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Abstract

Zhang, Lin, Jegelka, Sra, and Jadbabaie [1] introduce a method for minimizing
Lipschitz functions with an efficiency guarantee of O(ε−4). Their method is
a novel modification of Goldstein’s classical subgradient method. Their work,
however, makes use of a nonstandard subgradient oracle model and requires the
function to be directionally differentiable. Our first contribution in this paper is
to show that both of these assumptions can be dropped by simply adding a small
random perturbation in each step of their algorithm. The resulting method works
on any Lipschitz function whose value and gradient can be evaluated at points of
differentiability. Our second contribution is a new cutting plane algorithm that
achieves better efficiency in low dimensions: O(dε−3) for Lipschitz functions and
O(dε−2) for those that are weakly convex.

1 Introduction

The subgradient method [2] is a classical procedure for minimizing a nonsmooth Lipschitz function
f on Rd. Starting from an initial iterate x0, the method computes

xt+1 = xt − αtvt where vt ∈ ∂f(xt). (1)

Here, the positive sequence {αt}t≥0 is user-specified, and the set ∂f is the Clarke subdifferential [3,
4],

∂f(x) = conv
{
lim
i→∞

∇f(xi) : xi → x, xi ∈ dom(∇f)
}
.

In classical circumstances, the subdifferential reduces to familiar objects: for example, when f is
C1-smooth at x, the subdifferential ∂f(x) comprises of only the gradient∇f(x), while for convex
functions, it reduces to the subdifferential in the sense of convex analysis.

For functions f that are weakly convex — a broad class of functions first introduced in English
in [5] — the limit points x̄ of the subgradient method are known to be first-order critical, meaning
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0 ∈ ∂f(x̄). Recall that a function f is called ρ-weakly convex if the quadratically perturbed function
x 7→ f(x) + ρ

2∥x∥
2 is convex. In particular, convex and smooth functions are weakly convex [6].

Going beyond asymptotic guarantees, finite-time complexity estimates are known for smooth, convex,
or weakly convex problems [7–14].

Modern machine learning, however, has witnessed the emergence of problems far beyond the
weakly convex problem class. Indeed, tremendous empirical success has been recently powered by
industry-backed solvers, such as Google’s TensorFlow and Facebook’s PyTorch, which routinely
train nonsmooth nonconvex deep networks via (stochastic) subgradient methods. Despite a vast body
of work on the asymptotic convergence of subgradient methods for nonsmooth nonconvex problems
[15–19], no finite-time nonasymptotic convergence rates were known outside the weakly convex
setting until recently, with Zhang, Lin, Jegelka, Sra, and Jadbabaie [1] making a big leap forward
towards this goal.

In particular, restricting themselves to the class of Lipschitz and directionally differentiable functions,
[1] developed an efficient algorithm motivated by Goldstein’s conceptual subgradient method [20].
Moreover, this was recently complemented by [21] with lower bounds for finding near-approximate-
stationary points for nonconvex nonsmooth functions.

While a significant breakthrough in both result and technique, one crucial limitation of [1] is that their
complexity guarantees and algorithm use a nonstandard first-order oracle whose validity is unclear in
examples. To elaborate, their algorithm requires the following oracle access: given x, u ∈ Rd solve
the auxiliary convex feasibility problem:

find g ∈ ∂f(x) subject to ⟨g, u⟩ = f ′(x, u). (2)

The first issue with this oracle is that no general recipe exists for representing the full subdifferential
∂f(x) analytically, and evaluating even an arbitrary element of the subdifferential can be highly
non-trivial [22, 23]. Moreover, ∂f(x) could be a very complicated set, e.g., for a deep ReLU neural
network, the subdifferential is a polyhedron with a potentially huge number of facets, making the
complexity of (2) unclear.

Further, [1] claim that for a composition of directionally differentiable functions with a closed-form
directional derivative for each function, we can find the desired g by the chain rule. While the chain
rule does compute the directional derivative f ′(x, u), to the best of our knowledge, this does not
translate to solving (2). This is owing to the crucial fact that the chain rule (and sum rule) can easily
fail for the computation of the subdifferential2 (although these are indeed valid for the directional
derivative of a composition of directionally differentiable functions). We believe that this could
potentially render the oracle of [1] computationally intractable.

Finally, we are unaware of other optimization algorithms imposing this oracle model. Therefore, at
face value, the convergence guarantees of [1] are not comparable to those of others.

1.1 Our results

Weakly convex optimization via a standard oracle. Our first contribution is to recover the
complexity result of [1] under a much weaker assumption: specifically, we replace the non-standard
assumption in (2) with a standard first-order oracle model. We show (Section 2) that a simple, yet
critical, modification of the algorithm of [1], wherein one simply adds a small random perturbation in
each iteration, works for any Lipschitz function assuming only an oracle that can compute gradients
and function values at almost every point of Rd in the sense of Lebesgue measure. In particular,
such oracles arise from automatic differentiation schemes routinely used in deep learning [24, 19].
Our end result is a randomized algorithm for minimizing any L-Lipschitz function that outputs a
(δ, ϵ)-stationary point (Definition 1) after using at most Õ

(
∆L2

ϵ3δ log(1/γ)
)

3 gradient and function
evaluations. Here ∆ is the initial function gap and γ is the failure probability.

