
GreenABR: Energy-Aware Adaptive Bitrate Streaming
with Deep Reinforcement Learning

Bekir Oguzhan Turkkan
University at Bu�alo

Bu�alo, New York, USA
bekirogu@bu�alo.edu

Ting Dai
IBM Research

Yorktown Heights, New York, USA
ting.dai@ibm.com

Adithya Raman
University at Bu�alo

Bu�alo, New York, USA
araman5@bu�alo.edu

Tev�k Kosar
University at Bu�alo

Bu�alo, New York, USA
tkosar@bu�alo.edu

Changyou Chen
University at Bu�alo

Bu�alo, New York, USA
changyou@bu�alo.edu

Muhammed Fatih Bulut
IBM Research

Yorktown Heights, New York, USA
mfbulut@us.ibm.com

Jaroslaw Zola
University at Bu�alo

Bu�alo, New York, USA
jzola@bu�alo.edu

Daby Sow
IBM Research

Yorktown Heights, New York, USA
sowdaby@us.ibm.com

ABSTRACT
Adaptive bitrate (ABR) algorithms aim to make optimal bitrate de-
cisions in dynamically changing network conditions to ensure a
high quality of experience (QoE) for the users during video stream-
ing. However, most of the existing ABRs share the limitations of
prede�ned rules and incorrect assumptions about streaming pa-
rameters. They also come short to consider the perceived quality in
their QoE model, target higher bitrates regardless, and ignore the
corresponding energy consumption. This joint approach results in
additional energy consumption and becomes a burden, especially
for mobile device users. This paper proposes GreenABR, a new
deep reinforcement learning-based ABR scheme that optimizes the
energy consumption during video streaming without sacri�cing
the user QoE. GreenABR employs a standard perceived quality
metric, VMAF, and real power measurements collected through a
streaming application. GreenABR’s deep reinforcement learning
model makes no assumptions about the streaming environment
and learns how to adapt to the dynamically changing conditions
in a wide range of real network scenarios. GreenABR outperforms
the existing state-of-the-art ABR algorithms by saving up to 57%
in streaming energy consumption and 60% in data consumption
while achieving up to 22% more perceptual QoE due to up to 84%
less rebu�ering time and near-zero capacity violations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys ’22, June 14–17, 2022, Athlone, Ireland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9283-9/22/06. . . $15.00
https://doi.org/10.1145/3524273.3528188

CCS CONCEPTS
• Information systems!Multimedia streaming; • Comput-
ing methodologies! Reinforcement learning; • Hardware
! Platform power issues.

KEYWORDS
video streaming, energy e�ciency, deep reinforcement learning

ACM Reference Format:
Bekir Oguzhan Turkkan, Ting Dai, Adithya Raman, Tev�k Kosar, Changyou
Chen, Muhammed Fatih Bulut, Jaroslaw Zola, and Daby Sow. 2022. Green-
ABR: Energy-Aware Adaptive Bitrate Streaming with Deep Reinforcement
Learning . In 13th ACM Multimedia Systems Conference (MMSys ’22), June
14–17, 2022, Athlone, Ireland. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3524273.3528188

1 INTRODUCTION
Global Internet tra�c continues to grow tremendously, with an
annual growth rate of 35%, and it is expected to exceed 250 Exabytes
per month in 2022 [1]. Video streaming has the largest share with
60% of this global Internet tra�c. Likewise, mobile video streaming
produced 59% of global mobile tra�c in 2017, and it is expected to
reach 79% by the end of 2022 [10]. Dynamic Adaptive Streaming
over HTTP (DASH) [2] is one of the leading video streaming tech-
nologies behind this escalating load. DASH encodes each video at
di�erent bitrates, quality levels, and resolutions; and stores these
di�erent video versions in equal-sized segments. The DASH client
uses an adaptive bitrate (ABR) algorithm, which helps to select
the most suitable representation for the next chunk based on the
dynamically changing network conditions.

Most of the existing ABR algorithms [12, 22, 27, 36, 37, 48] share
three main objectives: (1) selecting the highest bitrate available, (2)
minimizing the number of stalling events due to depleted client
bu�er, and (3) minimizing the oscillations in bitrate selections. How-
ever, the quality of experience (QoE) models designed for these
objectives do not consider the perceptual quality and hence do not
represent the actual streaming quality perceived by users. This

150

MMSys ’22, June 14–17, 2022, Athlone, Ireland Turkkan, Dai, Raman, Kosar, Chen, Bulut, Zola, Sow et al.

especially becomes signi�cant for mobile users. Due to the limited
screen size, the increase in bitrate becomes unrecognizable for the
user after a certain degree. Moreover, perceptual quality provides a
better understanding of available video representations. It enables
more energy-e�cient decisions by avoiding higher bitrates if there
is no gain in the perceived quality.

Heuristic-based ABR algorithms [36, 37, 40, 48] use speci�c
streaming parameters to create their strategies, such as client bu�er
level, recently achieved throughput information, and the recently
used video representation. They select a representation with lower
or higher bandwidth requirements based on the bu�er level or the
achieved throughput. However, these approaches rely on very re-
cent information and come short of accurately predicting future
chunks’ behavior. Learning-based algorithms [20, 27, 39] adopt dif-
ferent machine learning methodologies to learn the optimal ABR
decisions. CS2P [39] leverages Hidden-Markov Model to learn net-
work characteristics from historical data and uses the predicted
throughput values to select corresponding representations. Pen-
sieve [27] uses a policy-gradient Reinforcement Learning (RL)method
to optimize ABR decisions under various network conditions. Comyco [20]
proposes an Imitation Learning model to select video representa-
tions with expert policies. However, those approaches disregard
either video perceptual qualities or energy consumption. Moreover,
they usually require more resources for training.

Improving the energy e�ciency of ABR algorithms did not draw
the same attention as the QoE. Existing works propose hardware-
related solutions such as changing screen brightness [44] or switch-
ing o� the NIC during idle time [23].

However, these approaches do not propose a new ABR algorithm.
A context-aware model [16] was proposed to adjust the bitrate
selections depending on the device’s vibration level. EnDASH [32]
employed machine learning techniques to dynamically estimate
the optimal bu�er level and bitrate selections.

Similarly, [28] targets maximizing the QoE under a prede�ned
power budget for 360� videos. The limitations of these approaches
are explained in Section 2.

To retain the high perceptual quality while still preserving sub-
stantial power savings, we present GreenABR. Speci�cally, wemake
the following contributions:

• We propose an energy-e�cient ABR solution that enforces
intelligent decisions using Deep Q-Networks (DQN) [30] in
pursuit of high perceptual quality by avoiding rebu�ering
events and quality oscillations to reduce power consumption.

• We develop a power model to capture the power consump-
tion patterns of real video streaming sessions with di�erent
encoding parameters and video characteristics.

• We employ both real and synthetic traces to capture more
diverse network scenarios.

• We compare GreenABR with state-of-the-art video stream-
ing approaches. Our results show that GreenABR excels all
other ABRs by saving up to 57% in streaming energy con-
sumption and 60% in data consumption while achieving up
to 22% more perceptual QoE due to up to 84% less rebu�er-
ing time and near-zero capacity violations. In terms of en-
ergy e�ciency, achieved QoE per unit energy consumption,
GreenABR outperforms all by up to 47%.

The rest of the paper is organized as follows: Section 2 provides
background information and discusses the related work in this
area; Section 3 explains the GreenABR model; Section 4 presents
experimental results and compares GreenABR to other state-of-
the-art ABR algorithms; and Section 5 concludes the paper with a
discussion on future work. Appendix explains the training details.

2 BACKGROUND AND RELATEDWORK
Video streaming approaches. Video streaming over HTTP has
become the preferred way of video delivery. DASH has been one
of the leading industry standards for video streaming over HTTP
since 2012 [2]. DASH enables streaming applications to design cus-
tomized ABR algorithms for their speci�c needs. Early ABR algo-
rithms, such as Bu�er-Based (BB) [21], occupy the client bu�er level
or the available throughput level to make bitrate selections. Using
these two parameters, available bandwidth and bu�er level form the
foundation of most of the existing ABR algorithms like BOLA [37],
Festive [22], MPC [48], BOLAE [36], Throughput-based [36], Dy-
namicDash [36], and Dynamic ABR [36].

BOLA [37] prioritizes the bu�er occupancy level to avoid stalling
events and targets a minimum bu�er level throughout streaming. It
starts with the lowest available bitrate and �lls up the client bu�er
fast. After the bu�er threshold is satis�ed, it uses the available
bandwidth to select the highest available bitrate. BOLAE [36] im-
proves BOLA [37] with additional rules on the available bandwidth.
Festive [22], MPC [48], and CS2P [39] employ throughput estima-
tion techniques to decide the highest bitrate that would not cause
stalling. Dynamic ABR [36] and DynamicDash [36] dynamically
switch between bu�er-based and bitrate-based rules based on the
current bu�er level and available bandwidth.

