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Abstract
Concolic execution is a powerful program analysis technique
for systematically exploring execution paths. Compared to
random-mutation-based fuzzing, concolic execution is espe-
cially good at exploring paths that are guarded by complex
and tight branch predicates. The drawback, however, is that
concolic execution engines are much slower than native ex-
ecution. While recent advances in concolic execution have
significantly reduced its performance overhead, our analy-
sis shows that state-of-the-art concolic executors overlook
the overhead for managing symbolic expressions. Based on
the observation that concolic execution can be modeled as a
special form of dynamic data-flow analysis, we propose to
leverage existing highly-optimized data-flow analysis frame-
works to implement concolic executors. To validate this idea,
we implemented a prototype SYMSAN based on the data-flow
sanitizer of LLVM and evaluated it against the state-of-the-art
concolic executors SymCC and SymQEMU with three sets
of programs: nbench, the DARPA Cyber Grand Challenge
dataset, and real-world applications from Google’s Fuzzbench
and binutils. The results showed that SYMSAN has a much
lower overhead for managing symbolic expressions. The re-
duced overhead can also lead to faster concolic execution and
improved code coverage.

1 Introduction

Concolic execution [8–12, 16, 21, 22, 36, 37, 41, 48] is a pow-
erful program testing tool that can explore code paths effec-
tively without blindly testing inputs that redundantly execute
the same code path. For this reason, it has been widely used in
finding security vulnerabilities. However, a critical limitation
of concolic execution is its scalability. Yun et al. [48] reported
that KLEE [9] is around 3,000 times slower than native ex-
ecution, and angr [44] is more than 321,000 times slower.
With respect to memory efficiency, we observed that state-of-
the-art concolic executors like QSYM [48] and SymCC [36]
introduced three orders of magnitude memory consumption
blown up.

To understand the key bottlenecks in concolic execution, let
us quickly review how a concolic executor works. A concolic
executor (CE) maintains two core data structures: a symbolic
state s : v ! sym

v
and a set of path constraint PC along the

execution path. The symbolic state s maps each program
variable v to its corresponding symbolic expression sym

v
.

Conceptually, a symbolic expression can be considered as
an abstract syntax tree (AST). Consider a simple statement
d= a�b, where � is an arbitrary binary operator. To update
the symbolic state s, the CE performs the following four
operations:

• Parsing the instruction d = a�b to extract its operands
and operator.

• Locating the symbolic expressions syma and symb based
on a! syma and b ! symb.

• Creating a new expression of symd that has syma and symb
as child nodes and � as the operator.

• Updating s with the mapping d! symd.

One major source of performance overhead for concolic
execution is to parse instructions and extract their semantic
information. CEs like KLEE [9] and angr [44] interpret each
instruction during runtime. As interpretation is usually slower
than concrete execution, their performance overhead is ex-
tremely high. Recent CEs like QSYM [48], SymCC [36], and
SymQEMU [37] replace interpretation with instrumentation
(i.e., the parsing is only performed once, either at compile-
time, or during instruction translation), thus they are able to
significantly reduce the overhead.

Despite these recent successes, the locating, creating,
and updating of symbolic expressions still incur significant
overhead. For instance, we profiled the state-of-the-art CE
SymCC [36] on the program objdump and found that at least
65% of its execution time is spent on maintaining allocated
AST nodes of symbolic expressions. In addition, the lookup
data structure of SymCC, which maintains the mapping be-
tween variables and their corresponding symbolic expres-
sions, consumes a 98MB memory footprint when executing



one objdump instance, whereas native execution consumes
only several KBs.

In this work, we aim to further improve concolic execu-
tion’s scalability by reducing the overhead for maintaining
the symbolic state s. Our key observation is that the concolic
execution can be modeled as a special form of dynamic data-

flow analysis [40]. Therefore, we can significantly reduce
the performance and memory overhead for maintaining the
symbolic state by leveraging a mature and highly-optimized
dynamic data-flow analysis framework.

To verify our hypothesis, we have implemented a con-
colic executor SYMSAN based on LLVM’s data-flow sani-
tizer (DFSAN). We evaluated SYMSAN with a variety set
of programs, including standard benchmarks (Linux/Unix
nbench [32]), DARPA Cyber Grand Challenge (CGC) dataset,
Google’ Fuzzbench [23] test suite, and 4 real-world ap-
plications (outside Fuzzbench). The evaluation results
showed that compared to state-of-the-art CEs SymCC [36]
and SymQEMU [37], SYMSAN achieved 62.0⇥ perfor-
mance speedup and 6.5⇥ memory footprint reduction. For
end-to-end fuzzing, SYMSAN also outperformed SymCC
and SymQEMU. In the Google’s Fuzzbench benchmark,
SYMSAN is 1st by average score and 3rd by average rank.
In comparison, SymCC is 6th by average score and 5th by
average rank, while SymQEMU is 4th by average and 2nd by
average rank.

In summary, this paper makes the following contributions:
• New design: we proposed a novel approach to perform con-

colic execution atop of dynamic data-flow analysis frame-
work and achieved significant performance improvement
against state-of-the art concolic execution tools.

• Open-source: we open-sourced our prototype implementa-
tion SYMSAN1.

• Evaluation: we conducted a comprehensive evaluation to
understand the advantages and limitations of our approach.

2 Background and Motivations

In this section, we provide a short review of symbolic/concolic
execution, data-flow sanitizer, and our motivations.

2.1 Symbolic Execution
Symbolic execution treats program inputs as symbolic val-
ues instead of concrete values. Program variables (including
memory and register content) are represented as symbolic
expressions, i.e., functions of symbolic inputs. Symbolic exe-
cution is a powerful software testing tool because it can cover
an execution path using a symbolic input instead of multiple
concrete ones.

1Our tool is already open-sourced under a different name. SYMSAN is
chosen for anonymization.

A symbolic execution engine maintains (i) a symbolic
state s, which maps program variables to their symbolic
expressions, and (ii) a set of path constraints PC, which is
a quantifier-free first-order formula over symbolic expres-
sions [11].

The path constraint PC is empty initially. Whenever a con-
ditional statement is encountered, if its predicate is symbolic,
the symbolic executor constructs a boolean formula e (i.e.,
e = true for the if then branch or e = false for the else
branch). The symbolic executor can then check the feasibility
of each branch direction by consulting a satisfiability mod-
ulo theories (SMT) (i.e., whether PC ^ e and PC ^¬e are
satisfiable). For each feasible direction, the symbolic execu-
tor updates its path constraint PC by adding the constraint
(e = true or e = false) according to the branch direction.

To generate a concrete input that would allow the program
to follow the same execution trace, the symbolic execution
engine uses PC to query an SMT solver for satisfiability and
feasible assignments to symbolic values (i.e., input).
Concolic Execution. One disadvantage of classical sym-
bolic execution is that it cannot explore an execution path
where a constraint solver cannot solve its path constraints
PC(e.g., when the constraints contain uninterpreted functions
or are too complex). To circumvent the issue, researchers
proposed concolic execution (a.k.a. dynamic symbolic exe-
cution) where symbolic execution is combined with concrete
execution. In concolic execution, (i) each variable has two
states, one with concrete input and the other with symbolic
input, and (ii) the execution path is dictated by the concrete in-
put (i.e., the execution path that is always feasible, regardless
of the feasibility of the path constraints). To explore execution
paths that deviate from the current concrete path, CE checks
the feasibility of the branch target opposite to the concrete
direction; if feasible, it generates a corresponding input.
Scalability Issues and Recent Advances. The advantage of
symbolic execution over random mutation/generation is the
ability to handle complex branch conditions more efficiently
(i.e., to find an input that can visit the opposite direction
of a branch, solving the corresponding path constraints are
faster than fuzzing). The drawback, however, is the lack of
scalability. There are three main performance bottlenecks:
constraint solving, instruction interpretation, and symbolic
state management.

Recently, a line of research work aims to improve the perfor-
mance of the instruction interpretation. For example, Yun et

al. [48] observed that KLEE is around 3,000 times slower
and angr is more than 321,000 times slower than native ex-
ecution when testing md5sum, chksum, and sha1sum. They
pointed out the slowdown of KLEE and angr is due to their
adoption of IR and symbolic emulation, so they proposed a
dynamic-instrumentation-based approach directly atop binary
instructions.

Based on the observation that collecting symbolic con-
straints at IR-level is simpler than collecting at the instruction-



level [35], Poeplau and Francillon proposed using IR-level
instrumentation to (i) avoid symbolic emulation of instruc-
tions and (ii) retain the simplicity of symbolic constraints [36].
As a result, their tool SymCC performs significantly faster
than both IR-less QSYM [48] and IR-based KLEE [9].

