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Abstract
Compositional generalization is a critical ability
in learning and decision-making. We focus on
the setting of reinforcement learning in object-
oriented environments to study compositional gen-
eralization in world modeling. We (1) formalize
the compositional generalization problem with an
algebraic approach and (2) study how a world
model can achieve that. We introduce a con-
ceptual environment, Object Library, and two in-
stances, and deploy a principled pipeline to mea-
sure the generalization ability. Motivated by the
formulation, we analyze several methods with
exact or no compositional generalization ability
using our framework, and design a differentiable
approach, Homomorphic Object-oriented World
Model (HOWM), that achieves soft but more effi-
cient compositional generalization.

1. Introduction
In learning and decision-making, the goal is to train models
and agents that generalize to new data, tasks, and envi-
ronments. Recently, there has been significant interest in
learning transition models for object-based environments in
computer vision and reinforcement learning, in particular
from images (Burgess et al., 2019; Watters et al., 2019; Kipf
et al., 2019; Kossen et al., 2019; Lin et al., 2020; Veerapa-
neni et al., 2020; Locatello et al., 2020). These environments
are naturally factorized by their objects.

In this paper, we aim to study one widely existing form of
generalization that has not been formally studied in object-
oriented world modeling: compositional generalization.
That is, if we have seen various combinations of objects
during training, but are presented with a novel combination
at evaluation, we should still expect our agents to recognize
familiar objects seen during training and predict their effects
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appropriately. While compositional generalization has been
previously studied in natural language (Johnson et al., 2017;
Lake & Baroni, 2018; Bahdanau et al., 2019; Gordon et al.,
2019; Keysers et al., 2020), such work does not yet exist for
(action-conditioned) world modeling.

To study compositional generalization, we design a class of
object-oriented environments called Object Library, illus-
trated in Figure 1 left. Such environments feature K objects,
drawn from a library of N objects; the K objects remain
the same during each episode. Although visually distinct,
these environments are isomorphic to each other (Figure 1
center). Furthermore, the isomorphism is factorized by
the constituent objects, so we should expect our models
to generalize to new scenes (combinations of objects), as
long as the constituent objects have been observed in some
scenes during training. For example, if during training we
have observed scenes containing {N,H} and {J,I}, then
our models should also make accurate predictions in novel
scenes {N,J} and {H,I}.

We formally define compositional generalization as the abil-
ity to generalize from a scene (with a combination of object)
to another scene with replaced objects, or equivariance to
object-replacement operation. This bridges the behavioral
perspective (generalizing to replaced object) with functional
implementation (equivariant model). The proposed frame-
work illustrates two paths for compositional generalization
in world modeling: (1) exact compositional generalization
with potentially more intensive resource usage, (2) learning
soft object and action binding in latent space. Specifically,
for the latter path, one primary challenge comes from the
lack of canonical ordering of objects in images. We prove
that, if it learns to correctly bind actions with latent object
slots, this learned path can still achieve perfect composi-
tional generalization, with far less resources needed.

Based on this analysis, we propose an soft approach for
learning compositional generalizable world models, called
Homomorphic Object-oriented World Model (HOWM),
which deploys an Action Attention module to bind ac-
tions and can be trained differentiably with the Aligned
Loss. We analyze the compositional generalization ability
of existing methods and HOWM using instances of Ob-
ject Library, and demonstrate that HOWM generalizes well
with fewer resources. The idea of learning action bind-
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Figure 1: (Left) An example of our Object Library envi-
ronment: Rush Hour, described in Section 4.1. Each scene
features K = 2 objects from a library of N = 4 objects.
(Right) A family of MDPs for modeling Object Library, as
explained in Section 3.3.

ing for compositional generalization is generic and can be
plugged into world models for more complex environments
or object-based planning. More resources are available un-
der http://lfzhao.com/oowm.

2. Background
Our environments are modeled as Markov decision pro-
cesses. A Markov decision process (MDP) is a 5-tuple
M = 〈S,A, T, R, γ〉, with state space S, action space A,
transition function T : S ×A× S → R+, reward function
R : S ×A → R, and discount factor γ ∈ [0, 1].

MDP homomorphisms. In this paper, we will study
families of related MDPs using the framework of MDP
homomorphisms (Ravindran & Barto, 2004; van der Pol
et al., 2020). An MDP homomorphism h : M → M is a
mapping from one MDPM = 〈S,A, T, R, γ〉 to another
M = 〈S,A, T , R, γ〉. The map h consists of a tuple of
surjective maps h = 〈φ, {αs | s ∈ S}〉, where φ : S → S
is the state mapping and αs : A → A is the state-dependent
action mapping. The mappings are constructed to satisfy
the following conditions for all s, s′ ∈ S and a ∈ A:

R (φ(s), αs(a)) = R(s, a),

T (φ (s′) | φ(s), αs(a)) =
∑

s′′∈φ−1(φ(s′))

T (s′′ | s, a) . (1)

We call the reduced MDPM the homomorphic image of
M under h. If h = 〈φ, {αs | s ∈ S}〉 has bijective maps φ
and {αs}, we call h an MDP isomorphism.

Symmetry groups and equivarance. In Section 4, we
will formalize compositional generalization in object-
oriented environments as a type of “object-replacement”
symmetry. In mathematics, a symmetry group G is an al-
gebraic concept, denoting the collection of all symmetric
transformations of an entity, satisfying the axioms of associa-
tivity, identity, inverse, and closure. A (left) group operation
(action) of a group G on a set X is defined as the mapping

(g, x) 7→ g.x. If f is a function f : X → Y andG acts onX
and Y , then f is an equivariant map if it commutes with the
operation of the group: g.f(x) = f(g.x), ∀g ∈ G, ∀x ∈ X .
The function f is considered G-equivariant. If instead
f(x) = f(g.x) holds, then f is considered G-invariant.

MDP homomorphisms with symmetry. The above con-
cepts can be connected together. Given group G, an
MDP homomorphism h is said to be group structured if
any state-action pair (s, a) and its transformed counterpart
g.(s, a) are mapped to the same abstract state-action pair:
(φ(s), αs(a)) = (φ(g.s), αg.s(g.a)), for all s ∈ S, a ∈
A, g ∈ G. For convenience, we denote g.(s, a) as (g.s, g.a),
where g.a implicitly1 depends on state s. Applied to the tran-
sition and reward functions, the transition function T is G-
equivariant if T satisfies T (g.s′|g.s, g.a) = T (s′|s, a), and
reward function R is G-invariant if R(g.s, g.a) = R(s, a),
for all s ∈ S, a ∈ A, g ∈ G.

This section is intentionally brief; see van der Pol et al.
(2020) and Ravindran & Barto (2004) for a more in-depth
account of MDPs with symmetries. To keep the exposition
simple in the main text, we focus on predicting transition
dynamics only and assume that transitions are deterministic.
The derivations extend naturally to stochastic environments
and rewards (Appendix F and E.1).

3. Object-Oriented Environments
In this section, we define the concept of object-oriented en-
vironments (OOE), and introduce a specific family of OOEs,
Object Library, for studying composition generalization. We
model these environments as MDPs, and in the process we
will define multiple related MDPs for Object Library.

3.1. Image-based environments and factorization

We study image-based environments with multiple objects.
At each time step, the agent observes an image st ∈ S ,
consisting of multiple objects that fully describe the current
scene, and takes an action at ∈ A to control a single ob-
ject. We model this as an MDP with image-based states,
Mpixel. What distinguishesMpixel from an arbitrary high-
dimensional MDP with a high-dimensional state space is
that the environment actually has low-dimensional factor-
ized structure, in that the environment is fully determined
solely by the objects in the scene and their relations (Ravin-
dran & Barto, 2004; Diuk et al., 2008).

1The group operation acting on action space A depends
on state, since G actually acts on the product space S × A,
(g, (s, a)) 7→ g.(s, a), while we denote it as (g.s, g.a) for con-
sistency with h = 〈φ, {αs | s ∈ S}〉. As a bibliographical
note, in van der Pol et al. (2020), the group acting on state and
action space is denoted as state transformation Lg : S → S and
state-dependent action transformation Ks

g : A → A.

http://lfzhao.com/oowm
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Figure 2: An illustrative commutative diagram. (Left) For any scene MDPMOi , we can bind its objects and actions to
the representative slot MDPM[K]. Note that the object-relative action "right" needs to be converted to the absolute
representative action "west" inM[K]. (Right) Since the binding between objects (and their actions) and slots is one-to-one,
we can relate two scene MDPs by composing the binding hi→j = hi ◦ h−1

j ; the two MDPs are isomorphic.

More formally, we defineMpixel to be an object-oriented
environment (OOE) if there exists an MDP homomorphism
Mpixel →M that maps the image-based MDP to a factored
MDPM (Guestrin et al., 2003).M has factorized state and
action spaces S = S1 × . . . × SN ,A = A1 × . . . × AN ,
where each factor is meant to model one of N objects, and
ideally has significantly lower dimension. We explain why
we choose factorized action space in Appendix B.2.

3.2. Object Library

In this paper, we consider compositional generalization
within a family of OOEs, which we call Object Library.
Object Library is an OOE augmented with a library of all
possible objects L = {o1, . . . , oN}, of which only K ob-
jects are present in any given scene, where 1 < K < N .
Note that the library is not given and is meant to be learned
from images; we merely introduce it as a conceptual tool.

In each episode, the K objects are persistent, but between
episodes a different set of K objects may be chosen from
L. This allows us to generate different scenes with different
object sets during training and evaluation, thus enabling us
to measure the performance discrepancy when faced with
different object compositions. Compositional generalization
will be formally defined in the next section.

3.3. Modeling Object Library as a family of MDPs

We now define several MDPs for modeling Object Library,
illustrated in Figure 1.

• Pixel MDPMpixel: This is the original environment with
image-based states.

• Full MDPML: We defineML to be the latent factored
MDP, with one state/action factor per object: SL = S1 ×
. . .× SN , and likewise for AL = A1 × . . .×AN . Since
there are only K objects in the scene, each Si contains a
special null state ε that indicates the object is not present.

