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ABSTRACT
Bid Shading has become increasingly important in Online Advertis-

ing, with a large amount of commercial [4, 12, 13, 29] and research

work [11, 20, 28] recently published. Most approaches for solving

the bid shading problem involve estimating the probability of win

distribution, and then maximizing surplus [28]. These generally

use parametric assumptions for the distribution, and there has been

some discussion as to whether Log-Normal, Gamma, Beta, or other

distributions are most effective [8, 38, 41, 44]. In this paper, we

show evidence that online auctions generally diverge in interesting

ways from classic distributions. In particular, real auctions gener-

ally exhibit significant structure, due to the way that humans set

up campaigns and inventory floor prices [16, 26]. Using these in-

sights, we present a nonparametric method for Bid Shading which

enables the exploitation of this deep structure. The algorithm has

low time and space complexity, and is designed to operate within

the challenging millisecond Service Level Agreements of Real-Time

Bid Servers. We deploy it in one of the largest Demand Side Plat-

forms in the United States, and show that it reliably out-performs

best in class Parametric benchmarks. We conclude by suggesting

some ways that the best aspects of parametric and nonparametric

approaches could be combined.
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1 INTRODUCTION
Between 2017 and 2019, the Online Advertising industry underwent

a massive transformation. Prior to 2017, Display ads were sold

almost exclusively on Second Price Auctions. However, by 2018,

First Price Auctions had increased from 5% to 43% of all auctions

[10, 22]. After Google’s decision to shift in 2019, 85% of display

impressions were sold via First Price.

First Price Auctions present a formidable challenge to advertisers,

as they require the bidder to engage in a practice called bid shading.
Bid shading occurs when the bidder takes the private value that

they would have submitted in a second price auction, and then tries

to lower their bid so that it is just above the highest competing bid

- this in order to minimize their price paid whilst still winning the

auction [17]. This process is beset with risk, since the other bids

on the auction are unknown. If the bidder shades too little, they

will overpay; If they shade too much, they will lose and gain no

value. Identifying the optimum bid shade, therefore, requires the

bidder to predict competing bidder prices, yet without being able

to see bidder prices. This is an enormously difficult data mining

prediction problem.
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With its sudden financial impact in the Online Advertising in-

dustry, Bid Shading has become a major area of new research and

commercial activity. Several companies announced new bid shad-

ing services to help advertisers effectively bid, including Google

[12, 13], AppNexus [4] and Rubicon [29]. Researchers and indus-

try practitioners have also published details of new bid shading

algorithms [11, 20, 28].

Most approaches for solving the problem involve predicting the

probability of winning at different bid prices, the surplus given this

probability of win, and then returning the shaded bid price with

the maximum surplus [28]. This has generally been accomplished

with parametric assumptions on the shape of the landscape.

We show new evidence in this paper that online auctions di-

verge significantly from well-known distributions, and exhibit us-

able structure due to the way that humans set up campaigns and

inventory floor prices [16, 26]. Parametric distributions often fail

to capture this structure.

The current paper presents a new nonparametric method for Bid

Shading which enables the exploitation of this deep structure. The

paper is organized as follows: Section 1 introduces the Bid Shading

Problem and describes prior work including several parametric

approaches that have been recently published. Section 2 introduces

real auction data, and shows that it exhibits significant "spike"

structure that not unlike the Left Digit Anchoring Effect observed

in Psychology [16]. Section 4 introduces the MEOW algorithm, and

proves its time and space complexity. Section 6 shows Offline and

Live Bid Server experiments using the new algorithm.

1.1 The Bid Shading Problem
The Bid Shading Problem aims to find how much the advertiser

should discount their private valuation when bidding in a First

Price Auction. Let𝑉𝑡 represent how much the advertiser expects to

capture from an impression at time 𝑡 . Assuming that the valuation

𝑉𝑡 and bid 𝑏𝑡 are both expressed in dollars, the advertiser’s financial

gain, or surplus over a horizon 𝑇 , is equal to:

𝑆𝑇
def

=

𝑇∑
𝑡=1

(𝑉𝑡 − 𝑏𝑡 ) I(𝑏𝑡 > 𝑚𝑡 ), (1)

where 𝑏𝑡 is the shaded bid,𝑚𝑡 is the minimum bid price to win, and

I(𝑏𝑡 > 𝑚𝑡 ) = 1 if the impression is won, and 0 otherwise. The task

is to find a set of shaded bids {𝑏𝑡 }𝑇𝑡=1 that maximize the surplus 𝑆𝑇 .