Several advanced machine-learning methods have been applied
to address the ABR decision problems. Pensieve [27] proposes an
RL-based approach to target the overall QoE. Oboe [12] employs
self-tuning algorithms to dynamically adapt runtime parameters for
di�erent network conditions. However, those approaches model the
video quality linearly with the encoding bitrate. Similarly, Fugu [46]
builds a supervised learning model with the historical streaming
data to estimate the transfer time for a selected video chunk and
decides the optimal bitrate selection to avoid rebu�ering events.
However, for QoE measurements, it uses a standard video qual-
ity metric SSIM [49], which falls short to model real user percep-
tions [13, 17]. Lately, Comyco [20] trains its model with imitation
learning and uses the standard perceptual quality metric, VMAF,
for the QoE calculations. To generate the expert behavior, it as-
sumes full knowledge of network conditions during training and
uses dynamic programming to �nd the optimal selection for future
chunks. Although it requires fewer iterations to learn a good policy,
it is computationally expensive due to the dynamic programming
component. In addition, the needed computation resources grow
tremendously for a larger set of representations, leading to un-
avoidable scalability issues. More importantly, the above ABRs do
not consider corresponding energy consumption and can quickly
become a burden for mobile devices.

Energy-aware video streaming. Video streaming signi�cantly
impacts mobile devices’ battery life, and hardware-related solutions
are commonly employed to save power. For example, e-DASH [44]

151

GreenABR: Energy-Aware Adaptive Bitrate Streaming MMSys ’22, June 14–17, 2022, Athlone, Ireland

dynamically adjusts screen brightness with di�erent video contents
to save battery life, while e�-HAS [23] turns o� network connec-
tions when a prede�ned bu�er level is reached. Uitto et al. [41]
uses HEVC codec for video encoding to achieve similar qualities
compared with other codecs while causing less power and data
consumption. Chen et al. [16] consider both video bitrate and vibra-
tion levels to optimize their ABR algorithm. They propose to avoid
higher bitrates under high vibration levels since that may a�ect the
QoE of users. e�-HAS [23] studies user-preference history to predict
user retention based on the video content and uses lower bitrates to
stream the �rst few chunks of videos with lower user retention. The
above algorithms are tailored to speci�c use-cases [16], provided
as an additional feature [23, 44], or require hardware support [41],
thus do not achieve power savings for general purposes.

Recent work EnDASH [32] employs random forest learning to
predict the future throughput and uses RL-based methods to adjust
the optimal bu�er length with the corresponding bitrate selection.
Breitbach et al. [15] adopt a similar approach to save streaming
energy by predicting network throughput while traveling in a train
where bandwidth may be signi�cantly lower during rush hours.
Likewise, Meng et al. [28] propose an energy-aware model for
streaming 360� videos to optimize the QoE under an energy budget
decided by the user for the streaming session. These approaches
exploit the high bandwidth intervals and progressively bu�er video
chunks in advance. As a result, they save streaming energy con-
sumption but sacri�ce perceived quality with high oscillations af-
fected by frequent bu�er length or power budget adjustments. More-
over, they may waste data and power when users do not play the
entire video. QUAD [33] and DataPlanner [34] propose models to
maximize the QoE for a targeted quality level or data consumption
budget. In addition, they leverage the perceptual quality metrics
and propose solutions to improve existing ABRs.

Modeling Video Streaming Energy Consumption. An ac-
curate video streaming energy consumption model is crucial for
designing energy-e�cient ABR algorithms. Chen et al. [16] pro-
pose a linear model based on encoding bitrate for local playback
while using a quadratic function and the network signal strength
for streaming intervals with an active network channel. Herglotz
et al. [19] analyze data acquisition, video processing, display, audio
processing, and speaker components separately and propose a fea-
ture selection approach to model the combined power consumption.
They identify the display brightness, encoding bitrate, and frame
rate as the major power consumption parameters. Similarly, Yue
et al. [47] categorize streaming power consumption in CPU, dis-
play, network, and residual power. They propose a separate model
for each component for regular and 360� videos. All the above ap-
proaches target estimating the power consumption value instead
of capturing the pattern. Thus, these approaches may only work
well for the studied devices.

Limitations of existing streaming approaches. Existing ABR
algorithms share the following common limitations: (1) using a
small number of representations; (2) calculating the user QoE based
on bitrate levels; (3) assuming a linear relation between the video
quality and the encoding bitrate without considering the perceptual
quality; and (4) achieving energy savings but reducing overall QoE
or pursuing higher QoE with signi�cant energy consumption. ABR
algorithms developed with prior training like Pensieve [27] and

Oboe [12] assume only a limited number of video representations.
However, real streaming applications like Net�ix use more repre-
sentations for the served videos [7]. Therefore, learning models
adapting to di�erent representation sets are required in real-world
video streaming scenarios. In addition, policy-based models like
Asynchronous Advantage Actor-Critic (A3C) [29] used in Pensieve
is known to be sensitive to the training parameters as evaluated in
our training performance experiments in Section 4.2.4.

Encoding bitrate and perceived quality are not linearly related
when video contents, mobile devices, and distances between users
and devices are considered [13]. In this manner, targeting the high-
est possible bitrate does not necessarily increase the perceived QoE
as expected. In fact, choosing the highest possible bitrate may even
hurt the overall QoE as it may lead to stalling events under unstable
network conditions due to an insu�cient bu�er level. Moreover,
without considering the high power consumption coupled with
the high bitrate choice, streaming videos can quickly drain the
battery of mobile devices. Pensieve, Festive, Oboe, BB, BOLA, BO-
LAE, Throughput-based, and Dynamic ABR all fall in this category.
Furthermore, BB, BOLA, and MPC do not consider the oscillations
while changing bitrate levels, signi�cantly hurting overall QoE.

Addressing the aforementioned limitations of ABR approaches
and getting the balance of perceptual quality and power savings
motivate our work on GreenABR.

3 GREENABR DESIGN
GreenABR is an energy-e�cient video streaming system that takes
energy consumption, network dynamics, video quality, and other
video player measurements into consideration to reinforce high-
quality video streamingwith substantial energy savings. The overall
architecture of GreenABR is shown in Figure 1. In this section, we
discuss GreenABR design with its energy model (Section 3.1) and
the deep reinforcement learning based ABR algorithm (Section 3.2).
The reward function and video player metrics are included in Sec-
tion 3.2 while network dynamics are represented by throughput
traces in our data set (Section 4.1).

3.1 Energy Model
Design principle. The fundamental design principle of our en-
ergy model is to capture the energy consumption pattern related
to video streaming while minimizing device speci�cation in�uence.
We minimize device heterogeneity (and its impact on energy expen-
diture) by excluding baseline power consumption, which includes
the power for OS usage, CPU frequencies, memory allocations,
screen consumption, and video player’s operation power without
streaming.

Herglotz et al. [19] show that �ve essential components con-
tribute to the overall energy consumption for video streaming: data
acquisition, video processing, displaying video �les, audio process-
ing, and speaker operations. We model the �rst three components’
consumption as they are the most relevant to ABR decisions. The
audio �les are commonly provided with a single version, encoded
with a high bitrate due to its negligible �le sizes compared to video
�les. In addition, speaker power consumption is highly a�ected by
user interactions, i.e., users can adjust speaker volumes. Therefore,
we excluded these two components in our modeling work to focus

152

MMSys ’22, June 14–17, 2022, Athlone, Ireland Turkkan, Dai, Raman, Kosar, Chen, Bulut, Zola, Sow et al.

Network
dynamics

ABR agent

360P
720P

4K

Rewards

Energy
consumption

Video player
metrics

1:22/3:00 720P

Actions(§ 4.1)

(§ 3.3)

(§ 3.2)

(§ 3.3)

(§ 3.3)

… …

States

Neural Network

Client-side measurements

Figure 1: The overview of GreenABR.

… …

Bitrate

File size

VMAF
Motion rate

Resolution
Energyn

Energy1…

File size

Reciprocal
throughput

…

ɑ
β

File size in a chunk

Throughput 1

1

Data acquisition energy

Local play energy

Total
energy

ch
un
k

ch
un
k

Figure 2: In GreenABR energy model, the total video stream-
ing energy has two major contributors: local playback and
data acquisition.

on only ABR-related elements. Other human interactions such as
pausing videos, and changing screen brightness levels, can a�ect
the total energy consumption, but they are out of the scope of this
paper and excluded in the experiments. We should note that we
use the energy model’s estimations for GreenABR training while
using the real collected measurements from the power meter for
energy-saving evaluations. Details will be discussed in Section 4.2.

3.1.1 Energy Consumption Breakdown. As shown in Figure 2, we
model video streaming energy consumption in two parts: local play-
back and data acquisition. The local playback energy consumption
includes the processing and displaying video �les components. Such
breakdown makes it easy for us to independently measure each
part’s energy usage and build the corresponding models. Speci�-
cally, whenmeasuring local playback energy consumption, we store
the videos locally on the device and play them directly without
any network involvement. Similarly, to solely measure the data ac-
quisition energy consumption, we download and bu�er the videos
without playing them.

