
Original Research Article

Evaluation Review
2022, Vol. 46(3) 296–335
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0193841X221082887
journals.sagepub.com/home/erx

A Combinatorial
Optimization
Framework for Scoring
Students in University
Admissions

Lucy Shao1, Richard A. Levine2, Stefan Hyman3,
Jeanne Stronach4, and Juanjuan Fan5

Abstract
Background andObjectives: Selecting applications for college admission is
critical for university operation and development. This paper leverages
machine learning techniques to support enrollment management teams
through data-informed decision-making in this otherwise laborious admis-
sions processing. Research Design and Measures: Two aspects of uni-
versity admissions are considered. An ensemble learning approach, through
the SuperLearner algorithm, is used to predict student show (yield) rate. The
goal is to improve prediction accuracy to minimize over- or under-
enrollment. A combinatorial optimization framework is proposed to weigh
academic performance and experiential factors for ranking and selecting
students for admission. This framework uses simulated annealing, and an
efficacy study is presented to evaluate performance. Results: The proposed
framework is illustrated for selecting an incoming class by optimizing

1Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity
Science, University of California San Diego, San Diego, CA, USA
2Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
3Enrollment Student Services, San Diego State University, San Diego, CA, USA
4Analytic Studies & Institutional Research, San Diego State University, San Diego, CA, USA
5Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA

Corresponding Author:
Richard A. Levine, Department of Mathematics and Statistics, San Diego State University, 5500
Campanile Drive, San Diego, CA 92182, USA.
Email: rlevine@sdsu.edu

https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/0193841X221082887
https://journals.sagepub.com/home/erx
https://orcid.org/0000-0002-7553-4264
mailto:rlevine@sdsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0193841X221082887&domain=pdf&date_stamp=2022-04-15

predicted graduation rate and by developing an eligibility index. Each example
presents a selection process under potential academic performance and
experiential factor targets a university may place on an admitted class. R code
is provided for higher education researchers and practitioners to apply the
proposed methods in their own settings.

Keywords
ensemble learning, enrollment management, simulated annealing,
SuperLearner, yield rate

Introduction
University admissions, particularly at selective universities with larger applicant
pools, entails scoring, ranking, and selecting applicants based on student
characteristics and predictions of future success at the institution. (We refer the
reader to Rigor 2003 from the College Board Admissions Models Project,
Hossler and Bontrager 2015 for the enrollment management perspective, and
Selingo 2020 for a higher education journalist’s perspective.) At its core, a student
scoring system boils down to assigning points for behavior the university wishes
to reward in its applicants, be it academic performance or attributes. The process
is not simple as most universities have commitments and initiatives that, from a
statistical learning perspective, place constraints on the ranking system. Uni-
versities may wish to maintain a minimum level of academic prowess, have a
mission of serving local region students, award scholarships for specific student
subgroups, or aim to achieve a level of diversity, equity, and inclusion.

In this paper, we pose this admissions problem within a combinatorial op-
timization framework. The optimization problem is to maximize success for the
admitted class at the university. The optimization aims to identify a point structure
on student characteristics that maximizes success for the admitted class at the
university, while working within specified targets on the makeup of the incoming
class. By combinatorial, we are recognizing that the optimization routine must
scan over a multi-factor admission scoring of academic performance variables
and student demographics. In particular, the algorithm must search over a high-
dimensional combination of potential points to assign to each variable.

Consider the following example. Suppose we wish to rank students for
admission based on a score composed of high school GPA, number of STEM
courses taken in high school, and identifying as a first-generation college
student. We may wish to assign points for each of these three scoring model
inputs. The optimization routine scans over combinations of points on each of
these three variables, with a goal of maximizing predicted 4-year graduation
success. Our admissions process may have enrollment targets; for example,
the university may wish to produce an incoming class that consists of at least

Shao et al. 297

40% of students from the local service region and a minimum number of
admissions to a scholarship program in a local school district. These goals
need to be included in the optimization routine.

This type of optimization problem occurs across the sciences and engi-
neering, a number of algorithms proposed to quickly and efficiently explore the
space of, in our case, variable point combinations while achieving pre-specified
subgroup targets. Though a slightly older presentation, we like the exposition of
Dreo et al. 2006, presenting the core algorithms in the combinatorial optimi-
zation literature. We will focus on simulated annealing (Guilmeau et al. 2021), a
combinatorial optimization routine withwhich we have had success in statistical
decision-making. The simulated annealing algorithm is easy to code and in-
troduces a flexible randomization element to direct the computer to intelligently
jump around the space of point combinations.

Upon scoring and ranking applicants, a critical component to selecting
students for admissions is predicting the probability that each student will accept
an invite; this is called the yield rate or show rate. Poorly estimated show rates
could lead to over- or under-enrollment of target class sizes, each lending to
potentially significant costs especially in resource-constrained environments
universities often find themselves. In our combinatorial optimization scheme,
show rate prediction is crucial to satisfy the desired academic quality and
student subgroup distributions in the selection of the incoming class. Machine
learning approaches have found great success in predictive analytics problems.
In particular, ensemble learning approaches which combine predictions from a
suite of models has shown a proclivity for improving predictive performance
over a single machine learning tool. We introduce a SuperLearner algorithm (E.
C. Polley et al. 2011) for our particular application of estimating the show rate.

In the Methodological Set-Up and Literature Review section, we further
motivate the university admissions problem and briefly review the literature
on machine learning solutions. In the Methods section, we introduce our
SuperLearner show rate model and our simulated annealing algorithm for
scoring and ranking university applicants. In the Examples of Applications in
Admissions Practice section, we illustrate our combinatorial optimization
framework in two primary settings: selecting applicants relative to predicted
university graduation success and constructing an admissions scoring for-
mulation. As part of these applications, we further assess the efficacy of our
proposed approaches. In the Discussion section, we discuss the modular
nature of our optimization framework and conclude with final thoughts. For
the reader interested in more detail, in the Appendix, we present a section
evaluating the performance of our simulated annealing algorithm through a
series of simulation experiments mimicking realistic bonus point structures in
admissions processing. We also present sections with more mathematical
details on our proposed algorithms and a section with R code for putting our
methods into practice.

298 Evaluation Review 46(3)

Methodological Set-Up and Literature Review
We broadly envision university admissions in two steps: rank students relative
to the desired scoring criterion and then admit students based on an estimated
yield or show rate. These tasks each entail a machine learning process for
predicting student success (scoring criterion) and the probability a student
accepts an invite for admission (show rate), respectively.Wewill place our work
within the literature concerning these two statistical modeling endeavors.

On Admissions Modeling
Student ranking for university admissions is based on a balance of student
academic performance and experiential/environmental factors. For example, a
student is evaluated through high school measures such as high school GPA,
standardized tests (SAT, ACT, and subject-specific state or College Board
exams), successful completion of subject area courses (e.g., STEM), and
sitting for advanced placement exams. Universities also weigh regional
distribution of students (local region and in-state/out-of-state/international),
adversity measures (first-generation college students, veterans, sociodemo-
graphics, etc.), and target support programs. Concerning the latter, the College
Board previously introduced Landscape as a collection of high school and
neighborhood information for colleges and universities (cb.org/landscape,
visited on 8/10/2021). We mention the College Board’s attempts at an ad-
versity index to place these experiential factors into context. The precise
means of incorporating equity and inclusion measures in university admis-
sions scoring is a critical discussion complimentary to the proposed statistical
approaches. Our point is that upon selecting features on which to score
students for academic performance and for experiential factors, a ranking of
students for admissions may be presented as a constrained combinatorial
optimization problem within which these two measures may be objectively
balanced.

To our knowledge, there is limited literature on statistical approaches to
scoring students for admissions relative to academic performance and ex-
periential factors. A classic paper (Bruggink and Gambhir 1996) constructs a
logistic regression model to estimate the probability of acceptance using both
academic and non-academic variables, and then estimate the student’s
probability of enrollment for admitted students. Two other papers also
consider machine learning approaches for this admissions problem relative to
graduate programs. University of Texas at Austin researchers (Waters and
Miikkulainen 2013) apply logistic regression to identify strong candidates to
admit. They also consider non-subjective factors such as recommendation
letters and statements of purpose in the process. For the latter unstructured data,
they performed textmining, creating a bag of words for each text document, and

Shao et al. 299

then implemented dimension reduction via latent semantic analysis to condense
the text into a 50-dimensional variable. Northeastern University researchers
(Zhao et al. 2020) create models of quantitative student features using variants
of support vector machines that rank and score students to admit.

While a direct machine learning approach for scoring students relative to
academic performance and experiential factors is desired, our additional chal-
lenge is developing a model that prioritizes student attributes, and balancing it
with other institutional commitments. For example, a public university may be
mandated to maintain a reasonable proportion of in-state or regional students in
an incoming class. A university may have a goal of maintaining or improving
upon its diverse population. A university may also wish to balance an incoming
class’s academic performance, say summarized by an average high school GPA,
relative to experiential factors. In these situations, using statistical modeling
terminology, we must fit a model to score students subject to constraints. These
modeling constraints may be specified as, for example, the percentage of regional
students or the percentage of first-generation college students above a specified
threshold among the students ultimately accepting admission. Straightforward
application of standard machine learning tools, including logistic regression
modeling, support vector machines, and random forest, cannot impose these
constraints. Thus, we propose a simulated annealing combinatorial optimization
modular approach that can score students using a machine learning method and
features of choice while developing a scoring system under specified population
targets (modeling constraints). Relative to the previous work on graduate ad-
missions, which are aimed at smaller application pools, we develop our approach
to handle a potentially large pool of undergraduate applications.

Simulated annealing is a flexible routine for solving complex combina-
torial optimization problems, introduced in the early 1980s. Though we are
not aware of applications quite along the lines of ours where we wish to
construct a score and rank individuals (or plans or objects or systems) relative
to distributional and performance targets, applications along these lines appear
for selecting expert or recommendation systems relative to risk or cost
profiles. To give the reader an idea of the broad array of scientific applications,
we present here some recent examples. Shahandashti and Pudasaini (2019)
rank water pipe leaks susceptible to deterioration from seismic activity, under
budget constraints. Zhang et al. (2018) select a hybrid renewable energy
system with respect to energy storage, energy supply, and life-cycle cost.
Ghorbani and Jokar (2016) select inventory management solutions relative to
the supply chain which includes inventory location, routing, backlogging, and
demand. Other applications of simulated annealing include business risk
assessment (Erana-Diaz et al. 2020), network alignment in bioinformatics
(Mamano and Hayes 2017), and construction and manufacturing systems
(Benderbal et al. 2018; Piryonesi et al. 2018).