1.2 Related Work
Bid shading is a common tactic in repeated First Price Auctions, and

is expected by auction theory. [45] found robust evidence of shading

in Austrian livestock auctions, [7] reported shading in a Texas cattle

market, and [17] found the practice in auctions for US Treasury

notes. Bid Shading shares characteristics with the Seller’s (Reserve)

Price Optimization Problem [6, 21, 23, 24, 30, 31], although the Bid

Shading Problem is a buyer side problem, and the buyer has access

to distinct forms of feedback. maximize profit. However buyers are

trying to minimize their offer and receive reward in proportion to

the lowness of their price, where-as sellers are trying to maximize
their reserve price. A variety of approaches have been proposed to

solve the Bid Shading problem:

Winning price predictors There have been some published re-

search on the problem of winning price prediction on auctions.

[39, 40] both develop methods for this purpose. Whilst these meth-

ods are useful, Bid shading involves predicting and maximizing

expected surplus, however, which involves another unknown and

optimization step.

Point Estimators use a machine learning algorithm to predict the

exact optimal shading factor, by estimating the ratio of theminimum

bid to win over the advertiser’s private value. For instance, [11]

used a Factorization Machine to predict a shading factor by training

against known cases of optimum shading factor (0.1).

Unfortunately, this technique is only feasible on Seller auctions

in which the Seller provides the exact winning price back to the

Buyer (an "Open Bid Auction"). The optimal price can then be used

as a training signal for the Buyer. However, most Online Advertising

Auction Sellers (including Index Exchange, Pubmatic and others)

do not disclose this information, instead just providing whether the

bid was accepted or not ("Sealed Bid Auctions"). The "optimum" bid

is therefore unknown.

Distribution estimators improve upon these earlier approaches,

by training on the 0-1 win/loss signal, and predicting the proba-

bility of win across all possible bid prices; effectively creating a

probability distribution of winning prices. Once the cdf is predicted,

it is possible to calculate the expected surplus at each bid price, and

the optimum bid price can be identified.

The recent WinRate model from [28] takes this approach, esti-

mating the win probability for each bid price using a 0-1 logistic

distribution, and then maximizing the resulting surplus function.

Because of the known parametric form, the authors are able to

bound the optimum and use a guaranteed 𝑂 (𝑙𝑜𝑔(𝐾)) bisection
search to find the surplus maximum - the logarithmic time search

being highly desirable for Bidding Servers which need to minimize

computational operations.

Other authors have taken a similar approach to distribution

estimation. [44] extend the Winrate idea to support a range of

parametric distribution, and use a Deep Neural Network to estimate

the distribution’s shape parameters. Their implementation was

shown to work for Gamma, Gaussian and Log-Normal distributions.

They used a distribution-agnostic, Golden Section Search, to find

the surplus maximum bid price.

Although these methods have proven effective, we show in this

paper that the actual auction distributions are generally quite di-

vergent from the parametric assumptions, and that more surplus

can be captured by modeling the auction data more closely.

2 AUCTION LANDSCAPES
In auction literature and past work, Auction State bids are often

assumed to be normally distributed [38, 41]; although others have

noted that their auction data was fit well by Log-Normal [8]. We

tested a variety of distributions on our auction data. None of the

distributions fit well enough to be significant under a test for fit,

but similar to [41] we found that Log-Normal has the lowest error

and highest linear correlation to the actual data, out of Normal,

Log-Normal and Gamma distributions tested. Log-Normal is seen

in other auctions such as contract bidding [32].
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In addition to the overall shape, Auction State also has some

unusual characteristics. One that stands out is that there are some

prices where there are large spikes in impressions. For example,

Figure 1 is typical.

Some previous authors address the spikes by smoothing over

them. [42] fit smoothing splines to the bid-volume cumulative dis-

tribution. [43] use a Mixture of Gaussians. If the spikes are noise,

then avoiding transient spikes should result in better out-of-sample

prediction. But what if the spikes are not actually noise?

Spikes appear in other domains: Marathon running times are

approximately Log-normal. However, finishing times also have

spikes on the left-side of hours and half hours. This is due to a

Psychological effect where humans favor finishing before whole

hours and half hours [2, 36].