• Scene MDP MO: Since the K objects persist in any
particular instance of the Object Library environment,
bothMpixel andML are partitioned into

(
N
K

)
connected

components, or sub-MDPs (Ravindran & Barto, 2004). It
is convenient to consider each of these sub-MDPs, which
we call the scene MDP MO. More formally, let O =
{i1, . . . , iK} be the indices of the K present objects. We
construct MO by projecting SL and AL to O: SO =
Si1 × . . .× SiK , and likewise for AO.

• Slot MDPM[K]: We will eventually show that all scene
MDPs are isomorphic to each other. Key to this construc-
tion is the existence of a representative factored MDP
among all scenes, which we denote as the slot MDPM[K].
M[K] hasK object “slots”: S[K] = S1×. . .SK , and like-
wise for A[K]. Ideally, we can "bind" every scene MDP
MO to M[K] without any loss of information, since a
scene MDP hasK objects and the slot MDP can represent
the K objects using its K slots.

The relationship between these MDPs are shown in Fig-
ure 1 right. There exists an MDP homomorphism from the
high-dimensionalMpixel to the low-dimensional factored
ML (black arrow). Depending on the K objects present
in the scene,ML can be projected onto one of

(
N
K

)
scene

MDPsMOi
(purple dashed arrow). Each of theseMOi

is
isomorphic toM[K] (blue arrow, double headed), and there-
fore are also isomorphic to each other (red dashed arrow,
double headed). Our analysis in Section 4 also assumes the
existence of an MDP homomorphism fromML toM[K]

(orange arrow).

4. Compositional Generalization in OOEs
In OOEs, at least two types of generalization exist: (1)
generalizing to unseen objects, and (2) generalizing to un-
seen combinations (scenes) of known objects. We consider
type (2) as compositional generalization. This is similar
to recent work on compositional generalization in natural
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language (Gordon et al., 2019), where a sentence is viewed
as an ordered set of words. In the context of Object Library,
the object library L is our “vocabulary”, and selecting novel
sets of objects O to form scenes is similar to composing
unseen sentences from novel combinations of words.

We first illustrate this key idea using a simple instance of
Object Library. Next, we formally define our notion of
compositional generalization. Finally, we provide a set of
conditions that we prove are sufficient to achieve composi-
tional generalization in the Object Library family of OOEs.

4.1. An illustrative example

We use an instance of Object Library, Rush Hour, to illus-
trate our ideas (see Figures 1 and 2). Rush Hour is motivated
by a grid game, where multiple cars are in different ab-
solute orientations: (north, south, east, west).
Each car has an action space (forward, backward,
left, right) that moves it relative to its orientation.
For example, if a car is facing south, moving right
means moving west in the world. Consider an instance
with N = 4 possible objects in the library L described by
shape and orientation: {N, H, J, I}. Each scene consists
of K = 2 objects, so there are 6 possible scenes: { {N, H},
{N, J}, {N, I}, {H, J}, {H, I}, {J, I} }.

Object-replacement symmetry. We formalize the notion
of mapping between scenes (with different object com-
binations) using permutation symmetry. The symmetry
group ΣN = Σ4 acts naturally on L with 4 cars, by re-
placing a car with another; it induces an operation act-
ing on scenes. For example, if we have a permutation
mapping σ(H) = I, σ ∈ Σ4, and other cars remain
the same, the induced operation on the scene would be
σ({J,H}) = {J,I}. If our learned transition model is
equivariant to ΣN , then we can generalize to novel scenes
(e.g., Figure 2 bottom right) by appropriate permuting (re-
placing objects) from training scenes (Figure 2 top right).

Lifting from the slot MDP. We can observe that scenes
with K different present objects are structurally similar to
each other, motivating us to not consider all N objects inde-
pendently, but to share knowledge between scenes. Further-
more, since all K-object scenes are similar, we could find
a representative “scene” where all scenes are similar to it,
and convert actions to consistent meaning (from relative up
to absolute north, Figure 2 bottom left). We call it the slot
MDPM[K] (Figure 2 bottom left), where all scene MDPs
are called isomorphic to it. In other words, by learning a
world model in the slot MDP, we should automatically get
good model for all scenes, or “lifting”, and thus generalize.

Measuring compositional generalization. If we train on
scene MDPs {M{N,H},M{J,I}}, the model should ideally
generalize to {M{N,J},M{H,I}}. By training on the for-

mer and evaluating transition-function prediction errors on
the latter, we can measure generalization error. We formal-
ize this by defining the notion of equivariance error in the
next section. See Section C for details.

4.2. Defining exact compositional generalization

Our definition is based on equivariance to object replace-
ment in OOEs. Specifically, if the (learned) transition model
T̂L forML is equivariant to any object-set replacement, then
T̂L can generalize to all object sets O, including unseen com-
binations, as long as all individual objects in the library L
have been observed in training scenes. This equivariance
definition connects the behavioral perspective (how a system
with compositional generalization should behave) and func-
tional perspective (achieving by permutation equivariant
networks). More formally, we define the object-replacement
operation as follows:

Definition 4.1 (Object-replacement operation pL). Let ΣN
denote the permutations ofN elements, which acts naturally
on the object-library set L. The object-replacement oper-
ation is the group operation ρL : ΣN × L → L where ΣN
acts on the indices in L to replace the identity of objects.

For example, using disjoint cycle notation, an object re-
placement operation π = (123)(45) acts on L by sending
π(3) = 1 and π(4) = 5. This induces a group operation on
scenes, pK (see Definition E.3 in Appendix E.2), that maps
a set of objects to another set, e.g., pK(π, {3, 4}) = {1, 5}.
Thus, ΣN permutes the scene MDPs {MO}. We use pL to
define the measure of compositional generalization:

Definition 4.2 (Equivariance error of T̂L onML). Let T̂L :
SL × AL × SL → R+ be a (learned) transition model of
ML. The sample equivariance error of TL at (s, a, s′) ∈
SL ×AL × SL with respect to σ ∈ ΣN is defined

λσL ,
∣∣∣T̂L(s′ | s, a)− T̂L(σ.s′ | σ.s, σ.a)

∣∣∣ . (2)

The equivariance error of TL is then defined as the expecta-
tion λL = Es,a,s′,σ[λσL].

The magnitude of λ measures the failure of T̂L to be ΣN -
equivariant, hence the name equivariance error. For a per-
fectly ΣN -equivariant transition function TL, the error is
guaranteed to be 0 by the definition of equivariance. Note
that for clarity, we only consider transition prediction in the
above definition. A complete version of homomorphism
also preserves the reward structure, thus preserving opti-
mal values and policies. We provide the full version with
rewards in Appendix E.1.

4.3. Achieving soft compositional generalization

Ideally, we can achieve compositional generalization accord-
ing to the above metric by simply learning a ΣN -equivariant
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Figure 3: (Left) Overview of the world model prediction: the upper blue sequence is a ground pixel MDP with some objects
Oi, and the lower one is the slot MDP. We emphasize two facts: (1) encoded object slots in different steps may have different
ordering (marked as 1′ and 2′), and (2) the transition model is equivariant in slot ordering, i.e., consistent across time steps
(in 1 and 2), thus the loss computation needs alignment of slots (between 1, 2 and 1′, 2′). (Top right) Action Attention learns
to bind actions from interaction (action-object correspondence is unknown and learned). (Bottom right) In the Aligned
Loss, the learned binding matrices Mt and Mt+1 are used to lift slots in t and t+ 1 to a canonical space (full MDP).

transition model and correct binding of objects and actions.
However, this is difficult in practice for large N (size of
object library), as we show in our experiments. In this sec-
tion, we derive an alternative path to ΣN -equivariance that
only requires us to learn a ΣK-equivariant model, which is
significantly more tractable since we expect K � N .

Instead of directly learning a ΣN -equivariant model, which
is difficult for large N , we can instead learn a ΣK-
equivariant model for M[K], and “lift” it to achieve ΣN -
equivariance. We need to first define what is “good” binding,
which intuitively means that we can project N objects to a
subspace of K slots, while we are still able to identify them,
i.e., how K-slot identities are permuted.

Definition 4.3 (Projection property). Let h be an MDP
homomorphism from the full MDP to the slot MDP, h :
ML →M[K]. The homomorphism h = 〈φ, {αs | s ∈ S}〉
satisfies the projection property if, for any σ ∈ ΣN , s ∈ SL,
a ∈ AL, there exists σ ∈ ΣK such that

σ.φ(s) = φ(σ.s) and σ.αs(a) = ασ.s(σ.a) . (3)

In other words, the K present objects in s ∈ SL are bound
to theK slots in φ(s) ∈ S[K] in a specific order. It implicitly
assumes the binding of present objects inML to slots in
M[K] is in some temporally consistent order: Sik 7→ Sk.

By definition of MDP homomorphisms, given a model T̂L
forML, h induces a model T̂[K] forM[K]. If T̂L has equiv-
ariance error λL, we can show that T̂[K] will have the fol-
lowing equivariance error 2:

Proposition 4.4. Let h :ML →M[K] be an MDP homo-
morphism satisfying the projection property. Suppose T̂L is
a (learned) transition model ofML with equivariance error

λL. Then T̂[K], the induced transition model ofM[K] under
h = 〈φ, {αs | s ∈ S}〉, has sample equivariance error at
(φ(s), αs(a), φ(s′)) ∈ S[K] ×A[K] × S[K] and σ ∈ ΣK:

λσ[K] ,
[∣∣∣T̂[K](φ (s′) | φ(s), αs(a))−

T̂[K](σ.φ (s′) | σ.φ(s), σ.αs(a))
∣∣∣] = C · λσL , (4)

where C =
(
N
K

)
is the number of K-slot scenes given an N -

object library, φ : SL → S[K] and αs : AL → A[K]. The
equivariance error is then λ[K] = Es,a,s′,σ[λσ[K]] = C · λL.

The proof is provided in Appendix F. Therefore, if T̂L has
perfect compositional generalization (equivariance error
λL = 0), and homomorphism h satisfies the projection
property, then the induced model T̂[K] is ΣK-equivariant.
Conversely, since the proposition holds with equality, if we
have a ΣK-equivariant model T̂[K] inM[K], andM[K] is
a homomorphic image ofML, then we can lift the model
to a ΣN -equivariant model T̂L inML, which allows us to
simplify ΣN -equivariant models.

Corollary 4.5 (Lifted model is ΣN -equivariant). If (1) T̂[K]

is ΣK-equivariant, and (2) there exists a homomorphism
h : ML → M[K] satisfying the projection property, then
T̂L is ΣN -equivariant.