300 Evaluation Review 46(3)

On Show Rate Modeling
Many methods have been proposed for enrollment prediction. Aksenova et al.
(2006) utilize curve-fitting techniques and causal models. More recent lit-
erature utilizes machine learning classification techniques to predict enroll-
ment rates. Haris et al. (2016) introduce the enrollment prediction process and
predicted enrollment using a decision tree. Similar studies were done by Saini
and Jain (2013) and Soltys et al. (2021), though using a variety of machine
learning methods including CART, naive Bayes, k-nearest neighbors, artificial
neural networks, support vector machine, boosting, and logistic regression for
enrollment rate prediction. These works focus more on the whole cross-
industry standard enrollment prediction process for data mining; our work will
focus specifically on the methodology side.

For our show rate model, we propose to use ensemble learning techniques to
make the yield prediction. Ensemble learning combines multiple learning al-
gorithms to obtain better predictive performance than could be obtained from
any of the constituent learning algorithms alone. We will focus particularly on
SuperLearner (E. C. Polley et al. 2011), a flexible yet easy to use ensemble
learning package that has shown good predictive performance. Our develop-
ment is aimed at the practitioner with exposition of the algorithm, guidelines on
utilizing diverse learners, and R code for higher education applications.

Note that the following examples and model information are not what San
Diego State University does in practice. That said, our goal is to illustrate the
modular nature of our model structures via realistic examples, and provide
readers a general view of how they can apply the approaches in production.

Methods

SuperLearner for Show Rate Modeling
This section assumes a background in machine learning terminology. In the
appendix, we review these concepts for the interested reader.

Ensemble learning combines multiple machine learning models to improve
model stability and predictive power. These individual machine learning models are
called base learners, and the ensemble model is called the meta learner. Examples of
ensemble learning include stacking, boosting, and bagging. Contrasting with
bagging, stacking base learners are typically different and fit on the same data set.
Contrasting with boosting, stacking uses a single model (meta learner) to learn how
to best combine the predictions from the contributing models (Rokach 2019).
Stacking usually involves two levels of models: the level-0 models (base learners),
which fit on the training data and produce individual sets of predictions on testing
data, and the level-1 model (meta learner), which learns how to combine each
individual set of predictions obtained from level-0 models.

Shao et al. 301

For classification problems, ensemble learning improves accuracy over a
single classifier (Moon et al. 2007). In regression problems, the ensemble
learner may not always win; a number of approaches are available with an aim
of improving prediction accuracy. A common theme in ensemble learning is to
combine a diverse set of learners, where predictions are not too highly
correlated and the overall ensemble prediction may benefit from individual
model predictive performance (see, for example, Sagi and Rokach (2018)).

We will lean on the SuperLearner algorithm (E. C. Polley et al. 2011) and
related R package (E. Polley et al. 2021), a popular ensemble learning model.
The SuperLearner algorithm first fits individual learners through a cross-
validation routine, resulting in predictions from each individual learner for
each observation. The SuperLearner algorithm then combines these predic-
tions through weights on each individual learner as optimally determined by a
meta learner. This “ensemble” model produces the final prediction. This
model often is at least as good as the best machine learning model that is tested
(E. C. Polley et al. 2011). Algorithm 1 outlines the SuperLearner algorithm.

Algorithm 1 SuperLearner

1. Choose m base learners.
2. Randomly split data into 10 blocks (to prepare for cross-validation)
3. Do the following (k-fold cross-validation) for each base learner:
4. for do each i from 1 to 10
5. Remove the ith block of data.
6. Train m base learners on remaining nine blocks.
7. Obtain predictions for each learner on the ith (held-out) block.
8. Store the m sets of predictions for each data point.
9. Fit the meta learner: predict outcome from the m base learner

predictions.
10. Store the meta learner weights for each base learner, w1, …, wm.
11. Fit each base learner to the entire data set.
12. Obtain predictions from the full data set for each learner.
13. Combine the full data predictions using the meta learner weights w1, …,

wm to produce the final predictions.

Let us step through the details of Algorithm 1. We first choose a set of base
learners; we will discuss this choice later in this section and in our applications.
We then randomly split our training data into 10 blocks to prepare for cross-
validation, labeling the blocks from 1 to 10. The for-loop sequentially holds out
each block as an independent set for prediction purposes. At each step in the for-
loop, we train each base learner on all blocks except the held-out one. Since
every block serves as the held-out block during the training process, at the end
of the for-loop, we have a complete dataset of predictions for each of m base

302 Evaluation Review 46(3)

learners; that is, we havem sets of predictions for each observation. In line 9, we
fit a new learner, the meta learner, to predict the outcome using the set ofm base
learner predictions. A meta learner is an ensemble of the individual learners, the
ensemble prediction made by taking a weighted average of the individual
learner predictions. Ameta learner can be as simple as a linear regressionmodel,
the output regressed on each base learner prediction and the weights corre-
sponding to the regression coefficient estimates for each base learner. The final
ensemble prediction is made by first fitting each base learner to the entire data
set.We then combine these predictions using the weights in line 10 for each base
learner as obtained by the meta learner. This ensemble prediction is thus a
weighted average of our base learner predictions.

Figure 1 presents a flow chart of the SuperLearner algorithm. The graphic
color codes the key components of the algorithm: cross-validation and related
prediction (blue-green), prediction from each base learner fit to the entire data
set (orange), and link through the meta learner (yellow). For simplicity, the flow
chart depicts 10-fold cross-validation and two base learners; the algorithm may
be extended beyond those in the obvious way. In the appendix, we present a
more mathematically detailed SuperLearner algorithm for the interested reader.

The specific application of the SuperLearner for our show rate prediction is
as follows. We first fit each of them base learners to academic and experiential
variables available for modeling. We predict a show rate from each base
learner—we thus have m predicted show rates for each student. We used the
default meta learner NNLS, non-negative least squares based on the Lawson–
Hanson algorithm (Mullen and van Stokkum 2012) to combine these indi-
vidual predictions. Choice of meta learner is up to the user.

The choice of base learners comes down to a trade-off among
computational expense, predictive accuracy, and user time to code and
fine-tune. On the one hand, we can think of learner choice as a com-
binatorial optimization problem, identifying the best combination of
models for predictive performance. In practice, we have found that time
is not well spent to identify a best learner set as suboptimal combinations
work well, and much better than individual learners. In fact, in the show
rate analysis of this paper, we choose only two base learners: random
forest (Breiman 2001) and Xgboost (Chen and Guestrin 2016). Our
model trained from 2018 and 2019 produced a weight of 0.35 for the
random forest learner and 0.65 for the Xgboost learner.

Generalized Simulated Annealing for Admissions Scoring
A challenge in combinatorial optimization problems is that since the
number of states is huge and typically the objective function is complex,
the surface over which we are optimizing is bumpy. Figure 2, inspired by a
graphic in Martinez and Cao (2019), presents an illustrative, though

Shao et al. 303

simplified, graphic of a potential multi-modal objective function for which
we may wish to find the minimum. Our goal is to find the so-called global
optimum; in our case, the set of bonus points that leads to the best-
performing incoming class. However, a bumpy objective function pres-
ents potentially many so-called local optima, suboptimal points at which an
optimization algorithm can get stuck. Figure 2 presents two local minima
(with potentially the left and right edges creating problems for an opti-
mization search routine). We chose to use simulated annealing, an algo-
rithm we have applied with success and identified in the literature as having
the ability to reach the global optimum for the function that has multiple
local minimums; see Guilmeau et al. (2021) for a review and references to
the original work dating back to the 1980s.

The name “simulated annealing” presents two important components of the
algorithm for solving combinatorial optimization problems. By “simulated,”
the algorithm proposes randomly chosen states or steps in exploring the
objective function. The algorithm also randomly keeps suboptimal moves.
The “annealing” portion of the name comes from an analogy with the an-
nealing process where metals are slowly cooled to remove internal stresses
and improve ductility in the manufacturing process. The simulated annealing
algorithm parameterizes the objective function with a “temperature,” T, de-
creased (cooled) as the process narrows in on an optimum. In combination, the
algorithm is able to make potentially large and potentially suboptimal jumps
away from local optima in search of the global optima. After a period of
exploration over the objective function (iterations of the algorithm), the
temperature cooling limits these large moves allowing the algorithm to zone in
on, hopefully, the global optimum.

Figure 1. Flowchart for the SuperLearner algorithm.

304 Evaluation Review 46(3)

Figure 2 presents a simple illustration of such an exploration. Note in this
figure that the move from steps 1 to 2 presents a large jump between two
peaks, followed by a suboptimal move to step 3. This latter move allows the
algorithm to escape a potential fall down to a suboptimal region on the
left-most side of the function. The move from steps 4 to 5 is again a larger
jump between two peaks, again allowing the algorithm to escape another fall
to a suboptimal, local trough. Though this simplified illustration presents only
seven iterations, the point is that as the temperature cools, the algorithm finds
the slope down and progresses to the global minimum, steps 5 to 6 to 7. On
more complex surfaces, the algorithm could cool slower and take many more
iterations to explore the function (local peaks and valleys). Algorithm 4
presents the specifics of simulated annealing.

Algorithm 2 Simulated Annealing: maximization of objective function f(x)

1: Initialize an iteration count j = 0
2: Initialize temperature, T0, and a cooling schedule T over iterations j
3: Initialize the number of trials m over iterations j

Figure 2. Illustration of an optimization routine.