Spikes also occur in pricing. A histogram of retail prices usually

shows spikes at price ending in 9 and 5. This effect is known as the

“Left Digit Anchoring Effect”, a Psychological phenomenon where

consumers seem to ignore the least significant right-hand-side digits

when doing value comparisons [16]. A range of theories have been

offered to explain the practice, including cognitive workload from

rounding up, precision being taken as an indicator of truthfulness,

and others. These unusual price-points are a robust part of retail

price optimization data.

In the field of online advertising, website owners set floor prices

for inventory, which, in turn, impact the auction prices we observe.

We encounter something unusual: The floors primarily use round

numbered prices, including 5, 9.50, 10, 15, 20, 25, 30, 35, 40, 45. This

can be seen clearly in Figure 2. It looks like Supply managers are

susceptible to an “End Digit Effect” also!

Table 1 shows a comparison of End Digit Effects in other domains.

It therefore matters whether a price of $10 or $9.99 is submitted

to the auction – there really are “cliffs” in terms of impressions at

different round price thresholds.

In order to capture these human-engineered artifacts, we need

more freedom to model the data. Jacob Wolfowitz introduced the

term nonparametric, in 1942, as a way of describing methods that

did not rely on data belonging to any particular parametric family

of probability distributions [37]. Estimating the auction surplus cdf

by discretizing and estimating regions separately [1, 25, 34] might

offer a way of modeling the unusual structure in auctions.

Some authors have tried similar approaches in the past, usually

for trying to identify the hidden private valuations of bidders [14],

[33], [3]. Sellers could use this information to optimize their reserve

prices. However, in our case, the bidder’s private value is known,

and the unknown is the clearing bid prices. The current work is

the first known application of bid shading using nonparametric

estimates of the auction landscape.

3 PROBLEMS WITH NONPARAMETRIC
ALGORITHMS

Nonparametric methods present a range of challenges which need

to be resolved before they can be used. One challenge is high storage

cost. A parametric model of an auction surplus cdf will only require

𝑂 (𝑝) parameters, where 𝑝 is the number of features being used. A

discrete approximation of the same cdf, will require 𝑂 (𝑝 × 𝐾 ×𝑀)
where 𝐾 is the number of possible bids and 𝑀 is the number of

Pennies Online Auc-

tion Bids

Internet

prices [2]

Retail prices

[3]

00..09 27% 28% 8%

10..19 9% 3% 0%

20..29 8% 4% 0%

30..39 8% 4% 1%

40..49 7% 4% 0%

50..59 18% 4% 29%

60..69 6% 3% 0%

70..79 6% 4% 0%

80..89 6% 6% 1%

90..99 6% 41% 61%

Table 1: End Digit distributions. "Online Auction Bids" are
from observed Verizon SSP ad prices

Bid price

Pr
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ty
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f o

pt
im

al
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e

Figure 1: Online auctions exhibit unusual distributions of
bid prices. In the above example, spikes occur at certain bid
prices. This results in Normal, Log-Normal and Gamma dis-
tributions providing poor fits to this data. Furthermore at-
tempts to smooth the spikes actually decreases predictive
power. The spikes appear to be real phenomena due to hu-
man pricing effects.

private valuations. If 𝐾 and𝑀 are in units of CPM with the smallest

unit of bid a penny, and span all 2 place numeric values greater

than 0; for bids between $0 and $10, and valuations between $0 and

$100; that means 1,000 × 10,000 = 10 million bins.

A second challenge is generalization. Figure 3 shows perfor-

mance of a fixed-width nonparametric algorithm, versus the av-

erage historical winning price. The nonparametric algorithm, in

this example, works best when there are more than 80,000 auction

observations. However, below this threshold, the nonparametric

approach actually performs worse than the simple strategy of pre-

dicting the mean. The reason for this loss of performance, is because

the nonparametric algorithm’s binning is too fine-grained, resulting

in sparse data which doesn’t carry statistical significance. Thus, the

nonparametric algorithm needs the ability to dynamically adjust

its bin sizes, so that it maintains usable resolution. The MEOW

algorithm, described below, uses dynamic binning.
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Figure 2: Marginal distribution (bottom) versus cumulative
distribution (top) spikes in price can be clearly seen at 5, 9.5,
10, 15, 20, 25, 30, 35, 40, 45. These price spikes seem to be
related to the Psychology of price setting on fixed price con-
tracts.

