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Introduction

The sixth Intergovernmental Panel on Climate Change report (IPCC) recently
released predicts a deep reduction in emissions to meet global goals of 1.5 °C reduc-
tion in temperature. It states that concentrations of CO2 have continuously increased
in the atmosphere reaching averages of 410 ppm in 2019 [1]. Therefore, it becomes
imperative to reduce CO2 in any way possible. Silicon, which is an important mate-
rial for renewable energy, electronics, and metallurgy, is primarily produced by the
carbothermic reduction of quartz. This metallurgical grade silicon is then refined by
the Siemens Process to solar grade silicon using hydrogen chloride. The by-product
of trichlorosilane from this process is highly volatile and unstable [2].

This work aims to achieve the above process of reduction in a single step
using electrochemistry. This would eliminate multiple steps and save energy and
cost and reduce emissions if a suitable inert anode is used in production. Under-
standing electrochemical cell characteristics therefore is needed to prove and scale
this technology.

Macroscopicmodels help engineers to design, develop, and improve the efficiency
of electrochemical cells. They solve conservation equations ofmass,momentum, and
energy and help determine electrode current distribution, fluid flow, heat distribution,
and stability of the cell [3]. They also help in correlating experimental work and
understanding measurements in cells from a lab scale to a plant scale. However, they
do not predict the microstructure and plating of material on the cathode. This can
be calculated using phase field models. These phase field models predict interface
stability and depositionmorphology in the cell. In this work, we present thesemodels
in addition to proof-of-concept experiments.
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Materials and Methods

Cell Design

The cell design followed here for the macroscopic models is described in Moudgal
et al. [4]. The lab scale experimental apparatus complements the model except a
carbon anode with a Yttria Stabilised Zirconia solid oxide membrane tube [5] with
silver is used in the place of an inert anode.The carbon anode is currently beingused as
it provides higher conductivity. A new oxygen evolving porous lanthanum nickelate
(LaNiO3) electrode with comparable conductivity is currently under development.
The molten salt electrolyte used is a fluoride-based salt with a CaF2–MgF2 eutectic
with CaO, YO1.5, and SiO2. This salt was developed by Uday Pal et al. [6]. It has
been shown that silicon can be reduced using a liquid tin cathode using this salt [7].

Macro Models

The goal of themacromodels is to solve conservation equations ofmass, momentum,
and energy to gain a better understanding of the cell. The model uses COMSOL
version 5.6, and themodules used are the electrochemistrymodule, electrodeposition
module, and the fluid flow and heat transfer modules.

Phase Field Model

The phase field model solves the Cahn–Hilliard equations for cathode growth with
electric field concentration and cathode growth as described by Pongsaksawad et al.
[8]. It uses one or more field variables of C to describe the composition and differ-
entiate between the Si deposit and electrolyte in accordance with Eqs. (1) and (2)
below.

F = ∫
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where H(C) is homogeneous free energy, K is gradient penalty coefficient, and κ is
mobility.
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Fig. 1 a Diagram of the proposed process. b Experimental setup of electrochemical cell at lab
scale consisting of a stainless steel crucible

Experimental

Experiments are conducted in a standard two-electrode high-temperature electro-
chemistry setup as shown in Fig. 1. Electrodes are completely immersed in the
salt composition mentioned above, i.e., CaF2–MgF2–CaO–YO1.5–SiO2. The base
eutectic with the calcium oxide and yttrium oxide in composition by weight 45.5%
CaF2, 36.4% MgF2, 9% CaO, and 3.6% YO1.5 are mixed first and dried in an inert
environment of argon gas at 350 °C before being fused together at 1100 °C and
crushed. 5 wt.% SiO2 is added, and the salt is dried again in argon before being elec-
trolysed at 1100 °C. There is a low potential pre-electrolysis step carried out before
successive electrolysis is carried out in multiple intervals. Characterization was done
using scanning electron microscopy and energy-dispersive x-ray spectroscopy.

Summary and Conclusions

In this work, the main goal is the decarbonization of silicon production to produce
high-purity solar grade silicon at low costs. We have shown and described methods
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that can be used to achieve this primary production in a single step. Further develop-
ment and analysis of the anode and flux is currently underway. We anticipate that the
methods described can be applied to a scaled-up electrochemical cell in the future.
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