2We provide a simple example to demonstrate this claim: Consider the function f(x, y) = f1(x, y)+f2(x, y)
with f1(x, y) = |x| and f2(x, y) = −|x|. Choose the direction u = (0, 1), and let z = (0, 0). Then,
f ′
1(z, u) = f ′

2(z, u) = 0, and ∂f1(z) = ∂f2(z) = [−1, 1] × 0. Therefore, to satisfy the oracle (2), for f1,
we may choose the subgradient v1 = (−1, 0), and for f2, we may choose the subgradient v2 = (−1, 0) since
⟨v1, u⟩ = 0 = ⟨v2, u⟩. However, v1 + v2 = (−2, 0), which is not a subgradient of f = 0 at z.

3Throughout the paper, we use Õ( · ) to hide poly-logarithmic factors in L, δ,∆, and ϵ.
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In light of the above modifications, our algorithm is implementable in the many important settings
like deep neural networks that [1] is not. Along the way, we also simplify their proof techniques by
providing a geometric viewpoint of the algorithm.

We would like to highlight the concurrent work of Tian, Zhou, and Man-Cho So [25], which obtains
this part of our result with a very similar technique.

Improved complexity in low dimensions. Having obtained the result of [1] within the standard
first-order oracle model, we then proceed to investigate the following question.

Can we improve the efficiency of the algorithm in low dimensions?

In addition to being natural from the viewpoint of complexity theory, this question is well-grounded
in applications. For instance, numerous problems in control theory involve minimization of highly
irregular functions of a small number of variables. We refer the reader to the survey [26, Section 6] for
an extensive list of examples, including Chebyshev approximation by exponential sums, spectral and
pseudospectral abscissa minimization, maximization of the “distance to instability”, and fixed-order
controller design by static output feedback. We note that for many of these problems, the gradient
sampling method of [26] is often used. Despite its ubiquity in applications, the gradient sampling
method does not have finite-time efficiency guarantees. The algorithms we present here offer an
alternative approach with a complete complexity theory.

The second contribution of our paper is an affirmative answer to the highlighted question. We present
a novel algorithm that uses Õ

(
∆Ld
ϵ2δ log(1/γ)

)
calls to our (weaker) oracle. Thus we are able to trade

off the factor Lϵ−1 with d. Further, if the function is ρ-weakly convex, the complexity improves to
Õ
(
∆d
ϵδ log(ρ)

)
, which matches the complexity in δ = ϵ of gradient descent for smooth minimization.

Strikingly, the dependence on the weak convexity constant ρ is only logarithmic.

To put this contribution in perspective, assume for now δ = ϵ: then, our algorithm’s dependence on
ϵ in the case of Lipschitz, weakly convex functions is likely optimal in low dimensions, following
a conjecture by Bubeck and Mikulincer [27] on the optimality of gradient descent for smooth
optimization in dimension d = log( 1ϵ ) (thus matching the lower bound by Carmon, Duchi, Hinder,
and Sidford [28]). Aside from possible optimality, the logarithmic dependence on smoothness/weak
convexity exhibited by our iteration complexity is a significant improvement over the prior result
of either O(1/ϵ4) by [1] or Nemirovski and Yudin’s rate of O(1/ϵ2) with a polynomial dependence
on smoothness. In the process, we also show that the minimal-norm element of the Goldstein-
subdifferential in low dimensions can be found in time O(log(1/ϵ)), thus settling a question open
since the 70s.

Techniques. The main idea underlying our improved dependence on ϵ in low dimensions is outlined
next. The algorithm of [1] comprises of an outer loop with O

(
∆
ϵδ

)
iterations, each performing either

a decrease in the function value or an ingenious random sampling step to update the descent direction.
Our observation, central to improving the ε dependence, is that the violation of the descent condition
can be transformed into a gradient oracle for the problem of finding a minimal norm element of
the Goldstein subdifferential. This gradient oracle may then be used within a cutting plane method,
which achieves better ε dependence at the price of a dimension factor (Section 3).

Limitations. One limitation of our work is that our second contribution does not immediately extend
to the stochastic setting. We consider this to be an interesting open problem to resolve.

Notation. Throughout, we let Rd denote a d-dimensional Euclidean space equipped with a dot
product ⟨·, ·⟩ and the Euclidean norm ∥x∥2 =

√
⟨x, x⟩. The symbol Br(x) denotes an open Euclidean

ball of radius r > 0 around a point x. Throughout, we fix a function f : Rd → R that is L-Lipschitz,
and let dom(∇f) denote the set of points where f is differentiable—a full Lebesgue measure set
by Rademacher’s theorem. The symbol f ′(x, u)

def
= limτ↓0 τ

−1(f(x + τu) − f(x)) denotes the
directional derivative of f at x in direction u, whenever the limit exists.
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2 Interpolated normalized gradient descent

In this section, we describe the results in [1] and our modified subgradient method that achieves
finite-time guarantees in obtaining (δ, ϵ)-stationarity for an L-Lipschitz function f : Rd → R. The
main construction we use is the Goldstein subdifferential [20].

Definition 1 (Goldstein subdifferential). Consider a locally Lipschitz function f : Rd → R, a point
x ∈ Rd, and a parameter δ > 0. The Goldstein subdifferential of f at x is the set

∂δf(x)
def
= conv

( ⋃
y∈Bδ(x)

∂f(y)
)
.

A point x is called (δ, ϵ)-stationary if dist(0, ∂δf(x)) ≤ ϵ.