 0.2000

 0.2500

 0.3000

 0.3500

 0.4000

 0.4500

 0.5000

 0.5500

 0.6000

 0.6500

500 5,000 50,000 500,000

Su
rp
lu
s P

er
ce
nt
 o
f O

pt
im

um

Number of observations

Fixed Width Non-parametric Predict the Mean historical winning price

Figure 3: Fixedwidth nonparametric predictors can perform
worse than the mean if their resolution is too high for the
data.

4 MEOW ALGORITHM
To mitigate the issues of storage cost and generalization, we in-

troduce a nonparametric algorithm called the Multi-resolutional

Exponential Weighting (ME(O)W) algorithm. This algorithm in-

herits the nice theoretical properties of the Exponential Weighting

based algorithm [15] through the lens of online learning, and uses a

PPPPPPPbid

valuation

𝑣1 𝑣2 · · · 𝑣 𝑗 · · · 𝑣𝑀

𝑏1 𝑆1, 𝑗
𝑏2 𝑆2, 𝑗
.
.
.

.

.

.

𝑏𝑖 𝑆𝑖, 𝑗
.
.
.

.

.

.

𝑏𝐾 𝑆𝐾,𝑗

Table 2: A reward table used in the SEW algorithm.

dynamic and data-driven binning to significantly reduce the mem-

ory requirement and adapt to different natures of data.

4.1 Algorithm Overview
The MEOW algorithm is motivated by the general idea of exponen-

tial weighting in nonparametric bid shading, where both the private

values and bidding prices are quantized into discrete levels, and we

maintain a table of historic rewards with each entry corresponding

to a given pair of private value and bidding price. At each time, the

private value is computed, and the bidder’s bid is determined by

running an exponential weighting algorithm on the rewards of all

candidate prices given this private value. An example of the reward

table is illustrated in Table 2, where 𝑆𝑖, 𝑗 denotes the cumulative

historic surplus of bidding 𝑏𝑖 under the private valuation 𝑣 𝑗 . Under

the private value 𝑣 𝑗 , the exponential weighting algorithm selects a

random bid 𝑏𝑖 with probability

𝑝𝑖 =
exp(𝜂𝑆𝑖, 𝑗 )∑𝐾
𝑘=1

exp(𝜂𝑆𝑘,𝑗 )
,

where 𝜂 > 0 is a properly chosen learning rate.

However, maintaining such a static table is typically verymemory-

consuming, leaving lots of bins seldom visited, and a large portion

of candidate prices probably too bad for the bidder to bid. Also, the

non-data-driven nature of the table leads to a poor generalization

performance. The MEOW algorithm improves over the static table

by choosing its rows and columns in a dynamic and data-driven

way, and specifically greatly reduces the quantization levels for

both the private value (horizontally) and bidding prices (vertically).

Horizontal: private value bins. The high-level idea of horizontal
binning is to adapt the bin design to the real data distribution, where

each bin has comparatively similar amounts of data. Specifically, if

some bin of private values consists of too much data, we further

split it into smaller bins to reduce the quantization error. On the

other hand, if some bin has too little data, we merge it into another

bin so that there is enough data in this bin for learning. In the

MEOW algorithm, we first fix a static binning, and then perform

the splitting and merging operations of bins based on incoming

data. To reduce the computational cost, in the algorithm these steps

are only performed every 𝑇1 rounds of auctions, where 𝑇1 > 0 is a

hyperparameter which is moderately large (e.g. 𝑇1 = 1, 000).

Vertical: bidding price levels. The redundancy in the price levels

comes from the fact that, the optimal bidding price given a private
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value in a small bin also lies in a small range. Therefore, we could

roughly estimate the optimal price (possibly with a low precision)

and then keep only a few candidate prices around it. Specifically,

for each bin of private values, we use the historic data to compute

the empirically optimal bidding price 𝑝∗ in this bin, and the set of

candidate bidding prices is chosen to be a suitable quantization of

[𝑝∗ − Δ, 𝑝∗ + Δ] for some small Δ > 0. The final quantization level

could be as small as 5 ∼ 20, which greatly reduces the storage cost.

In the MEOW algorithm, the process of updating candidate bidding

prices is implemented every 𝑇2 rounds, where 𝑇2 > 0 is a relatively

long time (e.g. 1 day).

Discount factor. The final MEOW algorithm also involves a dis-

count factor 𝜎 ∈ (0, 1) for two purposes. First, practical data are

typically non-stationary over time, and gradually forgetting old

data enables a better adaptation to the new data. Second, as the

amount of data increases, without the discount factor it is possible

to have infinite bins of private values, which increases both the

computational and the storage cost. In contrast, with a discount fac-

tor, the number of bins is always bounded from above (cf. Theorem

4.1). In the MEOW algorithm, we will apply this discount factor to

both the data counts of each bin, and also the cumulative reward

of each candidate bidding price.

