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Abstract

Incorporating symmetries can lead to highly data-
efficient and generalizable models by defining
equivalence classes of data samples related by
transformations. However, characterizing how
transformations act on input data is often diffi-
cult, limiting the applicability of equivariant mod-
els. We propose learning symmetric embedding
networks (SENs) that encode an input space (e.g.
images), where we do not know the effect of trans-
formations (e.g. rotations), to a feature space that
transforms in a known manner under these oper-
ations. This network can be trained end-to-end
with an equivariant task network to learn an explic-
itly symmetric representation. We validate this
approach in the context of equivariant transition
models with 3 distinct forms of symmetry. Our
experiments demonstrate that SENs facilitate the
application of equivariant networks to data with
complex symmetry representations. Moreover,
doing so can yield improvements in accuracy and
generalization relative to both fully-equivariant
and non-equivariant baselines.

1. Introduction
Symmetry has proved to be a powerful inductive bias for
improving generalization in supervised and unsupervised
learning. A symmetry group defines equivalence classes
of inputs and outputs in terms of transformations that can
be performed on the input along with corresponding trans-
formations for the output. Recent years have seen many
proposed equivariant models that incorporate symmetries
into deep neural networks (Cohen & Welling, 2016; 2017;
Cohen et al., 2019; Weiler & Cesa, 2019; Weiler et al., 2018;
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Figure 1: Equivariant networks consider transformations of
inputs that are easy to compute, such as in-plane rotations
for MNIST digits. This paper considers transformations
that are difficult to compute, such as rotations of 3D objects
like cars (Carvana, 2017). Symmetric embedding networks
learn representations which are transformed simply.

Kondor & Trivedi, 2018; Bao & Song, 2019; Worrall et al.,
2017). This results in models that are often more parameter
efficient, more sample efficient, and safer to use by behaving
more consistently in new environments.

However, the applicability of equivariant models is impeded
in that it is not always obvious how a symmetry group acts
on input data. For example, consider the pairs of images in
Figure 1. On the left, we have MNIST digits where a 2D
rotation in pixel space induces a corresponding rotation in
feature space. Here an E(2)-equivariant network achieves
state of the art accuracy (Weiler & Cesa, 2019). In contrast,
exploiting the underlying symmetry is challenging for the
images on the right, which are of the same object in two ori-
entations. While there is also an underlying symmetry group
of rotations, it is not easy to characterize the transformation
in pixel space associated with a particular rotation.

In this paper, we consider the task of learning symmetric
representations of data in domains where transformations
cannot be hard-coded, i.e. the group action is unknown. We
train a network that maps an input space, for which the
group action is difficult to characterize, onto a latent space,
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where the action is known. We refer to this network as a
symmetric embedding network (SEN). Our goal is to learn
a SEN that is equivariant: for any pair of inputs related by a
transformation in input space, the outputs should be related
by a corresponding transformation in feature space.

Learning the group action from data requires supervision or
inductive biases. In certain domains we can learn an SEN
in a supervised manner by pairing it with an equivariant
classifier. We demonstrate the feasibility of this approach in
Section 3. However, our main interest is learning SENs in
domains where direct supervision is not available. As a con-
crete instantiation of this setting, we focus on world models,
i.e. models that encode the effects of actions in the state
space of a Markov decision process (MDP). We propose
a meta-architecture that pairs an SEN with an equivariant
transition network, which are trained jointly by minimizing
a contrastive loss. The intuition in this approach is that the
symmetry group of the transition model can help induce an
approximately equivariant embedding network.

The idea of training an SEN in the form of a standard net-
work with an equivariant task network has, to our knowl-
edge, not previously been proposed or demonstrated. To test
this idea, we consider 5 domains with 3 different symmetry
groups, and 3 different equivariant architectures (see Table 1
for more details). While not the main contribution of this
paper, these domains do require innovations in architecture
design. Most notably, we combine message passing neural
networks (MPNNs) with C4-convolutions in domains with
multiple objects, resulting in a novel architecture which has
been concurrently proposed in (Brandstetter et al., 2022).
However, our primary contribution is to demonstrate that
SENs can extend the applicability of equivariant networks
to new domains with unknown group actions.

We summarize our contributions as follows:

• We propose SENs that map from input data, for which
symmetries are difficult to characterize, to a feature space
with a known symmetry. This network implicitly learns
the group action in the input space.

• We show proof-of-concept results for supervised learning
of SENs on sequence labeling.

• Using world models as a test case, we show SENs can
be trained end-to-end by minimizing a contrastive loss.
We develop 5 domains with 3 different symmetry groups
using architectures that are representative of (and improve
upon) the state of the art in equivariant deep learning.

• Our experiments show that world models with SENs can
make equivariant architectures applicable to previously
inaccessible domains and can yield improvements in ac-
curacy and generalization performance.

2. Related Work
Equivariant Neural Networks A multitude of equivari-
ant neural networks have been devised to impose symme-
try with respect to various groups across a variety of data
types. These require that the group G is known and the
the group action on input, output, and hidden spaces is
explicitly constructed. Examples include G-convolution
(Cohen & Welling, 2016), G-steerable convolution (Cohen
& Welling, 2017; Weiler & Cesa, 2019), tensor product and
Clebsch-Gordon decomposition (Thomas et al., 2018), or
convolution in the Fourier domain (Esteves et al., 2018).
These models have been applied to gridded data (Weiler
& Cesa, 2019), spherical data (Cohen et al., 2018), point
clouds (Dym & Maron, 2020), and sets (Maron et al., 2020).
They have found applications in many domains including
molecular dynamics (Anderson et al., 2019), particle physics
(Bogatskiy et al., 2020), and trajectory prediction (Walters
et al., 2021). In particular, Ravindran (2004) consider sym-
metry in the context of Markov Decision Processes (MDPs)
and (van der Pol et al., 2020b) construct equivariant pol-
icy networks for policy learning. Our work also considers
MDPs with symmetry but focuses on learning equivariant
world models (see Appendix B).