4.4. Practically measuring compositional generalization

Even though we formally define the compositional gen-
eralization error as an expectation Es,a,s′,σ[λσ[K]] over all

2However, from the computational perspective, the information
of binding to latent space is unknown, so the numerical values are
hard to compute, as detailed in Appendix C.
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transition tuples and all permutations, directly computing
it in learned latent space is not practical. The reason is
that we only assume there exists correct object and action
binding φ, αs (by the projection property), while they are
learned by models and not necessarily correct.

In the definition, several sources of error exist: (1) prediction
error (s, a)→ s′, (2) binding error (φ(s), αs(a))→ φ(s′),
(3) compositional error (σ.φ(s), σ.αs(a)) → σ.φ(s′). Al-
ternatively, we need a practical metric to bypass (2) and
measure (1)+(3). To this end, motivated by generating com-
positional natural language data (Keysers et al., 2020), we
propose to train and test on disjoint set of scenes, and di-
rectly measure the prediction error on test scenes, which
avoids explicitly "replacing" object in latent space σ.φ(s).

Specifically, we need to follow two rules analogously: (1)
Disjoint scene object set. Training and test set of object
scenes should be disjoint: |O| = K, {Otrain} ∩ {Otest} = ∅.
(2) Similar object distribution: in ∈ L. Training and test
datasets should have similar object frequency (uniform), to
ensure the error is not biased by errors in object detection.
The training set should also contain all objects in library⋃

Otrain = L. In the experiment section, we then use this
strategy to collect data and measure prediction error on test
set as a proxy of compositional generalization error.

5. Compositionally Generalizable WMs
In the previous section, we provided the mathematical foun-
dations for achieving compositional generalization via ΣN -
and ΣK-equivariant transition models in ML and M[K]

respectively. Now, we provide a practical approach, based
on the construction in Section 4.3, for achieving soft ΣN -
equivariance in only ΣK latent space. The overview of the
model is provided in Figure 3.

We focus on end-to-end learning a world model in latent
space. The key challenge is that the object binding is un-
known and no canonical ordering can be determined purely
from images, so the model needs to infer it from data. We
assume the action space is factorized by objects (Guestrin
et al., 2003; Kipf et al., 2019); further explained in Ap-
pendix B.2. While the factorization AL = A1 × . . .×AN
is fixed, the model must use interaction data (s, a, s′) to
infer which action controls which object.

Stage 1: Object Extraction. Object extraction, or object
binding (Greff et al., 2020), learns object-structured rep-
resentations, where each present object is represented by
a latent vector RD, or slot. All slots form a latent state
st, where no canonical order exists and the order differs in
different time steps. This stage implicitly requires that all
objects in L must have been observed during training; at
generalization time we assume it can provide representations
for any individual object. We use Slot Attention (Locatello

et al., 2020) trained with reconstruction loss.

Stage 2: Action Binding. In learning the transition model
T (s, a) = s′, we need to correctly align factorized ac-
tions a and object slots s, i.e., understand which action
is controlling the object in each slot. This corresponds
to the projection property required by the homomorphism
h :ML →M[K]. We design an attention module, named
Action Attention, that learns this purely from interaction
(s, a, s′), as shown in Figure 3 (top right).

The attention matrix M ∈ RK×N is a (jointly learned)
binding matrix from slots3 st (at each time step) to some
object identity, represented as an identity matrix IdN×N
in our case. This implements the state-dependent action
transformation αs(a), by binding K actions corresponding
to the object slots: αst(at) = Mt(st)at = āt, and Mt is:

Mt(st) = softmax
K

(
1√
D
k (IdN×N ) · q (st)

T

)
, (5)

where k, q are linear projections mapping to some dimension
D, and at acts as the value v without further transformation.
Intuitively, the object identity specifies a “name” to factor-
ized actions and can be viewed as a preference for some
canonical ordering of objects in the full MDPML.

Stage 3: ΣK-equivariant Transition Modeling. Proposi-
tion 4.4 implies that we only need a ΣK-equivariant transi-
tion function for modeling the slot MDP (instead of ΣN for
the full MDP), hence we use a message-passing GNN (Kipf
et al., 2019). Crucially, we only require K � N nodes, and
since this leads to message-passing complexity of O(K2)
instead of O(N2), we expect our model to be significantly
more efficient. We also assume that interactions between
any objects (slots) can be modeled by a one-edge network.
This can be viewed as an OO-MDP (Diuk et al., 2008) with
only one object class.

Training: Aligned Loss. The binding matrix Mt ∈ RK×N
in Action Binding relates slots at time t to specific object
identities. Thus, we use it to align slots st and st+1 to the
canonical full MDP space as s↑t and s↑t+1 (Figure 3 (bot-
tom right)) using the pseudoinverse: s↑t = M+

t s̄t, s
↑
t+1 =

M+
t+1s̄t+1, where M+

t = (MtM
>
t )−1M>t ∈ RN×K , and

M+
t T (s̄t, āt) ≈M+

t+1s̄t+1. We jointly train the model with
the aligned loss betweenK slots, using the object-structured
contrastive loss (Kipf et al., 2019); the positive part is:

L+(s↑t , s
↑
t+1) =

∥∥NG(M+
t+1)s̄t+1 − NG(M+

t )T (s̄t, āt)
∥∥2

,
(6)

where NG(·) is no-gradient operation to prevent the shortcut
to change the binding matrix Mt outside Action Attention.
This forms a differentiable loss and allows us to train the

3In practice, we use K + 1 slots to also model the background,
as in Slot Attention (Locatello et al., 2020).
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Figure 4: Example transitions of Shapes (left pair) and Rush
Hour environment (right pair).

transition model in latent space, which we call Homomor-
phic Object-oriented World Model (HOWM).

Inference: Multi-step prediction in latent space. For
multi-step prediction at inference for evaluation, illus-
trated in Figure 3, all slots need to be aligned with
their corresponding actions with learned binding Mt,
since their ordering is potentially different at all time
steps. If aligning slots sequentially with learned M as
T (T (s̄t, āt),MtM

+
t+1āt+1) ≈MtM

+
t+2s̄t+2 and compute

difference, it would suffer from compounding error. Thus,
we instead align actions: T (st,M

+
t+1Mtat) = ŝt+1, which

gives preceding slots ŝt+1 (or telescoping for t+ k) in the
same order as st. More details in the Appendix D.

6. Experiments
We study how compositional generalization is achieved in
practice, by using Object Library and generalization metrics.
We provide additional results in Appendix G.

6.1. Experimental Setup

Environments. We designed two instances of the Object
Library, OBJLIB, environment. They are built upon the
2-D shape version of the Block Pushing environment (Kipf
et al., 2019). (1) Basic Shapes. In the basic case, we equip
the environment with a library of objects L, where objects
are different in shape, color, and size. The action space
of each object is identical: (north, south, east,
west). (2) Rush Hour. To verify the importance of action
binding, we set each object to have object-specific action
space. This variant is motivated by the game Rush Hour,
where each object is a car and has a (fixed) orientation
(only using triangles). It can move relatively to its orienta-
tion: (forward, backward, left, right). For
example, if a car faces east, right will move south.
For all variants, the action space is factorized by object and
has fixed order across all scenes, as further discussed in Ap-
pendix B.2. More environmental setup is in Appendix H.4.

Methods. We study the compositional generalization
(CG) performance of 6 approaches, under 3 categories:

1. Exact CG: ΣN -equivariant methods with correct action
binding should achieve perfect CG. One such method is
ΣN-CSWM, the model from Kipf et al. (2019) with N

object masks, one for each library object. Object masks
and actions are bound by having the same ordering.

2. No guaranteed CG: To demonstrate the necessity of the
three stages in Section 5, we consider methods that either
do not have action binding or a ΣN -equivariant transition
model. In C-WM(N), we break ΣN -equivariance by
replacing the N -slot GNN and shared encoder with a flat
MLP. MONet(N)+BM builds on the model from Burgess
et al. (2019), which only extracts objects into masks
(slots); we use bipartite matching to align slots st and
st+1, but not to actions, i.e., there is no action binding.
We also include two variants of CSWM that uses only
K slots (instead of N ), but without an explicit binding
mechanism: ΣK-CSWM assigns each of the K relevant
action factors to slots (but the action may not actually
control the object in the slot), whereas ΣK-CSWM(CA)
makes all action factors available to all slots.

3. Soft CG: Our method, HOWM, achieves soft CG using a
K-slot approach by relying on the learned action binding
(see Section 5).

Additional details about the methods are in Appendix H.2.

Training and evaluation setup. We follow the setup
in Kipf et al. (2019), using 1K episodes for training (consist-
ing of 10 episodes of length 100, for 100 different scenes),
and 10K episodes of length 10 for evaluation. Additionally,
to evaluate compositional generalization, we ensure that (1)
the combinations of objects in training dataset are different
from those of evaluation dataset, and (2) the training data
contains all N objects in the library. Additional training
details for each method are in Appendix H.3.

Similar to Kipf et al. (2019), we measure the dynamics
prediction error using two ranking metrics: Hits at Rank
1 (H@1) and Mean Reciprocal Rank (MRR) (Kipf et al.,
2019), averaged over 3 runs. For space, we only report
MRR here; H@1 results are similar and can be found in
Appendix G. We also report the difference between training
and evaluation performance as an indication of the general-
ization gap; this is a proxy for equivariance error, which is
difficult to compute in practice due to lack of ground-truth
object binding information, as explained in Appendix C.

6.2. Results and analysis

We compare all methods on the Basic Shapes environment
in terms of their generalization performance and scalability,
shown in Table 1. With sufficient resources, ΣN -CSWM
should be the upper bound of performance, since it can
achieve perfect CG, as verified by our results (near-perfect
eval MRR, near-zero gap). Both ΣK-CSWM and ΣK-
CSWM(CA) also achieve excellent training performance
since they can memorize the correct action binding in each
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Table 1: Results for all methods on the Shapes environment with K = 5 and N = 5, 10, 20, 30 (four numbers in each cell).
“OM” stands for out of GPU memory, where we limit the usage to 10GB. We report for memory usage on N = 20.