3.1.2 Local Playback Energy Consumption. Local playback energy
consumption is closely related to encoding parameters and video
characteristics, including encoding bitrate, resolution, frame rate,

Figure 3: Average local play power consumption for di�erent
encoding bitrates and resolutions. Lines are mean values
while shaded shapes correspond to the variance.

�le size, motion rate, and quality measurements (i.e., VMAF). En-
coding bitrate 1A decides the amount of video data to be processed,
while resolution AB sets the number of pixels to store each frame’s
video data. Motion rate<A re�ects the scene changes resulting in
di�erent data sizes of reference frames1. VMAF with �le size 5 B
is another indicator of video complexity. The parameters above
(1A , AB, 5 B, VMAF,<A) are included in our playback energy model,
shown in Figure 2. Frame rate decides the number of frames in
one second, which is always set by a �xed value for di�erent video
representations, thus excluded in our model.

Our measurements suggest that all the aforementioned parame-
ters a�ect power consumption, and such an e�ect is not linear to
a single parameter but intertwined by multiple factors. Figure 3
shows the local play power consumption for a video with di�er-
ent settings. The average power is highly related to resolutions.
However, even with the same resolution, the power consumption
is signi�cantly �uctuated, shown by the high standard deviations,
which indicates the compound e�ect of other parameters, such as
motion rate and �le size. Existing power models [16, 19, 23] solely
used the encoding bitrate to estimate the local playback power,
which is inaccurate. Other video characteristics such as resolution
can a�ect power consumption more signi�cantly.

Our model’s dataset is created by measuring the local playback
energy consumption of videos in several genres w.r.t di�erent set-
tings of content-related parameters (1A , AB, 5 B, VMAF,<A) in a mobile
device, Samsung Galaxy S4. The details of environment setup and
measurements are described in Section 4.1.

Training Model. We choose a regression model to build the
local playback energy model by training a feed-forward neural
network with one input layer, two hidden layers, and one output
layer, as shown in Figure 2. We use the root mean squared error
(RMSE) for our loss function:

RMSE :=
r

1
#
⌃#8=1 (?8 � >8)2, (1)

where # is the number of samples, ?8 is the predicted value, and >8
is the true observed value.

1A video contains multiple chunks. A chunk contains multiple seconds’ video infor-
mation. In each second, there is one keyframe and several reference frames.

153

GreenABR: Energy-Aware Adaptive Bitrate Streaming MMSys ’22, June 14–17, 2022, Athlone, Ireland

To capture the power pattern dynamics (i.e., percentage change),
we normalize all parameters with the maximum values in the pre-
processing (1A/1Amax, AB/ABmax, 5 B/5 Bmax, VMAF/VMAFmax,<A/<Amax).

We split the dataset randomly as 80% training and 20% testing,
and train the model until it converges with RMSE less than 0.01 that
corresponds to 7% estimation error. We use power measurements
collected with Samsung Galaxy S4 for training. To evaluate the
generalization of our model, we collect the power measurements
for the same videos with another device, Samsung XCover Pro.
Our model is accurate, with RMSE less than 0.036 (12% estimation
error) for the new device. It indicates that our model successfully
captures the power consumption pattern without additional train-
ing. We believe the slight degradation in the accuracy is due to
di�erent hardware technologies of the devices such as the screen
type, although their impact is minimized by excluding base power
consumption and pre-processing the data for power attributes.

3.1.3 Data Acquisition Energy Consumption. Data acquisition en-
ergy consumption in video streaming is related to throughput and
�le size as they decide how frequently and persistently the network
interface card is occupied for data transfer. We adopt the exist-
ing throughput-based model [38] to calculate the data acquisition
energy:

⇢30C0 := (U ⇤ C⌘�1 + V) ⇤ ⌃"8=1 5 B8 , (2)

where ⇢30C0 is the amount of energy to download a video chunk,
⌃"8=1 5 B8 is the data size of a video chunk, C⌘ is the achieved through-
put, and U and V are two constant parameters. In our experiments,
we use the recommended values [38] for TCP transfer as U = 210
and V = 28.

The above throughput-based model is suitable for video stream-
ing for two reasons. First, the throughput range for the model is
compatible with the network traces we use for the GreenABR agent.
Second, the model estimates the energy consumption with around
90% accuracy in our experiments. After the energy consumption of
the local playback and data acquisition are calculated, the summa-
tion of the two is used as the total energy consumption estimation
for a selected video chunk.

3.2 ABR Models with Deep Reinforcement
Learning

Why RL for ABR? ABR algorithms target maximizing the overall
video streaming QoE by selecting the appropriate version of video
chunks to dynamically adapt streaming environments, e.g., network
throughput, client bu�er size, power consumption. RL can tackle
this problemwell, as it embodies the same goal– intelligently taking
the desired actions in user environments to maximize the cumu-
lative reward. Furthermore, unlike supervised learning, RL-based
approaches do not make assumptions on or pre-label the network
or streaming parameters but learn by experience, which is more
�exible and labor-ease.

Solving video streaming in an RL-way. RL-based approaches
aim to learn an optimal policy by maximizing the expected cumula-
tive reward for an agent interacting with an unknown environment.
In designing an ABR algorithm with RL techniques, this corre-
sponds to selecting the correct video version that can produce the

best QoE. Consequently, QoE can be naturally treated as the re-
ward function, while network dynamics, streaming parameters,
and power consumption form the state space, and di�erent video
representations are the elements of the action space. Streaming the
entire video can be considered one episode of RL, and the set of
decisions for given states at each step/chunk is induced from the
optimal policy, which is the goal of the RL-based ABR algorithm.

Two popular learning frameworks of RL are DQN-based meth-
ods and policy-gradient-based methods such as A2C and its exten-
sions. Although policy-gradient-based methods are more general
than DQN-based models, they are typically more challenging to be
trained due to the high variance in gradient estimation [4, 18, 45].
By contrast, DQN-based approaches do not su�er from such a prob-
lem. Due to this merit, their training is typically more stable and
requires much fewer training iterations than their counterparts.
Moreover, DQN-based approaches are less sensitive to hyperpa-
rameters and changes in the action space, making their training
algorithms easy to adopt without much change. Once trained, they
can be easily adapted to di�erent client environments, i.e., mo-
bile devices. For the above reasons, we use DQN to build our ABR
agent, shown in Figure 4. The advantage of our DQN based model
over policy-gradient-based methods will be demonstrated in the
experiments.

States. For each chunk of video, GreenABR’s learning agent
takes energy consumption, network dynamics, and video player
measurements as the input state. Speci�cally, energy consumption
is the estimated value for the last chunk predicted by our power
model. For training, we use the power model estimations rather
than actual measurements since collecting power measurements
for each video is not feasible and does not serve for a general model.
Network dynamics include the network throughput and download
time for the last video chunk. Video player measurements include
the current bu�er size, the bitrate at which the last chunk was
downloaded, and the corresponding VMAF value.

Actions. In ABRs, videos are fragmented as chunks, and each
chunk has multiple representations for adjustive selections. All
di�erent representations form GreenABR’s action space. A video
representation contains the following parameters: encoding bitrate,
resolution, frame rate, and codec. Typically for the same video, all
representations share the same frame rate and codec. In our exper-
iments, we encode all videos with a frame rate of 24fps in H.264
format. Selections about encoding bitrate and resolution in our
action space are discussed in Section 4.1.

Rewards. Our QoE reward consists of quality, smoothness, re-
bu�ering, and energy consumption, de�ned as:

QoE8 := U ⇤ VMAF8 +
�
sgn (U ⇤ VMAF8 � V) + 1

2

⌫
⇤ 2U⇤VMAF8�V

�A? ⇤ AC8 � U ⇤ |VMAF8 � VMAF8�1 |

�W ⇤ ⇢8 �
�
sgn (W ⇤ ⇢8 � Z) + 1

2

⌫
⇤ 2W⇤⇢8�Z , (3)

where U ⇤ VMAF8 is the video quality, 2U⇤VMAF8�V is the quality am-
pli�er, A? ⇤ AC8 is the rebu�ering penalty, U ⇤ |VMAF8 � VMAF8�1 | is
the smoothness penalty, W ⇤ ⇢8 is the energy consumption penalty,
2W⇤⇢8�Z is the energy penalty ampli�er, 8 is the chunk number,
VMAF8 is the video multimethod assessment fusion metric [14] for

154

MMSys ’22, June 14–17, 2022, Athlone, Ireland Turkkan, Dai, Raman, Kosar, Chen, Bulut, Zola, Sow et al.

