6 2.000 1.000 0.090 0.030 0.030
840 3 6 0.100 0.000 0.009 0.033 0.009
840 3 6 2.000 1.000 0.071 0.023 0.023

1680 3 6 0.100 0.000 0.007 0.025 0.007
1680 3 6 2.000 1.000 0.077 0.018 0.018
3360 3 6 0.100 0.000 0.001 0.017 0.001
3360 3 6 2.000 1.000 0.076 0.014 0.014
1100 10 10 0.100 0.002 0.042 0.054 0.042
1100 10 10 2.000 1.000 0.114 0.057 0.057
2200 10 10 0.100 0.008 0.028 0.034 0.028
2200 10 10 2.000 1.000 0.098 0.052 0.052
4400 10 10 0.100 0.023 0.011 0.013 0.011
4400 10 10 2.000 1.000 0.079 0.017 0.017
8800 10 10 0.100 0.925 0.008 0.008 0.008
8800 10 10 2.000 1.000 0.074 0.017 0.017

17600 10 10 0.100 1.000 0.004 0.004 0.004
17600 10 10 2.000 1.000 0.073 0.017 0.017

2100 10 20 0.100 0.005 0.041 0.051 0.041
2100 10 20 2.000 1.000 0.135 0.061 0.061
4200 10 20 0.100 0.000 0.021 0.026 0.021
4200 10 20 2.000 1.000 0.128 0.053 0.053
8400 10 20 0.100 0.006 0.012 0.015 0.012
8400 10 20 2.000 1.000 0.111 0.028 0.028

16800 10 20 0.100 1.000 0.006 0.007 0.007
16800 10 20 2.000 1.000 0.109 0.023 0.023
33600 10 20 0.100 1.000 0.004 0.004 0.004
33600 10 20 2.000 1.000 0.103 0.022 0.022
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Results. The confidence intervals in Fig. 2 were deter-
mined by bootstrapping.

G.4 Holdout performance over time: Supplemental

information

The purpose of this experiment is to compare IB-CAVI
against other methods for Bayesian inference with categor-
ical GLMs. In particular, we compare the performance on
holdout data as a function of training time.

G.4.1 DATASETS

Simulated datasets. We construct simulated datasets us-
ing the method described in Sec. G.1.1 for given specifi-
cations (N samples, K categories, M covariates). We set
σ2

high = 2.0.

Real datasets. We investigate the following real datasets:

1. The Detergent Purchase dataset (Imai & Van Dyk,
2005), which has 2,657 observations, 6 covariates,
and 6 categorical responses. Each record represents
the purchase of a laundry detergent by a household
in Sioux Falls, South Dakota. The prediction goal
is to identify which of the 6 laundry detergents
was purchased given the prices of all 6 detergents.
This data is available via the GPL-3 license at
https://github.com/kosukeimai/MNP/

blob/master/data/detergent.txt.gz.
For the original paper using this dataset, see (Chinta-
gunta & Prasad, 1998).

2. The Anuran Frog Calls dataset (Colonna et al., 2017),
which has 7,195 observations, 22 covariates, and 10
categorical responses. Each record represents ex-
tracted audio features (mel-frequency cepstrum coef-
ficients (MFCCs) from a recording of a frog making
some natural noises. The prediction goal is to identify
which of 10 species the frog belongs to. This data
is available from the UC-Irvine Machine Learning
Repository via an open-access CC-BY license. For
an in-depth paper using this data, see Colonna et al.
(2016).

3. The Glass Identification dataset (German, 1987),
which has 214 samples, 9 covariates, and 6 response
categories that were observed. Each record represents
observable properties of a physical sample of glass,
with the prediction goal being to identify which of
six types of glass the sample represents. A seventh
possible category is noted in the data description but
never observed. This data is available from the UC-
Irvine Machine Learning Repository under an open-
access CC-BY license. For the original paper using
this dataset, see Evett & Spiehler (1987).

4. A Single-User Process Start dataset, which has 17,724
observations, 1,553 covariates, and 1,553 categori-
cal responses. The dataset is constructed from the
Comprehensive, Multi-Source Cybersecurity Events
Dataset (Kent, 2015) using the methods of Sec. G.6.
Each record contain one process start from one
user account U293@DOM1 along with the identity
and timing of the W = 5 immediately preced-
ing process starts. The prediction goal is to iden-
tify the next process start. The data is open-
access with all copyrights waived, and the preprocess-
ing used is available at https://github.com/
tufts-ml/categorical-from-binary.

For all real datasets, we z-transformed all covariates, as the
range of some variables is very small (e.g. consider the
RI variable in the glass identification dataset, which only
varies from 1.51 to 1.52). This lets us use independent
N (0, 1) priors on the regression weights for each covariate-
category combination. No missing data occurred in any of
the datasets.

G.4.2 MODELING STRATEGIES

Here we describe the various modeling strategies we used
for Bayesian categorical regression modeling of the pro-
vided datasets. For motivation on which methods to include
vs. exclude in the experiment, see the discussion of Sec. F.

1. CB-Probit and CB-Logit (via IB-CAVI): We compute
CAVI for CB-Probit and CB-Logit models with a
N (0, I) prior using the variational technique with in-
dependent binary approximation described in the main
body of the text.