CG Type Env=Shapes Eval MRR (%, 1-step) Eval MRR (%, 5-step) Train MRR (%, 5-step) Gap (MRR %, 5-step) Memory

(1. Exact CG) ΣN -CSWM 100. 100. 99.9 OM 99.9 99.9 99.9 OM 100. 100. 100. OM 0.0 0.0 0.1 OM 8.1GB

(2. No guaranteed CG)

ΣK -CSWM 100. 80.4 70.8 74.1 99.9 43.7 32.2 29.4 100. 100. 100. 100. 0.1 55.3 67.8 70.6 1.5GB
ΣK -CSWM(CA) 95.0 72.0 71.4 80.9 85.0 26.8 22.7 24.3 96.3 96.5 96.1 98.0 11.3 69.7 73.4 73.7 1.6GB
C-WM(N) 83.6 81.4 25.8 12.9 61.8 55.0 11.2 7.6 88.0 96.6 41.5 33.9 26.2 41.6 30.3 26.2 1.3GB
MONet(N)+BM 12.6 73.9 35.9 OM 2.0 20.2 55.9 OM 7.0 64.5 84.8 OM 5.0 44.3 29.0 OM 9.3GB

(3. Soft CG) HOWM (ours) 99.2 98.5 99.7 99.7 92.3 84.2 75.1 81.8 97.0 96.9 98.0 98.1 4.7 12.7 22.9 16.3 3.7GB

Table 2: Results on Rush Hour with relative action space,
for N = 5, 10, 20 (three numbers in each cell).

Env=Rush Hour MRR (1-step) MRR (5-step) Gap (MRR, 5-step)

ΣN -CSWM 100. 100. 99.9 99.9 99.8 99.8 0.1 0.2 0.1

ΣK -CSWM 100. 66.9 47.6 99.9 29.5 13.7 0.1 66.0 85.0
ΣK -CSWM(CA) 99.2 55.4 80.2 94.9 15.5 15.8 4.2 84.5 84.2
C-WM(N) 55.5 67.8 80.6 23.7 24.5 45.3 48.8 70.7 54.1

HOWM (ours) 96.7 94.3 98.7 84.3 63.2 65.3 11.2 31.1 31.3

scene during training; however, when presented with new
scenes in evaluation, the actions may not be bound correctly,
leading to worse eval MRR and a large gap. C-WM(N)
lacks ΣN -equivariance and is significantly worse during
both training and evaluation, even with more parameters.
MONet(N)+BM performs even worse, once again indicating
the importance of action binding. Interestingly, it seems to
perform better with larger N , but also uses much more re-
sources due to its ΣN -equivariant model; like ΣN -CSWM,
it exceeds our memory budget for N = 30.

HOWM strikes a reasonable middle ground – the training
performance (train MRR) is near-perfect, and generalization
performance (eval MRR) is still quite high, though clearly
not perfect. However, in contrast to all other methods except
the ΣN -CSWM upper bound, generalization is maintained
as N increases, and the gap is significantly smaller. These
results demonstrate that our proposed approach is able to
achieve good generalization for intermediate N ≤ 20 while
consuming significantly fewer resources, and can scale to
N ≥ 30, unlike the exact ΣN -CSWM method.

One limitation we observed is that for long-term prediction
(≥ 5 steps), it is still quite challenging to achieve action
binding and compositional generalization for a large library
of objects. One reason is that the learned representation
module (Slot Attention in our case (Locatello et al., 2020))
does not guarantee perfect object representations across
time. This affects both action binding learning (if extracted
slots are inaccurate, actions cannot be bound correctly) and
long-term evaluation (if objects are missed at some step,
predictions for all following steps are likely wrong).

In the Rush Hour environment, shown in Table 2, the action-
binding problem is more challenging and requires more
sophisticated modeling of object-dependent transition dy-
namics. We report the evaluation MRR and the generaliza-

tion gap. As before, ΣN -CSWM acts as an upper bound
and performs near-perfectly with near-zero gap; however, as
before, we expect that it will not scale beyond N = 20 with
our resource budget. All other methods, including HOWM,
have worse performance compared to Shapes. However,
HOWM still generalizes significantly better to new scenes
for N = 10 and N = 20, whereas performance of other
methods declines more steeply.

6.3. Visualization

We visualize a model on a sampled transition (st, at, st+1)
withN = 10 andK = 5 in Figure 5. Action attention matri-
ces are computed using the states: Mt(st),Mt+1(st+1) ∈
RN×(K+1). The visualized M align with expectation: (1)
K present objects are bound to K slots. (2) the absent
N −K objects are randomly assigned to slots (reasonable
since not forced by loss), but they are consistent in t and
t + 1 (as forced by loss to keep N -object s↑t , s

↑
t+1 embed-

dings close). Also, the lifted embeddings M+
t s̄t,M

+
t+1s̄t+1

are well aligned and have little difference.

7. Related work
Object-oriented representations are crucial in artificial
intelligence and robotics (Diuk et al., 2008; Wong, 2016);
our framework is related to OO-MDPs (Diuk et al., 2008)
consisting of a single class. Recently, a line of works stud-
ies learning to discover objects and their representations
end-to-end. MONet (Burgess et al., 2019) applies sequen-
tial attention with VAEs to learn factorized representations.
GSWM (Lin et al., 2020) builds generative models and
learns end-to-end with variational inference. Slot Attention
(Locatello et al., 2020) proposes attention at the pixel level,
which can be viewed as soft clustering of pixels of objects.
The order of object slots is decided by randomly initialized
cluster centroids.

A object-oriented world model can be learned jointly or sep-
arately with object representation, using pixel reconstruction
(COBRA (Watters et al., 2019), OAT (Creswell et al., 2021)),
variational inference (STOVE (Kossen et al., 2019), OP3
(Veerapaneni et al., 2020)), or contrastive loss (C-SWM
(Kipf et al., 2019), NPS (Didolkar et al., 2021)). Further-
more, in jointly learning object representations and world



Toward Compositional Generalization in Object-Oriented World Modeling

Figure 5: (Top) Visualization of learned slots; note that
they are in random ordering. (Bottom) Components from a
learned model for a transition, with N = 10 (corresponds
to rows besides āt) and K = 5 (corresponding to 6 columns
with an additional slot for background).

models, a key problem is object binding (Greff et al., 2020):
binding object slots between time steps, which is typically
solved by bipartite matching. In our setup, we emphasize
the importance of correctly binding actions to objects. In
video prediction such as (Kipf et al., 2021), action is not
considered and thus has no action binding issue, which is
our key focus and brings the major challenge. Biza et al.
(2022) use location-based action space and learn attention
to factorize monolithic actions. It keeps the setup in CSWM
with N = K and does not do compositional generalization
in our N > K formalism. We further discuss the choice of
action space in Appendix B.2.

Compositional generalization has been widely studied in
deep language models (Johnson et al., 2017). It also known
as systematic generalization (Bahdanau et al., 2019), and
systematicity (Lake & Baroni, 2018). Similar to us, Gordon
et al. (2019) also use permutation equivariance to model
compositional generalization in supervised learning on lan-
guage data. Keysers et al. (2020) propose principles of
measuring compositional generalization on sentences. A
similar concept, compositionality, is usually referred to in
disentangled representation learning. However, it typically
focuses on disentanglement between individual attributes of
distributed representations (Higgins et al., 2018; Caselles-
Dupré et al., 2019), while we are more interested in factor-
ization between (attributes of) objects. There is also work
on measuring compositionality (Andreas, 2019; Chaabouni
et al., 2020). Beyond language, Locatello et al. (2020); Veer-
apaneni et al. (2020) learn object-oriented representations,

whose compositional generalization usually refers to factor-
ization by objects. Furthermore, no prior work considers the
difference between present objects K and its “library” N
objects, i.e., they can only use ΣN -equivariant model and
thus struggle in scaling up.

Symmetries and MDP homomorphisms. Symmetry
widely exists in various real-world data (Bronstein et al.,
2021), and also in MDPs (Ravindran & Barto, 2004). A line
of works in equivariant networks studies equivariance prop-
erties of existing network architectures, such as permutation
equivariance in graph neural networks (GNNs) (Keriven &
Peyré, 2019), while some other works study equivariant con-
straints to other symmetry groups (Bronstein et al., 2021).
In RL, symmetries in MDPs can be modeled by MDP ho-
momorphisms (Ravindran & Barto, 2004), which have nice
properties such as optimal value equivalence and can be
exploited in policy learning (van der Pol et al., 2020).

8. Conclusion
In conclusion, in this paper we introduced the Object Li-
brary family of object-oriented environments, as a first step
toward studying compositional generalization in reinforce-
ment learning. We defined compositional generalization in
Object Library using the language of permutation equivari-
ance, and showed a construction involving a K-slot MDP
that was shown to achieve compositional generalization in
Object Library. Based on this analysis, we introduced a
three-stage pipeline for learning an object-oriented world
model, and demonstrated in two instances of Object Library
environments it could indeed generalize well to libraries
with large N , while consuming fewer resources. Neverthe-
less, there remains a performance gap between our models
and true compositional generalization that requires further
study. Additionally, our analysis has been based on a fixed
K, and assumes object persistence and a single object class,
which clearly should be relaxed. Finally, while we have
focused on learning transition models with compositional
generalization, their application to planning and sequential
decision-making should be explored.
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Appendix

A. Outline
We discuss potential extensions and the choose of factorized action space in Section B. We provide some additional details
of our framework for compositional generalization in Section E, followed by the proof of our main theoretical result,
Proposition 4.4, in Section F. We further discuss the measure of compositional generalization in Section C and HOWM in D.
Additional results, along with details about experiments and environments, are in Section G, Section H.4, and Section H,
respectively.

B. Additional Discussion
B.1. Potential extensions

Our framework makes some assumptions in modeling the Object Library. For example, we assume object persistence,
i.e., we have K specific objects in every scene. We can relieve this assumption, and thus needs to consider compositional
generalization to different K’s and objects changing in each scene. However, these assumptions are not fundamental
limitations of the framework, and we provide some straightforward ideas to extend the framework.

Extension: reward and planning. Our framework can also handle reward. We do not include that, since we do not focus
on using the learned model (in the slot MDPM[K]) for planning. Additionally, in other words, the model can also learn
task-relevant features or objects that preserves the structure of reward and transition.