…

Last chunk throughput

Current buffer size

Last chunk bitrate

Last chunk VMAF

Last chunk download time

Last chunk energy

Actions

States

Replay m
em

ory

…

DQN Loss (Eq.4)

transitions

minibatc
h

Active network

Target network

target re
ward

with optimal !"

predicted "

update #(Eq. 5)

delayed update

Figure 4: The DQN architecture used by GreenABR.

the chunk 8 , AC8 is the total rebu�ering time while processing the
chunk 8 if stalling occurs, A? is the penalty constant for the stalling
events, and ⇢8 is the energy consumption for chunk 8 excluding
the minimum energy2. We set U = 0.05, V = 3, W = 0.001, and

Z = 2. We use two sign functions
�
sgn (U ⇤ VMAF8 � V) + 1

2

⌫
and�

sgn (W ⇤ ⇢8 � Z) + 1
2

⌫
to make sure that the quality and energy

penalty ampli�ers work only when the corresponding quality and
penalty metrics U ⇤ VMAF8 and W ⇤ ⇢8 exceed their thresholds V and
Z .

Our reward function has multiple components with di�erent
ranges of natural magnitudes. To disentangle such magnitudes in
the reward calculation and, more importantly, to ease the hyper-
parameter tuning [43], we normalize all the reward and penalty
components with constant parameters, i.e., U , W and A? . Speci�cally,
we set U = 0.05, which makes the video quality U ⇤VMAF8 range from
0 to 5 since VMAF’s range is [0, 100] [14]. Likewise, U is also applied
on smoothness penalty with an absolute di�erence in consecutive
chunks’ VMAF values. We set the �rst chunk’s smoothness penalty
as 0 since it does not have a previous chunk. For the rebu�ering
penalty, we set A? with the highest bitrate (Mbps) in the action
space. For example, with the largest encoding bitrate as 4.3Mbps
in a video representation, we set A? = 4.3. For energy penalty, we
set W as 0.001 for the normalization purpose since we use millijoule
as the energy unit, and each chunk’s energy consumption ranges
from 1000 to 4500 millijoules.

We set the quality threshold V = 3. Videos with quality levels
from 2 to 3 are considered to have fair qualities [13]. The quality am-
pli�er 2U⇤VMAF8�V rewards exponentially for fair, good, and excellent
qualities with quality levels as [2, 3), [3, 4), and [4, 5), respectively.
Encoding with high bitrates always produces high-quality videos.
However, such a relationship is not linear as shown by Figure 5. It

2The energy consumed to process a chunk throughout the whole video with minimum
settings.

Figure 5: Video perceptual quality (U ⇤ VMAF) to encoding bi-
trate in phone model measurements.

shows that video quality increases logarithmically with encoding
bitrate. Increasing encoding bitrate from 0.8 to 2.5 boosts video
quality from 3 to 4.5 (green region box), which improves human
perceptual quality. However, any further increase is not necessary
(pink box), because human eyes cannot distinguish the video qual-
ity from 4.5 to 5 [13]. However, the increment of encoding bitrate
might increase other video parameters, such as resolution, which
can signi�cantly boost energy consumption shown in Figure 3.

To avoid our model greedily choosing the highest bitrate, we
introduce the energy penalty ampli�er 2W⇤⇢8�Z , which penalizes
high energy consumption exponentially after the threshold Z . We
set Z = 2 based on our measurements. We observe that videos with
a quality level 4.5 consume 2 joules on average. Pursuing higher
quality than 4.5 with higher bitrate or resolution does not increase
overall perceptual quality but instead consumes unnecessary en-
ergy. For example, as shown by the top right shaded area in Figure 5,
aggressively choosing a bitrate higher than 2.5 Mbps with already
high video quality is undesired. Such behavior is punished expo-
nentially by our energy penalty ampli�er, which statistically guides
our model to make energy-e�cient choices.

DQN training. Our ABR agent uses a four-layer feed-forward
neural network (Figure 4) as the deep&-network (DQN) to calculate
the expected cumulative reward & (B,0) for each state-action pair
(B,0). The neural network weight parameter \ is learned from the
feedback of the client environment in the form of QoE described in
Equation 3.

Our training process is described in Algorithm 1. In each train-
ing iteration, we use the n-greedy strategy to choose an action to
balance the exploration-exploitation trade-o�s. Speci�cally, starting
from a high n value, we randomly explore the action space (Line
#6-8) with selected representation 0C . With more iterations, the n
is decayed gradually to a lower value (Line #17), which guides us
to exploit the neural network to select the action (Line #9-10), i.e.,
0C = argmax0 & (BC ,0;\). We leverage a target network &̂ to pre-
serve the previously acquired knowledge by avoiding catastrophic
forgetting [24] which may result in the model converging to a lo-
cal minimum. The target network &̂ has the same neural network
structure (Line #3) but delays the updates on the weight \̂ with
every ⇠ steps (Line #18).

Furthermore, we maintain an experience replay memory queue
D to store state transitions, which sustains the stability of our
training process [31]. To perform update of the weight parameter
\ , we randomly sample a batch of transitions B = (B 9 ,0 9 , A 9 , B 09)=9=1
from D (Line #14). With the sampled mini-batch, the model is

155

GreenABR: Energy-Aware Adaptive Bitrate Streaming MMSys ’22, June 14–17, 2022, Athlone, Ireland

Algorithm 1: DQN Algorithm with Target Network and
Experience Replay [31].
1 Initialize replay memory D to capacity N ;
2 Initialize& network with random weights \ ;
3 Initialize target network &̂ with \̂ = \ ;
4 for Each Episode do
5 while not the end of the video do
6 Select random r between 0 and 1;
7 if A < n then
8 Select a random action (representation) 0C ;
9 else
10 Select action 0C = argmax0 & (BC ,0;\) ;
11 end
12 Take action 0C and observe QoE reward AC (Equation 3 or ??) and

state BC+1 ;
13 Store transition (BC ,0C , AC , BC+1) to memory D ;
14 Sample a random batch of transitions (B 9 ,0 9 , A 9 , B09)=9=1 from D ;

15 Set~ 9 =

(
A 9 , if episode terminates at step 9 + 1,
A 9 + W&̂

⇣
B09 , argmax00 & (B09 ,00;\) ; \̂)

⌘
otherwise.

16 Perform gradient descent on 1
=

Õ=
9=1 ((~ 9 �& (B 9 ,0 9 ;\)))2 w.r.t \ ;

17 Decay n ;
18 Every⇠ steps, reset &̂ = & ;
19 end
20 end

updated periodically by minimizing the loss function:

L(\) := EB,0,A ,B0⇠B
⇥
(~ �& (B,0;\))2

⇤
, (4)

where ~ = A + W&̂
⇣
B 0, argmax00 & (B 0,00;\), \̂)

⌘
is the target calcu-

lated by summing up the current reward A and the optimal&-value
in the subsequent step. The &-value is estimated by the target
network while the action is decided by the up-to-date &-network.
Indexing transitions from B with 9 , the parameter \ is learned us-
ing gradient descent of the loss function to close the gap between
&-value predicted by the&-network and the target optimal&-value
(Line #16):

\ \ + U

=

=’
9=1

�
~ 9 �& (B 9 ,0 9 ;\)

�
r\& (B 9 ,0 9 ;\), (5)

where U is the hyper-parameter for learning rate, and ~ 9 is the
target calculated in Line #15.

4 EVALUATION
This section describes the evaluation methodology and experimen-
tal results. GreenABR, including power model and reinforcement
learning agent, is implemented in Python. Power measurements
are collected from Samsung Galaxy S4 and Samsung XCover Pro
smartphones with Android 7.1 and 11.0 operating systems.

4.1 Evaluation Methodology
Video types. In our experiments, we use the �rst three-minute
clips of three videos from three di�erent genres to collect power
data and compare the performances of di�erent ABR algorithms.
These videos are “Big Buck Bunny”, “Tears of Steel”, and “Nature”
videos in cartoon, sci-�, and documentary genres, respectively. For
all ABRs, we use the “Tears of Steel” video for training and all
videos for testing. Since the results are very similar for all genres
of videos, we did not exclude the training video from evaluations.

Table 1: Representation sets for the experiments.

Action spaces Resolution Bitrate
6 reps 10 reps 10 HD reps (Kbps)

3 3 320 ⇥ 180 150
3 3 3 320 ⇥ 180 300
3 3 3 640 ⇥ 360 750
3 3 3 768 ⇥ 432 1200
3 3 3 1024 ⇥ 576 1850
3 3 3 1280 ⇥ 720 2850
3 3 3 1920 ⇥ 1080 4300

3 3 1920 ⇥ 1080 6000
3 1920 ⇥ 1080 9000
3 1920 ⇥ 1080 12000

3 2560 ⇥ 1440 9000
3 3840 ⇥ 2160 12000

Action spaces.We encoded all videos into 12 representations, as
shown in Table 1. All representations use the same frame rate with
24fps and codec H.264, but are distinguished by di�erent resolutions
and encoding bitrates. Our representation sets are compatible with
the academic [25, 27, 40] and industrial [5, 7, 9] recommendations.