2.2 Dynamic Data-flow Analysis
The dynamic data-flow analysis aims to track the information
flow between sources and sinks. Conceptually, a dynamic data-
flow analysis framework associates each program variable
with a label representing how its value depends on the source.
As formalized in [40], a dynamic data-flow analysis is defined
by a policy, which describes:
• Label Introduction: these rules define how labels are in-

troduced into the system.

• Label Propagation: these rules define how variables’ la-
bels are updated after the execution of an instruction.

• Label Checking: these rules define at sinks, what opera-
tions to perform.

Dynamic Taint Analysis. When the label is binary (e.g.,
the label can only be tainted or untainted), we also call such
analysis as dynamic taint analysis (DTA). Because the label
is binary, the propagation rules are relatively simple. They
can be expressed using propositional logic (e.g., if any of
the source operands are tainted, the destination operand is
tainted). In DTA, we are mainly concerned about how the
execution of a program is affected by taint sources. Two typ-
ical applications of DTA are: (i) we mark untrusted inputs
controllable by attackers as tainted and check if attackers can
control critical data (e.g., the program counter); and (ii) we
mark privacy-sensitive data as tainted and check if it will
be leaked through the network. As DTA is an instrumental
analysis for security applications, many tools have been im-
plemented, which have significantly reduced the cost of the
analysis [7, 18, 19, 27, 38].
Forward Symbolic Execution. Forward symbolic execution,
as we described in §2.1, can also be modeled as a special form
of dynamic data-flow analysis [40]. In concolic execution,
labels represent the symbolic expressions of variables. The
label source is test input, e.g.when the program uses the read
system call to read the test input file, we mark input bytes as
symbolic. The propagation rules define how new symbolic
expressions are constructed based on the semantic of each
instruction. The label sinks are conditional branches, where
we perform two operations (i) update the path constraints and
(ii) generate inputs that can visit the opposite branch target.
Data-flow Sanitizer. The data-flow sanitizer (DFSAN) from
the LLVM project [46] is a mature and highly-optimized
data-flow analysis framework. It performs (LLVM) IR-level
instrumentation to insert data-flow tracking logic. Unlike DTA
tools optimized to handle binary labels (tainted vs. untainted),

DFSAN is designed to track how individual input bytes would
affect variables. In other words, a label represents a subset
of input bytes affecting the corresponding variable. DFSAN
performs set union ([) instead of using propositional logic
(_) during label propagation.

DFSAN optimizes its performance in several ways. First,
it uses the shadow memory implementation from the Ad-
dress Sanitizer [42] to allow constant-time access to labels
corresponding to variables stored in memory. Second, it can
introduce shadow variables to store labels corresponding to lo-
cal variables as DFSAN uses IR-level instrumentation. Third,
it performs IR-level optimizations to reduce the access to
shadow memory. Finally, it uses an optimized data structure
called union table to (i) allow fast label access and (ii) reduce
the footprint by deduplicating redundant labels (i.e., labels
represent the same subset of input bytes).

Besides performance optimizations, DFSAN also provides
an interface to implement custom propagation rules for exter-
nal libraries such as the standard C library.

2.3 Motivation
Despite recent improvements in symbolic execution, the state-
of-the-art symbolic executors still impose a significant perfor-
mance and memory overhead compared to native execution.
For example, we tested 24 real-world applications with in-
puts obtained from 24-hour fuzzing and found that SymCC
introduces 8.5x to 32,220x overhead and SymQEMU intro-
duces 226.9x to 39,658.8x overhead than native execution,
respectively.

To understand the source of the overhead, we profiled the
performance of SymCC and SymQEMU. The result revealed
a bottleneck previously overlooked by the existing tools: the

maintenance of the symbolic state s, including representation,

storage, and retrieval of symbolic expressions. Concretely, the
existing designs (e.g., the runtime from QSYM [48]) repre-
sent a symbolic expression as an on-demand allocated mem-
ory object and store those objects in hash map alike data
structures. The memory objects are keyed by the variable’s
address in the application’s address space. To ease memory
management, some tools adopt smart pointers. As a result, the
allocation, store, and retrieval of symbolic expressions intro-
duce non-negligible overhead. Since those operations are the
most frequent ones during symbolic execution, their overhead
dominates the overall performance of symbolic execution.

In this work, we aim to solve these bottlenecks. Our key
observations are (i) forward symbolic execution is a type of
dynamic data-flow analysis and (ii) existing dynamic data-
flow tools have already spent decades of effort to optimize
the allocation, store, and retrieval of labels. Therefore, we
can significantly reduce the overhead for maintaining the
symbolic state by building a symbolic execution engine on top
of a highly-optimized dynamic data-flow analysis framework.
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Figure 1: The overall design of SYMSAN

1 ; bool example(int *a, int b) {
2 ; return (*a) * b > 100;
3 ; }
4 define i1 @example(i32* %0, i32 %1) {
5 %3 = load i32, i32* %0
6 %4 = mul nsw i32 %3, %1
7 %5 = icmp sgt i32 %4, 100
8 ret i1 %5
9 }

10

11 define i1 @"dfs$example"(i32* %0, i32 %1) {
12 ; load taint labels for the arguments
13 %3 =load i32,getelementptr(@__dfsan_arg_tls, 0) ; arg0
14 %4 =load i32,getelementptr(@__dfsan_arg_tls, 1) ; arg1
15 ; load taint label from shadow memory
16 %5 = ptrtoint i32* %0 to i64 ; get shadow_addr(%0)
17 %6 = and i64 %5, -123145302310913
18 %7 = mul i64 %6, 4
19 %8 = inttoptr i64 %7 to i32*
20 %9 = call i32 @__taint_union_load(i32* %8, i64 4)
21 ; load concrete value
22 %10 = load i32, i32* %0
23 ; concrete execution
24 %11 = mul nsw i32 %10, %1
25 ; create a new label to represent (*a) * b
26 %12 = zext i32 %11 to i64 ; extend
27 %13 = zext i32 %1 to i64
28 %14 = call i32 @__taint_union(
29 i32 %9, i32 %4, ; symbolic operands
30 i16 MUL, ; operator
31 i8 32, ; operand size in bits
32 i64 %12, i64 %13 ; concrete operands
33 )
34 ; concrete execution
35 %15 = icmp sgt i32 %11, 100
36 ; create a new label to represent (*a) * b > 100
37 %16 = zext i32 %15 to i64
38 %17 = call i32 @__taint_union(
39 i32 %14, ; symbolic left operand
40 i32 0, ; zero label for concrete right operand
41 i16 ICMP_LARGER_THAN, ; operator
42 i8 32, ; operand size
43 i64 %15, i64 100 ; concrete operands
44 )
45 ; store the label of the return value
46 store i32 %17, @__dfsan_retval_tls
47 ret i1 %15
48 }

Figure 2: A running example illustrating how SYMSAN instrument
the target program. Line 1 - 3 shows the source code. Line 4 - 9
shows the uninstrumented LLVM IR compiled from the source code.
Line 11 - 48 shows the instrumented LLVM IR.

3 SYMSAN

In this section, we present the design and implementation
details of SYMSAN.

Insight. Our design goal is to improve the time and space
efficiency of the concolic execution. To achieve the goal, we
leverage an important insight: the concolic execution can be

viewed as a special form of dynamic data flow analysis. This
observation enables us to build our concolic tool by extending
the existing highly-optimized data-flow sanitizer framework.
Our design removes two primary bottlenecks in the existing
concolic execution tools brought by the management of the
symbolic state.

3.1 Overview

Similar to existing instrumentation-based concolic executors
like SymCC [36], SYMSAN performs compile-time instru-
mentation to insert the logic for introducing, propagating, and
checking symbolic expressions. The overall architecture of
SYMSAN is shown in Figure 1. 1 SYMSAN takes a compiled
LLVM IR as input and instruments the code via a compiler
pass. SYMSAN’s run-time 2 is then linked with the instru-
mented program to form the final binary. During run-time,
the symbolic state (which can be viewed as an abstract syntax
forest) 3 of all program variables is then populated according
to the symbolic execution policy. At points of interest (e.g.,
conditional branches), 4 SYMSAN constructs the symbolic
formulas of the path constraints, asks an SMT solver to check
their feasibility, and generates new test inputs for feasible
branch targets.

A Running Example. Figure 2 shows a running example
illustrating how SYMSAN instruments a target program. This
program takes two arguments as inputs and returns a boolean.
The first argument is an integer pointer (int *a), and the
second argument is an integer (int b). The function first cal-
culates the product of two integers provided by the inputs
((*a) * b). Then it compares the product with 100. If the
product is greater than 100, the function returns true; other-
wise it returns false. We deliberately make the first argument
a pointer to show how SYMSAN accesses shadow memory.

Line 11 - 48 of Figure 2 shows the instrumented ver-
sion of the function. Recall that given an instruction like
%4 = mul %3, %1, the core logic of concolic execution con-
sists of three operations:



• Load: Locate the symbolic expressions corresponding to
%3 and %1 from the symbolic state.