4.2 Algorithm Details
The complete description of the MEOW algorithm is summarized

in Algorithm 1, which also takes Algorithm 2 as a subroutine which

updates the candidate bidding price every 𝑇2 time steps. Specifi-

cally, the MEOW algorithm maintains an array of private value

bins, where each bin is a data structure consisting of the following

variables:

• [𝑣
low
, 𝑣

high
): range of the private value in the bin;

• count: cumulative (discounted) amount of past data falling

into this bin;

• price[𝐾]: an array of 𝐾 candidate bidding prices under this

bin, sorted in an increasing order;

• history[𝐾]: an array of 𝐾 cumulative (discounted) historic

rewards associated with the above 𝐾 bidding prices.

where 𝐾 > 0 is a fixed parameter in the algorithm and denotes the

number of vertical quantization levels.

In the initialization of the algorithm, we uniformly partition the

interval [0,𝑉 ] into 𝑀0 bins, where 𝑉 > 0 is an upper bound for

most private values (e.g. the 1% quantile). For each bin, we initialize

𝐾 price levels to be a uniform quantization of [0, 𝑃], where 𝑃 > 0 is

the maximum bidding price. All the counts and the reward histories

are initialized to be zero.

Next we describe the dynamic updates of the private values and

candidate prices, respectively. For the private value bins, if some

private value above 𝑉 occurs (which is unlikely), we create a new

bin for this value. After every 𝑇1 time steps, we check the size of

each bin: if the bin count is larger than a threshold 𝑁1, we split

it evenly into two bins, with both the count and history halved;

if the bin count is smaller than another threshold 𝑁2, we merge

it with one of its neighboring bin which a smaller size, combine

their counts, and inherit the prive levels and history from the larger

bin. We repeat this process until the count of each bin is between

Algorithm 1: Multi-resolutional Exponential Weighting

(MEOW)

Inputs: Initial number of bins𝑀0; Initial ranges 𝑉 , 𝑃 ;

Number of prices 𝐾 ; Discount factor 𝜎 ∈ (0, 1); Learning
rate 𝜂 > 0; Update periods 𝑇1,𝑇2; Thresholds 𝑁1, 𝑁2.

Initialization: Build𝑀0 bins equally for 𝑣𝑡 ∈ [0,𝑉 ], and
set bin.price[ 𝑗] = 𝑗𝑃/𝐾 for each 𝑗 = 1, · · · , 𝐾 .

for 𝑡 = 1, 2, . . . do
% Search for current bin
Observe private value 𝑣𝑡 ;

if 𝑣𝑡 > 𝑉 then
Create a new bin [floor(𝑣𝑡 ), floor(𝑣𝑡 ) + 1);

end
Search for the bin

∗
s.t. 𝑣𝑡 ∈ [bin∗ .𝑣low, bin∗ .𝑣high);

% Exponential weighting
for 𝑗 = 1, 2, . . . 𝐾 do

prob[ 𝑗] ← exp(𝜂 · bin∗ .history[ 𝑗])
end
Sample 𝑏𝑡 ∼ prob/∑𝐾𝑗=1 prob[ 𝑗];
% Bin update
Observe the minimum-bid-to-win𝑚𝑡 ;

for 𝑗 = 1, 2, . . . 𝐾 do
bin
∗ .history[ 𝑗] ← bin

∗ .history[ 𝑗] +
instantreward(bin∗ .price[ 𝑗]; 𝑣𝑡 ,𝑚𝑡 );

end
bin
∗ .count← bin

∗ .count + 1;
% Split or merge bins after every 𝑇1 steps
if 𝑡%𝑇1 == 0 then

for all bins do
% Split a large bin into two smaller bins
if bin.count ≥ 𝑁1 then

bin.history← bin.history/2;
bin.count← bin.count/2;
Create new bins bin𝑙 , bin𝑟 ← bin;

bin𝑙 .𝑣high ← (bin.𝑣low + bin.𝑣high)/2;
bin𝑟 .𝑣low ← bin𝑙 .𝑣high;

Replace bin by bin𝑙 and bin𝑟 ;

end
% Merge two smaller bins into a large bin
if bin.count ≤ 𝑁2 then

Find the neighbor bin
′
with a smaller count;