Extension: generalization to different K. Our framework can extend to compositional generalization to different K’s.
For a fixed K in the paper, there is a unique slot MDPM[K] that is factored MDP and has permutation automorphism
on it. However, for different K (usually training on smaller K’s and generalizing to larger K’s), there should be multiple
slot MDPs for each K. Therefore, there would be an extra step to build a structured homomorphism between different slot
MDPs first,M[Ki] andM[Kj ]. The model can then generalize to different K’s by first generalizing to a slot MDP of the
corresponding Kj (by recomposing structured homomorphism).

Extension: changing objects. The framework can also be extended to handle changing of objects during manipulation.
We can split the episode to two episodes at the point of object changing. If the number of objects does not change, it is
simply another scene. Otherwise, generalization to different values of K may need to be considered.

Extension: object class. In our framework, we implicitly assume that we just have one type of objects, or class, i.e.
all interaction between objects can be modeled by one type of edge layer in graph neural networks. The concept of class
is introduced in OO-MDPs (Diuk et al., 2008); our framework can be considered a single-class OO-MDP with multiple
object instances of the same class. In contrast to OO-MDPs, our states have continuous attributes (instead of Boolean ones).
Additionally, we perform representation learning from the image-based MDPMpixel, thus the learned object representation
can be imperfect and more importantly, each individual slot can represent all objects and thus can represent different objects
across time steps.

B.2. Factorized vs. location-based action space

In our work, we assume the action space is factorized by objects, similar to the state space. Empirically, this can be viewed
as a high-level abstraction of the actions, such that we can independently control each object. However, there is another
option: location-based action space, which chooses the object to control by location, like a touchscreen. We argue that it
is inherently not a good choice for our setup. In the implementation, we require object-based world modeling to have (1)
temporal consistency, and (2) compositional generalization. For location-based action space, these two requirements cannot
be satisfied at the same time, even though location-based actions implicitly provide transition and thus have advantages.

Option (1) universal slots: temporal consistency issue. One option is that the extractor can bind any objects to any slots.
However, this results in random slot ordering even between two adjacent time steps. Thus, the model needs to solve the
correspondence between slots in two time steps. But because of location-based action space, there is no canonical ordering
of either K present objects or K slots. In other words, the transition modeling has to rely on iterative approaches, such as
bipartite matching, to optimize for a potentially correct order for every step, which is computationally expensive and does
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not necessarily give correct answer, especially for long-term prediction.

Option (2) dedicated slots: compositional generalization issue. Another option is to fix the ordering in object extractor, so
for every scene the extractor outputs object slots in fixed order. This is the case of our N -slot C-SWM variant. Unfortunately,
this can only achieve perfect results in N = K as the original paper does (Kipf et al., 2019), while it does not work for
general case N > K, since there must be a slot that needs to bind to more than one object. However, we do not have a
canonical ordering of all N objects in the library, so it is impossible to guarantee that for every seen or unseen scenes, it is
able to provide dedicated and consistent slots across all time steps and all scenes.

If we do not consider computational efficiency, we can also feed actions of all objects to the transition model, i.e., no
factorization of action. However, it becomes less meaningful for factorizing into N object slots and the model needs O(N2)
complexity to model N object slots and N actions for every object slot.

Overall, factorized action space has several technical advantages and can be intuitively understood as a set of skills that
independently control each object, which has been widely used in factored MDPs (Ravindran & Barto, 2004; Guestrin et al.,
2003; Sutton & Barto, 2018) and robotics applications (Kroemer et al., 2021; Kipf et al., 2019; Veerapaneni et al., 2020;
Biza et al., 2021).

C. Measuring Compositional Generalization in Object Library
By compositional generalization, we aim to generalize to novel object compositions with seen objects. This means that we
train a model in slot MDPM[K] using data from some scenes, and want to measure the performance on other scenes. In
this process, one main error comes from the binding sideM[K] 7→ MO: (1) from training scenes to the slot MDP, and (2)
from the slot MDP to isomorphic novel scenes. Therefore, to estimate the performance, we need to have two set of scenes
that are different compositionally, to fully measure the error.

To this end, we propose a strategy to generate training and evaluation data for dynamics prediction, which also appears
similarly in generating compositional natural language data (Keysers et al., 2020). (1) Disjoint scene object set: {ik : ik ∈
[N ], k ∈ [K]} = Oj ∈ PK(L). Scenes should sampled uniformly and different in training and evaluation set (not a trivial
permutation). (2) Similar object distribution: in ∈ L. Both datasets should have similar objects, to ensure the error is
not biased by errors in object detection. In the experiment section, we use this strategy to collect data and measure the
performance between T̂[K] and T[K] directly in latent space.

Difficulty of numerically computing equivariance error. We use the above strategy to measure generalization per-
formance in predicting action effects in novel scenes. Our theoretical framework technically provides another metric λ,
Definition 4.2 in the main text, to measure compositional generalization. Although this metric is useful for proving our
main theoretical result, it typically provides vacuous results for deterministic domains (e.g., the environments we use in
our experiments), because the predicted transition function will always have an equivariance error of λ = 1, unless the
transition function is exactly correct, only in which case λ = 0. Unfortunately, due to small prediction errors and numerical
inaccuracies, empirically we always get λ = 1.

One alternative for deterministic domains is to instead compute the error in the (latent) state space (i.e., compare φ(s′) vs.
φ(σ.s′)), instead of in the transition probabilities. However, this raises another issue related to binding. In our slot-based
framework, the ordering of slots is arbitrary, so the same dimensions of φ(s′) and φ(σ.s′) may not be comparable. Accurate
comparison requires solving the binding problem, hence a metric computed in this fashion is approximate at best. Instead,
we resort to simply measuring prediction performance using the strategy described above.

To the end, we chose to use compositional generalization gap, reported as a metric in the tables.

D. Additional Description of Homomorphic Object-oriented World Models
We extend the idea behind two proposed components: Action Attention and Aligned Loss to explain how the latent world
model is able to train end-to-end, and also bring more details about multi-step model prediction in latent space which is
not further elaborated in the main text.

The key challenge comes from the object-orientation representation side, where no canonical or unique order of objects
can be defined in images. Thus, we have two potential paths to deal with this. One path is to use information from actions
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Figure 6: A copy of the figure in main text.

and the interaction with environment (st, at, st+1), since the action is usually independently controlling one or a few
entities in the environment. Another path can be simply aligning the slots (in different order) across different time steps
(st, st+1, st+2, st+3, . . .), which is the idea behind using bipartite matching or Hungarian algorithm and has been used in
recent works for differentiable bipartite matching, for object detection and video understanding.

D.1. Contrastive Aligned Loss

We are based on the object-structured contrastive loss as described in (Kipf et al., 2019).

Since we have K slots and N possible objects in the library, a slot has to bind to more than one object. Thus, the order of
the slots must be different for scenes with K objects from the library. Then, the problem is that, we cannot compute the loss
directly between two slots in adjacent time step (in one action step away). To solve this without invoking bipartite matching
between adjacent states (st, at, st+1), we need to make use of some canonical order. We assume there exists a fixed (across
all scenes, guaranteed at data generation time in implementation) but unknown order of N objects in the library. Thus, there
is an imaginary canonical full MDP, where the order of the factorized state and action space is fixed (but unknown and
arbitrary).

The intuition to make use of this is straightforward: (1) in predicting the next state, we compute in the slot MDP T (s̄t, āt)
using ΣK -equivariant GNN to lower the cost. (2) in computing the loss, we map the predicted latent states and target latent
states (both represented in K slots but potentially in different order) back to the canonical full MDP, to ensure the temporally
consistent order between adjacent steps (st, at, st+1). Intuitively, other unused N −K "slots" (factorized state spaces) can
be zeros.

In summary, this allows us to jointly learn (1) factorized (object-oriented) representations for N objects and (2) a latent
ΣK-equivariant transition model, by utilizing a factorized action space with fixed, arbitrary, unknown order.

Similar to (Locatello et al., 2020), the softmax is over K slots, where the intuition is that every object should select at most
one slot. Thus, we also include an additional slot, for non-present objects and also for encoding background.

Mt(st) = softmax
K

(
1√
D
k (IdN×N ) · q (st)

T

)
, (7)

where k, q are linear projections mapping to some dimension D, and at acts as the value v without further transformation.
Also, we only allow the gradient from Action Attention.

D.2. Multi-step Evaluation

We omit the details of multi-step evaluation in the main text, while this is the important component for how the model works
for long-term prediction. The key idea behind multi-step evaluation is generic, where we learn a MDP homomorphism
h : M → M, and unroll in the reduced MDPM and somehow lift the prediction using learned model inM back to
the ground MDPM. The main difference is that we only need the information of ordering, where the project property
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guarantees that it is somehow preserved, thus the lifting is possible (only keeping the ordering correct, by aligning object
slots to some canonical object order).

The key idea is to achieve prediction in latent space (slot MDP) T̄ , where for simplicity we use T below. We introduce
how we achieve that. When we need to sequentially query the transition model to give us rollouts of the future in some
latent slot space (i.e., the K-slot MDP), a problem comes: we map every image in a trajectory to a sequence of slots, while
there is no mechanism enforcing temporal consistency, i.e., different slots in different time step can bind to different objects.
So, we cannot use T (...T (T (s1, a1), a2), ...) to iteratively rollout the model directly. We propose a strategy that can rollout
the model in latent space (the K-slot MDP) directly, without using bipartite matching or accumulated error of sequentially
matching adjacent steps, under some assumptions: (1) we know that the factorized action space has a fixed but unknown
order, and (2) the project property holds, i.e. the binding exists and object identities are preserved (we can identity how
objects replacement corresponds to the permutation of slots).

The reason we can’t align states directly is that, we need sequentially unrolling the transition model, which will result in
using the binding matrix at each time step and easily have accumulated error (by multiple a sequence of learned approximate
binding matrices).

Let’s say MtM
+
t+k = Pk ∈ RK×K , denoting the alignment to k steps ahead using learned binding Mt, which maps the

slots to the canonical space (full MDP) and back to a specific K-slot ordering. If the project property satisfies, it should be
full rank. Thus, for predicting next step, it is T (s̄t, āt) ≈ P1s̄t+1, and similarly for T (s̄t+1, āt+1) ≈ P1→2s̄t+2.