• Creation: Create a new symbolic expression of that repre-
sent the expression mul %3, %1.

• Store: Bind the new symbolic expression to %4.
Next, we describe how these steps are done in SYMSAN.

At Line 14, SYMSAN loads the label of b, which represents
a unique symbolic expression (more details in §3.3), from the
thread-local storage (TLS). Line 16 - 20 shows how SYMSAN
loads the label of *a. It first uses the original address (%0) to
calculate its corresponding shadow address (%8) through a
fixed mapping scheme (i.e., the shadow address from Address
Sanitizer [42]), then directly loads the label from the shadow
address. Next, it creates a (new) symbolic expression (%14)
by passing the two source labels (%9 and %4) and the operator
(MUL) to the runtime function. Because the product of the
inputs ((*a) * b) is temporary, its corresponding label (%14)
will not be permanently stored. Instead, SYMSAN will record,
at compile-time, that the label of %11 is %14. Later, when the
product is used in the comparison (Line 35), SYMSAN can
directly pass %14 to the runtime function to create the label
(%17) corresponding to the comparison result (%15). Finally,
to pass the label of the return value, SYMSAN stores its label
in TLS.

In summary, SYMSAN uses labels to represent symbolic ex-
pressions, which are stored and retrieved as (i) local (shadow)
variables, (ii) thread-local storage, (iii) shadow memory, and
(iv) additional arguments (described later). Labels are con-
structed through a runtime function _taint_union. In the
next subsection, we explain how SYMSAN optimizes these
operations.

3.2 Symbolic State Access
In this subsection, we explain how SYMSAN reduces the
performance overhead for storing and retrieving symbolic
expressions by comparing it to the closest state-of-the-art tool
SymCC [36].

Symbolic Expression Representation. In SymCC, a sym-
bolic expression is either a pointer(usually 64 bits in 64-bit
systems) points to a Z3 abstract syntax tree (AST) node (when
the simple backend is configured), or points to a QSYM AST
node. In SYMSAN, a symbolic expression is a 32-bit label,
which is an index to our AST Table (§3.3).

Arguments and Return Value. In SymCC, the sym-
bolic expressions for arguments are passed through a
globalstd::array. Similarly, symbolic expressions for return
values are passed through a global variable. Consequently, it
requires multiple function invocations as well as additional
overhead imposed by the C++ container. In addition, this
design also limits current SymCC implementation to single-
thread programs.

In SYMSAN, labels are passed in two different ways, which
are inherited from the DFSAN framework. As shown in Fig-
ure 2, the first way is through the per-thread thread-local
storage (TLS). Accessing TLS is very fast, and usually only
requires a single instruction. For example, on x86, retrieving
the label for argument b can be done by a single mov instruc-
tion:

; %4 =load i32,getelementptr(@__dfsan_arg_tls, 1)
movq __dfsan_arg_tls@GOTTPOFF(%rip), %rax

The second way is to introduce additional arguments. For
instance, the wrapper functions for implementing custom sym-
bolic expression constructions for standard C library use ad-
ditional shadow arguments for each original argument, and a
special return label argument:

SANITIZER_INTERFACE_ATTRIBUTE size_t
__dfsw_fread(void *ptr, size_t size,

size_t nmemb, FILE *stream,
dfsan_label ptr_label,
dfsan_label size_label,
dfsan_label nmemb_label,
dfsan_label stream_label,
dfsan_label *ret_label)

Either way, when symbolic expressions are propagated
between functions, SYMSAN is more efficient.
Shadow Memory. For variables stored in memory, most
concolic executors use shadow memory to store their labels.
To retrieve symbolic expressions from the shadow memory,
a CE first needs to convert the original address (a) to its cor-
responding shadow address. As memory accesses (i.e., load
and store) are very frequent, the speed to perform such trans-
lation is critical. In SymCC, shadow memory is implemented
in a two-tier mapping. Given an address addr, it first uses
its page-level address to retrieve the corresponding shadow
page through a std::map. Once the shadow page is retrieved,
the shadow address is calculated by adding the page offset of
addr:

std::map<uintptr_t, SymExpr *> g_shadow_pages;
SymExpr* getShadow(uintptr_t addr) {
return g_shadow_pages[addr & ~0xfffL]

+ (addr & 0xfffL);
}

Due to the lookup through std::map, the search complexity
is O(log(n)).

Because shadow memory is also used by dynamic taint
analysis (DTA) tools, they have spent significant efforts to
reduce the overhead. So far, the most efficient approach is to
use direct mapping, which offers constant time (O(1)) lookup.
SYMSAN uses the direct mapping shadow memory from the
sanitizer family [42]. Specifically, given an address addr, its
shadow address is calculated as:

dfsan_label *shadow_for(uptr addr) {
return (ptr & ShadowMask()) << 2;

}



In summary, SYMSAN provides much faster shadow memory
access.
Shadow Variables. Both SymCC and SYMSAN use compile-
time instrumentation at the LLVM-IR level. Therefore, they
enjoy the freedom of introducing additional local variables,
which is not feasible for binary-level CEs like QSYM and
SymQEMU. Leveraging this advantage, they both use lo-
cal shadow variables to store symbolic expressions for local
variables. Using shadow variables has two main advantages.
First, the mapping and lookup are maintained at compile-time,
so accessing shadow variables will not introduce additional
runtime lookup overhead. Second, it allows compile-time op-
timizations to remove redundant (stack and shadow memory)
accesses. For example, in Figure 2, the product’s shadow vari-
able (%14) can be directly used to construct the symbolic ex-
pression of the return value, without storing and loading from
the stack. In summary, both SymCC and SYMSAN provide
optimal access to symbolic expressions of local variables.
Summary. Based on the above analysis, we can see that by
leveraging the highly-optimized infrastructure from DFSAN,
SYMSAN can significantly reduce the overhead of storing and
retrieving symbolic expressions. Moreover, SYMSAN uses a
more concise representation for symbolic expressions.

3.3 Symbolic Expression Management
In this subsection, we describe how SYMSAN allocates and
stores symbolic expressions in detail. State-of-the-art CEs
represent symbolic expressions as memory objects or, more
precisely, abstract syntax trees (AST). These tools will dy-

namically allocate a new AST node and populate it based on
the source operand(s) to create a new symbolic expression.
For example, SymCC [36] offers two different forms of AST.
When the simple runtime is configured, SymCC directly uses
the AST nodes from Z3. When the QSYM runtime is config-
ured, SymCC uses the AST nodes from QSYM. To ease the
memory management, Z3 AST nodes use a reference counter
to track living references, while QSYM uses smart pointers
std::shared_ptr to track living references. Because heap
allocation is costly and reference tracking is not free, based
on our performance profiling, SymCC spends a considerable
amount of time on just allocating (⇠3%) and tracking AST
nodes (⇠28%).

To reduce the overhead of allocating, tracking, and access-
ing symbolic expressions, SYMSAN uses an AST table (i.e.,
an array of AST nodes) to store symbolic expressions. Our ob-
servation is that, during dynamic testing (e.g., hybrid fuzzing),
because fuzzing throughput has a big impact on the overall
fuzzing performance, existing fuzzers all prefer smaller in-
put files [3] and will actively minimize the input files (e.g.,
afl-min). As a result, when processing these small input files,
we need to worry too much about memory leaks (e.g., as
shown in Figure 5, most concolic execution processes last
less than 1 second). Therefore, we organize AST nodes in an

array and perform simple forward allocation to allocate new
AST nodes.

struct dfsan_label_info {
dfsan_label l1;
dfsan_label l2;
u64 op1;
u64 op2;
u16 op;
u16 size;
u32 hash;

} __attribute__((aligned (8), packed));

Figure 3: AST node of SYMSAN.

AST Nodes. Figure 3 shows the AST node design of
SYMSAN. Each AST node support at most two child nodes
(l1 and l2). If a child node is symbolic, its corresponding la-
bel will be non-zero, which refers to a subtree. As mentioned
above, in SYMSAN, labels are indices in the AST table (ar-
ray). If a child node is concrete (i.e., not symbolic), its label
will be 0, and the corresponding concrete value will be stored
in the data fields (op1 and op2). op stores the operator over the
subtree(s). size stores the size of operand(s) in bits. hash is a
hash value of the tree, which is used for deduplication (§3.4).
To make it easier to share symbolic expressions, we use the
packed attribute to prevent the compiler from re-ordering the
fields.

AST allocation. SYMSAN uses a simple forward allocation
strategy to allocate new AST nodes. Specifically, SYMSAN
preserves large enough consecutive virtual addresses (see Ta-
ble 1) for the AST table during initialization. To allocate a
new node, it tracks the last label previously allocated (i.e., the
largest array index in use) and performs an atomic_fetch_add
to update the last label. This allows SYMSAN to allocate
a new AST node with a single instruction. The use of
atomic_fetch_add also allows SYMSAN to support multi-
thread programs.