Create a new bin
∗
with private value range

[bin.𝑣
low
, bin.𝑣

high
)∪[bin′.𝑣

low
, bin′.𝑣

high
);

bin
∗ .count← bin.count + bin′.count;

bin
∗ .price and bin

∗ .history inherit from the

bin with a larger count;

Remove bin and bin
′
, and add bin

∗
;

end
end
% Discount
Multiply all counts and histories by the factor 𝜎 ;

end
% Update price levels after every 𝑇2 steps
if 𝑡%𝑇2 == 0 then

Requantization();

end
end
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Algorithm 2: Requantization
Global inputs: private value bins, number of price levels 𝐾

for all possible bin do
𝑗∗ ← argmax(bin.history);
for 𝑗 = 1, 2, . . . 𝐾 do

bin.price[ 𝑗] ← bin.price[ 𝑗∗ − 7] + 𝑗 ·
(bin.price[ 𝑗∗ + 7] − bin.price[ 𝑗∗ − 7])/𝐾 ;

end
bin.history← 0;

end

[𝑁2, 𝑁1], and then apply the discount factor 𝜎 ∈ (0, 1) to both the

counts and the historic rewards.

As for the updates of candidate prices, we call the subroutine in

Algorithm 2 every 𝑇2 time steps. In Algorithm 2, for each bin we

pick the best price 𝑝∗ giving the largest historic reward, and update
the new prices to a uniform 𝐾-level quantization of [𝑝∗ −Δ, 𝑝∗ +Δ]
for some Δ. The specific choice of the interval is based on the past

price level: the algorithm finds the best bidding price bid.price[ 𝑗∗],
and chooses the interval to be [bid.price[ 𝑗∗ − 7], bid.price[ 𝑗∗ + 7]].
Finally, since the prive levels have changed, we also reset all historic

rewards to zero.

Finally we provide an example choice of the hyperparameters

used in our experiments: 𝑀0 = 40,𝑉 = 100, 𝑃 = 10, 𝐾 = 20, 𝜎 =

0.99, 𝜂 = 1, (𝑇1,𝑇2) = (1000, 1 day), (𝑁1, 𝑁2) = (2500, 10000). Note
that we will ignore the first few 𝑇1 steps to ensure enough data for

splitting/merging when we restart the algorithm.

4.3 Time and Space Complexity
In this section we provide the analysis on the space and tiem com-

plexities of the MEOW algorithm, and show that it could indeed

be efficiently implemented in practice. We start by showing that

thanks to the discount factor, the number of bins is always finite.

Theorem 4.1. Even for an infinite amount of data, the total num-
ber of bins is upper bounded by a constant number

𝑀 := max

{
𝑇1

𝑁2 · (1 − 𝜎)
, 𝑀0

}
.

Proof. First we show that due to the discount, the total count

is bounded by a constant value:∑
all possible bins

(bin.count) ≤ 𝑇1 · (1 + 𝜎 + 𝜎2 + · · · ) <
𝑇1

1 − 𝜎 .

Since after each horizontal bin update, the count of each bin is at

least 𝑁2. In view of the above inequality, the number of bins after

update is at most 𝑇1/(𝑁2 (1 − 𝜎)). Moreover, before all bin updates

the number of bins is initialized to be𝑀0, and the result follows. □

Under the choice of parameters 𝑇1 = 1000, 𝑁2 = 2000, 𝜎 = 0.99,

and 𝑀0 = 40, we compute that 𝑀 = 40 in Theorem 4.1. Conse-

quently, our storage cost is at most 𝑂 (𝑀𝐾), corresponding to the
storage of the matrix consisting of all historic rewards.

As for the computational complexity, note that whenever there

is no horizontal or vertical update, the running time of the bin

search and the exponential weighted prediction in Algorithm 1 is at

most 𝑂 (log𝑀 + 𝐾). When there is either a horizontal or a vertical

update, we may need to change the history table for all bins, which

takes 𝑂 (𝑀𝐾) time. Therefore, the overall time complexity during

𝑇 rounds of auctions is

𝑂

(
𝑇 ·

(
log𝑀 + 𝐾 + 𝑀𝐾

𝑇1
+ 𝑀𝐾
𝑇2

))
,

which is linear in 𝑇 with the coefficient smaller than 30 under our

parameter configuration.