Learning Symmetry Our work occupies a middle ground
between equivariant neural networks with known group ac-
tions and symmetry discovery models. Symmetry discovery
methods attempt to learn both the group and actions from
data. For example, Zhou et al. (2020) learn equivariance by
learning a parameter sharing scheme using meta-learning.
Dehmamy et al. (2021) similarly learn a basis for a Lie al-
gebra generating a symmetry group while simultaneously
learning parameters for the equivariant convolution over this
symmetry group. Benton et al. (2020) propose an adaptive
data augmentation scheme, where they learn which group
of spatial transformations best supports data augmentation.

Higgins et al. (2018) define disentangled representations
based on symmetry, with latent factors considered disentan-
gled if they are independently transformed by commuting
subgroups. Within this definition, Quessard et al. (2020)
learn the underlying symmetry group by interacting with the
environment, where the action space is a group of symme-
try transformations. Except for the 3D Teapot domain, we
handle the more general case where the action space may be
different from the symmetry group. Their latent transition is
given by multiplication with a group element, whereas our
transition model may be an equivariant neural network.

Structured Latent World Models World models learn
state representations by ignoring unnecessary information
unrelated to predicting environment dynamics. Such models
are frequently used for high-dimensional image inputs, and
usually employ (1) reconstruction loss (Ha & Schmidhu-
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ber, 2018; Watter et al., 2015; Hafner et al., 2019; 2020)
or (2) constrastive loss. Minimizing the contrastive loss
is known to be less computationally costly and can pro-
duce good representations from high-dimensional inputs
(Oord et al., 2018; Anand et al., 2019; Chen et al., 2020;
Laskin et al., 2020; van der Pol et al., 2020a), thus we use
it here. We take inspiration from Kipf et al. (2020), who
learn object-factored representations for structured world
modeling with GNNs, which respect Sn permutation sym-
metry. Velickovic et al. (2021) used a similar approach in
Reasoning-Modulated Representations (RMR). RMR pre-
train a transition model (“a processor”) from abstract data
that compactly describes the underlying dynamics of the
modelled system. In contrast, with the exception of 3D
Teapot, SEN does not assume access to the underlying state
or dynamics of the environment. We assume only that the
group representation is known in the latent space, which
cannot fully specify the system dynamics, and use this in-
formation as an inductive bias.

3. Illustrative Example: Sequence Labeling
Our goal is to use an equivariant task network as an induc-
tive bias for learning an SEN. While the SEN is itself not
equivariant by construction, we may be able to learn an
equivariant SEN by training both networks end-to-end. To
validate this approach, we first consider a simple supervised
learning problem in the form of a sequence labeling task.

In this simulated task, we detect local maxima in time series.
Our training data (Figure 11) comprises N = 10000 sine
waves with T = 100 points, where each time series xn is
shifted using a random offset un,

xn,t = sin

(
4πt

100
+un

)
, un ∼ Unif

([
−π

2
,
π

2

])
. (1)

For each time point xn,t, there is a label yn,t ∈ {0, 1}
indicating whether the point is a local maximum.

This domain has clear translational equivariance with known
action: shifting inputs xn by k time points result in shifting
predictions yn by k time points as well. For this reason,
1D convolutions are commonly used in sequence labeling
(Santos & Zadrozny, 2014; Ma & Hovy, 2016).

To test whether we can learn the group action, we com-
pose a fully-connected (FC) layer, which acts as our non-
equivariant SEN, with two translation-equivariant 1D con-
volutional layers. We compare this network against a non-
equivariant network with three FC layers. Both networks
use ReLU activations and one kernel for both convolutional
layers for more interpretable visualizations.

Figure 2 shows the weights for the first FC layer in both
networks after end-to-end supervised training. We see that
the learned weights in the FC+Conv model exhibit an ap-

(a) FC + Conv (b) FC only (c) Equivariant FC

Figure 2: First FC layer weights for the (a) FC+Conv, and
(b) FC only networks. (c) shows a perfect shift equivariant
FC layer. The FC+Conv network learns shift equivariance.

proximate circulant structure (Fig. 2a), i.e. each column
is shifted with respect to the preceding column. This is in
excellent agreement with the idealized form that we would
expect for a perfectly-equivariant layer (Fig. 2c). By con-
trast, the weights in the non-equivariant model (Fig. 2b) do
not exhibit the same structure.

4. Symmetric Embeddings for World Models
The supervised learning results on toy data are encouraging:
an equivariant task network can indeed induce an approxi-
mately equivariant SEN, which implicitly learns the group
action in the input space. To demonstrate the feasibility of
learning SENs in more challenging domains we consider
world models. These models are an excellent use case for
equivariant representation learning. Interactions with the
physical world often exhibit symmetries, such as permuta-
tion equivariance (when interacting with multiple objects),
or rotational and translational symmetries (when interacting
with individual objects). Incorporating these symmetries
can aid generalization across the combinatorial explosion
of possible object arrangements, which grows exponentially
with the number of objects in a scene.

World models are also a good test bed for learning SENs
in that they allow us to control the difficulty of the learning
problem. In an equivariant world model there are three
interrelated notions of “action”: (1) the MDP action in the
world model, (2) the learned action of the symmetry group
on the input space, and (3) the known action of the symmetry
group in the latent space. In certain domains there is a
direct correspondence between these notions, such as when
MDP actions perform rotations on a single object. In other
domains the correspondence will be more indirect, such as
when MDP actions apply forces to joints in a robot arm. The
MDP action in a world model hereby provides a form of
“distant” supervision that either directly or indirectly relates
to the underlying symmetry.

To establish notation, we first define the difference between
an abstract symmetry group with known action and one with
unknown action. We then define a meta-architecture for
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contrastive training of SENs and equivariant world models,
and discuss implementations of this architecture for specific
domains with different underlying symmetries.