Thus, the Goldstein subdifferential of f at x is the convex hull of all Clarke subgradients at points in
a δ-ball around x. Famously, [20] showed that one can significantly decrease the value of f by taking
a step in the direction of the minimal norm element of ∂δf(x). Throughout the rest of the section, we
fix δ ∈ (0, 1) and use the notation

ĝ
def
= g/∥g∥2 for any nonzero vector g ∈ Rd. (3)

Theorem 1 ([20]). Fix a point x, and let g be a minimal norm element of ∂δf(x). Then as long as
g ̸= 0, we have f (x− δĝ) ≤ f(x)− δ∥g∥2.

Theorem 1 immediately motivates the following conceptual descent algorithm:

xt+1 = xt − δĝt, where gt ∈ argmin
g∈∂δf(x)

∥g∥2. (4)

In particular, Theorem 1 guarantees that, defining ∆
def
= f(x0)−min f , the approximate stationarity

condition

min
t=1,...,T

∥gt∥2 ≤ ϵ holds after T = O
(
∆

δϵ

)
iterations of (4).

Evaluating the minimal norm element of ∂δf(x) is impossible in general, and therefore the descent
method described in (4) cannot be applied directly. Nonetheless it serves as a guiding principle for
implementable algorithms. Notably, the gradient sampling algorithm [29] in each iteration forms
polyhedral approximations Kt of ∂δf(xt) by sampling gradients in the ball Bδ(x) and computes
search directions gt ∈ argming∈Kt

∥g∥2. These gradient sampling algorithms, however, have only
asymptotic convergence guarantees [26].

The recent paper [1] remarkably shows that for any x ∈ Rd one can find an approximate minimal
norm element of ∂δf(x) using a number of subgradient computations that is independent of the
dimension. The idea of their procedure is as follows. Suppose that we have a trial vector g ∈ ∂δf(x)
(not necessarily a minimal norm element) satisfying

f (x− δĝ) ≥ f(x)− δ

2
∥g∥2. (5)

That is, the decrease in function value is not as large as guaranteed by Theorem 1 for the true minimal
norm subgradient. One would like to now find a vector u ∈ ∂δf(x) so that the norm of some convex
combination (1− λ)g + λu is smaller than that of g. A short computation shows that this is sure to
be the case for all small λ > 0 as long as ⟨u, g⟩ ≤ ∥g∥22. The task therefore reduces to:

find some u ∈ ∂δf(x) satisfying ⟨u, g⟩ ≤ ∥g∥22.

The ingenious idea of [1] is a randomized procedure for establishing exactly that in expectation.
Namely, suppose for the moment that f happens to be differentiable along the segment [x, x− δĝ];
we will revisit this assumption shortly. Then the fundamental theorem of calculus, in conjunction
with (5), yields

1

2
∥g∥2 ≥

f(x)− f (x− δĝ)

δ
=

1

δ

∫ δ

0

⟨∇f(x− τ ĝ), ĝ⟩ dτ. (6)
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Consequently, a point y chosen uniformly at random in the segment [x, x− δĝ] satisfies

E⟨∇f(y), g⟩ ≤ 1

2
∥g∥22. (7)

Therefore the vector u = ∇f(y) can act as the subgradient we seek. Indeed, the following lemma
shows that, in expectation, the minimal norm element of [g, u] is significantly shorter than g. The
proof is extracted from that of [1, Theorem 8].
Lemma 2 ([1]). Fix a vector g ∈ Rd, and let u ∈ Rd be a random vector satisfying E⟨u, g⟩ < 1

2∥g∥
2
2.

Suppose moreover that the inequality ∥g∥2, ∥u∥2 ≤ L holds for some L < ∞. Then the minimal-
norm vector z in the segment [g, u] satisfies:

E∥z∥22 ≤ ∥g∥22 −
∥g∥42
16L2

.

Proof. Applying E⟨u, g⟩ ≤ 1
2∥g∥

2
2 and ∥g∥2, ∥u∥2 ≤ L, we have, for any λ ∈ (0, 1),

E∥z∥22 ≤ E∥g + λ(u− g)∥22 = ∥g∥22 + 2λE⟨g, u− g⟩+ λ2E∥u− g∥22
≤ ∥g∥22 − λ∥g∥22 + 4λ2L2.

Plugging in the value λ =
∥g∥2

2

8L2 ∈ (0, 1) minimizes the right hand side and completes the proof.

The last technical difficulty to overcome is the requirement that f be differentiable along the line
segment [g, u]. This assumption is crucially used to obtain (6) and (7). To cope with this problem,
[1] introduce extra assumptions on the function f to be minimized and assume a nonstandard oracle
access to subgradients.

We show, using Lemma 3, that no extra assumptions are needed if one slightly perturbs g.
Lemma 3. Let f : Rd → R be a Lipschitz function, and fix a point x ∈ Rd. Then there exists a set
D ⊂ Rd of full Lebesgue measure such that for every y ∈ D, the line spanned by x and y intersects
dom(∇f) in a full Lebesgue measure set in R. Then, for every y ∈ D and all τ ∈ R, we have

f(x+ τ(y − x))− f(x) =

∫ τ

0

⟨∇f(x+ s(y − x)), y − x⟩ ds.

Proof. Without loss of generality, we may assume x = 0 and f(x) = 0. Rademacher’s theorem
guarantees that dom(∇f) has full Lebesgue measure in Rd. Fubini’s theorem then directly implies
that there exists a set Q ⊂ Sd−1 of full Lebesgue measure within the sphere Sd−1 such that for every
y ∈ Q, the intersection R+{y} ∩ (dom(∇f))c is Lebesgue null in R. It follows immediately that
the set D = {τy : τ > 0, y ∈ Q} has full Lebesgue measure in Rd. Fix now a point y ∈ D and any
τ ∈ R+. Since f is Lipschitz, it is absolutely continuous on any line segment and therefore

f(x+ τ(y − x))− f(x) =

∫ τ

0

f ′(x+ s(y − x), y − x) ds =

∫ τ

0

⟨∇f(x+ s(y − x)), y − x⟩ ds.