Energy data collection. In our experiments, we powered our
phones with a Monsoon power meter [6] by bypassing the internal
battery to measure the energy consumption. We played the videos
with our instrumented application based on Google’s ExoPlayer.
Speci�cally, for the tested three-minute-long videos, we encoded
them with 12 representations in table 1. Each representation con-
tains 45 (3 ⇤ 60/4) chunks with a chunk size of 4 seconds. While
playing the videos, the power meter collected the instant power
usage of the phone every 200 microseconds and streamed the logs
to the connected PC. In total, we have created 1,620 samples with
<video index, chunk index, representation index, energy consump-
tion> as our local playback energy pro�le.

To create the local play pro�le, we calculate energy consump-
tion per second by taking the mean value of the measured 5000
(106/200) power readings [11]. We then group the mean energy val-
ues into chunks, and use the summation in each group to represent
that chunk’s total consumption.

Network traces. To evaluate ABR approaches under real-world
streaming scenarios with mixed network types and wide bandwidth
ranges, our network trace benchmarks include 3G traces from HS-
DPA [3], 4G/LTE traces from Belgium [42], and the FCC broadband
traces [8] used in Pensieve and Sabre [36] simulators3. To include
non-stationary network behaviors such as temporal disconnection
and network mode switch, which are not covered by the afore-
mentioned network traces, we have produced synthetic traces to
complete our benchmarks while using similar bandwidth range. To
produce synthetic traces, we �rst randomly selected bandwidth lev-
els from prede�ned ranges, i.e., (0, 1.2], (1.2, 2], (2, 4], (4, 10], and (10,
20] Mbps every 10 seconds. During each time interval, we selected
a random throughput within the corresponding bandwidth range
every one second. With the random exploration, we were able to
capture �uctuated network conditions and changing network types.
The distribution of the network traces and their bandwidth levels
3Pensieve considers package headers while Sabre does not. To make a fair comparison,
we modi�ed Sabre code to make it consider package headers.

156

MMSys ’22, June 14–17, 2022, Athlone, Ireland Turkkan, Dai, Raman, Kosar, Chen, Bulut, Zola, Sow et al.

Table 2: Distribution of Network Traces.

Trace Bandwidth (Mbps) Distr.
Type Avg Min Max >12 Percent

3G 1.29±0.77 0.0 4.36 0% 29%
4G 31.58±13.59 0.5 64.79 90% 14%

Broadband 3.91±2.37 0.3 6.95 9% 28%
Synthetic 4.41±5.03 0.0 19.02 13% 29%

are shown in Table 2. We used fewer 4G traces since they have
less diverse throughput levels with very high bandwidth for more
than 10% of the time. We randomly selected 70% of all traces for
training for all network trace groups and used the rest for testing
ABR algorithms.

Compare with other ABR approaches. We compared Green-
ABR with state-of-the-art ABR schemes4 including bu�er based
approaches (i.e., BOLA and BOLAE), bandwidth based approach (i.e.,
Throughput-based), bu�er and bandwidth based approaches (i.e.,
Dynamic ABR, DynamicDash), and reinforcement learning based ap-
proach (i.e., Pensieve). Although QUAD and Comyco are similar in
using VMAF, the source code of QUAD is not available and training
Comyco for ten representations is not stable and causes compu-
tational explosion due to its dynamic programming component
used for its expert behavior. Similarly, [28] is not included in the
evaluations due to the signi�cant di�erences of power consumption
patterns of 360� and regular videos.

We compared the achieved QoE and power consumption of each
approach in three sets of representations. As shown in Table 1,
the �rst set contains six representations, which are out-of-the-box
actions used by Pensieve. The second set contains ten representa-
tions to show the high dynamics and broader range of real-world
scenarios. The third set also contains ten representations, including
2K and 4K resolutions with high encoding bitrates. The reason we
have two di�erent sets of 10 representations is that our Samsung
Galaxy S4 phone does not support 2K (2560 ⇥ 1440) or 4K (3840 ⇥
2160) resolutions due to its decoder limit—the maximum supported
resolution for the H.264 codec is 1920 ⇥ 1088. Our other test phone
can play 2K and 4K videos without issues. We used the �rst ten
representation set to evaluate ABRs in broader action ranges with-
out any hardware limit while using the second ten representation
set to evaluate ABRs’ practicality and generality against capacity
violations. The range of the used encoding bitrates is compatible
with industry and academic standards [5, 7, 9, 17, 25, 40].

Perceptual quality calculation. RL-based ABR models com-
monly include essential components of their design (e.g., the energy
penalty and the quality ampli�er) in their reward function and train
their models to maximize the achieved reward. They usually use
the same reward function to calculate the QoE in their evaluations.
However, ABRs trained with another reward function or ABRs
with prede�ned rules may not consider these components as part
of their QoE design. Such di�erences in QoE design may result
in misleading evaluations and unfair comparisons. Thus, a more
general QoE calculation is vital for fair evaluations.

For such a general model, we found the achieved video quality,
rebu�ering duration and frequency, oscillations in the video quality,
4All ABRs use their out-of-the-box parameters except action spaces.

Table 3: Components of QoE Model.

Component DescriptionÕ=
8=1 VMAFi Total video qualityÕ=
8=1 AC8 Total rebu�ering duration

A2 Total number of rebu�ering
eventsÕ=

8=2 (|VMAFi � VMAFi�1 |) Total smoothness changeÕ=
8=2 b (|VMAFi � VMAFi�1 |) /20c Total number of quality switches

and number of quality switches to be the dominant components
of perceptual QoE in the existing studies [17, 26, 35]. Therefore,
to compare the achieved perceptual quality of di�erent ABR ap-
proaches fairly, we developed a perceptual QoE model with these
components based on the Waterloo Streaming QoE Database III
(SQoE-III)5[17]:

QoE := U ⇤
=’
8=1

VMAFi � V ⇤
=’
8=1

AC8 � W ⇤ A2

�f ⇤
=’
8=2

(|VMAFi � VMAFi�1 |)

�` ⇤
=’
8=2
b(|VMAFi � VMAFi�1 |) /20c, (6)

where&>⇢ is the quality of experience of a video streaming session,
= is the total number of video chunks, U, V,W,f,0=3` are coe�cients
of the components listed in Table 3. As suggested in [13, 33], we con-
sider a di�erence of 20 in average VMAF values of two consecutive
chunks as a quality switch.

We developed our model by using linear regression on the SQoE-
III dataset by splitting it as 70% training and 30% testing. As sug-
gested in [17], we repeated the training for 1000 times to avoid
unbalanced distribution of data. As a result, we set U = 0.0771,
V = 1.2497, W = 2.8776, f = 0.0494, and ` = 1.4365. We evaluated
the performance of di�erent QoE calculations by leveraging the
Spearman correlation coe�cient (SRCC) as suggested in [17]. The
QoE calculation used in Pensieve achieved 0.6563, while our QoE
calculation in Equation 6 achieved 0.7845 of SRCC. It indicates
one of the best performances among the evaluated QoE models in
the SQoE-III dataset, and hence, the proposed QoE calculation is
suitable for a standard evaluation. The other ABRs we used in our
evaluations do not propose any speci�c QoE calculation method.
Our results show that leveraging VMAF as the video quality metric,
including the number of rebu�ering events and quality switches
lead to better performance to capture the perceived QoE of real
users.

We should note that GreenABR shows signi�cantly better per-
formance when we run our evaluations in Section 4 with a simpli-
�ed version of our training reward function in Equation 3, which
achieves 0.7145 of SRCC in the SQoE-III dataset. However, to avoid
any unfair comparisons, we used Equation 6 for all of our eval-
uations due to its higher association with the perception of real
users.

5SQoE-III is a large realistic dataset for DASH streaming with subjective scores. It
consists a total of 450 videos with diverse video content and distortions

157

GreenABR: Energy-Aware Adaptive Bitrate Streaming MMSys ’22, June 14–17, 2022, Athlone, Ireland

Energy consumption calculation. We measure the overall en-
ergy consumption of each ABR by summing up their local playback
energy and data acquisition energy. Speci�cally, for local consump-
tion, we query our local playback energy pro�le to get the actual
measurements for the speci�c chunk. For data acquisition consump-
tion, we use Equation 2 with the throughput and chunk size as the
inputs for speci�c network traces. We excluded mobile devices’
base energy consumption within the three-minute streaming un-
less rebu�ering events happen, prolonging the overall streaming
time with additional energy consumption. Speci�cally, without any
rebu�ering, the overall energy consumption is

=’
8=1

(⇢;8 + ⇢38 � ⇢1) , (7)

where ⇢; is the local energy, ⇢3 is the data acquisition energy, ⇢1
is the base consumption, and = is the chunk numbers (45 in our
experiments). With additional rebu�ering time as)A , the overall
energy consumption is

=’
8=1

(⇢;8 + ⇢38 � ⇢1) + ⇢1 ⇤)A . (8)

Energy e�ciency calculation. Selecting higher resolutions
requires more energy consumption while providing better QoE. We
de�ne the QoE per energy consumption as the energy e�ciency
that represents the QoE gain per unit power consumption. It enables
fair comparison of ABR decisions for the energy consumption-QoE
trade-o�.