2. Softmax regression (via automatic differentiation vari-

ational inference (ADVI)). The gradient updates for
softmax regression (whose parameters have support
of unconstrained reals) are described in Sec. F.2. We
implement these updates in jax, and optimize using
Algorithm 1 of (Kucukelbir et al., 2017). We follow
the recommendations of that paper to guide the opti-
mization details: one Monte Carlo sample per update,
and adaptive step-size sequences with varying learn-
ing rates but all other hyper-parameters kept at their
recommended defaults.

3. Softmax regression (via the No U-Turn Sampler

(NUTS)) We sample from the posterior of softmax re-
gression using the No U-Turn Sampler (NUTS) (Hoff-
man et al., 2014) as implemented in the Python pack-
age numpyro.

4. Softmax regression (via Gibbs after Pòlya-

Gamma augmentation ) Here we model the data
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with softmax regression (more specifically the identi-
fied version of it which is obtained by setting βK ≡ 0;
this is often called multi-logit regession), but using
the Gibbs sampler which is available after Pòlya-
Gamma augmentation . The complete conditionals for
the Gibbs sampler are given in Sec. F.3.

G.4.3 GENERAL EXPERIMENTAL METHODOLOGY

For training, we used 80% of the data for model train-
ing and held out the remaining 20% for evaluation for all
datasets except glass identification. Due to the small size of
the glass identification dataset, we instead used a 90%/10%
split. All methods were initialized to have their matrix of
regression weights be B = 0. Each inference method was
run for a preset number of iterations (ADVI, IB-CAVI) or
samples (NUTS, Gibbs) in an attempt to make the running
time for each method similar. The performance of NUTS is
dependent upon the number of tuning samples, which was
set to be 25-33% as large as the number of samples retained
afterwards.

For prediction on holdout test data, the posterior mean (for
NUTS and Gibbs) or variational posterior mean (for ADVI
and IB-CAVI) was used as a point estimate B̂ for B. This
value B̂ was then substituted into the appropriate category
probability formula – softmax, multi-logit (i.e. identified
softmax), CB-Probit, or CB-Logit. For a given CB link
function (probit or logit), the CB variant (CBM or CBC)
was chosen that yielded the largest training likelihood. This
strategy provides a cheap heuristic approximation to BMA,
as most datasets have sufficiently many observations that
the BMA weights tend to be very close to 0.0 or 1.0.

For performance metrics, we used mean holdout log-
likelihood and mean predictive accuracy. The mean hold-
out log-likelihood was computed in the standard way
(Eq. (G.1.2)). For the accuracy metric, the category with
the largest probability was considered to be the predicted
category. If a test set observation had C categories pre-
dicted with the same probability, then the model was given
credit for 1/C rather than 1 correct response. For simulated
data, we also computed these performance metrics under
random guessing and when using the true model (i.e. soft-
max regression, using Btrue.)

G.4.4 RESULTS

The primary results were given in Sec. 5.3. Supplemental
results are provided in Fig. G.2.

G.5 The impact of the IB-approximation on posterior

over category probabilities

In this section, we directly investigate the quality of the
posterior over category probabilities that is learned by IB-
CAVI. By posterior over category probabilities, we refer to

the categorical likelihoods p(y = k|B) obtained by draw-
ing the regression weights from the approximate posterior
density over weights q(B | y1:N ), where y1:N is the train-
ing data. While a direct analysis of q(B | y1:N ) is possible,
this is an intermediate quantity less relevant to applications
(see Sec. 1.1) and may be confounded by identifiability is-
sues.

Thus, we compare IB-CAVI’s posterior over category prob-
abilities against that learned by other methods that do not
make an IB-approximation. We would like to obtain a con-
crete visualization of how the IB-approximation impacts
the bias and variance of this posterior over category prob-
abilities. Of particular interest is the comparison to the
NUTS sampler, which can be taken as the gold standard.

G.5.1 METHODOLOGY

Dataset. We construct a simulated dataset using the
method described in Sec. G.1.1 with N=1000 samples,
K=4 categories, and M=8 covariates. We set σ2

high = 4.0.

Methods. We train a CB-Probit model with IB-CAVI
(Algorithm 2) until the drop in the mean ELBO (with
the mean taken across the number of samples N and cat-
egories K) was less than 0.01 across consecutive itera-
tions. Bayesian model averaging (BMA; Sec. 4) reveals
that the weight on the CBC model, πCBC, was very close
to 1.0; thus, the predictions of the CB-Probit model with
BMA is virtually identical to the predictions of the CBC-
Probit model. For this reason, our baseline black-box in-
ference methods use the CBC-Probit (rather than CBM-
Probit, or some mixture). In this case, the baseline meth-
ods used were Automatic Differentiation Variational In-
ference (ADVI) or the No-U-Turn Sampler (NUTS) (see
Sec. G.4.2).

G.5.2 RESULTS

Fig. G.3 gives the posterior over category probabilities for
the first 9 training set observations as approximated by IB-
CAVI, ADVI, and NUTS.