4.1. Preliminaries

Group Actions A group is a set with a binary operation
that satisfies associativity, g1 · (g2 · g3) = (g1 · g2) · g3,
existence of an identity, g · 1 = 1 · g = g, and existence of
an inverse, g−1 · g = g · g−1 = 1. An action of a symmetry
group associates a transformation with each g ∈ G. We
define an action on a set S as a map a : G× S → S that is
compatible with composition of group elements, which is
to say that a(g1 · g2, s) = a(g1, a(g2, s)).

If S is a vector space Rn and the map a(g, ·) on S is linear,
then we say that a is a group representation. This represen-
tation associates an n×n matrix with each g ∈ G, which
we denote ρ(g) = a(g, ·). The same group may have differ-
ent actions on different sets. For example, the cyclic group
C4 = {1, g, g2, g3} has a simple representation ρstd by 2×2-
rotation matrices on vectors in R2 but a more complicated
action by 282×282 matrices on images in MNIST.

Equivariant Networks and Equivariance Learning
Given a group G with representations ρX and ρY acting
on X and Y , we say that a function f : X → Y is equivari-
ant if, for all x ∈ X, g ∈ G,

f
(
ρX(g) · x

)
= ρY (g) · f(x). (2)

This means that group transformations commute with func-
tion application; transforming the input before application
of f is equivalent to transforming the output after applica-
tion. The mapping f thus preserves the symmetry group G
but alters the way in which the group acts.

Equivariant neural networks define parametric families of
equivariant functions f by composing layers that are indi-
vidually equivariant with respect to the same group. To
ensure that equivariance can be satisfied by construction for
any choice of network weights, these networks require that
we explicitly know both ρX and ρY . An example would be
classification of rotated MNIST digits, as in Figure 1.

In this paper, we are interested in cases where we have
a known output action ρY , but the input action ρX is not
known, as with the images of rotated cars in Figure 1. In this
setting, we are interested in learning equivariance using an
unconstrained network f̂ , which we refer to as a symmetric
embedding network (SEN). Given a triple x1, x2, g such
that x2 = ρX(g)x1, this network should satisfy

f̂(x2) ≈ ρY (g) · f̂(x1). (3)

In other words, our goal is to learn a network f̂ that is not
equivariant by construction, but is as equivariant as possible.

Equivariant World Models World models define a transi-
tion function T : S ×A → S on a state space S and action
space A, which outputs the next state s′ = T (s, a) given
the current state s ∈ S and action a ∈ A. In an equivari-
ant world model, we assume a symmetry group G which
jointly transforms states and actions by representations ρS
and ρA respectively. For example, in the 2D shapes domain
shown in Table 1, rotation by π/2 moves the blocks and
permutes the actions ρA(up) = left. The transition function
is equivariant with respect to G in the sense that

T
(
ρS(g)·s, ρA(g)·a

)
= ρS(g) · T (s, a). (4)

As with other equivariant approaches, recent work on equiv-
ariant world models has required that both ρS and ρA are
known (van der Pol et al., 2020b).

4.2. Meta-Architecture and Contrastive Loss

In this paper, we use SENs to define approximately-
equivariant world models that can be trained without access
to ρS . To do so, we define a meta-architecture that combines
a symmetric embedding network with an equivariant world
model, which is illustrated in Figure 3. This architecture
comprises three domain-dependent components:

1. A symmetric embedding network S : S → Y , which
maps states in a pixel-space S to an intermediate space Y
for which an explicit symmetry group action ρY is known.

2. An equivariant encoder E : Y → Z , which extracts the
subset of features that are necessary to predict dynamics in
a latent space Z with a known group action ρZ .

3. An equivariant transition model T : Z ×A → Z which
serves as an inductive bias by defining dynamics that satisfy
the relation in Equation 4 with respect to the known group
representations ρZ and ρA.

We employ the self-supervised contrastive loss introduced
by Kipf et al. (2020) for training. We assume access to a
dataset collected offline of triplets (s, a, s′) consisting of
the current state s, the action a, and the next state s′. We
combine this ground truth transition triplet with a negative
state s′′, which is randomly sampled from triplets within the
minibatch. The contrastive loss is

L = ∥T (z, a)− z′∥+ αmax
(
β − ∥T (z, a)− z′′∥, 0

)
,

where z = E(S(s)), z′ = E(S(s′)), and z′′ = E(S(s′′)).
Minimizing this loss pushes T (z, a) towards z′ and away
from the negative sample z′′.

4.3. Environments and Architectures

We consider 5 environments with varying symmetries. Ta-
ble 1 shows an overview of symmetries, representation types,
and model architectures. The first two environments, 2D
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Figure 3: Diagram of the model architecture of our G-equivariant world model on the Reacher domain with G = D4

symmetry. The features in light red have an explicit G-action ρ. The networks in light red are G-equivariant. The MDP
actions have G-representation type ρflip meaning they are reversed in sign by reflections and unaltered by rotations. The
Symmetric Embedding Network is a CNN and the Encoder and Transition model are E(2)-CNNs with fiber group D4.

Shapes and 3D Blocks, are grid-worlds with 5 moving ob-
jects (Kipf et al., 2020). Rush Hour is a variant of 2D Shapes
where objects move relative to their orientation. In these 3
domains, we consider symmetry to π/2 rotations (C4) and
object permutations (S5). The fourth domain is a continuous
control domain, the Reacher-v2 MuJoCo environment
(Todorov et al., 2012), which is symmetric under rotations,
flips (D4), and translations. The last domain is a 3D teapot,
where actions are 3D rotations in the group SO(3). All
environments use images as observed states.

We here provide a high-level description of the transition
model T , the encoder E, and the SEN S for each environ-
ment. Additional details are in Appendices D and E.