Capacity violation calculation. Video frames can get dropped
when the video streaming process exceeds themobile device codec’s
capacity cap. When all reference frames in one second are dropped,
stuttering happens. We de�ne each stuttering event as a capacity
violation. We log the decoder outputs during the playback and
group them into video chunks by taking the number of violations.
Then, we create a reference table for capacity violations in the
form of <video index, chunk index, representation index, capacity
violation> to be used by the evaluations in Section 4.2.3.

4.2 Evaluation Results
Figures 6 and 7 show the normalized results against the highest
value in each category, including energy e�ciency, average QoE,
rebu�er time, smoothness change, energy consumption, and data
usage. Overall, GreenABR outperformed all other ABRs in terms
of energy e�ciency with the lowest energy consumption and the
smallest data usage while providing same or better QoE. Since
the energy e�ciency and energy consumption patterns are similar
for Galaxy S4 and XCover Pro, we present our results for average
energy e�ciency and energy consumption of both devices.

4.2.1 ABRs with Six Representations. GreenABR consumes the
least amount of energy while achieving the second-best QoE (only
1% degradation), as shown in Figure 6. This matches our design,
where our DQN reward function (Equation 3) considers energy
consumption and video quality while our ABR agent learned to
make balanced quality-energy trade-o�s. Such performance and e�-
ciency are also re�ected by GreenABR’s 49% to 72% less rebu�ering
time and 3% to 44% less data usage compared with others. Moreover,
GreenABR attains 11% to 28% of energy savings compared to the

other ABRs. Even though Throughput-based ABR has the second-
lowest energy consumption after GreenABR, it still consumes 11%
more energy and sacri�ces overall perceptual quality with a 21%
reduction compared with GreenABR. Overall, GreenABR achieves
17% to 29% better energy e�ciency compared to other ABRs.

GreenABR provides better energy e�ciency for XCover than
Galaxy S4. The heterogeneity of mobile devices causes the di�er-
ence. Since each device consumes di�erent base energy, the overall
local playback energy can also di�er (Equation 8) due to rebu�ering
events. Generalizing over multiple video contents is essential for
learning-based models since they may su�er from over�tting to the
training video. To evaluate how our approach generalizes, we use
only the “Tears of Steel” video for the training of our model and
include the “Big Buck Bunny” and “Nature” videos for testing. Our
experiments indicate very similar results for all three videos and
we use the average values for our evaluations.

4.2.2 ABRs with Ten Representations. Figure 7 shows that the ben-
e�t of GreenABR’s energy savings is signi�cantly enlarged in two
ten-representation sets. GreenABR saves 15% to 41% of energy con-
sumption on average for all videos with ten representations, as
shown in Figure 7a. The main driver for such energy gain is con-
suming 36% to 59% less data with 53% to 84% lower rebu�ering time.
Furthermore, GreenABR’s achieved QoE is 3% to 22% higher than
others. Such achievement is not a compromise for energy savings.
In fact, they both bene�t from our DQN agent with quality and
energy considerations. As a result, GreenABR achieves 27% to 47%
better energy e�ciency. With the inclusion of 2K and 4K resolu-
tions in Figure 7b, GreenABR achieves greater energy savings of
35% to 57% on average for both devices. In this case, GreenABR’s
achieved QoE is 1% to 22% higher than others while sustaining 34%
to 55% better energy e�ciency.

Our experiments show that exceeding the decoding capacity of
a device highly impacts energy consumption. Figure 8 presents the
total energy consumption of Galaxy S4 and XCover Pro for the two
representation sets with ten versions in Table 1. All ABRs except
GreenABR consume at least 50%more energy on average for Galaxy
S4 due to the incurred capacity violations. On the other hand, the
energy consumption of ABRs has a slight increase for XCover Pro
since it does not su�er from capacity violations. This increase is
mainly caused by the resolution di�erences in the representation
sets. It, in fact, validates our observation—aimlessly increasing reso-
lutions can rapidly deplete the battery with more video processing
(Figure 3). More details about capacity violations will be discussed
in Section 4.2.3.

Discussion: The performance degradation of Pensieve from
Figure 6 to Figure 7 is the highest, because the out-of-the-box hy-
perparameters in Pensieve are incompatible with new represen-
tation sets. We believe Pensieve’s performance can be improved
with more hyperparameter tuning, di�erent reward functions, or
larger training iterations. To validate this, we re-trained Pensieve
with the reward function in Equation 3 and named it Pensieve-E.
We compared Pensive-E with GreenABR. Even though Pensieve-E
achieved slightly better (4%) QoE than GreenABR, it increased the
energy consumption signi�cantly (27% to 45%). We never dimin-
ish the advantage of Pensieve, but we present the generalization

158

MMSys ’22, June 14–17, 2022, Athlone, Ireland Turkkan, Dai, Raman, Kosar, Chen, Bulut, Zola, Sow et al.

Figure 6: Comparison of GreenABR with other approaches with six representations. For QoE and e�ciency, the higher the
better. For other metrics, the lower the better. Average results for all videos are used.

(a) Average results for all videos with ten representations.

(b) Average results for all videos with ten representations including 2K and 4K.

Figure 7: Comparison of GreenABR with other approaches with ten representations. For QoE, the higher the better. For other
metrics, the lower the better.

performance with di�erent representation sets by using its original
training methodology.

We should also note that evaluating algorithms for di�erent
QoE models such as encoding bitrate based models can potentially
change ABRs’ QoE in Figure 7. However, such change may not
present the perceptual QoE of real users as explained in Section 4.1
and cannot helpwith their energy savings. Our experiments support
our motivation that sustainable solutions are possible for designing
ABRs when perceptual quality and energy savings are considered
to form QoE. Furthermore, when considering modern representa-
tion sets of streaming applications [5, 7, 9, 25, 27, 40], sustainable
solutions become crucial to prevent using extra power and data for
no additional QoE gain.

4.2.3 Device Capacity Violations. In this experiment, we use only
Galaxy S4 since XCover Pro does not introduce any capacity viola-
tions against our representation sets (Table 1). Figure 9 shows that
GreenABR outperforms all other ABRs by causing near-zero viola-
tions. This is expected because we intentionally trained our ABR
agent not to choose the highest con�gurations for minor quality
improvements. The other ABRs greedily pick the highest resolution
version with good network throughput but regardless of device
capacities. In fact, when stuttering events happen due to capacity
violations, users’ perceptual quality can be highly impacted. For
example, people using Galaxy S4 for video streaming have lower
perceptual quality than people with XCover Pro. Including capac-
ity violations into perceptual quality calculation for the Galaxy S4
phone can reduce the achieved QoE in Figure 7b for all ABRs but

159

GreenABR: Energy-Aware Adaptive Bitrate Streaming MMSys ’22, June 14–17, 2022, Athlone, Ireland

Figure 8: The energy consumption di�erences of Galaxy S4
and XCover Pro for di�erent representation sets.

Figure 9: The average number of capacity violations of ABRs
for all tested videos and network traces.

Figure 10: Training iteration comparison of GreenABR and
Pensieve-E for 6 and 10 representations respectively.

impacts GreenABR much less than others. We should note that
such impact is device-related, which raises the incompatibility is-
sues of all ABRs without concerning device capacities. However,
considering device speci�cations to design an ABR is not the goal
of our work. GreenABR is an energy-e�cient model which can
generally be applied to today’s video streaming scenarios in many
mobile devices.

4.2.4 Training Performance Evaluation. In this experiment, we eval-
uate the training performance of Pensieve and GreenABR in terms
of the cumulative reward and the required training epochs. To

conduct a fair comparison, we use Pensieve-E instead of Pensieve
because the former used the same reward function (Equation 3) as
GreenABR. We trained Pensieve-E for 120,000 epochs by decreasing
the entropy weight at every 20,000 epochs as recommended in the
Pensieve [27] paper. Figure 10 shows that Pensieve-E andGreenABR
learn similar cumulative rewards for both 6 and 10 representation
sets. However, Pensieve-E requires more training epochs for stable
performance, which is expected because policy-gradient-based RL
approaches have high variance and usually encounter frequent �uc-
tuations during training. After GreenABR converged to a targeted
cumulative reward of approximately 100, we �nished its training
to avoid over�tting to the training video. GreenABR requires less
than 25,000 epochs for the training and provides smoother learn-
ing than Pensieve-E, which reduces the training burden and eases
hyperparameter tuning.

4.2.5 Energy Overhead of GreenABR. In this experiment, we mea-
sure the energy overhead of GreenABR on mobile devices. By de-
sign, GreenABR is trained on the server side in advance and trans-
ferred to the client along with the MPD �le. The client is only
required to invoke the model to get the selected bitrate at every
chunk. Thus, to evaluate the energy consumption of GreenABR
on the client, we deployed the trained model to an application and
invoked it while measuring the power consumption. Using Green-
ABR incurred negligible power consumption compared with that
for video streaming, which was around 1%.