3.4 Additional Optimizations
Although using simple forward allocation is fast, we can
quickly exhaust the fixed size AST table if we blindly al-
locate new AST nodes every time _taint_union is invoked.
To address this issue, we designed some optimizations to re-
duce the size of the consumed AST table entries and improve
SYMSAN’s memory efficiency.

Deduplication. The first obvious strategy to reduce the num-
ber of allocated AST nodes is deduplication. Before allocating
a new AST node, we will check if an identical node already
exists. If so, we will reuse the existing one instead of allocat-
ing a new node. This is done through a reverse lookup table.
In particular, SYMSAN uses a hash table to map AST nodes
back to their labels. Whenever two labels need to be merged,
SYMSAN first queries the hash map to see if it had recorded
the corresponding label for the potentially new AST node



(l1, l2,op1,op2,op,size). If so, it reuses the label returned by
the hash map; otherwise, it allocates a new label (AST node).

Because the lookup process involves checking whether two
AST nodes are identical and our AST nodes are not small,
such comparison could be expensive. Therefore, we need
a faster way to check whether two nodes are identical. We
use a hash table implementation with chaining to resolve
collisions for simplicity. This also requires us to apply a good
hash algorithm to avoid frequent collisions. We adopted the
Merkle hash tree to meet these requirements. Specifically,
each AST node has a hash, which is calculated as follows:
• If the node is a leaf node (i.e., an input byte), its has equal

to its label.

• If the node is an intermediate node, its hash is calculated
based on its child nodes.

• If a child node is a concrete value, its hash is 0.
With this hash value calculated for each AST node, when

checking if two AST nodes are identical, we will first check
if their hash values match; if not, we do not need to check
the rest fields. This hash value is also used to access the hash
table slot.

Finally, hash table entries are also allocated using a simple
forward allocator. To better support multi-thread programs,
we also adopted a lock-free implementation.
Load and Store Simplification. In traditional concolic exe-
cution, both load and store operations work at byte granular-
ity. As a result, loading data larger than one byte will involve
several concat operations; and storing data larger than one
byte will result in several extract operations.

For example, consider a simple assignment statement with
two 32-bit integers: x = y, where y is symbolic. When the
load operation is recorded at the byte granularity, SYMSAN
needs to create three new AST nodes to concatenate the four
individual bytes. To make the matter worse, when storing
Lx back to memory, SYMSAN needs to create an additional
four AST nodes to extract individual bytes from the symbolic
expression.

In order to increase the label space utilization and simplify
the symbolic expressions, SYMSAN implements additional
optimizations for load and store operations. First, SYMSAN
uses a special operator uload to express loading a sequence
of bytes:

label := (uload, lstart ,size,size)

where Lstart represents the label of the first byte and size

indicates how many bytes are loaded. When handling a load
operation, SYMSAN will first check if the uload operation is
applicable (i.e., reading a consecutive of input bytes) before
falling back to the concat way. Second, when handling store
operations, if the label is a result of uload operation, SYMSAN
will directly extract labels of the corresponding bytes from
the uload operation.

3.5 Interactions with External Libraries
Similar to DFSAN, SYMSAN provides two ways to support
external libraries. First, we can instrument the dependent li-
braries using SYMSAN, and statically link it with the target
program. Most of the Fuzzbench programs we evaluated in §5
follow this way. For libraries that cannot be instrumented,
such as glibc, we use custom wrappers to implement special
label propagation rules. Using a custom wrapper also simpli-
fies the symbolic expressions based on domain knowledge.
Label Introduction. SYMSAN introduces symbolic labels
where test inputs are read. For instance, if the underlying
fread operation is successful, we will mark bytes in the output
buffer as symbolic input bytes, based on their offsets from the
beginning of the test input file.
Label Propagation. SYMSAN also uses custom wrapper
functions to implement special propagation rules. Two typical
examples are memcpy and memcmp. In memcpy, besides copying
the concrete data from the source buffer to the destination
buffer, SYMSAN also needs to propagate labels corresponding
to the data in the source buffer to the data in the destination
buffer. As memcmp is frequently used to check against magic
numbers or keywords, we introduced a special higher-order
operator f memcmp to symbolize the return value of memcmp.
Later, if the return value is used in a conditional branch, we
can reconstruct the corresponding formula (e.g., bytes in the
first buffer must equal the bytes in the second buffer).

4 Implementation

In this section, we reveal some implementation details of our
SYMSAN. SYMSAN is implemented based on the data-flow
sanitizer (DFSAN) [46], which is part of the LLVM compiler
toolchain.

Table 1: Memory layout of the program for taint analysis.

Start End Description

0x700000040000 0x800000000000 application memory
0x400010000000 0x700000020000 ast table
0x400000000000 0x400010000000 hash table
0x000000020000 0x400000000000 shadow memory
0x000000000000 0x000000010000 reserved by kernel

Memory Layout. SYMSAN uses directly mapping shadow
memory to store labels of program variables stored in mem-
ory. Achieving this goal requires 64-bit address space and a
special memory layout. Table 1 shows the memory layout of
an instrumented program.

To enforce this memory layout, we wrote a linker script
to restrict the application memory range, which can avoid
colliding with other designated regions. Once the program
starts, the runtime library of SYMSAN reserves the designated
regions, so the OS kernel will not allocate virtual addresses
within these regions to the application.



Note that although the preserved regions are enormous, the
OS kernel will not map physical pages to the addresses until
needed.

Label Introduction. To assign labels to input bytes,
SYMSAN instruments file-related functions. In our current
prototype, we only support symbolic data from an input file
and stdin; symbolic data from the network is not supported
yet but can be easily extended. When the program opens a file
that should be symbolized, SYMSAN calculates the size of
the file and reserves the input label entries. When the program
reads from the file, SYMSAN calculates the offset (within the
file) and the size to be read and assigns the corresponding
labels to the target buffer that receives the read bytes.

Currently, the following functions are supported: getc,
fgetc, gets, fgets, read, fread, pread, getline, getdelim.

Label Propagation. Our label propagation policies are al-
most identical to DFSAN, the only difference is that when
combining two labels, we will construct symbolic expressions.
The following (bitvector) operations are supported:
• Bit-wise operations: bvnot, bvand, bvor, bvxor, bvshl,
bvlshr, bvashr;

• Arithmetic operations: bvneg, bvadd, bvsub, bvmul, bvudiv,
bvsdiv, bvurem, bvsrem;

• Truncation and extension: bvtrunc, bvzext, bvsext;
In our current prototype, we do not support floating point

and vector operations, for a fair comparison with SymCC [36]
and SymQEMU [37], which also do not support non-integer
operations. We also do not support the intrinsic functions of
LLVM IR.

Label Checking. In our current prototype, we consider br
and switch instructions as data-flow sinks (i.e., coverage-
oriented). For br instruction, SYMSAN checks whether it
is conditional; if so, whether its condition is symbolic. For
switch instruction, SYMSAN treats each case as a compari-
son between the condition variable and the case value. For
branch targets controlled by symbolic values, SYMSAN will
generate new test inputs for branch target(s) other than the
concrete one.

Symbolic Addresses. In our current prototype, we use the
same strategy as QSYM [48] and SymCC [36] to handle
symbolic addresses. Specifically, SYMSAN will (1) generate
new test inputs to visit other possible addresses; and (2) bind
the symbolic address in the current execution trace to its
concrete value to ensure correctness.

Nested Branches. One particular challenge when solving
path constraints is that solving a single branch predicate alone
is insufficient. In our current prototype, we use QSYM’s [48]
approach to identify nested branches based on data dependen-
cies: finding all precedent branches whose input bytes overlap
with the current branch. This strategy is also used by SymCC
and SymQEMU.

Supporting run-time libraries. SYMSAN cannot perform
label propagation correctly for code inside an uninstrumented
library due to source-code-based instrumentation. For the
standard C library, we implemented custom wrapper func-
tions to propagate labels. For the standard C++ library, we
instrumented libc++ from LLVM.
Hybrid Fuzzer. We also implemented a hybrid fuzzer to
evaluate SYMSAN in the end-to-end fuzzing. Overall, our
hybrid fuzzer follows the same cross-seeding design as pre-
vious hybrid fuzzers [21, 30, 45, 48]. Specifically, SYMSAN
maintains its own FIFO seed queue and a global coverage
bitmap. SYMSAN periodically synchronizes the seeds from
the fuzzer’s queue. Each time, SYMSAN fetches a seed in the
FIFO queue, executes the seed symbolically and generates
new inputs. If the generated inputs cover new code, they are
added back to the seed queue. For a fair comparison, we use
the same branch filters as SymCC [36], so both tools will
roughly flip the same amount of branches.

5 Evaluation

In this section, we evaluate the performance of SYMSAN to
answer the following research questions.
• RQ1: Time efficiency. Does SYMSAN impose less run-

time overhead than the state-of-the-art CEs for maintaining
the symbolic state? If so, by how much?