Transition Model (T ) The transition model T defines the
main inductive bias. In 2D shapes, 3D blocks, and Rush
Hour, we use a message-passing neural network. This de-
fines an object-factored representation that is equivariant to
permutations and models pairwise interactions (i.e. move-
ment of one object can be blocked by another object). We
extend the architecture proposed by Kipf et al. (2020) to
incorporate rotational symmetry using C4 convolutions, re-
sulting in a network similar to the one that has concurrently
been proposed by Brandstetter et al. (2022).

The Reacher and 3D Teapot environments do not use model
components that consider permutations. In Reacher, T is an
Equivariant MLP (EMLP) made with 1x1-convolutions in
the E(2)-CNN framework (Weiler & Cesa, 2019).

For 3D Teapot, the action space A, symmetry group G, and
latent space Z are all SO(3). Since Z is not a vector space,
ρA is a non-linear group action. Semantically, the MDP
action a ∈ SO(3) is a rotation matrix and the latent state
z ∈ SO(3) is a positively-oriented orthogonal coordinate
frame. Though Z = A = SO(3), these interpretations lead

to differing G = SO(3) actions with ρZ(g)(z) = gz but
ρZ(g)(a) = gag−1 (see Figure 4 for an illustration). If z is
correctly learned, then T can be implemented as a matrix
multiplication TZ(z, a) = az which is equivariant,

TZ(ρZ(g)(z), ρA(g)(a)) =

(gag−1)(gz) = gaz = ρZ(g)TZ(z, a).
(5)

This method, which we label MatMul, is similar to the
one in Quessard et al. (2020), except in our framework the
ground truth a ∈ SO(3) is provided to aid learning z.

Equivariant encoder (E) The encoder in object-centric
environments is shared over all 5 objects and uses group
convolution over C4 (Cohen & Welling, 2016), thus achiev-
ing C4 × S5-equivariance. In the Reacher environment, we
combine 3 E(2)-equivariant layers with a 3-layer D4-EMLP.
For 3D Teapot, no encoder is needed.

Symmetric Embedding Network (S) The SEN in each
environment is based on a convolutional network, an archi-
tecture well-adapted to our image inputs. It maps the image
s to an image y in which the G-action is easy to describe
in terms of pixel manipulation. As each domain has dif-

Figure 4: SO(3)-equivariance for 3D Teapot.
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Environment 2D Shapes & 3D Blocks Rush Hour Reacher 3D Teapot

Observation s 50x50x3 50x50x3 128x128x3x2 64x64x1

Action a { up,right,down,left } { fwd,left,back,right } (ϕ′′
1 , ϕ

′′
2) ∈ R2

(joint forces) SO(3)

Symmetry G
C4 × S5

(π2 rot.; obj. perm.)
C4 × S5

(π2 rot.; obj. perm.)
D4 ⋉ (R2,+)

(π2 rot; flip; trans.) SO(3)

Z-rep: ρZ (ρstd,R2)⊠ (ρstd,R5)
(ρstd ⊕ ρreg,R6)

⊠(ρstd,R5)
(ρreg,R8)4 ⊠ ρtriv gz (matrix mult.)

A-rep: ρA (ρreg,R4)⊠ (ρstd,R5) (ρtriv,R)4 (ρflip,R)2 gag−1 (conjugation)

SEN S
2-layer CNN (2D)
4-layer CNN (3D) 2-layer CNN 7-layer CNN 4 conv, 3 FC layers

Equ. Encoder E MLP + C4-conv MLP + C4-conv
3 E(2)-conv,

3-layer D4-EMLP Id. (None)

Equ. Transition T
MPNN + C4-conv

(Cohen & Welling, 2016)
(Scarselli et al., 2008)

MPNN + C4-conv EMLP, E(2)-CNN
(Weiler & Cesa, 2019)

Matrix
Multiplication

Table 1: The symmetry and implementation for each domain. See Appendix G for the ρ definitions.

ferent input size and downstream architectures, the SEN
architecture also varies.

In the object-centric environments, the output y is a down-
sampled image with 5 channels. The action ρY of S5 per-
mutes the channels while C4 rotates the image. In the
Reacher environment, y is a down-sampled image which is
rotated, flipped, and translated by D4 ⋉ (R2,+) via ρY .

In the case of the 3D teapot environment, we expect the SEN
to detect the pose z of the object in 3D. We use a two-part
network that directly encodes y = z using a down-sampling
CNN whose output is passed to an MLP, and converted to
an element of SO(3). To force the output of the symmetric
embedding network y to be an element of SO(3), we have
the last layer output 2 vectors u, v ∈ R3 and perform Gram-
Schmidt orthogonalization to construct a positively oriented
orthonormal frame (see Appendix E). This method is also
used by Falorsi et al. (2018), who conclude it produces less
topological distortion than alternatives such as quaternions.

4.4. Generalizing over the MDP Action Space

In settings where data collection is costly, equivariance can
improve sample efficiency and generalization. While it is

difficult to generalize over high-dimensional states without
explicit symmetry, the MDP actions are low dimensional
and have clear symmetry. Furthermore, the MDP action
bypasses the non-equivariant S and is passed directly to T ,
which is explicitly equivariant. This means we can train
using only a proper subset A′ ⊂ A of the action space and
then test on the entire A. In other words, our model has
the added benefit of generalizing to unseen actions when
trained on only a fraction of data, which we demonstrate in
Section 5.4. We state a proposition that bounds the model
error over the entire action space when the model is trained
on the subset A′. (proof in Appendix H).