5 IMPLEMENTATION
The bid shading system was deployed on Verizon Demand Side

Platform (VZDSP) [27], one of the largest Real-Time Bidding sys-

tems in the United States after Google, Amazon, and the Trade Desk

[9]. The performance requirements for VZDSP are extreme. At run-

time, the Bid Shader needs to respond to 5.5 million requests per

second peak load. For each of these bid requests, a bid needs to be

calculated within 100 miliseconds. Approximately 1000 bid servers

are used to serve ads, which means that each server has to handle

5,000 requests per second. Overall, less than 10 miliseconds are

budgeted for bid calculations. The time complexity of Section 4.3

shows that the algorithm only adds about 30 additional operations

per request.

Space requirements are also highly restrictive. Bid servers carry

about 28 Gigabytes of RAM. There are over 200,000 sub-domains

and mobile applications requesting bids. Therefore assuming𝑀=40

and 𝐾=20, there are 200,000 ×𝑀 × 𝐾 = 160,000,000 = 160 million

double types are needed, which equals about 1.28 Gigabytes RAM

per bid-server. The analysis to follow shows results for the most

frequent 100 domains, the memory consumption for which was

negligable at 0.64 Megabytes.

6 EXPERIMENTS
In order to measure the performance of the bid shading system,

two forms of testing were performed: (i) previously saved auctions

were replayed using the MEOW algorithm to calculate new bid

prices (Offline test). (ii) the MEOW algorithm was also used in a live

bid server in an A/B test versus the production algorithm (Online

test). The production algorithm benchmark in both cases was an

implementation of log-normal distribution-based shading [28].

6.1 Offline Auction Replay
The nonparametric algorithm was first tested on saved auction data

captured from the Verizon Demand Side Platform where for each

auction/bid request, private valuations and highest competing bids

were known. Bid requests from the top 100 top-level domains were

used (cnn.com, espn.com, buzzfeed.com and other sites), and all

auctions from December 22 to January 12 2021 in which the Pro-

duction algorithm responded with a bid, were used. This comprised

approximately 6.2 billion requests.

The data spanned an interesting period of time, since it ranged

from the 2020 Christmas shopping season with high advertising

prices around $0.97 CPM, to January 2021 in which advertising

prices dropped to just $0.77 CPM.

Figure 4 shows the behavior across this period; after good per-

formance from December 22 to 29, there’s a big drop centered

on January 1, 2021. Surplus yield worsens by 15% due to the new
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Metric Distr. MEOW

surplus % of opt 47.91% 53.42%

imps % of opt 48.01% 61.21%

spend % of opt 43.03% 62.28%

Table 3: Optimality
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Figure 4: Surplus captured by nonparametric algorithm, as
a percent of optimal surplus from December 22 to January
12, 2021.

auctions no longer matching historical data. On January 2nd, the

surplus recovers. Quantitatively, MEOW appears to have responded

better to the change in distribution over the dataset. The R
2
be-

tween algorithm bid and optimal bid for Distribution was 0.903

where-as for MEOW it was 0.953. The mean absolute difference

in CPM was $0.88 and $0.64; and surplus as a percent of optimal

surplus was 47.9% and 53.4% for Distribution vs MEOW (Table 3).

Thus MEOW submitted bids that were closer to optimum and had a

better correlation in matching the in-time changes to the optimum

bid distribution.

Table 4 summarizes the performance on replay data. The increase

in surplus ranged between 5.7% (100th percentile) to 10.1% (90th

percentile), and all increases were statistically significant (p<0.01;

paired t-test; MEOW vs Distribution surplus scores compared daily).

The table reports on several surplus percentiles because we have

found it to be common for a tiny percentage of advertiser ads

to have unrealistic goals and be "chronically wound up" by the

control system, resulting in spuriously high surpluses. Therefore

we presented a range of percentiles from 90% to 100% to help verify

that the results were robust.

6.2 Online Production Performance
The algorithm was also deployed in the Verizon DSP bid server

[27], and was set to run on a randomly selected 1 percent of traffic,

and the top 100 domains. The period of data analyzed spans from

January 21 to January 29 2021.