The proof is complete.

We now have all the ingredients to present a modification of the algorithm from [1], which, under
a standard first-order oracle model, either significantly decreases the objective value or finds an
approximate minimal norm element of ∂δf .

The following theorem establishes the efficiency of Algorithm 1, and its proof is similar to that of [1,
Lemma 13]. For completeness, we include the full proof in Appendix A.
Theorem 4. Let {gk} be generated by MinNorm(x, δ, ϵ). Fix an index k ≥ 0, and define the stopping

time τ
def
= inf {k : f(x− δĝk) < f(x)− δ∥gk∥2/4 or ∥gk∥2 ≤ ϵ}. Then, we have

E
[
∥gk∥221τ>k

]
≤ 16L2

16 + k
.

An immediate consequence of Theorem 4 is that MinNorm(x, δ, ϵ) terminates with high-probability.
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Algorithm 1 MinNorm(x, δ, ϵ)

1: Input. x, δ > 0, and ϵ > 0.
2: Let k = 0, g0 = ∇f(ζ0) where ζ0 ∼ Bδ(x).
3: while ∥gk∥2 > ϵ and δ

4∥gk∥2 ≥ f(x)− f (x− δĝk) do

4: Choose any r satisfying 0 < r < ∥gk∥2 ·
√
1− (1− ∥gk∥2

2

128L2 )2.
5: Sample ζk uniformly from Br(gk).
6: Choose yk uniformly at random from the segment [x, x− δζ̂k].
7: gk+1 = argminz∈[gk,∇f(yk)]

∥z∥2.
8: k = k + 1.
9: end while

10: Return gk.

Corollary 5. MinNorm(x, δ, ϵ) terminates in at most
⌈
64L2

ϵ2

⌉
· ⌈2 log(1/γ)⌉ itera-

tions with probability at least 1 − γ, where we define the stopping time τ
def
=

inf {k : f(x− δĝk) < f(x)− δ∥gk∥2/4 or ∥gk∥2 ≤ ϵ}.

Combining Algorithm 1 with (4) yields Algorithm 2, with convergence guarantees summarized in
Theorem 6, whose proof is identical to that of [1, Theorem 8].

Algorithm 2 Interpolated Normalized Gradient Descent (INGD(x0, T ))

Initial x0, counter T
for t = 0, . . . , T − 1 do

g = MinNorm(xt) ▷ Computational complexity Õ(L2/ϵ2)
Set xt+1 = xt − δĝ ▷ We define ĝ in (3)

end for
Return xT

Theorem 6. Fix an initial point x0 ∈ Rd, and define ∆ = f(x0) − infx f(x). Set the num-
ber of iterations T = 4∆

δϵ . Then, with probability 1 − γ, the point xT = INGD(x0, T ) satisfies
dist(0, ∂δf(xT )) ≤ ϵ in a total of at most⌈

4∆

δϵ

⌉
·
⌈
64L2

ϵ2

⌉
·
⌈
2 log

(
4∆

γδϵ

)⌉
function-value and gradient evaluations.

In summary, the complexity of finding a point x satisfying dist(0, ∂δf(x)) ≤ ϵ is at most
O
(

∆L2

δϵ3 log
(

4∆
γδϵ

))
with probability 1 − γ. Using the identity ∂f(x) = lim supδ→0 ∂δf(x), this

result also provides a strategy for finding a Clarke stationary point, albeit with no complexity guar-
antee. It is thus natural to ask whether one may efficiently find some point x for which there exists
y ∈ Bδ(x) satisfying dist(0, ∂f(y)) ≤ ϵ. This is exactly the guarantee of subgradient methods
on weakly convex functions in [6]. [30] shows that for general Lipschitz functions, the number of
subgradient computations required to achieve this goal by any algorithm scales with the dimension
of the ambient space. Finally, we mention that the perturbation technique similarly applies to the
stochastic algorithm of [1, Algorithm 2], yielding a method that matches their complexity estimate.

3 Faster INGD in low dimensions

In this section, we describe our modification of Algorithm 1 (“INGD”) for obtaining improved
runtimes in the low-dimensional setting. Our modified algorithm hinges on computations similar to
(5), (6), and (7) except for the constants involved, and hence we explicitly state this setup. Given a
vector g ∈ ∂δf(x), we say it satisfies the descent condition at x if

f(x− δĝ) ≤ f(x)− δϵ

3
. (8)
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Recall that Lemma 3 shows that for almost all g, we have

f(x)− f(x− δĝ) =

∫ 1

0

⟨∇f(x− tδĝ), ĝ) dt = δ · Ez∼Unif[x−δĝ,x]⟨∇f(z), ĝ⟩.

Hence, when g does not satisfy the descent condition (8), we can output a random vector u ∈ ∂δf(x)
such that

E⟨u, g⟩ ≤ ϵ

3
∥g∥2. (9)

Then, an arbitrary vector g either satisfies (8) or can be used to output a random vector u satisfying
(9). As described in Corollary 5, Algorithm 1 achieves this goal in Õ(L2/ϵ2) iterations.