Because of the ΣK -equivariance property of the transition network, the prediction M+
t T (s̄t, āt) ≈M+

t+1s̄t+1 is equivalent
to transforming actions: Mt+1M

+
t (T (s̄t, āt)) ≈ s̄t+1 and T (s̄t, āt) ≈MtM

+
t+1s̄t+1.

Similarly, for next step, we would need to align for the next step again:

T (MtM
+
t+1s̄t+1,MtM

+
t+1āt+1) = (MtM

+
t+1)(Mt+1M

+
t+2)s̄t+2 (8)

⇐⇒ T (MtM
+
t+1s̄t+1,MtM

+
t+1āt+1) = (MtM

+
t+2)s̄t+2 (9)

⇐⇒ T (T (s̄t, āt),MtM
+
t+1āt+1) = MtM

+
t+2s̄t+2 (10)

⇐⇒ T (T (s̄t, āt), P1āt+1) = P2s̄t+2 (11)

Telescoping to k steps ahead, we further get

T (. . . (T (s̄t, āt), (MtM
+
t+1)āt+1) . . . , (MtM

+
t+k)āt+k) = (MtM

+
t+k)s̄t+k (12)

⇐⇒ T (. . . (T (s̄t, āt), P1āt+1) . . . , Pkāt+k) = Pks̄t+k. (13)

Finally, we only need to map it to the N -object canonical full MDP:

Mt(T (. . . (T (s̄t, āt), (M
+
t Mt+1)āt+1) . . . , (M+

t Mt+k)āt+k)) = Mt+ks̄t+k (14)
⇐⇒ Mt(T (. . . (T (s̄t, āt), P1āt+1) . . . , Pkāt+k)) = Mt+ks̄t+k. (15)

However, this requires us to align sequentially with P1, P2, . . . , Pk for k-step prediction, which could not scale for large
k. In actual implementation, we instead align actions to the order of st. Recall that the latent action is computed by
āt = Mt(st)at, thus we have

(MtM
+
t+k)āt+k = Pkāt+k = Mtat+k. (16)

In computing the evaluation metric for multi-step prediction, such as k-step Hits and MRR, we could compute as follows:

M+
t (T (s̄t, [Mtat,Mtat+1, ...,Mtat+k−1])) ≈M+

t+ks̄t+k, (17)

where [Mtat,Mtat+1, ...,Mtat+k−1] means that we sequentially input k − 1 actions to the world models and repressively
predict next state using last state for k times. Intuitively, we do not need to know intermediate binding Mt+1 through
Mt+k−1 since the actions are in a canonical order (defined by the N-object full MDP) and we align all intermediate slots to
the slot order of first state st.

We use slot size of 16 and embedding size of 4 for all reported numbers. The negative states are sampled half from scenes
with same objects Oi, and half from different scenes, where we empirically find it works better than using purely random
episodes, as further explained in Section G.
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E. Details of the Compositional Generalization Framework
Symmetry widely exists in various real-world data (Bronstein et al., 2021), and also in MDPs (Ravindran & Barto, 2004). A
line of works in equivariant networks studies equivariance properties of existing network architectures, such as permutation
equivariance in graph neural networks (GNNs) (Keriven & Peyré, 2019), while some other works study equivariant
constraints to other symmetry groups (Bronstein et al., 2021). The framework of MDP homomorphism is an algebraic
approach studying symmetries and abstraction in reinforcement learning (Ravindran & Barto, 2004). MDP homomorphisms
can be induced by symmetric stucture in MDPs (Ravindran & Barto, 2004; van der Pol et al., 2020), such as spatial
transformations like reflections. We use the framework to study object replacement symmetry for formulating compositional
generalization. Homomorphic MDPs have other nice properties to be further explored, such as optimal value equivalence
(Ravindran & Barto, 2004). Also, the lifted policy learned in homomorphic MDPs has equivariance properties, which can be
exploited by equivariant networks (van der Pol et al., 2020).

E.1. Definition with Reward

In the main paper, we focus on the equivariance of transition function. We provide the full definition of error also with
reward function, another condition in MDP homomorphisms. The error of reward function only needs invariance, since it is
a mapping with real-valued output: R : S ×A → R.

Definition E.1 (Invariance error of R̂L on ML). Let R̂L : SL × AL → R be a (learned) reward model of ML. The
invariance error λR of R̂L with respect to operation pL is defined as:

λR , E
σ∈ΣN ,(s,a)∈SL×AL

[∣∣∣R̂L(s, a)− R̂L(σ.s, σ.a)
∣∣∣] , (18)

where ΣN is the permutation group of size N , and L is the object library of size |L| = N .

The definition of the error on reward only needs invariance. The extended version of Proposition 4.4 including reward and
its proof directly follow the one for transition function.

E.2. Definition of Induced Operations

We formally define the induced operation on scene and illustrate it with diagrams.

Definition E.2 (Object replacement operation pL). Let ΣN denote the permutations of N elements, which acts naturally on
the object library set L. The object replacement operation is the group operation pL : ΣN × L→ L where ΣN acting on L
to replace the identity of objects.

For example, using disjoint cycle notation, an object replacement operation π = (123)(45) acts on object indices in L by
sending π(3) = 1 or π(4) = 5. Intuitively, this operation permutes the label or index of objects in L, thus the scene has
identical appearance but with object labels being replaced. This induces a group operation on scenes, which can be defined
below.

Definition E.3 (Induced scene set operation pK ). The permutation ΣN on object library L induces an operation transforming
scene object sets O ⊂ L. The induced group operation pK : ΣN × PK(L) → PK(L) acts on the set PK(L) as such
pK(π, {i1, . . . , iK}) = {π(i1), . . . , π(iK)}, where π ∈ ΣN , object indices {i1, . . . , iK}, {π(i1), . . . , π(iK)} ∈ PK(L),
each object index ik ∈ [N ],K < N .

Since ik is the index of objects, pK maps a set of objects to another set indexed by {π(i1), . . . , π(iK)}. If π =
(123)(45),K = 2, then pK(π, {3, 4}) = {1, 5}. The action of ΣN on ML defined in Section 3.1 is compatible with
the action of ΣN on PK(L) as σo(s) = o(σs). Thus, ΣN permutes the scene MDPs {MO}. The induced operation on
scenes implies some symmetry between sub-MDPs of scenesMO consisting of objects O, which can be naturally studied
by MDP homomorphisms between scene MDPs {MO : O ∈ PK(L)}.

E.3. Illustrative Examples

Graphically, the induced operation on scene can be seen as below.

Before introducing permutation groups, we first introduce how to use cycle notation to represent permutations. Assume
our object library L = {N, H, J, I}. The permutation in Figure 7 left is denoted by the cycle notation (NJ)(HI). The
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N H J I
N H J I

Figure 7: Examples of permutations on a library L = {N, H, J, I}.

permutation in Figure 7 right is denoted by the cycle notation (NH)(JI). A permutation can be seen as an action that
rearranges a set of elements. A permutation group of a set A is a set of permutations of A that forms a group under function
composition.

We can use the symmetric group ΣN to replace any object in the scene Oi. For example, assume N = 4, K = 2 and scene
Oi consists of objects { J, H }. Then the group operation on L ((H I), {N, H, J, I}) 7→ {N, I, J, H} is essentially doing
the object replacement: σ (H) = I. Also, it can be viewed as scene replacement: R: { J, H } 7→ { J, I} .

F. Proof of Proposition 4.1: Scaled Equivariance Error
We provide the proof of Proposition 4.4 in this subsection.

Although we have expectation in the definition, the relationship holds point-wisely, i.e., for every permutation σ ∈ ΣN , the
equivariance error is magnified by some constant C =

(
N
K

)
in the slot MDP. We denote the error quantity of a permutation σ

as λσ[K] (for slot MDP) and λσL (for full MDP).

Note that the sample equivariance error is

λσ[K] =(1)
∣∣∣T̂[K](φ (s′) | φ(s), αs(a))− T̂[K](σ̄.φ (s′) | σ̄.φ(s), σ̄.αs(a))

∣∣∣ , (19)

where σ̄ ∈ ΣK a permutation acting on S[K], A[K], and S[K] ×A[K].

Since we assume the projection property holds: σ̄.φ(s) = φ(σ.s), σ̄.αs(a) = ασ.s(σ.a), the equation holds:

T̂[K](σ̄.φ (s′) | σ̄.φ(s), σ̄.αs(a)) = T̂[K](φ(σ.s′) | φ(s), ασ.s(σ.a)). (20)

Thus the quantity can be transformed point-wisely as:

λσ[K] =(2)
∣∣∣T̂[K](φ (s′) | φ(s), αs(a))− T̂[K](φ(σ.s′) | φ(s), ασ.s(σ.a)

∣∣∣ . (21)

By the definition of homomorphism (T̄ is T̂[K], and T is T̂L) for transition function:

T̄ (φ (s′) | φ(s), αs(a)) ,
∑

s′′∈φ−1(φ(s′))

T (s′′ | s, a) , ∀s, s′ ∈ S, ∀a ∈ A, (22)

we substitute the equality

λσ[K] =(3)

∣∣∣∣∣∣
∑

s′′∈φ−1(φ(s′))

T̂L(s′′ | s, a)−
∑

s′′∈φ−1(φ(s′))

T̂L(σ.s′′ | σ.s, σ.a)

∣∣∣∣∣∣ . (23)

By further manipulating the quantity, we get

λσ[K] =(4)
∑

s′′∈φ−1(φ(s′))

∣∣∣T̂L(s′′ | s, a)− T̂L(σ.s′′ | σ.s, σ.a)
∣∣∣ =(5) C · λσ, (24)

where the sample equivariance error in the full MDP λσ ,
∣∣∣T̂L(s′ | s, a)− T̂L(σ.s′ | σ.s, σ.a)

∣∣∣ is defined in Definition 4.2,

and |φ−1 (φ(s′)) | =
(
N
K

)
is equal for all s′, since every combination can come from

(
N
K

)
possible scenes, and we denote it

as C. Finally, we apply expectation over all σ ∈ ΣN and arrive at the Proposition 4.4.
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Table 3: Results for all methods on the Shapes environment with K = 5 and N = 5, 10, 20, 30 (four numbers in each cell).
’OM’ stands for out of GPU memory, where we limit the usage to 10GB. We report for memory usage on N = 20.