5 CONCLUSION AND FUTUREWORK
Global mobile Internet tra�c is dominated by video streaming,
mainly served by the ABR streaming protocols over HTTP. ABR al-
gorithms serve as the primary source of the user’s QoE by selecting
video representations. The selected ABR algorithm can also lead
to signi�cant power consumption di�erences and drain the mobile
device’s battery life. In this work, we proposed a deep RL-based
ABR algorithm, GreenABR, that maximizes perceived QoE while
minimizing the mobile device’s consumed energy during video
streaming. GreenABR employs a standard video quality metric,
VMAF, that aligns with perceptual quality to de�ne user QoE in
terms of the video quality, rebu�ering events, and smoothness of the
streaming. We created a new power model based on our comprehen-
sive measurements and used it for the training of GreenABR. Our
experiments show that GreenABR outperforms the tested state-of-
the-art ABRs with up to 57% saving in average energy consumption
and up to 22% more perceptual QoE improvement. In detail, Green-
ABR excels competitors with up to 60% saving in data consumption,
84% less rebu�ering, and near-zero capacity violations.

In future, we plan to improve the streaming server power e�-
ciency due to encoding, storage, and replication. We will employ
di�erent codecs, video characteristics, and perceptual quality mod-
els to dynamically set the video representations at the chunk level.
In this way, we aim to avoid unnecessary power consumption due
to a limited number of representations for every video chunk. We
plan to expand our work for a general ABR model that does not
require additional training for di�erent representation sets.

160

MMSys ’22, June 14–17, 2022, Athlone, Ireland Turkkan, Dai, Raman, Kosar, Chen, Bulut, Zola, Sow et al.

ACKNOWLEDGEMENTS
This project is in part sponsored by the National Science Foundation
(NSF) under award numbers CCF-2007829, OAC-1842054 and OAC-
1724898.

REFERENCES
[1] 2020. Cisco Visual Networking Index: Forecast and Trends, 2017-2022. Retrieved

October1, 2022 from https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/
HtwNetworkDocuments/white-paper-c11-741490.pdf

[2] 2020. DASH Industry Forum. Retrieved October 1, 2022 from https://dashif.org/
[3] 2020. DATASET: HSDPA-bandwidth logs for mobile HTTP streaming scenarios.

http://home.i�.uio.no/paalh/dataset/hsdpa-tcp-logs/
[4] 2020. Deep Q Network vs Policy Gradients - An Experiment on VizDoom with

Keras. Retrieved October 1, 2022 from https://�yyufelix.github.io/2017/10/12/
dqn-vs-pg.html

[5] 2020. Mezzanine requirements. Retrieved December 19, 2020 from https:
//videodirect.amazon.com/home/help?topicId=G202129880#G202129950

[6] 2020. Monsoon High Voltage Power Monitor. Retrieved August 19, 2020
from https://www.msoon.com/online-store/High-Voltage-Power-Monitor-Part-
Number-AAA10F-p90002590

[7] 2020. Per-Title Encode Optimization. Retrieved August 19, 2020 from https:
//net�ixtechblog.com/per-title-encode-optimization-7e99442b62a2

[8] 2020. Raw Data - Measuring Broadband America 2016. Retrieved August 19,
2020 from https://www.fcc.gov/reports-research/reports/measuring-broadband-
america/raw-data-measuring-broadband-america-2016

[9] 2020. Recommended upload encoding settings. Retrieved December 19, 2020
from https://support.google.com/youtube/answer/1722171?hl=en

[10] 2021. Cisco Visual Networking Index: Global Mobile Data Tra�c Forecast Update,
2017–2022. Retrieved October 8, 2021 from https://s3.amazonaws.com/media.
mediapost.com/uploads/CiscoForecast.pdf

[11] 2022. GreenABR: Energy Aware Adaptive Video Streaming with Deep Rein-
forcement Learning. Retrieved March 25, 2022 from https:https://github.com/
bekiroguzhan/GreenABR-MMSys22

[12] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe: Auto-
Tuning Video ABR Algorithms to Network Conditions. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (Budapest,
Hungary) (SIGCOMM ’18). Association for Computing Machinery, New York, NY,
USA, 44–58.

[13] Christos G. Bampis, Zhi Li, Ioannis Katsavounidis, Te-Yuan Huang, Chaitanya
Ekanadham, and Alan C. Bovik. 2018. Towards Perceptually Optimized End-to-
end Adaptive Video Streaming. arXiv:1808.03898 [eess.IV]

[14] Net�ix Technology Blog. 2020. VMAF: The Journey Continues. Retrieved Sep-
tember 15, 2020 from https://net�ixtechblog.com/vmaf-the-journey-continues-
44b51ee9ed12

[15] T. Breitbach, P. Sanders, and D. Schultes. 2018. Optimizing energy consumption
and user experience in a mobile video streaming scenario. In 2018 15th IEEE
Annual Consumer Communications Networking Conference (CCNC). 1–9.

[16] X. Chen, T. Tan, and G. Cao. 2019. Energy-Aware and Context-Aware Video
Streaming on Smartphones. In 2019 IEEE 39th International Conference on Dis-
tributed Computing Systems (ICDCS). 861–870.

[17] Zhengfang Duanmu, Abdul Rehman, and Zhou Wang. 2018. A Quality-of-
Experience Database for Adaptive Video Streaming. IEEE Transactions on Broad-
casting 64, 2 (2018), 474–487.

[18] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. 2004. Variance Reduction
Techniques for Gradient Estimates in Reinforcement Learning. J. Mach. Learn.
Res. 5 (Dec. 2004), 1471–1530.

[19] C. Herglotz, S. Coulombe, C. Vazquez, A. Vakili, A. Kaup, and J. Grenier. 2020.
Power Modeling for Video Streaming Applications on Mobile Devices. IEEE
Access 8 (2020), 70234–70244.

[20] Tianchi Huang, Chao Zhou, Rui-Xiao Zhang, Chenglei Wu, Xin Yao, and Lifeng
Sun. 2019. Comyco: Quality-Aware Adaptive Video Streaming via Imitation
Learning. CoRR abs/1908.02270 (2019). arXiv:1908.02270 http://arxiv.org/abs/
1908.02270

[21] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A Bu�er-Based Approach to Rate Adaptation: Evidence from a
Large Video Streaming Service. In Proceedings of the 2014 ACM Conference on
SIGCOMM (Chicago, Illinois, USA). New York, NY, USA, 187–198.

[22] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, E�ciency,
and Stability in HTTP-Based Adaptive Video Streaming with FESTIVE (CoNEXT
’12). New York, NY, USA, 97–108.

[23] S. Kim, H. Oh, and C. Kim. 2018. e�-HAS: Achieve higher e�ciency in data and
energy usage on dynamic adaptive streaming. Journal of Communications and
Networks 20, 3 (2018), 325–342.

[24] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. 2016. Overcoming catastrophic forgetting in neural networks. CoRR
abs/1612.00796 (2016). arXiv:1612.00796 http://arxiv.org/abs/1612.00796

[25] Stefan Lederer, Christopher Müller, and Christian Timmerer. 2012. Dynamic
Adaptive Streaming over HTTP Dataset. In Proceedings of the 3rd Multimedia
Systems Conference (Chapel Hill, North Carolina) (MMSys ’12). 89–94.

[26] Yao Liu, Sujit Dey, Fatih Ulupinar, Michael Luby, and Yinian Mao. 2015. Deriv-
ing and Validating User Experience Model for DASH Video Streaming. IEEE
Transactions on Broadcasting 61, 4 (2015), 651–665.

[27] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streamingwith Pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17).
Association for Computing Machinery, New York, NY, USA, 197–210. https:
//doi.org/10.1145/3098822.3098843

[28] Jiayi Meng, Qiang Xu, and Y. Charlie Hu. 2021. Proactive Energy-Aware Adaptive
Video Streaming on Mobile Devices. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, 303–316.

[29] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. 1928–1937. https://arxiv.org/abs/1602.01783

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness,
Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518 (02 2015),
529–33.

[32] A. Mondal, B. Palit, S. Khandelia, N. Pal, J. Jayatheerthan, K. Paul, N. Ganguly, and
S. Chakraborty. 2020. EnDASH - A Mobility Adapted Energy E�cient ABR Video
Streaming for Cellular Networks. In 2020 IFIP Networking Conference (Networking).
127–135.

[33] Yanyuan Qin, Shuai Hao, Krishna R. Pattipati, Feng Qian, Subhabrata Sen,
Bing Wang, and Chaoqun Yue. 2019. Quality-Aware Strategies for Optimiz-
ing ABR Video Streaming QoE and Reducing Data Usage. In Proceedings of
the 10th ACM Multimedia Systems Conference (Amherst, Massachusetts) (MM-
Sys ’19). Association for Computing Machinery, New York, NY, USA, 189–200.
https://doi.org/10.1145/3304109.3306231

[34] Yanyuan Qin, Chinmaey Shende, Cheonjin Park, Subhabrata Sen, and Bing Wang.
2021. DataPlanner: Data-Budget Driven Approach to Resource-E�cient ABR Stream-
ing. Association for Computing Machinery, New York, NY, USA, 94–107.