Shao et al. 305

4: Initialize a random starting point x0

5: while T j>0 do
6: Set temperature as T j and number of trials as mj

7: for i in 1:mj do
8: Choose a random step size Δ according to a visiting distribution
9: Select a new point xi = xi!1 + Δ

10: Compute the objective function difference c = f (xi) ! f (xi!1)
11: Compute probability p = exp (!c/T j)
12: If c > 0, then accept the new point xi;
13: otherwise accept xi with probability p and xi!1 with probability

(1 ! p).
14: Set current position as x0 ¼ xmj and increment j = j + 1
15: Output the final point ximin = x0 and its function value f (ximin)

The simulated annealing algorithm aims to optimize objective function
f(x). We must specify a cooling schedule, namely, how the temperature will
decrease down to zero as the algorithm explores the objective function space.
We denote this schedule as T, the temperature decreasing down to zero as the
algorithm steps through iterations counted by j. We must specify a visit count
schedule at each temperature. We denote this schedule as m where at tem-
perature T j at iteration j, we explore mj moves in search for an optimum. Both
T and m are tuning parameters; the user can specify the rate at which the
temperature cools and how many moves to make at each temperature de-
pending on how well the algorithm explores the objective function.
Algorithm 4 is presented for maximizing an objective function, f(x), say
finding the best predicted graduation rate for an admitted class. The general
process of simulated annealing is as follows. We start at a random point,
denoted as x0. We have two loops. The first loop follows iteration j which
specifies the temperature as it cools over j (while-loop at step 5) and specifies
the number of moves wemake each iteration j (for-loop step 7). At a given step
i of the algorithm, we have a current position xi!1. We randomly step away
from the current position at step 9 according to a step size Δ. If this move is in
the right direction, in that the objective function f(x) increases, we keep the
new position xi. If not, we allow for accepting the suboptimal move. We flip a
coin with probability p: if heads, we accept the suboptimal move; if tails, we
reject the new move and remain at xi!1. At iteration j, we make mj of these
moves. We then start iteration j + 1 with a new temperature T j+1 at the spot we
left off x0 ¼ xmj , and we study now mj+1 moves analogously. We keep doing
this over iterations j until the temperature has cooled down to zero.

Note that the temperature impacts the probability of a suboptimal move in
that p = exp (!c/T j). In particular, for larger temperatures, T j, we have a
higher likelihood of accepting the suboptimal move. We thus are less willing
to make these suboptimal moves as the algorithm progresses, figuring we

306 Evaluation Review 46(3)

explored the space well and are approaching the global optimum. The choice
of temperature schedule thus is made with this exploration and moves to
suboptimal values (downhill moves in the maximization process described
here) in mind. Furthermore, for each temperature, T j, we choose a visitation
schedule, mj, deciding how many moves we would like to study. Since the
temperature schedule specification is mathematically involved, we provide
details in the appendix.

Each new move is determined by a random step size Δ in step 8. The step
size Δ is randomly generated from a pre-specified visiting distribution. We
may think of this as a nearest neighbor move, where we randomly jump to a
new point xi in the neighborhood of the current position xi!1. Specification of
the neighborhood determines how big a jump we are willing to take across the
objective function f(x). There are many variations on the simulated annealing
theme. The one we will use for the admissions scoring problem is generalized
simulated annealing (GSA) (Xiang et al. 2017). GSA uses a rather flexible
visiting distribution and temperature cooling schedule, allowing for a more
thorough, yet quick, surface search for the global optimum. As such, GSA can
actually converge faster to an optimum than classical simulated annealing. In
the appendix, we provide brief mathematical details of both the classical
simulated annealing algorithm and the extension to GSA.

Examples of Applications in Admissions Practice
In this section, we present illustrations applying our machine learning
methods to estimating the yield rate and scoring university applicants. The
examples derive from our collective experiences in enrollment management
and institutional research problem-solving. But due to student privacy and
confidentiality concerns, we emphasize that these are not the processes put
into practice at San Diego State University. Our aim here is to provide the
reader realistically based scenarios for demonstration purposes, from which
our methods can be implemented for admissions practice in their own uni-
versity setting.

Show Rate Analysis
The problem we are considering is estimating the probability a student ac-
cepted for admission to a university will enroll as a first-time freshman. As
mentioned, SuperLearner, as an ensemble averaging method, estimates this
probability from a set of student characteristics over a suite of models. Table 1
presents the continuous variables we consider in this analysis. The data are
based on student cohorts entering 2018 and 2019 with high school perfor-
mance variables including grade point average (GPA) overall and in specific
subjects as well as the number of courses taken in different course groupings.

Shao et al. 307

We also consider non-academic variables of ethnicity, gender, age, and ac-
ceptance into a scholarship program. In this data set, 18% of students are from
the local service region, 59% are female, and 18% are first-generation college
students.

We use the R-package SuperLearner (E. C. Polley et al. 2011). As
mentioned earlier, we use two individual learners in this Super Learner ap-
plication: random forest and boosting. In practice, one should choose learners
by first reviewing all the available learners. Our recommendation is to choose
learners with which one is familiar, and fit individual learners first to ensure
viable predictions are made, and to tune the parameters for that specific
learner. In our application, the learners we experimented with are earth, bi-
glasso, glm, randomForest, and xgboost; each of these learners is written into
the SuperLearner R-library. When fitting all the learners of one’s choice, the
SuperLearner algorithm will shrink the weight of poorly performing learners
to zero. In our application, xgboost and random forest are the two best-
performing learners with weights greater than zero. Therefore, in the fol-
lowing results, we keep only xgboost and random forest as the base learners.

Each learner has a set of tuning parameters allowing implementation
changes to improve predictive accuracy. The practitioner can decide for

Table 1. Summaries of the continuous variables in the show rate analysis.

Average Standard Deviation Maximum

High school GPA 3.94 0.31 4.82
Age 18.47 0.46 39.60
Biology courses GPA 3.86 0.38 5.00
English courses GPA 4.04 0.83 5.00
Foreign language courses GPA 3.77 0.90 5.00
History courses GPA 4.08 0.85 5.00
Physics courses GPA 3.88 0.99 5.00
Visual performing arts courses GPA 3.26 1.53 5.00
Biology courses GPA 3.67 1.86 22.00
CPE course count 4.77 3.63 42.00
English course count 7.89 1.79 32.00
Foreign language course count 5.86 2.21 32.00
History course count 6.45 2.52 44.00
Physics course count 3.78 1.83 22.00
Visual and performing arts course count 4.16 3.46 56.00
Math course count 9.18 3.02 34.00
Math course GPA 3.77 0.83 5.00
STEM course count 17.20 4.88 56.00
College course count 0.41 1.39 23.00

308 Evaluation Review 46(3)

themselves how actively involved they wish to be in tuning parameter se-
lection; SuperLearner will apply the algorithms under default settings or the
user can manually try different tuning parameter settings with an eye on
predictive performance. For example, random forest has two primary tuning
parameters: mtry and maximum number of leaf nodes. mtry specifies the
number of features over which to make a random selection within each
decision tree node. Maximum number of leaf nodes controls the depth
(complexity) of each tree. The default value for mtry in the R package (E. C.
Polley et al. 2011) rounds up the square root of the number of variables for
classification problems. After tuning the parameters around its default value,
we have mtry set to 7 in our applications. SuperLearner itself requires
specification of the number of folds in the cross-validation scheme. There is a
trade-off: more folds may improve prediction accuracy but at a cost of
computational expense. We choose 10-fold cross-validation weighing this
trade-off in our applications.

The boosting algorithm we implement is XGBoost (Chen and Guestrin
2016). Boosting entails a sequential process: weak learners are grown using
the information from a previously grown weak learner one after the other. This
process slowly learns from the data and tries to improve its prediction in
subsequent iterations. XGBoost uses a gradient boosting framework. Gradient
boosting performs prediction by creating an ensemble of weak prediction
models. XGBoost has great flexibility as the user can tune many parameters
and create user-defined objective functions. Another difference compared to
random forest is that XGBoost incorporates tree pruning, which reduces the
redundant size of a tree to increase accuracy.

Boosting has three primary tuning parameters: the number of trees to grow
(maximum number of iterations), the learning rate labeled as eta, and reg-
ularization controls labeled as alpha and lambda. In our applications, we
set alpha and lambda to the default values of zero, that is, we do not perform
regularization. For readers interested in this tuning parameter, we provide
brief details in the Appendix. The learning rate is the shrinkage performed at
each step of the sequential learning procedure. When the learning rate is set to
a smaller value, more steps are needed for the training process. Increasing eta
speeds up the training process, but impacting prediction accuracy. A small
value of eta is usually needed for a good result when training XGBoost
models. In addition, a tree booster, like random forest, has tuning parameters
related to tree growing. The SuperLearner package (E. Polley et al. 2021) uses
the xgboost package (Chen et al. 2021), which sets the default values of the
parameters.

Our particular interest is in comparing our ensemble averaged show rate
estimate to the show rate computed through a lookup table at San Diego State
University, applied to this data. The training data is based on admitted students
from 2018 and 2019, the testing data is based on students admitted for 2020. In

Shao et al. 309

the appendix, we present the R code for a run of the SuperLearner for a show
rate analysis. Due to confidentiality of student records, we provide code to
simulate data mimicking the type of variables and output we see in practice.
We hope this structure will allow the user to substitute their own data in place
of the simulated data.

Table 2 shows the comparison of show rates of SuperLearner, the tradi-
tional show rates, and show rates predicted from each of the base learners
(random forest and xgboost) of the SuperLearner model we used. We see that
Super Learner performs the best in terms of AUC. For sensitivity and
specificity, SuperLearner tends to weigh specificity more. However, as long as
we have a better ROC curve (Figure 3), we can always adjust the threshold and
trade-offs between sensitivity and specificity. Appendix B reviews ROC curve
background concepts for the interested reader.

After the show rate is estimated for each student, we start to make ad-
mission decisions. For example, if we have ranked students according to an
admissions scoring system, we would sum the show rates down this ranked list
until the show rates add up to the targeted enrollment number. We of course
could split the population into student subgroups, say, based on majors, or
scholarship programs, or athletics.Within each subgroup, we can use the show
rate similarly, controlling the number of admitted students in that subgroup.
The next critical piece then is a system for scoring and ranking students for
admission.