• RQ2: Space efficiency. Does SYMSAN use less memory
than the state-of-the-art CEs? If so, by how much?

• RQ3: Effectiveness. Can test cases generated by SYMSAN
achieve the same or higher code coverage than the state-of-
the-art CEs?

• RQ4: End-to-end fuzzing. Can SYMSAN improve the
performance of end-to-end hybrid fuzzing?

• RQ5: Security impacts. Can SYMSAN improve the per-
formance of bug finding?

Experimental Setup. All our evaluations were performed
on a server with an Intel(R) Xeon(R) E5-2683 v4 @ 2.10GHz
(40MB cache) and 512GB of RAM, running Ubuntu 16.04
with Linux 4.4.0 64-bit.
Baseline. We mainly evaluate SYMSAN against two state-of-
the-art CEs: SymCC [36] and SymQEMU [37]. We believe
the comparison with SymCC is especially meaningful as both
CEs perform compile-time instrumentation at the LLVM IR
level, and use Z3 as the constraint solver. For hybrid fuzzing,
we include the state-of-the-art fuzzer AFL++ [20] for com-
parison.

5.1 Dataset

Standard Benchmark. We choose nbench [32] to evaluate
the instrumentation overhead of SYMSAN and baseline CEs.



Table 2: Performance results for pure concrete execution on
NBENCH

Tests (Iterations/s) Native SYMSAN SymCC SymQEMU

NUMERIC SORT 1958 170.26 30.044 15.153
STRING SORT 2425.5 717.2 1.2361 1.2757
BITFIELD 8.76e+08 3.72e+07 1.06e+07 5.34e+06
FP EMULATION 1104 42.952 17.019 4.9317
FOURIER 71699 67760 8958.3 261.54
ASSIGNMENT 99.488 3.6895 0.96664 0.28006
IDEA 17358 572.91 280.11 85.503
HUFFMAN 5969.2 305.26 82.372 32.832
NEURAL NET 158.68 7.428 0.66788 0.17407
LU DECOMPOSITION 3785.3 149.1 26.15 8.4286

Score Index

Memory Index 80.272 6.218 0.315 0.167
Integer Index 53.834 2.632 0.828 0.298
Floating-point Index 88.594 10.661 1.362 0.184

We did not use SPEC CPU benchmark because its test inputs
are too large for evaluated CEs—they all run out of memory.
DARPA Cyber Grand Challenge. CGC programs remove
the use of system calls, enabling a fair comparison between
source-based and binary-based concolic executions tools and
are widely used in the evaluation of state-of-the-art CEs [36,
37, 48]. We follow the same evaluation procedure as previous
work, we used PoVs (proofs of vulnerability) as inputs for
evaluation. We excluded programs that require inter-process
communication and programs on which baseline CEs failed
to generate inputs.
Real-world Programs. We evaluated 23 real-world pro-
grams shown in Table 5. 16 programs are from Google’s
Fuzzbench [24], 4 programs are from binutils.
Inputs Selection. To obtain the test inputs for real-world
applications, we used AFL++ to fuzz the target programs for
24 hours and obtained the generated seeds as test inputs. To
avoid bias toward repetitively executed code paths, we used
the utility cmin from AFL++ to prune the seed corpus. For
bintuils, we used the publicly available seed corpus from [43]
for better reproducibility.

5.2 Performance
The performance overhead of an instrumentation-base con-
colic executor can be classified into the following four cate-
gories, which we evaluated separately.
• Instrumentation. The overhead from additional code in-

jected to the target program.

• Symbolic state access. The overhead for accessing the
symbolic expressions correspond to program variables.

• Symbolic state management. The overhead for creating
and updating symbolic expressions.

• Constraint solving. The overhead from consulting an SMT
solver.

5.2.1 Pure Concrete Execution

We ran programs in nbench [32] natively (without instru-
mentation), and with instrumentation of different concolic
executors. When running the programs (pinned to a dedicated
CPU core) with concrete inputs, the concolic executors will
not invoke its symbolic backend. In this way, we can mea-
sure the instrumentation overhead of each concolic executor.
Table 2 reports the results. Compared to native execution,
SYMSAN is 12.9⇥ slower on memory index, 20.5⇥ slower
on integer index, and 8.35⇥ slower on the floating-point in-
dex. SymCC and SymQEMU are much slower than SYMSAN.
SymCC is 254.8⇥ slower on memory index than native exe-
cution, 65.0⇥ slower on integer index, and 65.0⇥ slower on
the floating-point index. SymQEMU is 480.7⇥, 180.7⇥, and
481.5⇥ slower than native execution, respectively. We also
noticed that SYMSAN performed much better than SymCC
on the memory index. We believe this is due to the direct-
mapping-based shadow memory scheme used by SYMSAN.

5.2.2 Pure Taint Propagation

In this experiment, we measure the performance overhead
of pure symbolic state accesses. To do so, we disabled the
real creation and storage of symbolic expressions; instead, we
“simulate” the creation of new symbolic expressions by simply
returning a new label for SYMSAN, and a new expression
pointer (cast from an increasing integer) for SymCC. This
comparison shows the benefit of SYMSAN’s shadow memory
implementation.

CGC. Following the same procedure as the previous pa-
pers [36, 37, 48], we used the first PoV input to test each
CGC challenge. We enforced the same 5-minute timeout for
each execution as [48] for easier comparison with the numbers
reported in previous papers. The results are shown in Figure 4.
Compare to native execution, SYMSAN (SymSan-Taint) has
1.3 times slowdown and SymCC (SymCC-Taint) has 4.9 times
slowdown in average execution time. In the metric of me-
dian execution time, SYMSAN has 1.8 times slowdown and
SymCC has 127.1 times slowdown.

Real-world applications. For real-world applications, we
collected the overall running time for every concolic execu-
tor executing all seeds. The results are shown in Figure 5.
Overall, in the metric of average execution time, SYMSAN
(SymSan-Taint) introduces 3.7 times overhead compared to
the native execution, while SymCC (SymCC-Taint) introduces
18 times overhead. In the metric of median execution time,
the numbers are 2.25 times and 4.5 times respectively for
SYMSAN and SymCC.

Both experiments show that SYMSAN’s sanitizer-based
shadow memory implementation is much faster than
SymCC’s.



Figure 4: Execution time of 102 CGC challenge binaries, using the first PoV as inputs. The figure is drawn in logarithmic scale. SymSan-Taint
and SymCC-Taint measure pure symbolic state access overhead (§5.2.2). SymSan-NS, SymSan-QSYM-NS, SymCC-NS, and SymQEMU-NS
measure the concolic execution overhead without solving (§5.2.3). SymSan, SymCC, and SymQEMU measure the full-fledge concolic
execution overhead (§5.2.4).

Figure 5: Execution time for the real-world programs. The figure is drawn in logarithmic scale. SymSan-Taint and SymCC-Taint measure pure
symbolic state access overhead (§5.2.2). SymSan-NS, SymSan-QSYM-NS, SymCC-NS, and SymQEMU-NS measure the concolic execution
overhead without solving (§5.2.3). SymSan, SymCC, and SymQEMU measure the full-fledge concolic execution overhead (§5.2.4).

5.2.3 Concolic Execution without Solving

In this section, we evaluate the performance of concolic execu-
tors without solving. Overhead measured in this experiment is
an accumulation overhead of instrumentation, symbolic state
access, and symbolic state management. To better reflect the
benefit of SYMSAN’s AST table, we included a configuration
SYMSAN-QSYM that uses the same shadow memory imple-
mentation to access symbolic expressions, but uses QSYM’s
backend to manage symbolic expressions (i.e., the same as
SymCC and SymQEMU). The ablation study for the two
additional optimizations presented in §3.4 is in Appendix.
Overall, constraint deduplication improved the performance
by 16% and load/store simplification added another 6% speed
up on top of deduplication.

CGC. We used the same procedure as described above. The
execution time for each program is visualized in Figure 4. In
the metric of average execution time, SYMSAN (SymSan-NS)
is 1.36 times slower than the native execution, and SYMSAN
with QSYM backend (SymSan-QSYM-NS) is 1.37 times slower.
Since each CGC program is only run for 5 minutes with a
single input, the performance difference between SYMSAN’s
AST table and QSYM’s backend is not very large. In compar-
ison, SymCC (SymCC-NS) and SymQEMU (SymQEMU-NS) are
5.3 and 7.2 times slower than SYMSAN respectively. In the
metric of median execution time, the numbers are 146 and
301 times respectively for SymCC and SymQEMU.