In this section, we improve upon this oracle complexity by applying cutting plane methods (which we
review shortly) to design Algorithm 3, which finds a better descent direction in Õ(Ld/ϵ) oracle calls
for L-Lipschitz functions and O(d log(L/ϵ) log(δρ/ϵ)) oracle calls for ρ-weakly convex functions.

Brief overview of cutting-plane methods. We first provide a brief relevant overview of cutting-plane
methods here and refer the reader to standard textbooks in optimization for a more in-depth exposition.
Given a convex function f with its set S of minimizers, a cutting-plane method (CPM) minimizes
f by maintaining a convex search set E(k) ⊇ S in the kth iteration and iteratively shrinking E(k)
guided by the subgradients of f that act as “separation oracles” for the set S. Specifically, this is
achieved by noting that for any x(k) chosen from E(k), if the gradient oracle indicates∇f(x(k)) ̸= 0,
(i.e. x(k) /∈ S), then the convexity of f guarantees S ⊆ H(k) :

{
y : ⟨∇f(x(k)), y − x(k)⟩ ≤ 0

}
, and

hence S ⊆ H(k) ∩ E(k). The algorithm continues by choosing E(k+1) ⊇ E(k) ∩H(k), and different
choices of x(k) and E(k) yield different rates of shrinkage of E(k) until a point in S is found.

In light of this description, the minimization of a convex function over a constrained convex set via
this cutting-plane method requires, at each iteration, merely a subgradient of the function. Our novel
insight is that a lack of function decrease implies we have roughly such a subgradient, which we may
then use in a cutting-plane method for computing the minimum norm element of the subdifferential
faster in low dimensions (with improved complexity for weakly convex functions).

Setting the stage for our algorithm. In Appendix B, we demonstrate how to remove the expectation
in (9) and turn the inequality into a high probability statement. For now, we assume the existence of
an oracle O as in Definition 2.
Definition 2 (Inner Product Oracle). Given a vector g ∈ ∂δf(x) that does not satisfy the descent
condition (8), the inner product oracle O(g) outputs a vector u ∈ ∂δf(x) such that

⟨u, g⟩ ≤ ϵ

2
∥g∥2.

We defer the proof of the lemma below to Appendix B.
Lemma 7. Fix x ∈ Rd and a unit vector ĝ ∈ Rd such that f is differentiable almost everywhere on the
line segment [x, y], where y

def
= x− δĝ. Suppose that z ∈ Rd sampled uniformly from [x, y] satisfies

Ez⟨∇f(z), ĝ⟩ ≤ ϵ
3 . Then we can find z̄ ∈ Rd using at most O(Lϵ log(1/γ)) gradient evaluations of

f , such that with probability at least 1 − γ the estimate ⟨∇f(z̄), ĝ⟩ ≤ ϵ
2 holds. Moreover, if f is

ρ-weakly convex, we can find z̄ ∈ Rd such that ⟨∇f(z̄), ĝ⟩ ≤ ϵ
2 using only O(log(δρ/ϵ)) function

evaluations of f .

Our key insight is that this oracle is almost identical to the gradient oracle of the minimal norm
element problem

min
g∈∂δf(x)

∥g∥2.

Therefore, we can use it in the cutting plane method to find an approximate minimal norm element of
∂δf . When there is no element of ∂δf with norm less than ϵ, our algorithm will instead find a vector
that satisfies the descent condition. The main result of this section is the following theorem.
Theorem 8. Let f : Rd → R be an L-Lipschitz function. Fix an initial point x0 ∈ Rd, and let
∆

def
= f(x0) − infx f(x). Then, there exists an algorithm that outputs a point x ∈ Rd satisfying

dist(0, ∂δf(x)) ≤ ϵ and, with probability at least 1− γ, uses at most

O
(
∆Ld

δϵ2
· log(L/ϵ) · log(1/γ)

)
function value/gradient evaluations.
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If f is ρ-weakly convex, the analogous statement holds with probability one and with the improved
efficiency estimate O

(
∆d
δϵ log(L/ϵ) · log(δρ/ϵ)

)
of function value/gradient evaluations.

3.1 Finding a minimal norm element

In this section, we show, via Algorithm 3, how to find an approximate minimal norm element of
∂δf(x). Instead of directly working with the minimal norm problem, we note that, by Cauchy-
Schwarz inequality and the Minimax Theorem, for any closed convex set Q, we have

min
g∈Q
∥g∥2 = min

g∈Q

[
max

∥v∥2≤1
⟨g, v⟩

]
= max

∥v∥2≤1

[
min
g∈Q
⟨g, v⟩

]
= max

∥v∥2≤1
ϕQ(v), (10)

where ϕQ(v)
def
= ming∈Q⟨g, v⟩, and Lemma 9 formally connects the problem of finding the minimal

norm element with that of maximizing ϕQ. The key observation in this section (Lemma 10) is
that the inner product oracle O is a separation oracle for the (dual) problem max∥v∥2≤1 ϕQ(v) with
Q = ∂δf(x) and hence can be used in cutting plane methods.

Lemma 9. Let Q ⊂ Rd be a closed convex set that does not contain the origin. Let g∗Q be a minimizer
of ming∈Q ∥g∥2. Then, the vector v∗Q = g∗Q/∥g∗Q∥2 satisfies

⟨v∗Q, g⟩ ≥ ∥g∗Q∥2 for all g ∈ Q.

and v∗Q = argmax∥v∥2≤1 ϕQ(v).