Proposition 4.1. Let A′ ⊂ A. Assume ρA(G) · A′ = A,
i.e. every MDP action is a G-transformed version of one
in A′. Consider D′ sampled from S × A′ × S . Denote
D = G · D′ ⊂ S ×A×S the set of all G-transforms of all
of samples in D′ and TS(s, a) = T (E(S(s)), a). Assume a
G-invariant norm and model error is bounded ∥TS(s, a)−
z′∥ ≤ ϵ1 where z′ = E(S(s′)) and equivariance errors
are bounded ∥TS(ρS(g)s, ρA(g)a)−ρZ(g)TS(s, a)∥ ≤ ϵ2
and ∥E(S(ρS(g)s

′)− ρZ(g)z
′∥ ≤ ϵ3 for all g ∈ G and all

(s, a, s′) ∈ D′. Then model error over A is also bounded
∥TS(s, a)− z′∥ ≤ ϵ1 + ϵ2 + ϵ3 for all (s, a, s′) ∈ D.
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5. Experiments
For all experiments, we consider three types of models: (a)
a non-equivariant model with no enforced symmetry, (b) a
fully-equivariant model with ρS chosen to be the closest
explicit pixel-level transformation to the actual symmetry,
and (c) our method. For 3D Teapot, we forgo the fully
equivariant baseline as it is hard to define a ρS acting on the
2D image space which approximates the true group action.
We instead include a comparison to Homeomorphic VAE
(Falorsi et al., 2018) which is trained to on images of teapots
without any actions. As its latent space is the same as our
model, we can use the MatMul transition model in order
to predict the effect of actions. We keep the total number
of parameters comparable across all models by reducing
the hidden dimensions for the equivariant networks. Other
details are provided in Appendix E and F. The code for our
implementation is available1.

5.1. Metrics

To evaluate the model without state reconstructions, we use
two types of metrics. The first are accuracy metrics adapted
from Kipf et al. (2020) and the second are equivariance
metrics to measure the degree of equivariance.

Hits, Hard Hits, Traversal Hits, and MRR Given a
dataset of triplets (z, a, z′), ranking metrics compute the L2

distance between each predicted state T (z, a) and all next
states z′. The Hits at Rank k (H@k) computes the propor-
tion of triplets for which T (z, a) is among the k-nearest
neighbors of the corresponding next state z′. The mean
reciprocal rank (MRR) is the average inverse rank. We also
compute Hard Hits at Rank k (HH@k), where we generate
negative samples of states s′n close to the true next state s′

and compute the proportion of samples where the distance
to z′ is lower than the distance to z′n. This is a harder ver-
sion of H@k, as the model must distinguish between similar
negative samples and the true positive sample. For Traversal
Hits (TH@k), which we use for Teapot experiments, we use
30 π

15 increments along three axes of rotation (yaw, pitch,
roll) to be the negative states s′n. We measure whether z′

at each increment can be distinguished from the z′n of the
other points along the traversal. For example, the traversal
shown in Figure 6 reaches 100%, whereas a model mapping
every increment into the same latent state has TH@1 = 0%.

Equivariance Error (EE) To evaluate the degree to
which the learned SEN is equivariant, we generate triplets
(s, a, s′) for which a known element g acts on the state s.
This yields images s and s′ = ρS(g) · s during generation,
which allows us to compute the equivariance error,

EE = Es,g [|ρY(g) · S(s)− S(ρS(g)·s)|] .
1https://github.com/jypark0/sen

Distance Invariance Error (DIE) The equivariance error
can be computed when the output space is spatial and we can
manually perform group actions on the outputs. However
it cannot be applied to the latent space Z in the case of
non-equivariant models, since the group action on the latent
space ρZ cannot be meaningfully defined.

We therefore propose a proxy for the equivariance er-
ror using invariant distances. For a pair of input states
s, s′, an equivariant model f will have the same distances
‖f(s) − f(s′)‖ and ‖f(gs) − f(gs′)‖ assuming the ac-
tion of G is norm preserving, as it is for all transforma-
tions considered in the paper. (The action ρS is assumed.)
Due to the linearity of the action, ‖f(gs) − f(gs′)‖ =
‖gf(s)−gf(s′)‖ = ‖g(f(s)−f(s′))‖ = ‖(f(s)−f(s′))‖.
The distance invariance error is computed as

DIE = Es,s′,g [|‖f(s)− f(s′)‖ − ‖f(gs)− f(gs′)‖|] .

5.2. Model performance comparison

Tables 2, 5, and 6 summarize performance of models and
baselines, with additional results in Appendix C. In general,
the ranking metrics show that all models are accurate on 3D
blocks, Rush Hour, and Reacher.

Surprisingly, the fully equivariant model performs very well
even when the group action on the input space ρS is not
accurate. Due to the skewed perspective, we can see that
the simple pixel-level transformation maps training data
to out-of-distribution images which are never seen by the
model. We hypothesize that equivariance does not hamper
its performance on training data, but only constrains its
extrapolation capabilities to out-of-distribution samples.

In Table 2, we observe that both “None” and our model are
accurate on hard hits (HH@1), but “None” performs poorly

Figure 5: Reacher latent embeddings: a sample state s (left)
and its latent z (right). The current z is in red, blue points
show other samples for reference.

Figure 6: 3D Teapot latent space traversal. True rotation
(top) and our embeddings (bottom). The two sequences are
offset by the arbitrary learned latent reference frame.

https://github.com/jypark0/sen
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Model
TH@1

(yaw, %)
TH@1

(pitch, %)
TH@1

(roll, %)
HH@1

(1 step, %) EE(S)
DIE

(1 step, ×10−2)

3D Teapot
Homeomorphic VAE 6.7 10.0 3.3 0.9 2.41 0.68
None 6.7±6.7 60±40 86.7±6.6 93.9±2.2 2.38±0.04 3.41±0.16

Ours (MatMul) 100±0.0 100±0.0 100±0.0 100±0.0 0.05±0.0 0.45±0.01

Table 2: Model performance on 3D Teapot.