G.5.3 DISCUSSION

IB-CAVI delivers posteriors over category probabilities
that are reasonably good approximations to those obtained
by ADVI and NUTS. However, the procedure does appear
to reduce variance and introduce some bias. For appli-
cations where fidelity to the true posterior is critical, one
could use IB-CAVI for warm-starting. That is, one could
use IB-CAVI’s quickly learned approximate posterior to
initialize a more expensive procedure that delivers greater
fidelity. For example, one might use IB-CAVI to initialize
NUTS, which is computationally expensive but asymptoti-
cally exact.
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choose a lookback window of W processes, and then fea-
turize each of these W processes with exp(−∆t/τ) sec-
onds, where τ is a temperature parameter and ∆t refers to
how long ago (in seconds) the process was launched.

The window size W could perhaps be justified by plot-
ting the distribution on the number of simultaneous process
launches, and saying that the window size is the whatever-
th percentile of that distribution.

G.6.3 METHODOLOGY FOR EXPERIMENT

Here we describe the methodology used for the experiment
discussed in Sec 5.5. We selected U=32 users from the
database who had moderately many process starts. The
number of processes started per user, Nu, over the course
of the 58 days of data collection ranged from 17,678 to
19,261.12

We learn each user’s process start behavior by training a
separate model for each user. We use the featurization
strategy of Section G.6.2, somewhat arbitrarily choosing
the window size to be W = 5 and the temperature to be
τ = 60 seconds. We take the number of categories to be
K = 1, 553, the number of unique processes in the entire
dataset.

We take the first 80% of the process start events to be train-
ing data, and the remainder to be hold-out test data. We use
IB-CAVI to approximately learn the CBC-Probit model.
We ran inference for 100 iterations. Each iteration required
approximately 5 to 20 seconds of computation time.

G.7 Glass identification: Supplemental analysis

Here we provide further analysis of the glass identifica-
tion dataset that was also analyzed in the holdout perfor-
mance over time experiment (Sec. G.4). Here, following
(Johndrow et al., 2013), we perform 10-fold cross valida-
tion, randomly splitting the dataset 10 times into a train-
ing set and test set, where each split put 90% of the origi-
nal dataset into the training set. Thus, each data split had
Ntrain = 192 training samples, and Ntest = 22 test samples.

We z-transformed all variables, as the range of some vari-
ables is very small (e.g. consider the RI variable, which
only varies from 1.51 to 1.52). This lets us use independent

12The target number Nu serving as an inclusion criterion was
chosen out of convenience: the Python package in its currently
implementation can handle Nu ≈ 20, 000 without a memory er-
ror, but cannot handle the largest value of Nu in the dataset, due
to memory constraints. No attempt was made to model the largest
Nu, because the experiment as is seems sufficient to prove the
point. Further scalability could be obtained by improving the im-
plementation (in terms of handling of sparsity and/or further ex-
ploiting the fact that the algorithm is embarassingly parallel across
categories), or by incorporating memoization (Hughes & Sud-
derth, 2013) or stochastic variational inference (Hoffman et al.,
2013) strategies within the IB-CAVI framework.

N (0, 1) priors on the regression weights for each covariate-
category combination.

G.7.1 METHODOLOGY

We applied two different Bayesian inference methods :
MCMC sampling and variational inference. For MCMC
sampling, we applied the implementation of the No U-
Turn Sampler (NUTS) (Hoffman et al., 2014) given in
the numpyro library. We obtained 10,000 total samples
(3,000 burn-in samples). For variational inference, we ap-
plied IB-CAVI, and concluded convergence when the drop
in the mean ELBO (with the mean taken across the num-
ber of samples N and categories K) was less than 0.005
across consecutive iterations. For both inference methods,
we initialized the regression weights B to the zero matrix.

G.7.2 RESULTS

Table G.3 shows the results. We find that IB-CAVI gives
results that are close to those obtained by NUTS, but be-
tween 44 and 1,110 times faster. We also note from the
NUTS results that the CB models perform competitively
with the softmax model, a much more familiar categorical
GLM.
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Table G.3: Glass identification results. The (geometric) mean holdout likelihood is given by
exp

(
1

FNtest

∑F
f=1

∑Ntest

n=1 log p(y
test
n | B∗)

)
, where F is the number of cross-validation folds and B∗ is the poste-

rior expectation from IB-CAVI or NUTS. It represents the typical probability score that the fitted model assigns to
categorical outcomes in the test set. Computation time is measured in seconds. Note that accuracy will always be identical
for CBC and CBM models with the same IB base model when fit with IB-CAVI, as guaranteed by Prop. B.5.1.

Model Softmax CBC-Logit CBM-Logit CBC-Probit CBM-Probit
Inference NUTS NUTS IB-CAVI NUTS IB-CAVI NUTS IB-CAVI NUTS IB-CAVI

Mean likelihood 0.38 0.38 0.36 0.38 0.36 0.34 0.35 0.41 0.37
Accuracy 0.64 0.65 0.64 0.64 0.64 0.65 0.65 0.64 0.65
Computation time 20.17 26.07 0.30 15.41 0.30 333.04 0.35 59.98 0.35
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