Proof. We omit the subscript Q to simplify notation. Since, by definition, g∗ minimizes ∥g∥2 over
all g ∈ Q, we have

⟨g∗, g⟩ ≥ ∥g∗∥22 for all g ∈ Q,

and the inequality is tight for g = g∗. Using this fact and ϕ(v∗) = ming∈Q⟨g, g∗

∥g∗∥2
⟩ gives

ϕ(v∗) = ∥g∗∥2 = min
g∈Q
∥g∥2 = min

g∈Q
max

v:∥v∥2≤1
⟨g, v⟩ = max

∥v∥2≤1
min
g∈Q
⟨g, v⟩ = max

v:∥v∥2≤1
ϕ(v),

where we used Sion’s minimax theorem in the second to last step. This completes the proof.

Using this lemma, we can show that O is a separation oracle.

Lemma 10. Consider a vector g ∈ ∂fδ(x) that does not satisfy the descent condition (8), and let
the output of querying the oracle at g be u ∈ O(g). Suppose that dist(0, ∂δf(x)) ≥ ϵ

2 . Let g∗

be the minimal-norm element of ∂δf(x). Then the normalized vector v∗ def
= g∗/∥g∗∥2 satisfies the

inclusion:
v∗ ∈

{
w ∈ Rd : ⟨u, ĝ − w⟩ ≤ 0

}
.

Proof. Set Q = ∂δf(x). By using ⟨u, ĝ⟩ ≤ ϵ
2 (the guarantee of O per Definition 2) and ⟨u, v∗⟩ ≥

∥g∗∥2 (from Lemma 9), we have ⟨u, ĝ − v∗⟩ = ⟨u, ĝ⟩ − ⟨u, v∗⟩ ≤ ϵ
2 − ∥g

∗∥2 ≤ 0.

Thus Lemma 10 states that if x is not a (δ, ϵ
2 )-stationary point of f , then the oracle O produces a

halfspaceHv that separates ĝ from v∗. Since O is a separation oracle, we can combine it with any
cutting plane method to find v∗. For concreteness, we use the center of gravity method and display
our algorithm in Algorithm 3. We note that Ωk is an intersection of a ball and some half spaces,
hence we can compute its center of gravity in polynomial time by taking an average of the empirical
samples from this convex set. While we use a simple cutting-plane method, any algorithm in this
class may be used; our focus is merely on minimizing the oracle complexity. Further note that in
our algorithm, we use a point ζk close to the true center of gravity of Ωk, and therefore, we invoke a
result about the perturbed center of gravity method.

Theorem 11 (Theorem 3 of [31]; see also [32]). Let K be a convex set with center of gravity µ and
covariance matrix A. For any halfspace H that contains some point x with ∥x−µ∥A−1 ≤ t, we have

vol(K ∩H) ≤ (1− 1/e+ t)vol(K).

8



Algorithm 3 MinNormCG(x)

1: Initialize center point x.
2: Set k = 0, the search region Ω0 = B2(0), the set of gradients Q0 = {∇f(x)}, and r satisfying

0 < r < ϵ/(32dL)
3: while ming∈Qk

∥g∥2 > ϵ do
4: Let vk be the center of gravity of Ωk.
5: if vk satisfies the descent condition (8) at x then
6: Return vk
7: end if
8: Sample ζk uniformly from Br(vk)
9: uk ← O(ζk)

10: Ωk+1 = Ωk ∩ {w : ⟨uk, ζk − w⟩ ≤ 0}.
11: Qk+1 = conv(Qk ∪ {uk})
12: k = k + 1
13: end while
14: Return argming∈Qk

∥g∥2.

Theorem 12 (Theorem 4.1 of [33]). Let K be a convex set in Rd with center of gravity µ and
covariance matrix A. Then,

K ⊂
{
x : ∥x− µ∥A−1 ≤

√
d(d+ 2)

}
.

We now have all the tools to show correctness and iteration complexity of Algorithm 3.
Theorem 13. Let f : Rd → R be an L-Lipschitz function. Then Algorithm 3 returns a vector
v ∈ ∂δf(x) that either satisfies the descent condition (8) at x or satisfies ∥v∥2 ≤ ϵ in

⌈8d log(8L/ϵ))⌉ calls to O.

Proof. By the description of Algorithm 3, either it returns a vector v satisfying the descent condition
or returns g ∈ ∂δf(x) with ∥g∥2 ≤ ϵ. We now obtain the algorithm’s claimed iteration complexity.

Consider an iteration k such that Ωk does contain a ball of radius ϵ
4L . Let Ak be the covariance

matrix of convex set Ωk. By Theorem 12, we have

Ak ⪰
( ϵ

8dL

)2

I.

Applying this result to the observation that in Algorithm 3 ζk is sampled uniformly from Br(vk) gives

∥vk − ζk∥A−1
k
≤ r · 8dL

ϵ
≤ 1

4
. (11)

Recall from Algorithm 3 and the preceding notation that Ωk has center of gravity vk and covariance
matrix Ak. Further, the halfspace {w : ⟨uk, ζk − w⟩ ≤ 0} in Algorithm 3 contains the point ζk
satisfying (11). Given these statements, since Algorithm 3 sets Ωk+1 = Ωk ∩ {w : ⟨uk, ζk − w⟩},
we may invoke Theorem 11 to obtain

vol(Ωk) ≤ (1− 1/e+ 1/4)kvol(B2(0)) ≤ (1− 1/10)kvol(B2(0)). (12)