Limited
Actions A′ Model

H@1
(10 step, %)

MRR
(1 step, %) EE(S)

DIE
(10 step)

2D Shapes {up} CNN 2.8±0.6 5.3±0.4 0.00±0.0 0.19±0.0

Ours/Full 100±0.0 99.9±0.0 0.00±0.0 0.00±0.0

3D Blocks {up,right,down}
None 52.3±14. 61.8±13. 0.98±0.2 181±79.

Full 83.7±36. 86.0±31. 0.81±0.5 15±9.1

Ours 99.9±0.0 100±0.0 0.96±0.3 5±4.7

Table 3: 2D Shapes, 3D Blocks generalization results. The models were trained on a limited set of actions A′ and evaluated
on all actions. For 2D shapes, due to the simplicity of the environment, a simple CNN turns out to be equivariant, so both
the baseline CNN and Ours/Full have an equivariant symmetric embedding network.

H@10
(1 step, %)

MRR
(1 step, %) EE(S)

DIE (1 step)
(×10−2)

None 86.5±3.0 50.6±3.1 1.22±0.1 6.95±1.5

Full 89.4±11. 61.8±13. 1.18±0.1 4.87±1.4

Ours 90.8±4.5 59.4±4.6 1.28±0.1 4.95±0.6

Table 4: Reacher generalization results. The models were
trained on data where the second joint is constrained to be
positive and evaluated on unconstrained data.

on traversal hits (TH@1). This baseline is only sensitive
to pitch and roll, while completely ignoring the yaw of
the teapot. The Homeomorphic VAE results indicate that
the model makes only coarse distinctions between different
orientations of the teapot.

For the equivariance metrics, we can see that SEN-based
models outperform baselines on DIE for 3D Blocks and on
EE(S) for Teapot. For the other environments, the equivari-
ance metrics are relatively similar for all models.

5.3. Latent visualizations

We visualize the latent embeddings z of our model to quali-
tatively analyze the learned representations. Figure 5 shows
a sample from the evaluation dataset in both pixel and latent
space. We factor the encoded state z and next state z′ into ir-
reducible D4-representations (irreps) before visualizing (see
(Hall, 2003)). Some irreps are 1-dimensional and are plotted
as a line. The 2-dimensional irreps show a clear circular
pattern, matching the joint rotations of the environment.

We also transform the embedding with the group action ρZ
and visualize the corresponding pixel-level outputs. Figure 6
shows the traversal of rotations in pixel and latent space
for 3D Teapot. The latent space can choose its own base

coordinate frame and is thus oriented downwards. We can
clearly see that the effective rotations relative to the objects’
orientation perfectly align, demonstrating that the learned
embeddings correctly encode 3D poses and rotations. For
the 3D Blocks and Reacher, we train a separate decoder for
100 epochs after freezing our model in order to decode z
into pixel space. Figures 9 and 10 show our model implicitly
learns a reasonable group action ρS in input space which
corresponds the group action in latent space ρZ .

5.4. Generalization from limited actions

In these experiments, we train on a subset of actions and
evaluate on datasets generated with the full action space.
These experiments aim to verify that our model, even with
components not constrained to be equivariant, can learn
a good equivariant representation which can generalize to
actions that were not seen during training. We perform
experiments on the 2D Shapes, 3D Blocks, and Reacher
domains. For 2D Shapes, the training data contains only
‘up’ actions and for 3D Blocks, we omit the left action in
training. For Reacher, we restrict the actuation force of the
second joint to be positive, meaning that the second arm
rotates in only one direction.

Tables 3 and 4 show results for 2D Shapes, 3D Blocks, and
Reacher. We see that our method can successfully generalize
over unseen actions compared to both the non-equivariant
and fully equivariant baselines. The non-equivariant base-
line in particular performs poorly on all domains, achieving
only 2.8% on Hits@1 and 5.3% on MRR for 2D Shapes. The
fully equivariant model performs worse than our method for
3D Blocks and achieves a similar performance on Reacher.
As the fully equivariant model performs well when trained
on all actions but does not perform as well in these gen-
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eralization experiments, these results lend support to our
hypothesis that the inaccurate pixel-level equivariance bias
limits its extrapolation abilities to out-of-distribution sam-
ples. In these limited actions experiments, the fully equiv-
ariant model cannot extrapolate correctly.

Figure 8 in the Appendix shows embeddings for all states in
the evaluation dataset for our model and the non-equivariant
model trained on only the up action. Our model shows a
clear 5× 5 grid, while the non-equivariant model learns a
degenerate solution (possibly encoding only the row index).

6. Conclusion and Future Work
This work demonstrates that an equivariant world model
can be paired with a symmetric embedding network, which
itself is not equivariant by construction, to learn a model
that is approximately equivariant. This makes it possible
to use equivariant neural networks in domains where the
symmetry is known, but transformation properties of the
input data cannot be described explicitly. We consider a
variety of domains and equivariant neural network archi-
tectures, for which we demonstrate generalization to ac-
tions outside the training distribution. Future work will
include tasks besides world models and using symmetric
embeddings to develop disentangled and more interpretable
features in domains with known but difficult to isolate sym-
metry. Other possible avenues include standardizing the
proposed meta-architecture for wider accessibility and us-
ing other non-convolutional SEN architectures for different
data types such as point clouds and graphs.
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A. Outline
Our appendix is organized as follows. First, in Section B, we provide an additional details on the problem setup. Additional
experiment results are presented in Section C, followed by the details of environments and network architectures in Sections
D and E. We further explain the notation and definition in Section G. The proof of Proposition 4.1 is in Section H.

B. Setup: Equivariant World Models
In this section, we provide a technical background for building equivariant world models, which we use in learning symmetric
representations.

We model our interactive environments as Markov decision processes. A (deterministic) Markov decision process (MDP)
is a 5-tuple M = ⟨S,A, T, R, γ⟩, with state space S, action space A, (deterministic) transition function T : S ×A → S ,
reward function R : S ×A → R, and discount factor γ ∈ [0, 1].