[35] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia. 2015. A
Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE Communi-
cations Surveys Tutorials 17, 1 (2015), 469–492.

[36] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From Theory to Prac-
tice: Improving Bitrate Adaptation in the DASH Reference Player. In Proceedings
of the 9th ACMMultimedia Systems Conference (Amsterdam, Netherlands) (MMSys
’18). Association for Computing Machinery, New York, NY, USA, 123–137.

[37] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. 2016. BOLA: Near-optimal bitrate
adaptation for online videos. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. 1–9.

[38] Li Sun, Ramanujan K. Sheshadri, Wei Zheng, and Dimitrios Koutsonikolas. 2014.
Modeling WiFi Active Power/Energy Consumption in Smartphones. In 2014
IEEE 34th International Conference on Distributed Computing Systems. 41–51.
https://doi.org/10.1109/ICDCS.2014.13

[39] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao
Liu, and Bruno Sinopoli. 2016. CS2P: Improving Video Bitrate Selection and
Adaptation with Data-Driven Throughput Prediction. In Proceedings of the 2016
ACM SIGCOMM Conference (Florianopolis, Brazil) (SIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 272–285. https://doi.org/10.
1145/2934872.2934898

[40] Babak Taraghi, Abdelhak Bentaleb, Christian Timmerer, Roger Zimmermann, and
Hermann Hellwagner. 2021. Understanding Quality of Experience of Heuristic-
based HTTP Adaptive Bitrate Algorithms. (2021).

[41] M. Uitto and M. Forsell. 2018. Towards Energy-E�cient Adaptive Mpeg-Dash
Streaming Using Hevc. In 2018 IEEE International Conference on Multimedia Expo
Workshops (ICMEW). 1–6.

[42] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over
4G/LTE Networks. IEEE Communications Letters 20, 11 (2016), 2177–2180.

[43] Hado van Hasselt, Arthur Guez, Matteo Hessel, and David Silver. 2016. Learn-
ing functions across many orders of magnitudes. CoRR abs/1602.07714 (2016).
arXiv:1602.07714 http://arxiv.org/abs/1602.07714

161

GreenABR: Energy-Aware Adaptive Bitrate Streaming MMSys ’22, June 14–17, 2022, Athlone, Ireland

[44] B. Varghese, G. Jourjon, K. Thilakarathne, and A. Seneviratne. 2017. e-DASH:
Modelling an energy-aware DASH player. In 2017 IEEE 18th International Sym-
posium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM).
1–9.

[45] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M. Bayen,
Sham M. Kakade, Igor Mordatch, and Pieter Abbeel. 2018. Variance Reduction for
Policy Gradient with Action-Dependent Factorized Baselines. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

[46] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized
experiment in video streaming. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
495–511. https://www.usenix.org/conference/nsdi20/presentation/yan "https:
//www.usenix.org/system/�les/nsdi20-paper-yan.pdf".

[47] Chaoqun Yue, Subhabrata Sen, Bing Wang, Yanyuan Qin, and Feng Qian. 2020.
Energy Considerations for ABR Video Streaming to Smartphones: Measurements,
Models and Insights. https://dl.acm.org/doi/10.1145/3339825.3391867

[48] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellular
Networks. In Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication (London, United Kingdom) (SIGCOMM ’15). Association for
Computing Machinery, New York, NY, USA, 509–522. https://doi.org/10.1145/
2785956.2787498

[49] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (2004), 600–612.

A POWER MODEL TRAINING
A.1 Abstract
The proposed power model estimates the power consumption pat-
tern for local playback component by using the normalized stream-
ing attributes of videos. The details of the training methodology
and model details are given in Section 3.1.3.

A.2 Artifact Checklist
• Algorithm: Linear Regression
• Dataset: Collected power measurements during streaming sessions
• Metrics: Root mean squared error(rmse)
• How much time is needed to complete experiments (approxi-
mately)?: Three hours

• DOI:10.5281/zenodo.6402904

A.3 Description
A linear regression model to estimate the power consumption be-
tween 0 and 1 as 1 is the highest.

A.3.1 How delivered. The dataset for the power consumption mea-
surements and the training code is available under "power_model"
folder.

A.3.2 So�ware dependencies. Below is the list of libraries needed
for training and saving the model.

• python version = 3.7.3
• Keras version = 2.3.1
• numpy version = 1.16.4
• pandas version = 0.24.2
• scikit-learn version = 0.21.2
• joblib version = 1.0.1

A.4 Installation
To install the required libraries:

python setup.py

A.5 Experiment work�ow
To train the powermodel, run the below command under "power_model"
folder.

python train.py

The script trains the model, saves it and prints the evaluation results.

A.6 Evaluation and expected result
For the training dataset, the model performs rmse less than 0.01
and for evaluation dataset it produces rmse 0.036.

B GREENABR
B.1 Abstract
GreenABR proposes an energy-aware ABRmodel designed by using
deep reinforcement learning. The training methodology and details
of the model are explained in Section 3.2.

B.2 Artifact Checklist
• Algorithm: DQN
• Dataset: Power attributes dataset and VMAF measurements
• Metrics: QoE based on Equation 3.
• How much time is needed to complete experiments (approxi-
mately)?: Eight hours

• Code licenses (if publicly available)?:BSD-2-Clause
• DOI:10.5281/zenodo.6402904

B.3 Description
GreenABR proposes energy aware ABR decisions for HTTP stream-
ing. It requires the power model to be trained in advance. It uses
the number of representations as the action space of the RL model,
thus requires separate training for six and ten representations case.

B.3.1 How delivered. All training and evaluation �les and required
measurement data are available under "GreenABR" folder in our
public code repository [11]. The training scripts are available for
each representation set separately.

B.3.2 So�ware dependencies. Below is the list of libraries needed
for training and saving the model.

• python version = 3.7.3
• Keras version = 2.3.1
• numpy version = 1.16.4
• pandas version = 0.24.2
• scikit-learn version = 0.21.2
• joblib version = 1.0.1
• matplotlib version = 3.1.0

B.4 Installation
To install the required libraries:

python setup.py

B.5 Experiment work�ow
To train GreenABR, run the below command under "rep_6" and
"rep_10" folders for the corresponding representation sets.

python GreenABR.py

162

MMSys ’22, June 14–17, 2022, Athlone, Ireland Turkkan, Dai, Raman, Kosar, Chen, Bulut, Zola, Sow et al.

The script trains the model, saves it for every 1000 iterations and
logs the average reward at each iteration. We found 9000 iterations
to be optimal with the hyperparameter values as learning rate(U)
= 0.0001, discount factor(W) = 0.99, initial n = 1.0, and n � 3420~ =
0.9995 to satisfy enough exploration during training. We set the
experience replay memory size to store the most recent 500000
steps while updating the target network at every 100 steps.

B.6 Evaluation and expected result
To evaluate GreenABR for any representation set, copy the pre-
trained model of the same representation set along with the power
model. All required source �les are provided under "evaluation"
folder. To generate the streaming logs of the tested videos for Green-
ABR:

python evaluate.py

GreenABR is compared with several SOTA models and their
streaming logs are generated by using their testing simulators [27,
36]. Results are stored under "test_results" folder for all algorithms.
To plot the graphs, run:

python create_summary_results.py
python plot_graphs.py

for each representation set under the corresponding folder.

C STANDARD QOE MODEL TRAINING
C.1 Abstract
Comparing ABRs designed for di�erent goals are not trivial and
may lead to misleading results in terms of real users perception. To
enable fair comparisons, we designed a standard QoE model based
on SQoE-III [17] dataset which is a large dataset with subjective
scores of real users.

C.2 Artifact Checklist
• Algorithm: Linear Regression
• Dataset: SQoE-III [17]
• Metrics: Spearman Correlation Score
• How much time is needed to complete experiments (approxi-
mately)?: 1 hours

• DOI:10.5281/zenodo.6402904

C.3 Description
Our model uses �ve signi�cant components described in existing
quality of experience studies for video streaming. It uses a linear
regression model to maximize the Spearman correlation score be-
tween the estimated QoE scores and the real users’ mean opinion
scores.

C.3.1 How delivered. The dataset �les and the training code are
available under "standard_qoe_model" folder.

C.3.2 So�ware dependencies. Below is the list of libraries needed
for training and saving the model.

• python version = 3.7.3
• numpy version = 1.16.4
• pandas version = 0.24.2
• scikit-learn version = 0.21.2

C.4 Installation
To install the required libraries:

python setup.py

C.5 Experiment work�ow
To train the QoE model, �nd the coe�cients:

python train.py

The script trains the model and prints the coe�cients along with
the Spearman score of the model.

C.6 Evaluation and expected result
We compared our model with proposed QoE models in Pensieve,
Comyco, and the sample model in the dataset. Our model provides
the highest score with 0.7845. To compare with other QoE models:

python compare_models.py

163