We claim that Algorithm 3 takes at most T + 1 steps where T = d log(1− 1
10 )

(ϵ/(8L)). For the sake
of contradiction, suppose that this statement is false. Then, applying (12) with k = T + 1 gives

vol(ΩT+1) ≤
( ϵ

4L

)d

vol(B1(0)). (13)

On the other hand, Algorithm 3 generates points ui = O(ζi) in the i-th call to O and the set
Qi = conv {u1, u2, · · · , ui}. Since we assume that the algorithm takes more than T + 1 steps,
we have ming∈QT+1

∥g∥2 ≥ ϵ. Using this and ui ∈ QT+1, Lemma 10 lets us conclude that
v∗QT+1

∈
{
w ∈ Rd : ⟨ui, ζi − w⟩ ≤ 0

}
for all i ∈ [T +1]. Since ΩT+1 is the intersection of the unit

ball and these halfspaces, we have
v∗QT+1

∈ ΩT+1.

9



Per (13), ΩT+1 does not contain a ball of radius ϵ
4L , and therefore we may conclude that

there exists a point ṽ ∈ B ϵ
2L
(v∗QT+1

) such that ṽ /∈ ΩT+1.

Since ṽ ∈ B2(0), the fact ṽ /∈ ΩT+1 must be true due to one of the halfspaces generated in
Algorithm 3. In other words, there must exist some i ∈ [T + 1] with

⟨ui, ζi − ṽ⟩ > 0.

By the guarantee of O , we have ⟨ui, ζi⟩ ≤ ϵ
2 , and hence

⟨ui, ṽ⟩ = ⟨ui, vi⟩ − ⟨u, vi − ṽ⟩ < ϵ

2
. (14)

By applying ṽ ∈ B ϵ
2L
(v∗QT+1

), ui ∈ ∂δf(x), L-Lipschitzness of f , and Lemma 9, we have

⟨ui, ṽ⟩ ≥ ⟨ui, v
∗
QT+1

⟩ − ϵ

2L
∥ui∥2 ≥ ⟨ui, v

∗
QT+1

⟩ − ϵ

2
≥ ∥g∗QT+1

∥2 −
ϵ

2
. (15)

Combining (14) and (15) yields that ming∈QT+1
∥g∥2 = ∥g∗QT+1

∥2 < ϵ. This contradicts the
assumption that the algorithm takes more than T + 1 steps and concludes the proof.

Now, we are ready to prove the main theorem.

Proof of Theorem 8. We note that the outer loop in Algorithm 2 runs at most O(∆δϵ ) times because
we decrease the objective by Ω(δϵ) every step. Combining this with Theorem 13 and Lemma 7, we
have that with probability 1− γ, the oracle complexity for L-Lipschitz function is⌈

4∆

δϵ

⌉
· ⌈8d log(8L/ϵ))⌉ ·

⌈
36L

ϵ

⌉
·
⌈
2 log

(
4∆

γδϵ

)⌉
= O

(
∆Ld

δϵ2
· log(L/ϵ) · log(1/γ)

)
and for L-Lipschitz and ρ-weakly convex function is O

(
∆d
δϵ log(L/ϵ) · log(δρ/ϵ)

)
.
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A Missing proofs from Section 2

Theorem 4. Let {gk} be generated by MinNorm(x, δ, ϵ). Fix an index k ≥ 0, and define the stopping

time τ
def
= inf {k : f(x− δĝk) < f(x)− δ∥gk∥2/4 or ∥gk∥2 ≤ ϵ}. Then, we have

E
[
∥gk∥221τ>k

]
≤ 16L2

16 + k
.

Proof. Fix an index k, and let Ek[·] denote the conditional expectation on gk. Suppose we are in
the event {τ > k}. Taking into account the Lipschitz continuity of f and Lemma 3, we deduce that
almost surely, conditioned on gk, the following estimate holds:

1

4
∥gk∥2 ≥

f(x)− f (x− δĝk)

δ
≥ f(x)− f(x− δ · ζ̂k)

δ
− L∥ĝk − ζ̂k∥2

=
1

δ

∫ δ

0

⟨∇f(x− sζ̂k), ζ̂k⟩ ds− L∥ĝk − ζ̂k∥2

≥ 1

δ

∫ δ

0

⟨∇f(x− sζ̂k), ĝk⟩ ds− 2L∥ĝk − ζ̂k∥2

= Ek⟨∇f(yk), ĝk⟩ − 2L∥ĝk − ζ̂k∥2.

Rearranging yields Ek⟨∇f(yk), ĝk⟩ ≤ 1
4∥gk∥2 +2L∥ĝk − ζ̂k∥. Simple algebra shows ∥ĝk − ζ̂k∥22 ≤

2(1 −
√

1− r2/∥gk∥22) ≤
∥gk∥2

2

64L2 . Therefore, we infer that Ek⟨∇f(yk), ĝk⟩ < 1
2∥gk∥2. Lemma 2

then guarantees that

Ek[∥gk+1∥221τ>k] ≤
(
∥gk∥22 −

∥gk∥42
16L2

)
1τ>k.
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Define bk := ∥gk∥221τ>k for all k ≥ 0. Then the tower rule for expectations yields

Ebk+1 ≤ E[∥gk+1∥221τ>k] ≤ E
[(

1− bk
16L2

)
bk

]
≤

(
1− Ebk

16L2

)
Ebk,

by Jensen’s inequality applied to the concave function t 7→ (1 − t/16L2)t. Setting ak = Ebk/L2,
this inequality becomes ak+1 ≤ ak−a2k/16, which, upon rearranging, yields 1

ak+1
≥ 1

ak(1−ak/16)
≥

1
ak

+ 1
16 . Iterating the recursion and taking into account a0 ≤ 1 completes the proof.