The results are shown in Table 5. The surplus increased between

3.3% to 6% (90th..100th percentile; all except the 100th percentile

were significant at p<0.01; paired t-test).
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Figure 5: Predicted Optimal Shading Factor by Private Value
average over all domains.
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mator [11], (B) Distribution Estimator [28], (C) MEOWwith
𝐾=30 bins, and (D) MEOW with 𝐾=7 bins.
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percentile 90 95 98 99 100

mean 10.1% 11.5% 10.4% 8.7% 5.7%

stdev 4.4% 4.1% 3.6% 3.3% 1.8%

stderr 1.0% 0.9% 0.8% 0.7% 0.4%

ttest <0.001 <0.001 <0.001 <0.001 <0.001

Table 4: Surplus Offline Results

percentile 90 95 98 99 100

mean 3.3% 6.1% 4.5% 3.5% 6.0%

stdev 2.7% 3.3% 4.8% 3.9% 22.0%

stderr 0.72% 0.89% 1.28% 1.03% 5.87%

ttest <0.001 <0.001 0.004 0.003 0.22

Table 5: Surplus Online Results
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Figure 8: Offline MEOW versus Distribution Bid Shading
algorithm Dec 22 - Jan 12 2021. Bid prices decrease signifi-
cantly starting January 1

6.3 Observations
Some examples of MEOW behavior on real Online Advertising

auction data (Offline and Online experiments) are shown in Figures

5, 6, 7.

Figure 7 shows the performance MEOW approximating the ac-

tual win cumulative probability distribution for ebay.com in its of-

fline experiment. For each bid price, the MEOW algorithm submits

its predicted optimal bid. We have aggregated those bid submissions

into a cumulative probability distribution. We then compared this

against the actual win probability distribution in the data.

The Distribution based approach [28] does a good job of ap-

proximating the optimal bid price distribution. However there are

clear imperfections in high bids; indeed we sometimes find that the

Distribution estimates are biased systematically due to the shape

that they are required to fit. We also observe that the Distribution

approach has difficulty setting the win probability to zero for the

"floor" price of the auction - instead of an immediate drop to zero,

it is a gentle slope.

For illustration purposes, we show a "low resolution" MEOW

algorithm that only has 𝐾=7 bins; the algorithm approximation is

relatively poor. In contrast, the MEOW algorithm with 𝐾=30 bins

approximates the distribution extremely well - and better than the

Distribution approach. In particular, the nonparametric approach

approximates the floor (bid prices below $2.00) and the ceiling.

Figure 5 shows the importance of private value quantization. This

shows the average shading factor (bid price submitted as a percent

of private value) whichmaximizes surplus, at each quantized private

value. As private value increases, the algorithm finds that a deeper

shading factor is optimal, a result also observed in the auction

literature [5].

Figure 6 shows the inferred relationship between private value,

shading factor, and surplus, for one domain (spotify.com). The

surplus maximum "ridge line" is visible. It can also be seen that there

is a bid region where the system has zero probability of winning;

this is likely the inferred auction floor.

7 DISCUSSION
The higher yield from nonparametric algorithms isn’t free. Where-

as the Distribution algorithm might typically have two numeric pa-

rameters for its distribution shape (variance and mean for example),

MEOW has𝑀 × 𝐾 parameters; which for the default parameters

of 𝑀=40 and 𝐾=20 results in 800 doubles. Thus, the algorithm is

about 400 times more expensive in space. We’ve argued, and the

experimental results also support, the argument that this additional

space is needed to capture the various spike patterns. However, the

same level of resourcing might not be necessary for every auction.

We believe it might be possible to combine both parametric and

nonparametric approaches, and use the higher precision of non-

parametric where needed, and preserve storage when parametric

approximates well enough. One approach that seems promising

is the online learning with hints framework from [35], where the

parametric fit forms a hint which is used or discarded based on

performance.

8 CONCLUSION
The shift to First Price has been traumatic for the advertising indus-

try. Several researchers reported that traffic prices for First Price

Auctions increased between 5% and 50% higher compared to Second

Price Auctions [4, 18, 22, 29], meaning significantly lower advertiser

profitability for the same impressions. [22] reported that after their

SSP switched to First Price, 10% of advertisers actually discontinued

bidding.

As a result of these problems, there has been an explosion of

research and commercial implementations in Machine Learning for

Bid Shading. It seems certain that the financial imperative to shade

better than competing Demand Side companies, will lead bidders to

begin to exploit the deep pricing structure in online auctions. There

appears to be plenty of performance available, for researchers and

companies who are willing to "listen to what their data is telling

them".

As Thomas Huxley, the great biologist and supporter of Charles

Darwin suggested, we should endeavor to “..sit down before fact as
a little child, be prepared to give up every preconceived notion, follow
humbly wherever and to whatever abysses nature leads, or you shall
learn nothing." - Thomas Huxley (1860), [19]
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