Real-world applications. The overall running time for every
concolic executor executing all seeds is presented in Table 5

(in Appendix). The distribution for inputs that did not timeout
is shown in Figure 5. Note that SymQEMU timeout on all
inputs so it is not shown. Similarly, 75% of inputs timeout
on SymCC, and only 65% of inputs timeout on SYMSAN.
Overall, in the metric of average execution time, SYMSAN
(SymSan-NS) introduces a 17.4⇥ overhead compared to the
native execution, while SymCC (SymCC-NS) and SymQEMU
(SymQEMU-NS) introduce 2243⇥ to 5026⇥ overhead respec-
tively. As a result, SYMSAN achieves 128⇥ performance
speedup over SymCC and 288⇥ over SymQEMU. In the
metric of median execution time, SYMSAN achieves 28⇥ per-
formance speedup over SymCC and 176⇥ over SymQEMU.
In this experiment, as each execution trace is much longer
than CGC’s, SYMSAN’s AST table exhibits much better per-
formance than QSYM’s backend (7.3⇥ speedup), and only
imposes 1.7⇥ overhead over SymSan-Taint (in median exe-
cution time).

5.2.4 Full-fledged Concolic Execution

We enabled constraint solving for each concolic executor and
check if a faster symbolic backend would improve the overall
concolic execution speed.

CGC. We used the same setup for CGC as in the previous
CGC experiment. We collected the execution time for each
program and the result is visualized in Figure 4. As we can see,
SYMSAN is still faster than SymCC and SymQEMU, but its
advantage becomes smaller. This is because constraint solving
takes a significant portion of the overall concolic execution



Table 3: Execution time of concolic execution engines with solving
(in seconds). SymCC cannot build sqlite3, crashes on 70% of seeds
for libpng, cannot generate any new input for pro j4, and has solving
crashes on all re2 seeds. Coverage is basic-block coverage measured
by SanitizerCoverage.

Program #seeds Total Execution Time (sec) Basic Block Coverage

SYMSAN SymCC SymQEMU SYMSAN SymCC SymQEMU

readelf 604 27,712 41,695 49,947 7,660 6,067 3,807
objdump 560 43,612 44,052 47,627 4,789 4,668 4,528
nm 249 6,106 14,127 18,628 3,386 2,746 2,755
size 207 3,517 8,920 15,976 2,448 2,198 2,226
libxml2 1952 2,234 51,588 33,172 8,161 8,014 8,022
proj4 770 696 N/A 7,181 4,500 N/A 4,286
vorbis 526 27,476 44,606 45,531 1,396 1,396 1,396
re2 1073 47,536 N/A 37,596 5,139 N/A 5,136
woff2 548 18,432 28,843 45,693 3,454 3,464 3,460
libpng 218 907 N/A 13,781 1,286 N/A 1,283
libjpeg 846 61,672 56,888 59,159 2,754 2,744 2,744
lcms 157 800 3,278 6,545 2,073 2,047 2,106
freetype 4789 245,684 288,627 338,307 16,171 16,013 15,294
harfbuzz 2955 1,472 144,190 196,759 9,536 9,471 9,351
jsoncpp 450 667 3,733 2,584 968 966 941
openthread 268 1,280 1,474 3,562 5,565 5,565 5,533
openssl 1577 48,180 119,786 134,798 11,887 11,900 11,893
mbedtls 491 3,479 29,569 39,968 4,186 4,145 4,140
sqlite3 5253 111,029 N/A 421,947s 32,843 N/A 36,124
curl 1343 501 1,312 102,180s 13,171 13,122 13,140

time, which was also reported in previous work [36].
Real-world applications. For real-world applications, we
placed a 90-second timeout for each execution. Otherwise, the
experiments cannot be completed in a reasonable time. Note
that placing a timeout for each concolic execution is a com-
mon practice adopted by both SymCC and SymQEMU. The
results are shown in Table 3. The execution time distribution
for inputs that did not timeout is shown in Figure 5. As we
can see, with solving enabled, SYMSAN still enjoys a perfor-
mance speedup over SymCC and SymQEMU. But again, the
advantage is smaller compared to concolic execution without
solving.

5.3 Memory Consumption
In this section, we evaluated the memory usage by SYMSAN
and compared it with SymCC, since both are source-based
concolic executors. We chose maximum resident size as the
memory usage metric for each comparison. The visualized
result is shown in Figure 6. As we can see, SYMSAN intro-
duces a much smaller memory overhead than SymCC (3.4⇥
vs. 82.4⇥). The result also shows that our AST table is more
memory efficient than the QSYM backend.

5.4 Code Coverage
In this experiment, we compared SYMSAN’ code coverage
with SymCC and SymQEMU on CGC programs and real-
world applications.
CGC. For CGC, we measured the coverage by following the

Figure 6: The peak resident size for each concolic execution without
solving. The average memory consumption for native execution is
4.1MB. SYMSAN consumes 14.1MB memory in average, while
SymCC consumes about 337.9MB in average.

method introduced by Yun et al. [48]. For each program, we
used an AFL coverage map to collectively record the coverage
for all generated test cases. For each program, let A be the
coverage map for SYMSAN and B the coverage map for our
comparison target (SymCC or SymQEMU). The difference
between A and B is then calculated as below as per [48]:

d(A,B) =

( |A�B|�|B�A|
|(A[B)�(A\B)| if A 6= B

0 otherwise
The score will be in the range of [�1.0,1.0], where 1.0

means SYMSAN not only covers all paths that are covered
by other concolic executors but also covers some unique
paths. Our results are visualized in Figure 7. As we can see,
SYMSAN has a similar code coverage as SymCC, it covers
slightly more than SymCC in 83 programs while covers less
in 19 programs.

Figure 7: Coverage score comparing SYMSAN and SymCC per
tested program (102 CGC challenge binaries in total). We re-use the
visualization method introduced in [48]: Blue colors indicate that
SYMSAN found more paths, red colors indicate that that SymCC
found more and white colors indicate equal coverage. A deeper color
indicates a larger coverage difference. SYMSAN performs better on
83 programs and worse on 19 programs.

Real-world Applications. For each real-world application,
We measured the basic-block coverage for all generated in-
puts using SanitizerCoverage [1]. The results are in Table 3.
In most programs, SYMSAN has similar coverage as SymCC
and SymQEMU except sqlite3, where SYMSAN covers sig-



nificantly less than SymQEMU, this is because SymQEMU
is a binary-based concolic executor and can handle exter-
nal libraries better than SYMSAN. In 18 out of 20 programs
tested, the code coverage by SYMSAN is more than or equal
to SymCC. In the rest of the 2 programs, SYMSAN covers
slightly less than SymCC. In 16 out of 20 programs tested, the
coverage of SYMSAN is more than or equal to SymQEMU.
In the rest of the 4 programs, SYMSAN covers less than
SymQEMU.

5.5 Hybrid Fuzzing
In this evaluation, we plugged SYMSAN into the hybrid
fuzzing scheme to check if a faster concolic executor helps in
the end-to-end fuzzing.

Fuzzbench. We first compared SYMSAN with other popu-
lar concolic executors and fuzzers on Google’s Fuzzbench
dataset [24]. We use AFL++ (commit 70bf4b4 with the de-
fault build and fuzz options2) for hybrid fuzzing. The ex-
periment is conducted by Google on its cloud. Due to the
page limit, we only provide a summary here. The full report
can be retrieved at https://anonymoussubmission2022.
github.io. Out of 12 fuzzers (11 state-of-the-art and 1 from
us), SYMSAN is 1st by average score and by average rank, For
median coverage, SYMSAN leads in 9 programs, and AFL++
only leads in 3 programs.

We also compared SYMSAN’s performance with other con-
colic executors including SymCC [36], SymQEMU [37],
and Fuzzolic [6] based on their publicly available
experiment report3. The merged report can be re-
trieved at https://anonymoussubmission2022.github.
io/symsan. SYMSAN is the first by average score and
third by average rank. We summarized the median cover-
age reached in 24 hours for each concolic executor tool in
Table 4. SYMSAN leads in 7 programs, both SymQEMU and
Fuzzolic lead in 4 programs, and SymCC leads in 3 programs.

Local fuzzing. For programs that are not included in the
Fuzzbench dataset, we conducted hybrid fuzzing in our local
environment. For the baseline, we added AFL++ with commit
70bf4b4 and cmplog enabled. SYMSAN, SymCC [36], and
QSYM [48] used the same hybrid fuzzing configuration as
described in the QSYM’s tutorial: a concolic executor paired
with two AFL (version 2.56b) instances, one master and one
slave. In addition, the concolic executor has a 90-second time-
out for executing each seed. For each concolic executor/fuzzer,
we executed 10 fuzzing trials, each for 24 hours. To ensure
a fair comparison, we use the Fuzzbench’s configuration to
run each fuzzer/concolic executor in a docker container with
1 physical CPU-core assigned.

2https://github.com/google/fuzzbench/blob/master/
fuzzers/aflplusplus/fuzzer.py

3https://www.fuzzbench.com/reports/experimental/
2021-07-03-symbolic/index.html

Table 4: Comparing SYMSAN with other state-of-the-art symbolic
executors based on their publicly available Fuzzbench results. The
metric is median coverage reached in 24 hours. We show the results
of 15 programs where all tools generate valid results. SYMSAN takes
lead in 10 out of 14 programs.