Scoring University Applicants
The problem we are considering is to rank students relative to academic
performance but potentially constrained by enrollment targets in student
subgroups. We approach this problem by adding points to the admissions
score for these subgroups. The challenge then is identifying an appropriate
point structure. Our proposed algorithm is modular in that the user can specify
how to score academic performance. In this section, we will show three
possible options: ranking students via predicted graduation rate, an eligibility
index created from high school grade point average (GPA) and SATscore, and

Table 2. Comparison of show rates estimated using SuperLearner and those
traditionally used by the university.

Sensitivity Specificity AUC

SuperLearner 0.66 0.78 0.81
Traditional show rate 0.72 0.61 0.72
Random forest 0.68 0.76 0.80
Xgboost 0.71 0.72 0.80

310 Evaluation Review 46(3)

an academic performance score. Again, we emphasize that these are not
practices in place at San Diego State University, but illustrations of our
methods for a range of admissions processes and decision-making.

Likewise, our proposed algorithm can handle student subgroup enrollment
targets, as long as we can represent the constraints in the optimization routine.
For illustration purposes, in this section, we are thinking of a school that has
the following population targets: incoming class has say 35% of students from
the local service region, 20% first-generation college students, and 20% of
students having received free- or reduced-price meals in high school (we will
be varying these percentages in the applications). These factors represent
targets we see in admissions processes, that is, for example, public institutions
with a mission to enroll local area students, a university’s goal to maintain a
diverse student population, and equity efforts in the admissions process with
respect to schools in less privileged neighborhoods, respectively. The opti-
mization problem is thus admitting the best class possible with respect to
academic performance score, subject to these three targets on experiential
factors. Since we are working with an admissions scoring system for ranking
students, we include bonus points for local students, first-generation students,
and students receiving free- and reduced-price meals in high school. It is over
these bonus points that the simulated annealing algorithm is looking to op-
timize, while maintaining the imposed targets (so in the example here, 35%,
20%, and 20%, respectively).

The final piece is the so-called objective criterion over which we are
optimizing. As mentioned, we will consider different outcome measures in
each subsection for illustration purposes. In these applications, we consider
admissions for a cycle based on Fall 2018, for which we have that year’s
student rankings and admissions decisions. In practice, the admission process

Figure 3. ROC curve for show rates estimated with SuperLearner for the 2018
cohort.

Shao et al. 311

typically involves a massive amount of manual labor, fine tuning student
selection to balance academic performance and the distribution of experiential
factors. We thus motivate our algorithms as well as present an automated
approach, optimizing academic performance (the objective function value)
relative to targets on experiential factors (the objective function parameters).
While we do not recommend using the method as a black box, our algorithm
produces a student ranking and presents an admission scoring point structure,
enabling enrollment management staff the ability to rapidly determine the
academic strength of its applicant pool without manually reviewing each
application.

From a quality-control perspective, we would like our automated approach
to maintain a similar admission selection to this Fall 2018–based data. We thus
choose to maximize the rank correlation between the 2018 student perfor-
mance score without bonus points and the 2018 student performance score
with bonus points. That is to say, we use rank correlation to minimize the
difference between the new academic performance score with experiential
factor targets (bonus points) and the original academic performance score
actually used in 2018. More specifically, the Spearman’s rank-order corre-
lation is defined as

Γ ¼
Pn

i,j¼1

!
rj ! ri

"!
sj ! si

"

Pn
i,j¼1

!
rj ! ri

"2

for n students, where ri and si are the ranks of two columns of data: student
ranking via our scoring system with bonus points and the actual 2018 student
ranking, respectively.

Algorithm 3 Simulated Annealing objective function f(x) for admissions
scoring

1. Pass in the bonus points (x) for current iteration of the simulated annealing
algorithm.

2. Pass estimated show rates from the SuperLearner algorithm.
3. Calculate the rank correlation of (admissions score) and (admissions score

+ bonus points).
4. Rank students according to (admissions score + bonus points).
5. Admit students using the show rates to hit target enrollment.
6. Weight the admitted students by show rate and calculate the target feature

percentages
7. If the feature percentages meet the set targets, return the rank

correlation.
8. If the feature percentages fail to meet the set targets, return 0.

312 Evaluation Review 46(3)

Algorithm 3 presents the basic structure of the objective function we are
aiming to optimize in our admissions applications. The objective function is
computed for a set of bonus points fed from the simulated annealing al-
gorithm: we call it x here. The admissions score is a number computed from
academic performance measures for each student. As the admission scoring
depends on the application, we will detail the specific formulation in each of
the three application subsections below in this section. The objective
function runs an admissions cycle, ranking students on this admissions score
with bonus points and selecting admits relative to the estimated show rates.
The function then determines if with this set of bonus points creates an
incoming class that maintains the enrollment targets (feature percentages;
for example, 35% local students and 20% first-generation students). If the
targets are satisfied, the function returns the rank correlation to the simulated
annealing algorithm; if the targets are not satisfied, this is a failed point
structure and is no longer considered in the optimization process (return a
value of zero).

We use the R package GenSA (Xiang et al. 2013) to implement the
generalized simulated annealing algorithm. The package requires coding
the function over which we optimize. The function must, for a given set of
bonus points, return a value for the objective criterion, in our case rank
correlation. This function is fed as a parameter into GenSA so that the
simulated annealing algorithm can scan the space of bonus points for the
“optimal” set. Let us summarize the process for the specific application
here. For a given set of bonus points, we rank students with respect to our
admissions scoring. We estimate the show rates using the SuperLearner
algorithm of the Methods section. We then admit students by adding up the
show rates of the ranked students to achieve a desired target enrollment
number. We compute the feature percentages: in this section, percentage
local, first-generation and free- and reduced-price meals. These feature
percentages are computed by the enrollment-rate–weighted mean over all
admitted students; so here, the show rates are utilized again. If all the feature
percentages meet the set targets, return the rank correlation between the
actual student performance score without bonus points and the student
performance score with bonus points; otherwise, return zero (as an indicator
that the targets are not met).

Graduation Rate as the Academic Performance Metric. In the application of this
subsection, we consider the graduation rate as the academic performance
measure for ranking students. For incoming students, we predict graduation
rate through a logistic regression model on features available to us (see Table
1). We add bonus points for students in the local service region, first-
generation college students, and students receiving free- and reduced-price
meals in high school. These bonus points are fit to obtain constraints relative to

Shao et al. 313

these three factors. We consider four target scenarios (see Table 3). We
minimize the rank correlation from ranking students based on graduation rate
with the bonus points and without bonus points.

Tables 3 and 4 present the optimal bonus points determined relative to the
targets in each of the four scenarios. As expected, we see that for higher target
percentages, we have larger bonus points. Nonetheless, average high school
GPA and SAT scores in these classes are all similar, maintaining academic
strength across the scenarios. These results also show great flexibility in the
simulated annealing algorithm, as the model is able to identify different bonus
points for various targets and various features.

Formulating the Eligibility Index. Many universities have an admissions scoring
formula used for ranking students or establishing minimum qualifications for
entry. For example, up until Fall 2021 admissions, the California State
University system used a so-called eligibility index (EI) being 800 × HS GPA
+ SAT score. Our simulated annealing algorithm can be used to choose the
weights for such scoring formulas over a specified set of inputs.

Here, with EI inputs high school GPA and composite SATscore, we use our
proposed simulated annealing to determine the weight for high school GPA.
To do this, the academic performance score is a logistic regression model of
successful graduation outcome on GPA and SAT. After obtaining the proper
weights for high school GPA and SAT score, we calculate the academic
performance score by combining high school GPA and SAT score using those
weights. The rest of this analysis follows the same as that in the Graduation
Rate as the Academic Performance Metric section. The optimal EI presents a
weight of 350 on high school GPA. Tables 5 and 6 present the bonus point and
factor percentages for the three factors of local students, first-generation
students, and students receiving free- and reduced-priced meals, analogous to
the results presentation of the Graduation Rate as the Academic Performance
Metric section.

Table 3. Graduation rate: Four scenarios, targets 1–4, of incoming class enrollment
targets on percentage of local students, first-generation college students, and students
receiving free- and reduced-priced meals in high school, respectively. The table
presents the bonus points for each factor obtained by the simulated annealing algorithm
ranking students on graduation rate and optimizing rank correlation.

Local First generation Free-reduced priced meals

Target 1: 35%, 20%, 20% 5.94 2.84 4.15
Target 2: 40%, 15%, 15% 17.68 0.13 0.00
Target 3: 45%, 20%, 20% 28.70 0.00 0.00
Target 4: 40%, 25%, 20% 18.72 1.71 2.58

314 Evaluation Review 46(3)

Academic Performance Scoring
In this subsection, we illustrate an admissions process ranking students on an
academic performance score involving more features than the eligibility index
of the previous subsection. Similar to the last subsection, we fit a model on
graduation rate to predict the eligibility index. The difference is that we
incorporate other academic and student background features listed in Table 1,
not just high school GPA and SAT score. The rest of this analysis follows the
same procedure as the last subsection.

In our application pool based on 2018 admissions data, if we use the actual
student performance score, we would have enrolled 27.1 percent local stu-
dents, 15.7 percent first-generation students, and 11 percent of students having
free- reduced price meals in high school. The first targets we set are 35%, 20%,
and 20% (Target 1), respectively. Table 7 presents the bonus points for each
feature. These bonus points provided the best rank correlation of our new
ranking with the actual one used in 2018, but increases the features by 11.3
percentage points for local students, 11.2 percentage points for first-generation
students, and 9 percentage points for students receiving free-and-reduced
price meals in high school; the average high school GPA reduced by only 0.01
points. See Table 8 for these summaries. We also experiment with other
targets, analogous set-up details and results shown in Tables 7 and 8. In each
of these cases, the simulated annealing algorithm identifies a bonus point
structure that achieves the targets while maintaining incoming class academic
performance.

Table 4. Graduation rate: Four scenarios, targets 1–4, of incoming class enrollment
targets on percentage of local students, first-generation college students, and students
receiving free- and reduced-priced meals in high school, respectively. The table
presents the percentages for each category, average high school grade point average, and
average composite SAT score for the incoming class when no bonus points are given,
and under the bonus points found by the simulated annealing algorithm and presented
for each scenario.