Symmetry can appear in MDPs naturally (Zinkevich & Balch, 2001; Narayanamurthy & Ravindran, 2008; Ravindran, 2004;
van der Pol et al., 2020b), which we can exploit using equivariant networks. For example, van der Pol et al. (2020b) study
geometric transformations, such as reflections and rotations. Ravindran (2004) study group symmetry in MDPs as a special
case of MDP homomorphisms.

Symmetry in MDPs. Symmetry in MDPs is defined by the automorphism group Aut(M) of an MDP, where an
automorphism g ∈ Aut(M) is an MDP homomorphism h : M → M that maps M to itself and thus preserves its structure.
Zinkevich & Balch (2001) show the invariance of value function for an MDP with symmetry. Narayanamurthy & Ravindran
(2008) prove that finding exact symmetry in MDPs is graph isomorphism complete.

Ravindran (2004) provide a comprehensive overview of using MDP homomorphisms for state abstraction and study
symmetry in MDPs as a special case. A more recent work by van der Pol et al. (2020b) builds upon the notion of MDP
homomorhpism induced by group symmetry and uses it in an inverse way. They assume knowledge of MDP homomorphism
induced by symmetry group is known and exploit it. Different from us, their focus is on policy learning, which needs to
preserve both transition and reward structure and thus has optimal value equivalence (Ravindran, 2004).

More formally, an MDP homomorphism h : M → M is a mapping from one MDP M = ⟨S,A, T, R, γ⟩ to another
M = ⟨S,A, T , R, γ⟩ which needs to preserve the transition and reward structure (Ravindran, 2004). The mapping h
consists of a tuple of surjective maps h = ⟨ϕ, {αs | s ∈ S}⟩, where ϕ : S → S is the state mapping and αs : A → A is
the state-dependent action mapping. The mappings are constructed to satisfy the following conditions: (1) the transition
function is preserved T (ϕ (s′) | ϕ(s), αs(a)) =

∑
s′′∈ϕ−1(ϕ(s′)) T (s′′ | s, a), (2) and the reward function is also preserved

R (ϕ(s), αs(a)) = R(s, a), for all s, s′ ∈ S and for all a ∈ A.

An MDP isomorphism from an MDP M to itself is call an automorphism of M. The collection of all automorphisms of M
along with the composition of homomorphisms is the automorphism group of M, denoted Aut(M).

We specifically care about a subgroup of G ⊆ Aut(M) which is usually easily identifiable from environments a priori and
thus we can design appropriate equivariant network architectures to respect it, such as C4 rotation symmetry of objects.
Additionally, while MDP homomorphisms pose constraints to the transition and reward function, we only care about the
transition function, especially the deterministic case T : S ×A → S .

Equivariant transition. By definition, when an MDP M has symmetry, any state-action pair (s, a) and its transformed
counterpart (ρS(g) · s, ρA(g) · a) are mapped to the same abstract state-action pair by h ∈ Aut(M): (ϕ(s), αs(a)) =
(ϕ(gs), αgs(ga)), for all s ∈ S, a ∈ A, g ∈ G. Therefore, the transition function T : S ×A → S should be G-equivariant:

T (ρS(g) · s, ρA(g) · a) = ρS(g) · T (s, a), (6)

for all s ∈ S, a ∈ A, g ∈ G.

State-dependent action transformation. Note that the group operation acting on action space A depends on state, since
G actually acts on the product space S × A: (g, (s, a)) 7→ ρS×A(g) · (s, a). However, in most cases, including all of
our environments, the action transformation ρA does not depend on state. As a bibliographical note, the formulation in
van der Pol et al. (2020b) also has a joint group action on state and action space, which is denoted as state transformation
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Lg : S → S and state-dependent action transformation Ks
g : A → A. Table 1 in van der Pol et al. (2020b) outlines state

and action transformations for their environments, and all of action transformations are not state-dependent.

Similarly in our case, geometric transformations are usually acting globally on the environments S × A, thus states
and actions are transformed accordingly. We use the factorized form and omit the state-dependency ρA(g; s) of action
transformation ρA(g), since the action transformations do not depend on states ρA(g; s) = ρA(g) for all g ∈ G, s ∈ S .

Learning transition with equivariant networks. In this paper we are mainly interested in learning transition functions
which are equivariant under symmetry transformations and can be high-dimensional.

We apply the idea of learning equivariant transition models in the latent space Z , where Z is the space of symmetric
representations, on various environments with different symmetry groups G. We assume we do not explicitly know ρS
since S is high-dimensional. We factorize the group representation on state and action S ×A as latent state transformation
ρZ(g) · E(s) and ρA(g; s) · a. In the deterministic case, the transition model can be modeled by G-equivariant networks in
latent state Z and action space A:

ρZ(g) · T (E(s), a) = T (ρZ(g) · E(s), ρA(g) · a), (7)

for all g ∈ G, s, s′ ∈ S and a ∈ A.

C. Experiment Results
C.1. Model performance comparison

Tables 5,6 show model comparison results for 3D Blocks, Rush Hour, and Reacher. All models generally perform well on
the accuracy metrics. The fully-equivariant model performs well on the equivariance metrics and our model performs better
than the non-equivariant model.

Model
Hits@1

(10 step, %)
MRR

(10 step, %) EE(S)
DIE

(10 step, ×10−2)

3D Blocks
None 94.3±9.0 99.0±1.5 0.89±0.3 3.85±2.0

Full 99.8±0.3 99.9±0.2 0.82±0.5 5.54±4.8

Ours 99.9±0.0 100±0.0 0.86±0.4 3.16±1.5

Rush Hour
None 98.2±1.3 99.1±0.7 0.37±0.07 26.6±7.13

Full 87.9±3.1 93.6±1.7 0.00±0.00 0.05±0.06

Ours 93.6±3.7 96.1±2.0 0.26±0.09 10.0±3.45

Table 5: Model performance on 3D Blocks and Rush Hour.