Shapes MRR (%, 1-step) H@1 (%, 5-step) MRR (%, 5-step) Train (MRR, 5-step) Gap (MRR, 5-step)

ΣN -CSWM 100, 100, 99.9, OM 99,9, 99.8, 99.8, OM 99.9, 99.9, 99.9, OM 100, 100, 100, OM 0.0, 0.0, 0.1, OM

ΣK -CSWM 100., 80.4, 70.8, 74.1 99.8, 32.7, 22.6, 20.1 99.9, 43.7, 32.2, 29.4 100., 100., 100., 100. 0.1, 55.3, 67.8, 70.6
ΣK -CSWM(CA) 95.0, 72.0, 71.4, 80.9 77.5, 18.7, 15.0, 15.4 85.0, 26.8, 22.7, 24.3 96.3, 96.5, 96.1, 98.0 11.3, 69.7, 73.4, 73.7
C-WM(N) 83.6, 81.4, 25.8, 12.9 49.6, 41.0, 4.4, 2.2 61.8, 55.0, 11.2, 7.6 88.0, 96.6, 41.5, 33.9 26.2, 41.6, 30.3, 26.2
MONet(N)+BM 12.6, 73.9, 35.9, OM 4.5, 11.5, 44.4, OM 2.0, 20.2, 55.9, OM 7.0, 64.5, 84.8, OM 5.0, 44.3, 29., OM

HOWM (ours) 96.7, 94.3, 98.7, 99.6 76.8, 51.7, 54.8, 35.7 84.3, 63.2, 65.3, 47.7 95.5, 94.3, 95.3, 94.7 11.2, 31.1, 31.3, 43.5

Table 4: Results for all methods on the Rush Hour environment with K = 5 and N = 5, 10, 20 (three numbers in each cell).
’OM’ stands for out of memory for GPU training, where we limit the memory usage to 10GB.

Rush Hour MRR (%, 1-step) H@1 (%, 5-step) MRR (%, 5-step) Train (MRR, 5-step) Gap (MRR, 5-step)

ΣN -CSWM 100, 100, 99.9 100, 100, 99.9 99,9, 99.8, 99.8 100, 100, 99.9 0.01, 0.02, 0.01

ΣK -CSWM 100. , 66.9, 47.6 99.8, 18.9, 8. 99.9, 29.5, 13.7 100. , 95.1, 99. 0.01, 66.0, 85.0
ΣK -CSWM(CA) 99.2, 55.4, 80.2 91.8, 8.7, 8.7 94.9, 15.5, 15.8 99.1, 100. , 100. 4.2, 84.5, 84.2
C-WM(N) 55.5, 67.8, 80.6 8.5, 13.4, 36.4 23.7, 24.5, 45.3 72.5, 95.2, 99.5 48.8, 70.7, 54.1

HOWM (ours) 99.2, 98.5, 99.7 88.9, 77.6, 66.3 92.3, 84.2, 75.1 97.0, 96.9, 98.0 4.7, 12.7, 22.9

G. Additional results
(HOWM) The results of HOWM show that our soft approach, with Action Attention module, is able to (1) end-to-end learn
the approximately correct binding between K slots and N factorized actions and (2) correctly align adjacent time steps for
computing contrastive loss, only through transition data (s, a, s′) with the differentiable Aligned Loss. Furthermore, recall
the multi-step evaluation, our approach unrolls the model in the latent K-slot MDP s̄t+1 = T (s̄t, āt) and aligns with the
target states s↑t+k ≈ st+k, which only requires ΣK-equivariance (thus O(K2) complexity). The results demonstrate that
this latent approach is able to achieve reasonable results with ΣN exact methods for intermediate N ≤ 20 while consumes
much less resources, and still has potential to scale to N = 30 and more. However, we found for long-term prediction (more
than 5 steps), it is still quite challenging to achieve (1) action binding and (2) compositional generalization for large library
perfectly, as N = 30 for 5-step shows. One potential reason is that, the learned representation module (Slot Attention in our
case) does not guarantee perfect object representations for long steps. This seems to affect the learning of action binding (if
slots are inaccurate, actions cannot be bound correctly) and the long-term evaluation (if some objects missed at some step,
all following steps can be wrong).

(Representation bottleneck) In general, the learned object representation seems to be a main bottleneck of the decoupled
training. For example, if Slot Attention (Locatello et al., 2020) cannot reliably separate and segment objects into slots,
our downstream Action Attention module would struggle in binding actions with corresponding objects. Once a good
representation module is learned, we found our approach has very small variance in transition learning. Also, the variance
seems to highly depend on the number of library objects N . We choose the best representation checkpoints to train, but we
found N = 30, 50 can succeed in most runs, while N = 10, 20 is likely to miss objects in 1/2 or 1/3 of runs.

(Training resource) We highlight the consumed resources in training ΣN -equivariant models. As our framework suggests,
these models should provide perfect compositional generalization, if it also has action binding. However, in practice,
ΣN -equivariant models require more training resources and cannot scale up. In Shapes, both MONet+BM and ΣN -CSWM
can only scale to around N ≈ 20. For MONet+BM, we train representation with N object slots and ΣN transition model
separately, and each of them may take around 10GB for N = 20. For large N ’s, the training time of MONet+BM is
approximately two days using one GPU. ΣN -CSWM jointly learns N dedicated object masks, corresponding to the ordering
of N factorized actions. We do note that, if there is enough resource available for N dedicated object masks, this approach
provides the best available solution. It does not seem to be an universal approach because of independently training N
object masks, where N is the number of all possible library objects that can possibly appear in an environment.

(Comparison between training with controlled and non-controlled negative sample) We change the negative sampling
strategy. In particular, we select half of negative samples from the same object combinations and the other half from different
object combinations. Figure 8 shows the impact of the controlled negative sampling strategy. With controlled negative
sampling strategy, the performance of ΣN -CSWM is improved by a large extent. We argue that the ΣN -CSWM is inclined
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Figure 8: Comparison of different negative sampling strategy. Left figure shows the result of H@1 step 5, and right figure
shows the result of MRR step 5.

Figure 9: Learned object masks and embeddings in Shapes in two unseen evaluation scenes for ΣN -CSWM (Exact CG).
Present objects share similar latent structure and the model shows object replacement symmetry. Blue dots are from each
individual object.

to go to local minimum without controlled negative sampling strategy.

(Negative sampling issue) We note for a sampling issue existing in two perspectives: (1) negative sampling in contrastive
loss, (2) sampling reference states in computing Hits and MRR. The issue in negative sampling in contrastive loss used in
(Kipf et al., 2019) is that, since the number of possible scenes

(
N
K

)
increases greatly with N , if we train using randomly

sampled negative states in contrastive loss (Kipf et al., 2019), we found the model will most likely sample negative states
from other episodes, thus it may find a degenerate solution that just classifies scenes instead of objects in next states, as
observed in (Biza et al., 2021). To fix the issue, in all training, we use 50% negative states from same object combinations
and the other 50% from different object combinations. For the reference states in computing Hits and MRR, it needs to keep
enough number of states from each scene to ensure each scene has enough cover, and also enough scenes to ensure diversity.

H. Additional Experiment Details
We experiment several approaches that can (2) learn object representations from images and (2) then object-structured world
models. We further discuss their compositional generalization ability in the next section. C-SWM (Kipf et al., 2019) jointly
learns object representations and GNN transition model with contrastive loss. We experiment two variants: (1) ΣK-CSWM
with K nodes in GNN (nubmer of objects on a scene), and (2) ΣN -CSWM with N nodes (N = size of library). MONet



Toward Compositional Generalization in Object-Oriented World Modeling

(Burgess et al., 2019) learns object representations using sequential attention and VAE to decompose scenes to multiple
slots. We implement a N -slot version and applies bipartite matching for learning a GNN transition model on top of it, where
we name it as MONet(N)+ΣN+BM. (Resource issue) MONet(N)+ΣN+BM and ΣN -CSWM consumes CPU and GPU
memory intensively, so we can only have small N . We also tried STOVE (Kossen et al., 2019), which uses RNN with depth
of N and requires even more memory, thus cannot finish training for even N = K = 5.

H.1. Compositional generalization in the approaches

We experiment several approaches that can learn object representations from images and a latent object-structured world
models. We classify the approaches based on how well they should achieve compositional generalization ("CG") and
analyzing how they achieves CG.

(1, Exact CG) The first class should achieve exact CG under our framework, which is the ΣN -equivariant methods with
correct action binding. This only includes ΣN -CSWM, which is a variant that outputs N object masks and has N nodes in
its transition GNN. The way it achieves CG relies on learning N dedicated object masks, whose order is decided by N
factorized actions. In other words, it implicitly bind objects and actions correctly, by fixing the order of object masks. This
approach is not universal, since this requires N dedicated object masks (slots).

(2, Not guaranteed CG) If a method misses any of the necessary conditions (in three steps), it cannot achieve (perfect)
CG. We leave (1) object extraction step untouched and focus on (2) action binding and (3) ΣN -equivariant transition model.
MONet(N)+BM uses bipartite matching in optimizing transition loss BM(T (s, a), s′). However, since it does not have any
action binding mechanism, the transition network T (s̃, ã) has no clue to match object slots s̃ and factorized actions ã. To
break ΣN -equivariance, we simply replace the N -slot GNN and shared encoder with a flat MLP, named C-WM(N). We
also use two variants of CSWM with K slots, where ΣK-CSWM receives factorized actions only from K scenes, and
ΣK-CSWM(CA) means we copy actions from N objects to all K slots, since no action binding is deployed.

(3, Approx. CG) As comparison, HOWM achieves soft compositional generalization by learning binding objects and
actions with action attention, which is easier to scale up to large N .

H.2. Implementation and training setup

(Data) In generating training and evaluation dataset, we guarantee that (1) the combinations of objects in training dataset are
different from those of evaluation dataset, and (2) training data contains all N objects in the library. In practice, we found
it is critical to keep all individual objects seen in training, or at evaluation the model would very likely mess up objects’
colors or shapes, as further detailed in Appendix 4. We use the same object library for all experiments for lower randomness.
We use 1k episodes in training and 10 episodes of length 100 for 100 scenes, and 10k episodes of length 10 for evaluation.
Additionally, we make sure that 90% of the transitions have objects moving (filtering collisions), so there is denser signals
for relating actions and moved objects.