Corollary 14. MinNorm(x, δ, ϵ) terminates in at most
⌈
64L2

ϵ2

⌉
· ⌈2 log(1/γ)⌉ iter-

ations with probability at least 1 − γ, where we define the stopping time τ
def
=

inf {k : f(x− δĝk) < f(x)− δ∥gk∥2/4 or ∥gk∥2 ≤ ϵ}.

Proof. Notice that when k ≥ 64L2

ε2 , we have, by Theorem 4, that

Pr(τ > k) ≤ Pr(∥gk∥21τ>k ≥ ϵ) ≤ 16L2

(16 + k)ε2
≤ 1

4
.

Similarly, for all i ∈ N, we have Pr(τ > ik | τ > (i− 1)k) ≤ 1/4. Therefore,

Pr(τ > ik) = Pr(τ > ik | τ > (i− 1)k)Pr(τ > (i− 1)k) ≤ 1

4
Pr(τ > (i− 1)k) ≤ 1

4i
.

Consequently, we have Pr(τ > ik) ≤ 1
4i ≤ γ whenever i ≥ log(1/γ)/ log(4), as desired.

B Implementation of the oracles: proof of Lemma 7

In this section, we show how to convert (9) into a deterministic guarantee.
Lemma 15. Fix a unit vector ĝ ∈ Rd and let z ∈ Rd be a random vector satisfying E⟨∇f(z), ĝ⟩ ≤ ϵ

3 .

Let z1, . . . , zk be i.i.d realizations of z with k =
⌈
36L
ϵ

⌉
·
⌈
log(1/γ)
log(4)

⌉
. Then with probability at least

1− γ, one of the samples zi satisfies ⟨∇f(zi), ĝ⟩ ≤ ϵ
2 .

Proof. Define the random variable Y
def
= ⟨∇f(z), ĝ⟩, and use p

def
= Pr[Y ≤ ϵ

2 ]. We note that

E[Y ] = p · E[Y | Y ≤ ϵ

2
] + (1− p) · E[Y | Y >

ϵ

2
].

Rearranging the terms and using E[Y ] ≤ ϵ/3 gives

p ·
(
E[Y | Y >

ϵ

2
]− E[Y | Y ≤ ϵ

2
]
)
≥ ϵ

6
.

Finally, taking into account that f is L-Lipschitz, we deduce |Y | ≤ L, which further implies p ≥ ϵ
12L .

The results follows immediately.

Lemma 16. Let f : Rd → R be an L-Lipschitz continuous and ρ-weakly convex function. Fix a
point x and a unit vector ĝ ∈ Rd such that f is differentiable almost everywhere on the line segment
[x, y], where y

def
= x− δĝ. Suppose that a random vector z sampled uniformly from [x, y] satisfies

Ez⟨∇f(z), ĝ⟩ ≤ ϵ
3 . Then, Algorithm 4 finds z̄ ∈ Rd such that ⟨∇f(z̄), ĝ⟩ ≤ ϵ

2 using 3 log(12δρ/ϵ)
function evaluations of f .

Proof. Define the new function h : [0, 1]→ R by h(t) = ⟨∇f(x+ t(y − x)), ĝ⟩. Clearly, we have

ϵ

3
≥ E[h(t)] =

1

2
E[h(t) | t ≤ 0.5]︸ ︷︷ ︸

P≤

+
1

2
E[h(t) | t > 0.5]︸ ︷︷ ︸

P>

.

Therefore P≤ or P> is at most ϵ/3. The fundamental theorem of calculus directly implies P≤ =
f(x)−f(x− δ

2 ĝ)

2δ and P> =
f(x− δ

2 ĝ)−f(y)

2δ . Therefore with three function evaluations we may determine
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Algorithm 4 Binary Search for z̄
Input. Line Segment [x, y = x− δĝ]
Let [a, b] = [0, 1]
while b− a > ϵ

6δρ do
if f(x− aδĝ)− f(x− a+b

2 δĝ) ≤ f(x− a+b
2 δĝ)− f(x− bδĝ) then

Let [a, b]← [a, a+b
2 ]

else
Let [a, b]← [a+b

2 , b]
end if

end while
Return x− aδĝ

one of the two alternatives. Repeating this procedure log(12δρ/ϵ) times, each times shrinking the
interval by half, we can find an interval [a, b] ⊂ [0, 1] such that b − a ≤ ϵ

6δρ and Et∈[a,b]h(t) ≤ ϵ
3 .

Note that for any t̄ ∈ [a, b], we have h(t̄) = Eh(t) + (h(t̄)− Eh(t)), while weak convexity implies

h(t̄)− Eh(t) =
1

δ
Et∈[a,b]⟨∇f(x+ t̄(y − x))−∇f(x+ t(y − x)), x− y⟩

≤ Et∈[a,b]
t̄− t

δ
ρ∥y − x∥2 ≤ ϵ

6
.

We thus conclude h(t̄) ≤ ϵ
3 + ϵ

6 = ϵ
2 as claimed.

15


	Introduction
	Our results

	Interpolated normalized gradient descent
	Faster INGD in low dimensions
	Finding a minimal norm element

	Missing proofs from sec:INGD
	Implementation of the oracles: proof of Lemma 7