Without Target 1 Target 2 Target 3 Target 4

— Bonus pts — — — —

% Local 27.1 38.4 41.8 45.3 42.5
% First-generation 15.7 26.9 21.9 26.8 26.6
% Free-reduced priced meals 11.0 20.0 15.4 20.3 20.2
Avg HS GPA 3.85 3.84 3.84 3.83 3.84
Avg pred grad rate 92.3 91.9 91.8 91.7 91.3
Avg SAT score 1266 1239 1244 1231 1235

Shao et al. 315

Table 5. A New Eligibility Index: Using the simulated annealing algorithm to identify
an academic performance score: graduate rate = SAT score + c ×HSGPA; c is found to
be 350. The table then presents bonus points under four scenarios, targets 1–4, of
incoming class enrollment targets on percentage of local students, first-generation
college students, and students receiving free-and-reduce priced meals in high school,
respectively.

Local First generation Free-reduced priced meals

Target 1: 35%, 20%, 20% 178.93 6.21 215.54
Target 2: 40%, 15%, 15% 207.06 21.94 100.87
Target 3: 45%, 20%, 20% 305.35 0.31 187.61
Target 4: 40%, 25%, 20% 235.22 109.84 157.09

Table 6. A New Eligibility Index: Percentages for each of three factor categories,
average high school grade point average, and average composite SAT score for the
incoming class when no bonus points are given, academic performance is determined
by the formula SAT + 350 × HS GPA found by the simulated annealing algorithm, and
academic performance is determined by the original CSU EI SAT + 800 × HS GPA.

Without Target1 new EI Target1 old EI

— Bonus pts — —

% Local 24.3 37.1 38.4
% First-generation 13.6 20.7 26.9
% Free-reduced priced meals 9.3 15.0 20.0
Avg HS GPA 3.82 3.83 3.84
Avg pred grad rate 92.5 91.4 91.3
Avg SAT score 1288 1270 1240

Table 7. Academic Performance Score: Four scenarios, targets 1–4, of incoming class
enrollment targets on percentage of local students, first-generation college students,
and students receiving free- and reduced-priced meals in high school, respectively. The
table presents the bonus points for each factor obtained by the simulated annealing
algorithm ranking students on an academic performance score and optimizing rank
correlation.

Local First generation Free-reduced priced meals

Target 1: 35%, 20%, 20% 183.67 189.17 248.58
Target 2: 40%, 15%, 15% 293.90 60.76 87.03
Target 3: 45%, 20%, 20% 343.83 157.45 252.56
Target 4: 40%, 25%, 20% 283.69 154.89 254.29

316 Evaluation Review 46(3)

Discussion
In this paper, we present a combinatorial optimization framework via sim-
ulated annealing for scoring university applicants. As part of the scoring
system, and to select the ranked students for admissions, we introduce an
ensemble learning scheme through the SuperLearner algorithm to predict the
yield or show rate for admitted students.

The algorithms we developed are modular in nature. Enrollment man-
agement units may select their desired student characteristics for inputs into
the admissions process. These inputs may span the gamut of academic
performance metrics, school district–specific information, neighborhood or
regional factors, student participation in programs (e.g., volunteer hours), and
student demographics. Universities also collect text data on applicants, for
example, student personal statements and letters of recommendation. These
texts may be scored by readers or processed through text mining tools, the
quantifications being additional inputs. Likewise, model constraints may be
formulated by enrollment management units based on enrollment targets and
admission programs. Metrics of student success must also be determined as
output over which the scoring system is optimized. Of note, there is literature
on computing student performance measures that may be used as output, for
example, see Mengash (2020). As use of such data for admissions decisions
are often mandated by university systems and state governments, this paper
focuses specifically on the methods and algorithms, leaving choice of student
attributes (inputs), enrollment targets (model constraints), and performance
metrics (outputs) as pre-specified parameters entered into the optimization
framework.

Table 8. Academic Performance Score: Four scenarios, targets 1–4, of incoming class
enrollment targets on percentage of local students, first-generation college students,
and students receiving free- and reduced-price meals in high school, respectively. The
table presents the percentages for each category, average high school grade point
average, and average composite SAT score for the incoming class when no bonus
points are given, and under the bonus points found by the simulated annealing
algorithm and presented for each scenario in the table.

Without Target 1 Target 2 Target 3 Target 4

— Bonus pts — — — —

% Local 27.1 38.4 41.8 45.3 42.5
% First-generation 15.7 26.9 21.9 26.8 26.6
% Free-reduced priced meals 11.0 20.0 15.4 20.3 20.2
Avg HS GPA 3.85 3.84 3.84 3.83 3.84
Avg SAT score 1266 1240 1245 1231 1235

Shao et al. 317

The algorithms developed require setting so-called tuning parameters. In
the simulated annealing algorithm, the user specifies a temperature schedule
directing the random jumps around the space of points for student scoring. The
user also may specify the number of proposal point combinations explored at
each temperature. We use default settings within the generalized simulated
annealing R package applied. Nonetheless, the user has the flexibility to set
these tuning parameters to achieve a desired convergence, in terms of speed
and accuracy, to the optimum. In the SuperLearner algorithm, the user
specifies the suite of base learners over which the ensemble prediction is
made, the meta learner used to combine the base learner predictions into an
ensemble prediction, and potentially tuning parameters for each base learner.
The trade-off to consider is user and computational time, to select the options
for and then run SuperLearner, and predictive accuracy. In our applications,
we did not find the gain in prediction accuracy to warrant time spent on fine
tuning the algorithm. We thus recommend a simple SuperLearner application
with a handful of base learners at most, and default settings for the base
learners. Nonetheless, the user has the flexibility to make these decisions
toward improving prediction of show rates.

Perhaps of utmost importance in applying our methods is data curation and
data quality control. As specific examples, during the course of our enrollment
applications, we realized a potential target leaking problem. Data from a
student’s high school senior year, or more typically latter half of the senior
year, is not available for admissions decisions made in winter or early spring.
However, historical records of students already attending the university may
be overwritten with student high school transcript updates the summer before
they enter the university. Enrolled students thus present a different set of data,
which in turn leaks information about their enrollment choice. Training data
and testing data are thus not consistent leading to erroneous predictions of
show rate and/or over-confidence in the accuracy of show rate predictions.
Policy changes, at the school district, government, and/or university level may
also lead to unexpected changes in historical data and potential challenges in
training and testing phases. On another front, demographics may not be
collected at the student-level. For instance, one may have access only to the
percentage of students at a high school that receive free- and reduced-price
meals. All students from a given high school share the same data point on this
variable. And often in practice, a number of student demographic variables are
self-reported, lending to potential biases and inaccuracies. Of course, as
universities perform deeper analyses for data-informed decision-making, data
pipelines will be developed for automated, accurate data processing at a fine-
grain level. That said, these data issues should always be kept in mind as data
is curated for analyses.

A reviewer queried how the complexity of different inputs, in combination
with the complexity of different enrollment targets, may impact the quality of

318 Evaluation Review 46(3)

the output in our approach. Colleges, universities, and university systems are
hiring data science experts for their administrative teams. In fact, demand for
such analytics expertise is being seen broadly across industry, not limited to
higher education institutions. These individuals can take the framework and R
code we posit and directly adapt it to scoring and yield rate models in an
admissions cycle. A colleague made an analogy with sabermetrics, how
baseball teams are increasingly using predictive models and analytics to make
personnel and on-field strategy decisions. A similar data-informed decision-
making “revolution” is occurring in higher education. Nonetheless, the
question remains on how much technical effort is needed for a given ranking
and selection problem. On the one hand, with the ever-increasing quantity and
breadth of data collected on students, and evolving university enrollment
goals, machine learning scoring models and combinatorial optimization
routines as we put forth at the least provide a first pass on assessing features to
predict student success. On the other hand, as the reviewer correctly suggests,
future research needs to consider the ramifications of complex system inputs
and constraints, and compare performance gain relative to the implementation
effort.

Appendix A

Simulation Experiment: Evaluating the Efficacy of the
Proposed Simulated Annealing Approach for
Admissions Scoring
In this section, we wish to evaluate the performance of the simulated annealing
algorithm we propose for solving the constrained combinatorial optimization
problem presented by the admissions scoring problem. For this purpose, we
set up a simulation experiment where we simulate data knowing the points
assigned for student attributes. We then study whether an application of our
approach to this simulated data successfully identifies these true point
structures. We note the potential confusion in two uses of the word “simu-
lation” here. This section is a simulation experiment where we are generating
data under a known process. In this way, we know what the solution to the
constrained optimization problem should be and thus can determine if our
proposed methods work correctly. Simulated annealing is the name of the
combinatorial optimization algorithm we use to solve this admissions scoring
problem. The simulated annealing algorithm includes a step where randomly
sized jumps are made around the objective function, as it searches for the
optima. We are also sensitive to the concern that investigators often have
different population features they want to balance out, so we experiment with
varying population features and compare the results.

Shao et al. 319

For the data-generating process, we simulated 1000 students and examined
different population features. For the first scenario, we examined two pop-
ulation features: local status and first-generation college student status. We
assume that in the population of applicants, 17% are local and 22% are first-
generation college students. Our goal is to enroll 40% local and 30% first-
generation students for the incoming class. Without loss of generality and for
simplicity sake, we assume the show rates of all applicants are the same and
equal to 0.25.

In the first simulation experiment, we set the true bonus point for a local
student to be 15 and for a first-generation college student to be 5. The data
generation process is as follows:

1. Generate student admission scores (including bonus points) uniformly
from 0 to 100.

2. Select the final admission pool as students with admission score ≥ 80;
record the number of admitted students to be the target admission
number.

3. Randomly select students to be local (probability, 0.1) and first-
generation college students (probability, 0.2) for students that are
not in the final admission pool. Randomly choose students to be local
(probability, 0.4) and first-generation college students (probability, 0.3)
for students that are in the final admission pool.

4. Remove bonus points from the student admission scores (subtract 15
points from local students and 5 points for first-generation college
students).