Target SYMSAN SymCC SymQEMU Fuzzolic

curl 17926.5 17622.0 17564.5 17599.5
freetype 28080.0 25496.0 24028.0 26371.0
harfbuzz 8656.0 8482.5 8482.5 8515.0
lcms 3506.5 3701.5 3656.0 3770.0
libjpeg 3802.5 3810.5 3819.0 3814.0
libpng 2136.0 1914.5 2149.5 2146.5
libxml2 12799.0 11097.0 12305.0 12072.0
libxslt 18799.0 18577.0 18592.5 18515.0
mbedtls 8353.5 8260.0 8244.5 8268.0
openssl 13772.5 13777.0 13777.0 13767.5
openthread 5833.5 5935.0 5862.5 5912.0
proj4 7262.0 5365.0 5314.0 5836.5
re2 3516.0 3521.5 3519.0 3544.5
vorbis 2166.0 2167.5 2168.0 2168.0
woff2 1872.0 1934.0 1934.0 1936.5

The result is shown in Figure 8. SYMSAN can achieve
higher final coverage than other tools on the four programs
from binutils. For the rest three programs, SYMSAN performs
similarly to other CEs but lags behind AFL++. There are two
main reasons. First, the current implementation of SYMSAN
only supports tracking symbolic expressions over integers,
while AFL++ is type-agnostic. Second, SYMSAN’s support
for external libraries is limited by its custom wrappers. As
a result, certain important label propagation rules could be
missing. SYMSAN was lagging behind SymCC on ob jdump

at the beginning because SymCC only imports seeds marked
with +cov, while SYMSAN will execute all imported seeds.

5.6 Security Implications
Recent research has shown a strong correlation between a test-
ing tool’s ability to achieve code coverage and its ability to
find bugs [4]. Similarly, recent research also showed that lever-
aging symbolic execution to solve bug triggering constraints
can also improve a hybrid fuzzer’s ability to find bugs [15].
Based on these observations, we expect that SYMSAN can
also help with finding bugs.

In this subsection, we present case studies to demonstrate
SYMSAN’s ability on finding bugs. Specifically, we used pro-
grams with known bugs from the Magma benchmark [26],
and evaluated three hybrid fuzzers: (1) symsan (SYMSAN
with AFL), (2) symsan_sec, with inserted security assertions
for divide-by-zero (as a simulation to [15]), and (3) symccafl
(SymCC with AFL). The full results are shown in Table 7 in
Appendix. The present numbers are averaged over 10 trials.
Following are a few highlights.
• AAH001 (CVE-2018-13785) is a divide-by-zero bug in

%20https://anonymoussubmission2022.github.io
%20https://anonymoussubmission2022.github.io
https://anonymoussubmission2022.github.io/symsan
https://anonymoussubmission2022.github.io/symsan
https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/fuzzer.py
https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/fuzzer.py
https://www.fuzzbench.com/reports/experimental/2021-07-03-symbolic/index.html
https://www.fuzzbench.com/reports/experimental/2021-07-03-symbolic/index.html


Figure 8: Edge coverage growth over time for local fuzzing.

libpng and can be used to demonstrate the utility of the
symbolic executor. symsan can trigger the bug in 8 minutes,
while symsan_sec can trigger it much faster—in just 29
seconds. For comparison, symcc takes 57.04 minutes to
trigger the bug, and the fastest mutational fuzzer Honggfuzz
uses 17.7 hours [26].

• AAH017 (CVE-2019-7663) is a NULL-pointer derefer-
ence bug in libtiff. symsan_sec is the fastest hybrid
fuzzer to trigger the bug, using 5.84 hours. symsan uses
7.69 hours to trigger this bug. In comparison, symccafl
takes 11.18 hours to trigger the bug and the fastest muta-
tional fuzzer moptafl takes 5.2 hours [26].

• AAH055 (CVE-2016-2108) is an out-of-bound read issue
in openssl. Both symsan and symsan_sec can trigger this
bug, using 2.53 minutes and 2.51 minutes, respectively.
However, it takes 15.68 minutes for symccafl to trigger the
bug.

6 Limitations and Future Work

Our current design and implementation of SYMSAN have
some limitations that we plan to address in future work.
Memory Layout. Similar to other sanitizers, SYMSAN re-
quires a special memory layout (§4) for the shadow memory.
So, the current implementation of SYMSAN requires the tar-
get program to be compiled in 64-bit mode and cannot support
programs that can only be compiled in 32-bit.
Supported Operations. The current prototype of SYMSAN
does not support floating-point and vector operations. We
made this choice because other state-of-the-art concolic ex-
ecutors like QSYM [48], SymCC [36], and SymQEMU [37]
also do not support these operations. We plan to add the sup-
port in the future.

Constraint Solving and Path Explosion. We believe that
by bringing down the overhead of constraint collection in
CE to near-optimal, future research can focus on solving
other issues of CE, such as constraint solving and path/seed
prioritization. Indeed, we have also seen some recent progress
in improving constraint solving performance [5, 13, 29, 34].
So ultimately, we, as a community, can achieve efficient and
scalable concolic execution.

7 Related work

Besides the works already discussed in §2, the following
works are related to this paper.

Concolic Execution. Besides the performance issue, an-
other challenge for concolic execution is the path explosion
problem. To mitigate this problem, SAGE [22] proposed uti-
lizing generational search to increase the number of generated
test cases in one execution, which has been adopted by most
following-up work. Dowser [25] proposed using static anal-
ysis to guide concolic execution to places where it is more
likely to have buffer overflow vulnerabilities. To compen-
sate the scalability problem of concolic execution engines,
another popular approach is to combine concolic executing
with fuzzing [31, 45, 48, 49]. In these approaches, path ex-
ploration is mostly done by the fuzzer, who is more effective
at exploring easy-to-flip branches. Whenever the fuzzer en-
counters a hard-to-flip branch, it asks the concolic execution
engine to solve it.

Taint-guided Fuzzing. Dynamic taint analysis (DTA) [33]
is another popular technique to improve the efficiency of
fuzzing. TaintScope [47] utilizes DTA to discover and bypass
checksum checks and target input bytes that can affect se-
curity system library calls. Vuzzer [39] uses DTA to locate



magic number checks and then changes the corresponding
input bytes to match the magic number. Steelix [28] also uses
DTA to bypass magic number checks but has better heuris-
tics. Redqueen [2] uses the observation that input byte could
indirectly end up in the program state (memory), so by di-
rectly comparing values used in compare instructions, it is
possible to infer such input-to-state relationships without ex-
pensive taint tracking. Neuzz [43] approximates taint analysis
by learning the input-to-branch-coverage mapping using a
neural network, which can then predict what inputs bytes can
lead to more coverage. Eclipser [17] exploits the observation
that many branch predicates are either linear or monotonic
with regard to input bytes and solves them using binary search.
Angora [14] is another close approach to SYMSAN. It uses
DFSAN to collect input dependencies of conditional branches,
then performs gradient-guided search to find inputs that can
flip the corresponding branch.

8 Conclusion

In this work, we propose leveraging highly-optimized data-
flow analysis framework to reduce the performance and the
memory overhead of a concolic executor. Evaluation of our
prototype built upon LLVM’s data-flow sanitizer validated
our idea—our prototype SYMSAN can significantly outper-
form the state-of-the-art concolic executors SymCC and
SymQEMU.
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Figure 9: Execution time for the real-world programs. The figure
is drawn in logarithmic scale. SymSan-NoOpti is SYMSAN without
expressions deduplication and load/store optimization. SymSan-
NoLoad is without load/store optimization).

Figure 10: The peak resident size for the real-world programs.
The figure is drawn in logarithmic scale. SymSan-NoOpti is
SYMSAN without expressions deduplication and load/store opti-
mization. SymSan-NoLoad is without load/store optimization).

Appendix

This section includes additional evaluation results that cannot
fit into the main paper.
Concolic Execution without Solving. Table 5 shows the ex-
ecution time of SYMSAN, SymCC, and SymQEMU to collect
symbolic constraints without solving (§5.2.3).
Effectiveness of the Two Additional Optimizations. Fig-
ure 10 and Figure 9 shows the execution time and the peak res-
ident size distribution of (1) native execution, (2) full-fledge
SYMSAN, (3) SYMSAN without load/store optimization, and
(4) SYMSAN without expression deduplication and load/store
optimization. As we can see, both optimization techniques
can help reduce the execution time. To find out how often the
load/store optimization can be applied, we also measured the
ratio of uload/concat, the result is 13.8:1.
Statistics of Collected Constraints. Figure 11 shows (1) the
maximum number of tracked expressions (in the number of
AST nodes). The median numbers of track expressions are
22,270 and 20,245 for SYMSAN and SymCC respectively.