(Training) For ΣK-CSWM and ΣN -CSWM, we jointly train the entire model (Kipf et al., 2019). We train MONet(N)+BM
by first learning the object-oriented representation using pixel reconstruction loss, then freeze the representation module and
train the GNN transition model with bipartite matching in the learned latent space. See more details in Appendix H.

(Metrics) We measure the (multi-step) dynamics prediction error using two ranking metrics: Hits at Rank 1 (H@1) and
Mean Reciprocal Rank (MRR) (Kipf et al., 2019), averaged over 3 runs. For our approach, we need to align them in the full
MDPML. We also report these metrics in training scenes and compute the generalization gap, as a proxy for compositional
generalization error, because of the lack of object binding information in latent space.

• ΣK-CSWM and ΣK-CSWM-CA. C-SWMs (Kipf et al., 2019) are Contrastively-trained Structured World Models that
apply a contrastive approach to learn the representation and the transition model of environments with compositional
structure. Specifically, the models learn a set of factorized state variables, which encodes information about each object in
the scene. These state variables are then fed into to a graph neural network to model the transitions of the environment.
We call this approach C-SWM(K) because in the original paper, they do not consider scenes with different combinations
of object. In other words, they only consider settings with N = K = 5, where the combination across different episodes
remains the same. We first use the model in the original paper as a baseline, which we term ΣK-CSWM. Then, we
further adapt the model by concatenating the whole action vector to each object representation and then feeding them into
the graph neural network, which we term ΣK-CSWM-CA.
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• ΣN -CSWM. To further study the capability of C-SWMs, we increase the number of object slots to N , i.e., we use N
slots to learn the full transition model of the object library. In the original C-SWM model, the number of object slot is
equal to the number of objects in the scene, which is 5 in 2D shapes environment. We also increase the number the action
to 4×N , where each 4 actions control one specific object.

• C-WM(N). We use non-factorized encoder MLP and transition MLP as a baseline. The purpose of this baseline is to see
how the most naive model will perform in terms of compositional generalization.

• MONet(N)+ΣN+BM. MONet (Burgess et al., 2019) decomposes images into different slot variables, each of which
represents information about objects or background. It applies a recurrent attention network to produce attention masks
for objects and background, and then feed each mask together with the image to a component VAE to learn object-oriented
representations. We divide the experiment into two phrases. First, we train the MONet model using the image input to
learn the object-oriented representation. The hyperparameters of the original MONet do not work well on our dataset
because models like MONet rely on inductive biases, and often need to be adjusted to new datasets. In particular, the
component VAE is too flexible for the dataset so we have to reduce the dimension of the latent variables to 4. We further
change the structure of the attention U-net and the encoder and decoder of the component VAE.

Second, we freeze the model parameters of MONet and use the learned object-oriented representation as input of the
GNN to learn the transition model of the environment. For MONet(N)+ΣN+BM, we implement a bipartite matching
function between the object representation model and the transition model.

• Other related baselines. Slot attention module proposed in (Locatello et al., 2020) is a component that connects the
perceptual representations such as feature maps extracted by CNN and the object-based slot representations. It uses
iterative attention to enable each slot to compete for explaining part of the perceptual input. Based on the original
C-SWM model, we place the slot attention module between the feature maps extracted by CNN and the object-based slot
representations, and the other parts of the model remain the same. STOVE (Kossen et al., 2019) uses RNN with depth of
N , that require much memory, and cannot finish training for N = 5.

H.3. Training and Evaluation Setup

We match the training procedures with C-SWM (Kipf et al., 2019) where possible. For C-SWM baselines and our own model,
we joint train the representation module and transition module, similar to C-SWM (Kipf et al., 2019). We train the MONet
model using the image input to learn the object-oriented representation. We then freeze the model parameters of MONet and
use the learned object-oriented representation as input of the GNN to learn the transition model of the environment. All
models are trained on Nvidia GeForce RTX 2080 Ti GPU with 11GB memory.

• ΣK-CSWM, ΣN -CSWM, and C-WM(N). We follow the same training and evaluation settings as in (Kipf et al., 2019).
In particular, for training dataset, we generate 1000 episodes, with each 100 time steps; for evaluation dataset, we generate
10000 episodes, with each 10 time steps. Models are trained for 100 epochs. We use Adam optimizer with a learning rate
of 5× 104 and batch size of 1024, margin of hinge loss γ = 1.0, same as the original paper.

• MONet(N)+ΣN+BM. We divide the experiment into two stages: object-representation learning and transition model learn-
ing. The way we generate the training and evaluation dataset is the same as ΣK-CSWM. For the first stage, we only use
image observations for training. For MONet (Burgess et al., 2019) implementation, we adapt the code from a third-party
implementation4. We follow the training hyperparameters suggested in the original MONet paper. We use the follow-
ing settings: flags: -geco False -pixel_std1 0.09 -pixel_std2 0.11 -train_iter 1000000
-batch_size 64 -optimiser rmsprop. For the second stage, we use the same settings as ΣK-CSWM.

H.4. Additional Environment Details

Our environment is built upon the 2D shapes environment in (Kipf et al., 2019). The original environment consists of 5
objects and the actions are discrete. Actions are moving individual object into four cardinal directions, and thus |A| = 5× 4
discrete actions in total. At each time step, the agent can only take one action, i.e., moving one object to one specific
direction. After the agent took an action, the corresponding object would move into the direction by one step unless the

4https://github.com/applied-ai-lab/genesis

https://github.com/applied-ai-lab/genesis
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Figure 10: Example observations of OBJLIB. (left) K = 5. (right) K = 3.

target position is occupied by other objects or out of boundary. The agent uses a random policy to collect the experience
buffer containing a sequence of tuple B = {ot, at, ot+1}, where ot is the observation at time step t, at is the action taken,
and ot+1 is the next observation. Observations are 3× 50× 50 RGB images containing K different objects. Each object
occupies 10× 10 pixels and each location of the overall 50× 50 pixels can only be occupied by at most one object.

Based on this environment, we create an object library consisting of a certain number of objects, each of which has a unique
shape and color combination. At each episode, we choose K objects from the library and place them to our environment.
For training dataset, we randomly sample K objects from the object library except the consecutive sequences. For evaluation
dataset, we sample one objects randomly, choose the subsequent consecutive K objects. In this way, we can guarantee that
the combinations of objects of training dataset are totally different from those of evaluation dataset. We can also generate
dataset with different Ks, as shown in Figure 10. We implement two versions of OBJLIB, named Shapes and Rush Hour.

For Rush Hour, the shapes of objects are chosen from four triangles heading to four different directions, while the colors
are all different. The actions are not move up, down, left and right anymore. Rather, it depends on the heading of the triangle.
We define: the heading of the triangle as move forward and the opposite direction as move backward; left of the heading
as move left and right of the heading as move right. In other words, there are four different action spaces, each of which
corresponds to the triangle heading to one specific direction. For example, if a triangle (car) faces east, then taking action
forward results in moving east, backward west, right south, and left north; if a triangle (car) faces south, then
taking action forward results in moving south, etc.

To evaluate compositional generalization of the model, i.e., the capability to understand novel combinations of known
objects, we want the combination of objects of the train dataset and evaluation dataset to be as different as possible, while
every individual object will appear in both dataset. One analogy of this is to think of it as a chemical experiment (Keysers
et al., 2020). Each example (compound) is generated by combining primitive elements (atoms). We can view chemical
experiments as rearranging atoms to generate new compounds. The atoms are contained in both train and evaluation dataset,
while there are unseen compounds in evaluation dataset.

Generating data with controllable object combinations for negative samples. We generate data with controllable
object combinations for negative samples. In particular, for training dataset, we select negative samples from the same
object combination with probability ε and from different object combinations with probability 1− ε. For training dataset,
we only sample some combination of K objects; for evaluation dataset, we sample combinations that are different from each
combination in training dataset. For the training dataset, we limit the number of different combinations to N , and generate
#of episodes/N episodes for each combination. During data generation, we save the type of objects (color and shape),
which are then used for all experiments.

I. Model Architectures
We provide the details of model architecture of the methods we use in experiment in several tables.

ΣN -CSWM model architecture is described in below tables. Table 1 describes the object extractor and Table 2 describes
the object Encoder. The transition model is GNN-based, where both the node and edge model are the same architecture as
object Encoder.
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Table 5: Object Extractor for ΣN -CSWM baseline

type size/channel Activation Comment

Conv 10 x 10 32 ReLU Stride: 10
BatchNorm2d - - -
Conv 1 x 1 N Sigmoid Stride: 1

Table 6: Object Encoder for ΣN -CSWM baseline

type size/channel Activation Comment

Linear 25 x 512 ReLU -
LayerNorm - - -
Linear 512 x 512 ReLU -
LayerNorm - - -
Linear 512 x 2 ReLU -

Table 7: Monet attention downsampling

type size/channel Activation Comment

Conv 3 x 3 32 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -
Conv 3 x 3 32 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -
Conv 3 x 3 64 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -
Conv 3 x 3 64 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -
Conv 3 x 3 64 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -

Table 8: Monet attention upsampling

type size/channel Activation Comment

Conv 3 x 3 64 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -
Conv 3 x 3 64 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -
Conv 3 x 3 32 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -
Conv 3 x 3 32 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -
Conv 3 x 3 32 ReLU Stride: 1, Padding: 1
BatchNorm2d - - -

Table 9: Monet attention baseline

type size/channel Activation Comment

Linear 1600 x 128 ReLU -
Linear 128 x 128 ReLU -
Linear 128 x 1600 ReLU -
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Table 10: Monet baseline encoder

type size/channel Activation Comment

Conv 10 x 10 32 ReLU Stride: 10
BatchNorm2d - - -
Conv 1 x 1 N ReLU Stride: 1
Flatten - - -
Linear N x 25 x 512 ReLU -
Linear 512 x 512 ReLU -
Linear 512 x 8 - -

Table 11: Monet baseline decoder

type size/channel Activation Comment

BroadcastLayer - - -
Conv 3 x 3 16 ReLU Stride: 1
Conv 3 x 3 16 ReLU Stride: 1
Conv 1 x 1 4 - Stride: 1