5. Set show rates for all students to be 0.25.
6. Run the simulated annealing process to identify appropriate bonus

points for each of the two features.
7. Repeat Steps 1–6 one hundred times

Step 4 creates a data set without bonus points to feed into the simulated
annealing algorithm. Our proposed method, if working correctly, should from
this data set successfully identify the true point structure of 15 points for local
students and 5 points for first-generation college students, and recover the true
admission pool from Step 2. We initialize the simulated annealing algorithm
with bonus points of 20. There will be variation across simulated data sets so
we run the simulation experiment 100 times; that is, generate 100 data sets of
1000 students each. Figure 4 presents a distribution of the admission score and
the two features for the simulated data set for scenario 1. Figure 5 presents the
results over these data set replications, showing that our proposed method
captures the true bonus points. The average of the local student bonus point is
15.3, and the average of the first-generation college student bonus point is 5.8,
across the 100 simulated data sets. Looking at the variation over the simulated

320 Evaluation Review 46(3)

data sets, the average bias is within 1 point and the standard deviation is within
1 point. We note that the smaller the population feature difference between the
target percentage and the true population percentage, the less accurate the
bonus point optimization. In this simulation, we set an admissions pool target
of 30% first-generation college students while the population has 20%
generation; this could lead the simulation annealing algorithm to be less
accurate.

In the second scenario, we have three features: local students, first-
generation college students, and free-and-reduced lunch indicator. The ac-
tual bonus points are set to be 15 for local students, 5 for first-generation
college students, and 10 for students receiving free-and-reduced lunch. Figure
6 presents a distribution of the admission score and the three features for the
simulated data set for scenario 2. Figure 5 shows the results of this experiment

Figure 4. Simulation data illustration for scenario 1. The admissions scores are the
initial scores without the bonus points. The red line identifies the admission cut-off
score of 80.

Shao et al. 321

across 100 simulated data sets. The average bonus points across the data set
replications is 16.4 for local students, 6.9 for first-generation college students,
and 11.6 for students receiving free-and-reduced lunch; the average bias is
within 2 points and the standard deviation is within 2 points. We note that
adding more population features may lead to variations in the simulated
annealing process making the simulated annealing algorithm less accurate.

In the third scenario, we include five features to examine the admission
structure we proposed. As there are more bonus points, we need to expand the
range of the admission score. The data generation process is as follows:

1. Generate student admission scores (including bonus points) uniformly
from 75 to 200.

2. Select the final admission pool as students with admission score ≥ 140;
record the number of admitted students to be the target admission
number.

3. Randomly select student characteristics relative to each of the five
features: for students that are not in the final admission pool use the
probabilities 0.1, 0.2, 0.1, 0.1, and 0.1, respectively; for students that
are in the final admission pool use the probabilities 0.4, 0.3, 0.2, 0.25,
and 0.3, respectively.

4. Remove bonus points from the student admission scores (subtract 15,
5, 10, 10, and 20 for each of the five features, respectively).

5. Set show rates for all students to be 0.25.

Figure 5. Simulation experiment results for assessing performance of the simulated
annealing algorithm in scenarios one, two, and three, from left to right. Each graphic
presents a box plot of the bonus points identified by the simulated annealing algorithm
over 100 simulated data sets of 1000 students each. The black line in each box is the
median, and the average and standard deviation of the optimal bonus points found
across the simulated data sets is presented above the box plot. In each graphic, the
true bonus point for each feature is presented by the horizontal red line. For scenario
one, the true bonus points are 15 for local students and five for first-generation
college students; for scenario two, the true bonus points are 15 for local students, five
for first-generation college students, and 10 for students receiving free-and-reduced
lunch; for scenario three, the true bonus points are 15, 5, 10, 10, and 20 for features
one through five, respectively.

322 Evaluation Review 46(3)

6. Run the simulated annealing process to identify appropriate bonus
points for each of the five features.

7. Repeat Steps 1–6 one hundred times.

Figure 7 presents a distribution of the admission score and the five features
for the simulated data set for scenario 3. Figure 5 again presents the results
from the experiment over 100 simulated data sets of 1000 students each. The
graphic shows that the simulated annealing algorithm captures the correct
bonus points on average, with small standard deviations on each.

Appendix B

Machine Learning Background
In the Methods section, we elude to a number of concepts and techniques
currently common in analytics work-ups: machine learning models, classi-
fication and regression problems, training/testing, and cross-validation.

Figure 6. Simulation data illustration for scenario 2. The admissions scores are the
initial scores without the bonus points. The red line identifies the admission cut-off
score of 80.

Shao et al. 323

Within these concepts are ideas of supervised and unsupervised learning,
overfitting and underfitting, input data, output data, out-of-bag sample, and
ROC curve. In this Appendix section, we provide machine learning back-
ground for the interested reader.

Machine learning models include supervised learning and unsupervised
learning. A supervised learning algorithm teaches a computer to make pre-
dictions for future observations based on historical data (training data). A
model is just a mathematical function fit to data using algorithms. Algorithms
are predefined steps that take data (in our case, student characteristics and
academic performance) as input and then transform it into outputs (predic-
tions) through mathematical operations. There are an overwhelmingly large
number of machine learning methods/algorithms available to the practitioner;

Figure 7. Simulation data illustration for scenario 3. The admissions scores are the
initial scores without the bonus points. The red line identifies the admission cut-off
score of 140.

324 Evaluation Review 46(3)

for example, the statistical learning textbook by James et al. (2021) presents
multiple approaches, which in itself is just touching the surface. That said,
each algorithm will have distinct advantages and disadvantages, in processing
inputs into predictions.

Classification problems entail classifying subjects into a binary 0/1 out-
come or into categories. Regression problems entail predicting a continuous
outcome. Predictive performance in either problem setting typically weighs
challenges in overfitting and underfitting the input data. Overfitting occurs
when a model does not successfully pull signal from noise, following input
details for the given training data set too closely. On the other end, underfitting
occurs when a model does not learn enough of the pattern in the training data.
In each case, the model will poorly predict output for an external, independent,
or new set of inputs, the overfit model capturing too much training data noise,
the underfit model unsuccessfully capturing the training data signal.

Evaluation of a learner typically involves a training and testing process.
The goal is to build or train our model on historical data where the true outputs
are known and used in the model fitting; this is the training data set. We then
evaluate the model fit on an independent testing data set. We also need to know
the outputs in the training data set to assess model predictions against the truth;
this is called model validation. The testing set is thus thought of as a targeted
future prediction set. However, the testing set is always assumed to be un-
known during the learning process so we can mimic the real-world problem as
much as possible when evaluating the predictive performance. Ideally, we
have two independent data sets to work with for training and testing. For
example, in our analysis, our training set is based on historical student in-
formation from 2018 and 2019, and our testing set includes all the students
from 2020 for which we want to predict the show rate. The testing set error rate
is typically more reliable than the training set error rate.

In practice, we often have a single data set and thus create training and
testing sets by splitting the data. We can randomly split the data set or use so-
called cross-validation. The SuperLearner algorithm uses cross-validation.
Generally speaking, K-fold cross-validation first divides the data into K
groups and then takes one group as the testing data set and the other K ! 1
groups as the training data. We often call the small group of 1/K of the data as
the “out-of-bag (held-out) sample” as it is removed from and independent of
the learning/training process. The cross-validation routine then loops through
each of the K groups in turn as testing data. Cross-validation is potentially
computationally intensive as we ultimately train K models. However, the
routine is easily run in parallel over the K groups, and at the end, we have
predictions, independent of the learning process, for each observation.

We assess the performance of the SuperLearner fit using ROC curves and
area under the ROC curve (AUC). In classification problems, the prediction
model must classify a success or failure (1/0 outcome), in our case, whether a

Shao et al. 325

student shows or not. This classification is typically done by setting a
probability cut-off; for example, if the probability of showing is greater than
0.5, we declare that the student will show (outcome of 1). However, a 50–50
cut-off may not be the best for predictive accuracy. To assess the impact of the
cut-off, we present an ROC curve, which plots the sensitivity (probability of
correctly classifying students as showing) and specificity (probability of
correctly classifying a student as not showing) over show probability cut-offs
from zero to one. The area under the ROC curve (AUC) quantifies predictive
performance: the larger the area, the closer we are to perfect sensitivity and
specificity and thus the better the prediction. A random guess (coin flip) has an
AUC of 0.5 and a perfect prediction has an AUC of 1.

Appendix C

Mathematical Description of the
SuperLearner Algorithm
Denote the learning data set Xi = (Yi,Wi), where Yi is the outcome variable and
Wi the p-dimensional set of covariates. Denote L the library of algorithms {L1,
L2, …, LK(n)} Denote the predicted response bΨkðW Þ where W is the set of
p-dimensional covariates.

Algorithm 4 SuperLearner

1. procedure SuperLearner (L, X, W)
2. Fit each Lk 2 L on X to estimate bΨkðW Þ.
3. Perform a V-fold cross-validation, denote the T(v) to be the vth training

data split and V(v) the vth validation data split.
4. For vth fold, fit each algorithm on training data T(v) and save the

prediction on V(v), denote the expected loss fitted on T(v) and calculated on
V(v) bΨk,TðvÞðWV ðvÞÞ where WV ðvÞ ¼ Wi :XiεVðvÞ.

5. Create a V by K matrix Z= fbΨk,TðvÞðWV ðvÞÞ,v ¼ 1,…V ,k ¼ 1,,,Kg

6. let mðzjaÞ ¼
PK

k¼1
αk bΨk,TðvÞðWV ðvÞÞ,αk ≥ 0,

PK

k¼1
αk ¼ 1 where α is a k

dimensional weight–vector

7. Solve bα ¼ argminα
Pn

i¼1
ðYi ! mðzijαÞÞ2

8. Return the final prediction vector αk bΨkðW Þ

326 Evaluation Review 46(3)

Appendix D

Mathematical Description of Simulated Annealing for
Combinatorial Optimization
Let temperature function at iteration j to be T j = α(T j), where α is a decreasing
function to zero. Denote mj = β(mj!1) the number of iterations at each
temperature, it should be large and increasing in j. Denote the learning data set
Xi = (Yi,Wi), where Yi is the outcome variable andWi the p-dimensional set of
covariates. Denote the predicted response f(x).