Table 6 shows the statistics of all the processed constraints
in experiments conducted in §5.4 (we considered 16 programs
in this statistics, that is all programs in Table 3, but excluded
sqlite, libpng, re2, proj where SymCC do not generate
legitimate results). SYMSAN solves about twice the number
of constraints than SymCC.
Bug Finding. Table 7 shows the evaluation results on the
Magma benchmark.
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Table 5: Execution time of concolic execution engines collecting all constraints without solving (in seconds). SymCC cannot build sqlite3.
SymCC crashes on 70% of seeds for libpng.

Program #seeds Native SYMSAN SymCC SymQEMU

Time vs. Native Time vs. Native vs. SYMSAN Time vs. Native vs. SYMSAN

readelf 604 1.6s 10.1s 6.3x 462.8s 289.3x 45.8x 2916.2s 1822.6x 288.7x
objdump 560 2.7s 24.4s 9.0x 2097.0s 776.7x 85.9x 21913.1s 8116.0x 898.1x
nm 249 0.8s 3.3s 4.1x 169.1s 211.4x 51.2x 2598.6s 3248.3x 787.5x
size 207 0.6s 2.2s 3.7x 91.5s 152.5x 41.6x 1520.2s 2533.7x 691.0x
libxml2 1952 6.7s 36.5s 5.4x 2966.5s 442.8x 81.3x 12040.0s 1797.0x 329.9x
proj4 770 2.6s 10.8s 4.2x 22.2s 8.5x 2.1x 776.8s 298.8x 71.9x
vorbis 526 2.6s 267.2s 102.8x 83772.2s 32220.0x 313.5x 103113.2s 39658.9x 385.9x
re2 1073 7.3s 215.2s 29.5x 16655.4s 2281.6x 77.4x 221078.9s 30284.8x 1027.3x
woff2 548 2.2s 295.4s 134.3x 19812.6s 9005.7x 67.1x 12918.0 5871.8x 43.7x
libpng 218 0.7s 2.5s 3.6x N/A N/A N/A 1126.1s 1608.7x 450.4x
libjpeg 846 3.1s 83.0s 26.8x 42243.3s 13626.9x 509.0x 49465.2s 15956.5x 596.0
lcms 157 0.8s 4.9s 6.1x 26.9s 33.6x 5.5x 4335.0s 5418.8x 884.7x
freetype 4789 15.9s 202.1s 12.7x 16139.3s 1015.1x 79.9x 98562.2s 6198.9x 487.7x
harfbuzz 2955 9.4s 22.3s 2.4x 11903.4s 1266.3x 533.8x 16788.0s 1786.0x 752.8x
jsoncpp 450 1.6s 5.9s 3.7x 478.4s 299.0x 81.1x 1395.4s 872.1x 236.5x
openthread 268 0.9s 3.8s 4.2x 18.2s 20.2x 4.8x 204.2s 226.9x 53.7x
openssl 1577 11.3s 88.4s 7.8x 43255.3s 3827.9x 489.3x 215200.1s 19044.3x 2434.4x
mbedtls 491 1.6s 18.1s 11.3x 4146.9s 2591.8x 229.1x 9532.2s 5957.6x 526.6x
sqlite3 5253 19.7s 257.7s 13.1x N/A N/A N/A 46465.7s 2358.7x 180.3x
curl 1343 7.1s 35.0s 4.9x 398.8s 56.2x 11.4x 4494.8s 633.1x 128.4x

Geomean 9.2x 589.2x 62.0x 3407x 371.1x

Table 6: Statistics of the solved constraints

SYMSAN SymCC

Number of processed constraints 15,860,404 7,102,939
Number of satisfied nested constraints 5,022,332 (31.67%) 2,294,057 (32.30%)
Timeout nested constraints 12013 (0.076%) 1140 (0.016%)

Figure 11: Maximum number of AST nodes tracked by SYMSAN
and SymCC



Table 7: Mean bug survival times—both Reached and Triggered—over a 24-hour period, in seconds, minutes, and hours. Bugs are sorted by
“difficulty” (mean times).

symcc symsan symsan_sec symcc symsan symsan_sec
Bug ID R T R T R T Bug ID R T R T R T

AAH037 10.0s 25.00s 10.00s 25.00s 10.00s 25.00s AAH041 15.00s 25.50s 15.00s 27.0s 15.00s 26.50s
AAH003 10.00s 1.08m 10.00s 15.00s 10.00s 15.00s JCH207 10.00s 1.67m 10.00s 2.65m 10.00s 2.58m
AAH056 15.00s 8.00m 15.00s 7.68m 15.00s 7.63m AAH015 16.67m 41.42m 17.12m 56.25m 17.21m 58.20m
AAH055 15.00s 15.68m 20.00s 2.53m 20.00s 2.51m AAH020 5.00s 11.63h 10.00s 2.40h 10.00s 2.89h
MAE016 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h AAH052 15.00s 6.36h 15.00s 7.33m 15.00s 7.26m
AAH032 15.00s 23.72h 15.00s 11.11h 15.00s 8.00h MAE008 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h
AAH022 15.07m 16.86h 17.12m 20.49h 17.21m 17.07h MAE014 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h
JCH215 1.85h 22.09h 3.33h 14.51h 5.10h 13.65h AAH017 11.05h 11.18h 7.63h 7.69h 5.84h 5.84h
JCH232 24.00h 24.00h 7.25h 10.71h 9.41h 15.88h AAH014 12.87h 12.87h 20.56h 20.38h 23.19h 23.19h
JCH201 15.00s 16.08h 15.00s 1.07h 15.00s 1.06h AAH007 15.00s 15.52m 15.00s 10.15m 15.00s 12.18m
AAH008 15.00s 24.00h 15.00s 22.07h 15.00s 22.88h AAH045 20.00s 24.00h 20.00s 24.00h 20.00s 24.00h
AAH013 24.00h 24.00h 23.31h 24.00h 24.00h 24.00h AAH024 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
JCH209 24.00h 24.00h 23.47h 23.47h 21.67h 21.67h MAE115 15.00s 13.95h 15.00s 16.91h 15.00s 15.37h
AAH026 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH001 15.00s 57.04m 15.00s 8.12m 15.00s 29.00s
MAE104 24.00h 22.48h 15.00s 17.70h 15.00s 17.37h AAH010 1.76h 24.00h 7.89h 24.00h 23.42h 23.19h
AAH016 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h JCH226 24.00h 24.00h 16.07h 24.00h 22.53h 24.00h
JCH228 24.00h 24.00h 11.75h 24.00h 13.02h 24.00h AAH035 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
JCH212 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH025 24.00h 24.00h 22.64h 24.00h 24.00h 24.00h
AAH053 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h AAH042 45.00s 24.00h 45.00s 24.00h 45.00s 24.00h
AAH048 20.00s 24.00h 20.00s 24.00h 20.00s 24.00h AAH049 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
AAH043 20.00s 24.00h 21.87h 24.00h 21.73h 24.00h JCH210 35.00s 24.00h 60.00s 24.00h 55.00s 24.00h
AAH050 30.00s 24.00h 30.00s 24.00h 30.00s 24.00h AAH054 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h
MAE105 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH011 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h
AAH005 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h JCH202 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
MAE114 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH029 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
AAH034 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH004 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
MAE111 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH059 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
JCH204 20.00 s 24.00h 30.00s 24.00h 30.00s 24.00h AAH031 25.00s 24.00h 55.00s 24.00h 1.02m 24.00h
AAH051 20.00s 24.00h 25.00s 24.00h 25.00s 24.00h MAE103 20.00s 24.00h 20.00s 24.00h 20.00s 24.00h
JCH214 35.50s 24.00h 35.00s 24.00h 35.00s 24.00h JCH220 6.01h 24.00h 4.80h 24.00h 5.19h 24.00h
JCH229 2.32h 24.00h 5.39h 23.61h 5.29h 24.00h AAH018 1.24h 24.00h 7.20h 24.00h 6.60h 24.00h
JCH230 6.05h 24.00h 8.07h 24.00h 8.59h 24.00h AAH047 25.00s 24.00h 25.00s 24.00h 25.50s 24.00h
JCH233 7.10h 24.00h 7.94h 24.00h 10.81h 24.00h JCH223 12.82h 24.00h 8.04h 24.00h 8.64h 24.00h
JCH231 14.64h 24.00h 8.11h 24.00h 8.70h 24.00h MAE006 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h
MAE004 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h JCH222 18.08h 24.00h 11.59h 24.00h 16.26h 24.00h
AAH009 24.00h 24.00h 23.46h 24.00h 24.00h 24.00h JCH227 24.00h 24.00h 23.17h 24.00h 20.46h 24.00h
JCH219 24.00h 24.00h 24.00h 24.00h 22.83h 24.00h JCH216 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h
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