In classical simulated annealing (SA), the visiting distribution is a Gaussian
distribution (a local search distribution) for each temperature. It has been
observed that this distribution is not optimal for moving across the entire
search space. Generalized simulated annealing (GSA) was developed to
overcome this issue by using a distorted Cauchy–Lorentz visiting distribution
(Xiang et al. 2017), with its shape controlled by the parameter qv

GqvðΔxðtÞÞ}
#
TqvðtÞ

$! D
3!qv

"

1þ ðqv ! 1Þ ðΔxðtÞÞ2

½TqvðtÞ'
2

3!qv

1
qv!1þ

D!1
2
:

A generalized metropolis algorithm is used for the acceptance probability

pqa ¼ min
n
1,½1! ð1! qaÞβΔE'

1
1!qa

o
:

The temperature TqvðtÞ is decreased according to

TqvðtÞ ¼ Tqvð1Þ
2qv!1 ! 1

ð1þ tÞqv!1 ! 1
:

When qv = 1 and qa = 1, GSA resorts to the classical simulated annealing.
When qv > 2, GSA converges faster than SA and is also able to escape from a
local optimum more easily than SA. In the R package GenSA, the default
value of qv and qa are set to 2.62 and !5 (Xiang et al. 2013).

Shao et al. 327

Appendix E

A Little More on XGBoost
Asmentioned in the Examples of Applications in Admissions Practice section,
XGBoost is a very flexible boosting algorithm. One of the advantages of
XGBoost, compared to random forest, is regularization, a technique used to
avoid overfitting. Regularization is turned through parameters alpha and
lambda. These regularization terms help control overfitting. Alpha controls
the L1 regularization, and lambda controls the L2 regularization. In other
words, alpha tries to estimate the median for regularization, and lambda tries
to estimate the mean for regularization. Another difference is that alpha
eliminates unwanted features, but lambda only shrinks the importance of that
unwanted feature to a very small coefficient. If one is interested in tuning these
parameters, the process is usually as follows. The range of alpha and lambda is
zero to infinity. When tuning alpha and lambda, always start with 0 and add
up. A value of 20 is considered an extremely high value of the regularization
constant. The idea is that when the training and testing cross-validated
prediction results are very similar, the model may be overfit and the
values of alpha or lambda should be cut down, say by 10% or 20%.

If a user is experiencing poor performance, the overall tuning parameter
strategy usually follows the following structure. We first choose a small eta of
0.1, and then use cross-validation to select the optimal number of trees to grow
while keeping all other parameters as default. We then perform a grid search on
the remaining booster parameters. After obtaining the best booster parameters
over this grid search, we can tune the regularization constants (alpha and
lambda). At last, we adjust eta, the learning rate, to guarantee the efficiency of
our model. As stated in the Examples of Applications in Admissions Practice
section, a lower learning rate improves prediction accuracy at the cost of greater
computational expense. A suggested strategy is to choose eta as small as
possible during training. Complete details can be found at (Saraswat n.d.).

Appendix F

R Code

Listing 1 SuperLearner Sample Code
#################

Setting up an example of data to feed into the model.
All variables simulated, # but we give specific variable names

328 Evaluation Review 46(3)

we may see in practice for illustration.

Make sure to install packages before
calling individual learners.
Libraries used:
SuperLearner
ranger
xgboost
pROC
################

gender=rbinom(n=1000,prob=0.4,size=1)
local=rbinom(n=1000,prob=0.1,size=1)
first_gen=rbinom(n=1000,prob=0.1,size=1)

admit=rbinom(n=1000,prob=0.2,size=1)
APS=rnorm(n=1000,mean = 3000, sd=500)
APS[APS>4000]=4000
Enroll=rep (0,1000)
Enroll[admit==1]=rbinom(n=sum(admit==1),prob=0.5,size=1)

dat=as.data.frame(
cbind(gender,local,first_gen,admit,Enroll,APS))

train=dat [1:500,]
test=dat [501:1000,]
preds=c(“gender”, “local”)
y <! as.numeric(train[,“Enroll”])

ytest <! as.numeric(test[,“Enroll”])

x <! subset(train,select=preds, drop = FALSE).
xtest <! subset(test, select=preds, drop = FALSE)

#check and see what individual learners are available
listWrappers ()
library(“SuperLearner”)
library(“ranger”)
library(“xgboost”)

Call to SuperLearner
x: covariates
y: outcome (for our application,
whether a student accepts admission)
Fit model with training set
m=SuperLearner(y, x, family=binomial(),

SL.library=list(“SL.ranger”, “SL.xgboost”))

Shao et al. 329

Make predictions for the test set
predictions <! predict.SuperLearner (m,

newdata=xtest, onlySL = TRUE)

Store predictions to compute the show rate
test$show_rate=predictions$pred

#roc, auc, confusion matrix codes.

library(pROC)
myroc=roc(predictor=(predictions$pred), response=(test$Enroll),auc= TRUE)
plot(myroc,main=” New Show Rates ROC curve”)
myroc$auc

Confusion matrix and AUC ROC analysis
best_thresh=coords(myroc, “best”, “threshold”,

transpose = TRUE)[1]
cm < ! confusionMatrix(as.factor (

ifelse(predictions$pred>=best_thresh,1,0)),
cm

Listing 2 Simulated Annealing Sample Code
#################
Setting up an example of data to feed into the model.
All variables simulated, # but we provide labels to coincide with
variables we may see in practice for illustration.

Make sure to install needed packages
Libraries used: GenSA
################

par1=c(200,200,200)#starting point
lower=c(0,0,0)#bonus point lower bound.
upper=c(200,200,200)#bonus point upper bound

summary(train$APS) #academic performance score
test$fake_admit=0 #the variable to store admission decision.
targets=200 #suppose we want to admit 200 people.
feature_targets=c(0.3,0.3,0.3)
x=c(1,1,1)
feature_vectors=test[,c(“gender”,“local”,“first_gen”)].

Minimize_rank_difference= function(x) {
test$fake_admit=0

#new academic performance score

330 Evaluation Review 46(3)

y=test$APS+unlist(rowSums(feature_vectors∗x))
test$fake_admit=0
n=nrow(test)

compute error rate
error=!abs(cor.test (y, test$APS,

method = “spearman”)$estimate)
i=1
while(sum(test$showrate [test$fake_admit==1]) < targets){.

test$fake_admit [order(y, decreasing = TRUE)][i]=1
i=i+1
}

perc_local=sum(test$fake_admit [test$local==1] ∗
test$show_rate[test$local==1]) /.
sum(test$fake_admitast test$show_rate)

perc_first=sum(test$fake_admit[test$first_gen==1] ∗
test$show_rate[first_gen==1]) /
sum(test$fake_admit∗test$show_rate)

perc_gender=sum(test$fake_admit [test$gender==1] ast
test$show_rate[test$gender==1]) /
sum(test$fake_admit∗test$show_rate)

#average_GPA=(sum(train$Hsgpa [train$fake_admit==1] ast
train$showrate.y[train$fake_admit==1]) +
sum(ott [ott$Period==20184 & ott$Enroll==1,]$local)) /
(sum(targets)+
nrow(ott[ott$Period==20,184 & ott$Enroll==1,]))

#use show rate to compute
#the percentage for enrolled student
#weighted proportion

if(perc_local<feature_targets [1] vert
perc_first<feature_targets[2] vert
perc_gender<feature_targets[3]){

error=0
}

error

}

tol <! 1e!13

Shao et al. 331

library (GenSA)
out <! GenSA(lower = lower, upper = upper,

fn = Minimize_rank_difference,par=par1,
control=list(maxit=10, verbose=TRUE))

out [c(“value”,“par”,“counts”)]

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research,
authorship, and/or publication of this article: This work was supported by the NSF
grant 1633130.

References

Aksenova, S., Zhang, D., & Lu, M. (2006). “Enrollment Prediction through Data
Mining.” In 2006 IEEE International Conference on Information Reuse & In-
tegration, Waikoloa, HI, USA, 16–18 Sept. 2006, 510–515. https://doi.org/10.
1109/IRI.2006.252466.

Breiman, L. (2001). “Random Forests.” Machine Learning, 45, 5–32. https://doi.org/
10.1023/A:1010933404324.

Bruggink, T. H., & Gambhir, V. (1996). “Statistical models for college admission and
enrollment: A case study for a selective liberal arts college.” Research in Higher
Education, 37(2), 221–240. http://www.jstor.org/stable/40196173.

Chen, T., & Guestrin, C. (2016). “Xgboost: A scalable tree boosting system.” Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, New York, NY, USA, August 2016, 785–794, Association
for Computing Machinery. https://doi.org/10.1145/2939672.2939785.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Li, Y. (2021).
Xgboost: Extreme Gradient Boosting [Computer Software Manual]. Retrieved
from https://CRAN.R-project.org/package=xgboost (R package version 1.4.1.1.

Dreo, J., Siarry, P., Petrowski, A., & Taillard, E. (2006). Metaheuristics For Hard
Optimization. 1st ed. Springer.

Erana-Diaz, M. L., Cruz-Chavez, M. A., Rivera-Lopez, R., Martinez-Bahena, B.,
Avila-Melgar, E. Y., & Heriberto Cruz-Rosales, M. (2020). “Optimization For
Risk Decision-Making Through Simulated Annealing.” IEEE Access, 8,
117063–117079. https://doi.org/10.1109/ACCESS.2020.3005084.

Ghorbani, A., & Akbari Jokar, M. R. (2016). “A hybrid imperialist competitive-
simulated annealing algorithm for a multisource multi-product location-routing-
inventory problem.” Computers & Industrial Engineering, 101, 116–127.

332 Evaluation Review 46(3)

https://doi.org/10.1109/IRI.2006.252466
https://doi.org/10.1109/IRI.2006.252466
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://www.jstor.org/stable/40196173
https://doi.org/10.1145/2939672.2939785
https://CRAN.R-project.org/package=xgboost%20(R%20package%20version%201.4.1.1
https://doi.org/10.1109/ACCESS.2020.3005084

Guilmeau, G., Chouzenoux, E., & Elvira, V. (2021). “Simulated Annealing: A Review
And A New Scheme.” In SSP 2021 - IEEE Statistical Signal Processing
Workshop, Brazil, 11–14 July 2021.

Haddou Benderbal, H., Dahane, M., & Benyoucef, L. (2018). “Modularity Assessment
In Reconfigurable Manufacturing System (Rms) Design: An Archived Multi-
Objective Simulated Annealing-Based Approach. The International Journal of
Advanced Manufacturing Technology, 94, 729–749.

Haris, N. A., Abdullah, M., Hasim, N., & and Rahman, F. A. (2016). “A Study On
Students Enrollment Prediction Using Data Mining. In: Proceedings of the 10th
International Conference on Ubiquitous Information Management and Com-
munication, Da Nang Vietnam, 4–6 January, 2016, 1–5. https://doi.org/10.1145/
2857546.2857592.

Hossler, D., & Bontrager, B. (2015). Handbook Of Strategic Enrollment Management.
Jossey-Bass.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction To Sta-
tistical Learning. 2nd ed. Springer.

Mamano, N., & Hayes, W. B. (2017). Sana: Simulated Annealing Far Outperforms
Many Other Search Algorithms For Biological Network Alignment. Bio-
informatics, 33, 2156–2164.

Martı́nez, C. M., & Cao, D. (2019). Integrated Energy Management For Electrified
Vehicles. In Ihorizon-enabled energy management for electrified vehicles, edited
by C. M. Martinez, & D. Cao. Butterworth-Heinemann. 15–75. Retrieved from
https://www.sciencedirect.com/science/article/pii/B9780128150108000028
doihttps://doi.org/10.1016/B978-0-12-815010-8.00002-8.

Mengash, H. A. (2020). Using Data Mining Techniques To Predict Student Perfor-
mance To Support Decision Making In University Admission Systems. IEEE
Access, 8, 55462–55470. https://doi.org/10.1109/ACCESS.2020.2981905.

Moon, H., Ahn, H., Kodell, R. L., Baek, S., Lin, C.-J., & Chen, J. J. (2007). Ensemble
Methods For Classification of Patients For Personalized Medicine With High-
Dimensional Data. Artificial Intelligence in Medicine, 41, 197–207.

Mullen, K. M., & van Stokkum, I. H. M. (2012). nnls: The lawson-hanson algorithm
for non-negative least squares (nnls) [Computer software manual]. Retrieved
from https://CRAN.R-project.org/package=nnls (R package version 1.4).

Piryonesi, S. M., Nasseri, M., & Ramezani, A. (2019). Resource Leveling In Con-
struction Projects With Activity Splitting And Resource Constraints: A Simulated
Annealing Optimization. Canadian Journal of Civil Engineering, 46, 81–86.
https://doi.org/10.1139/cjce-2017-0670.

Polley, E., LeDell, E., Kennedy, C., & van der Laan, M. (2021). Superlearner: Super
Learner Prediction [Computer Software Manual]. Retrieved from https://CRAN.
R-project.org/package=SuperLearner (R package version 2.0-28).

Polley, E. C., Rose, S., & van der Laan, M. J. (2011). Super learning. In Targeted
learning: Causal inference for observational and experimental data, edited by M.
van der Laan, & S. Rose. NY: Springer Science and Business. pp. 43–66.

Shao et al. 333

https://doi.org/10.1145/2857546.2857592
https://doi.org/10.1145/2857546.2857592
https://www.sciencedirect.com/science/article/pii/B9780128150108000028%20doi%20https://doi.org/10.1016/B978-0-12-815010-8.00002-8
https://www.sciencedirect.com/science/article/pii/B9780128150108000028%20doi%20https://doi.org/10.1016/B978-0-12-815010-8.00002-8
https://doi.org/10.1109/ACCESS.2020.2981905
https://CRAN.R-project.org/package=nnls%20(R%20package%20version%201.4)
https://doi.org/10.1139/cjce-2017-0670
https://CRAN.R-project.org/package=SuperLearner%20(R%20package%20version%202.0-28)
https://CRAN.R-project.org/package=SuperLearner%20(R%20package%20version%202.0-28)

Rigor, G. W. (2003). Admissions Decision-Making Models. College Entrance Ex-
amination Board.

Rokach, L. (2019). Ensemble learning. 2nd ed. World Scientific.
Sagi, O., & Rokach, L. (2018). “Ensemble learning: A survey.” WIREs Data Mining

and Knowledge Discovery, 8(4), e1249. https://doi.org/10.1002/widm.1249.
Saini, P., & Kumar Jain, A. (2013). “Prediction using Classification Technique for the

Students’ Enrollment Process in Higher Educational Institutions.” International
Journal of Computer Applications, 84, 37–41.

Saraswat, M. (n.d.) Beginners tutorial on xgboost and parameter tuning in r. Accessed
2021. https://www.hackerearth.com/practice/machine-learning/machine-learning-
algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/.

Selingo, J. (2020). Who gets in and why-a year inside college admissions. Scribner.
Shahandashti, S. M., & Pudasaini, B. (2019). “Proactive Seismic Rehabilitation

Decision-Making For Water Pipe Networks Using Simulated Annealing.” Natural
Hazards Review, 20. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000328.

Soltys, M., Dang, H., Reilly, G. R., & Soltys, K. (2021). “Enrollment predictions with
machine learning.” Strategic Enrollment Management Quarterly, 9(2), 11–18.

Waters, A., & Miikkulainen, R. (2013). “Grade: Machine Learning Support For
Graduate Admissions.” Proceedings of the 25th conference on innovative ap-
plications of artificial intelligenceBellevue, Washington, 14–18 July, 2013. Re-
trieved from http://nn.cs.utexas.edu/?waters:iaai13.

Xiang, Y., Sylvain, G., & Florian, M. (2017). “Generalized Simulated Annealing.” In
Computational optimization in engineering, paradigms and applications, edited
by H. Peyvandi. SI: IntecOpen. 25–46.

Xiang, Y., Sylvain, G., Suomela, B., & Hoeng, J. (2013). “Generalized simulated
annealing for efficient global optimization: the GenSA package for R.” The R
Journal, 5(1), 13–28. Retrieved from https://journal.r-project.org/archive/2013/
RJ-2013-002/index.html.

Zhang, W., Maleki, A., Rosen, M. A., & Liu, J. (2018). “Optimization with a simulated
annealing algorithm of a hybrid system for renewable energy including battery
and hydrogen storage.” Energy, 163, 197–207.

Zhao, Y., Lackaye, B., Dy, J. G., & Brodley, C. (2020). “A quantitative machine
learning approach to master students admission for professional institutions.
Paper presented at the International Conference on Educational Data Mining
(EDM), MA, 10–13 July, 2020.

Author Biographies

Lucy Shao is a Ph.D. student in Biostatistics at the University of California,
San Diego. Previously, she worked at Analytic Studies & Institutional Re-
search at San Diego State University on student learning and institutional
operation. Currently, her research focuses on causal inference and high-di-
mensional statistics. Lucy received an M.S. in Statistics from UC San Diego.

334 Evaluation Review 46(3)

https://doi.org/10.1002/widm.1249
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000328
http://nn.cs.utexas.edu/?waters:iaai13
https://journal.r-project.org/archive/2013/RJ-2013-002/index.html
https://journal.r-project.org/archive/2013/RJ-2013-002/index.html

Richard A. Levine is Professor of Statistics at San Diego State University and
Faculty Advisor overseeing the Statistical Modeling Group in SDSU Analytic
Studies & Institutional Research. He is former Chair of the SDSU Department
of Mathematics and Statistics and past Editor of the Journal of Computational
and Graphical Statistics. He is Associate Editor for Statistics of the Notices of
the American Mathematical Society and is a fellow of the American Statistical
Association. Professor Levine received his Ph.D. in Statistics from Cornell
University.

Stefan Hyman is the Associate Vice President for Enrollment Management.
In this role, he provides data-informed oversight on enrollment, retention and
graduation to support both student and institutional success. He works col-
laboratively with campus partners to set and meet enrollment targets, and to
execute the university’s enrollment management goals. Stefan received his
Bachelor’s in Musical Studies from the State University of New York College
at Potsdam, and his Master’s and Ph.D. (ABD) in Musicology from Stony
Brook University.

Jeanne Stronach is an experienced and effective higher education leader with
20 years of experience in institutional research. Specializing in successful
team-building with internal and external partners, innovative resource
management and effective strategic planning. Achievements include building
self-service visualizations to support data-informed decision-making as well
as spearheading a cross-divisional Data Champions program to build data
community and boost data literacy. Jeanne earned her M.A. at DePaul
University.

Juanjuan Fan is a Professor of Statistics and Data Science in the Department
of Mathematics and Statistics, and serves as a Faculty Advisor at the Analytic
Studies & Institutional Research (ASIR), at San Diego State University. Her
research interests include survival analysis, decision trees and random forests,
and observational study data. Working with her students and collaborators,
she has published many papers assessing student success studies and solving
various problems in educational data mining. Professor Fan received her
Ph.D. in Biostatistics from the University of Washington.

Shao et al. 335

	A Combinatorial Optimization Framework for Scoring Students in University Admissions
	Introduction
	Methodological Set-Up and Literature Review
	On Admissions Modeling
	On Show Rate Modeling

	Methods
	SuperLearner for Show Rate Modeling
	Generalized Simulated Annealing for Admissions Scoring

	Examples of Applications in Admissions Practice
	Show Rate Analysis
	Scoring University Applicants
	Graduation Rate as the Academic Performance Metric
	Formulating the Eligibility Index

	Academic Performance Scoring

	Discussion
	Appendix A
	Simulation Experiment: Evaluating the Efficacy of the Proposed Simulated Annealing Approach for Admissions Scoring
	Appendix B
	Machine Learning Background
	Appendix C
	Mathematical Description of the SuperLearner Algorithm
	Appendix D
	Mathematical Description of Simulated Annealing for Combinatorial Optimization
	The temperature Tqv(t) is decreased according to
	Appendix E
	A Little More on XGBoost
	Appendix F
	R Code
	Listing 1 SuperLearner Sample Code
	Listing 2 Simulated Annealing Sample Code
	Declaration of Conflicting Interests
	Funding
	References
	Author Biographies