Model
H@10

(1 step, %)
MRR

(1 step, %) EE(S)
DIE(S)

(×10−2)
DIE (model)

(1 step)

Reacher
None 100±0.0 88.3±3.3 1.26±0.1 4.53±1.1 0.56±0.2

Full 100±0.0 95.5±1.9 1.19±0.0 3.51±0.7 0.39±0.1

Ours 100±0.0 94.1±2.8 1.29±0.0 4.05±0.7 0.52±0.1

Table 6: Model performance on Reacher.
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C.2. Latent visualizations

(a) s, s′ (b) z ∈ Z .

Figure 7: Learned symmetric embeddings for Reacher: pixel observation s (left top) and next observation s′ (left bottom),
latent representation z of the evaluation set (right). The representation type of z is ρD4,reg which we factor into irreducible
representations before visualizing (see (Hall, 2003)). All encoded samples in the evaluation set are shown and the encoded
current observation is colored red and the encoded next observation is colored orange. There is a clear circular pattern that
match joint rotations.

(a) (b)

Figure 8: 2D Shapes: learned embeddings for all states in the evaluation set when trained on only the up action. Our model
(left) is able to generalize well and learns the correct underlying 5 × 5 grid. The non-equivariant model (right) learns a
degenerate solution

The learned latent embedding z for all states in the evaluation set for Reacher is shown in Figure 7. The embeddings are
factored into irreducible representations. The 2-dimensional representations show a circular pattern, mimicking the rotation
of joints. Figure 8 shows learned embeddings for all states in the evaluation dataset of 2D Shapes for the generalization
experiments, where the models were trained on only the up action. Our model (left) correctly encodes the underlying 5× 5
grid while the non-equivariant model (right) encodes a degenerate solution.



Learning Symmetric Embeddings for Equivariant World Models

C.3. Decoder reconstructions

Figure 9: 3D Blocks: Pixel-level reconstructions of the G-transformed latent representations. The C4 symmetry acts
correctly in the input space S

Figure 10: Reacher: Pixel-level reconstructions of the G-transformed latent representations. We denote the representations
in D4 as a tuple of π/2 rotations and a reflection (0 or 1). While many reconstructions are blurry, rotations of π and reflection
seem to act correctly in the input space S .

We freeze our model and train a separate decoder for 100 epochs (until convergence) for 3D Blocks and Reacher environments.
Having a trained decoder allows us to qualitatively assess the learned latent representations and further allows us to transform
the representations with the group actions ρZ and visualize their pixel-level outputs. These results show that our model
correctly infers and transforms group actions in the input space ρS and translates them to group actions in latent space ρZ .

D. Datasets and Environments
Sequence labeling A sample time series containing 100 time points and its corresponding labels is shown in Figure 11.

A random policy was used to create training and evaluation datasets of (s, a, s′) tuples. For all environments, we have either
a combinatorially large state space (with objects) or continuous states and thus overlap between training and evaluation
datasets is highly unlikely.

2D Shapes & 3D Blocks There are five objects are arranged in a 5 × 5 grid and each object can occupy a single cell.
Actions are the 4 cardinal directions for each object and an action moves one object at a time, unless it is blocked by the
boundaries or by another object. Observations are 50× 50× 3 RGB images for both 2D Shapes and 3D Blocks, with pixel
values normalized to [0, 1]. The observations in 2D shapes are top down views of the grid and each object has a different
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Figure 11: Sequence labeling of local maxima in sine waves. Each input and label sample consist of 100 points.

color-shape combination. For 3D Blocks, the observations are rendered isometrically with a skewed perspective and each
block has a z-height, introducing partial occlusions to the image.

Rush Hour We create a variant of 2D Shapes called Rush Hour. Each object has an orientation and the action is relative
to the object’s orientation: {forward, backward, left, right}. This increases the importance of rotational orientation in the
environment increasing the significance of symmetric embeddings. We fix the color of all objects and use randomized
orientation north, west, east, south} for each object at each episode.

Reacher This environment makes a small modification to the original MuJoCo environment Reacher-v2. As we do
not consider rewards, we fix the goal position to the position [0.2, 0.2] so that features related to the goal are ignored.
Instead of using the 11-dimensional state, we use pixel observations as images and preprocess them by cropping slightly and
downsampling the original 500× 500× 3 RGB image to 128× 128× 3. The previous and current frames are then stacked
as an observation to encode velocities. The default camera position gives a slightly skewed perspective, see Table 1.

3D Teapot The 3D teapot environment contains images of the Utah teapot model rendered into the 64× 64 grayscale
images. The teapot varies in pose which can be described by a coordinate frame z ∈ SO(3). Actions may be any element
a ∈ SO(3).

E. Model architectures
Symmetric embedding network S For all models and environments except for 3D Teapot, we use CNNs with BatchNorm
(Ioffe & Szegedy, 2015) and ReLU activations between each convolutional layer. For 3D Teapot, the symmetric embedding
network maps directly to the latent z space so we use 4 convolutional layers followed by 3 fully connected layers. The
output is a 3× 3 rotation matrix. The number of layers for each environment is given in Table 1. For the non-equivariant
symmetric embedding networks, we use 32 convolutional filters for every layer and use 8 filters for Reacher and 16 filters
for all other environments.

Encoder E The object-oriented environments use 3-layer MLPs with 512 hidden units for the non-equivariant networks
and 256 for the equivariant counterparts. There is a ReLU activation after the first and second layers and a LayerNorm (Ba
et al., 2016) after the second layer. For Reacher, we use 3 convolutional layers followed by 3 fully connected layers. The
3D Teapot does not have an explicit encoder, i.e. it is the identity function. The output of the non-equivariant encoder is a

(a) 3D Blocks (b) Reacher

Figure 12: Original observations and their G-transformed versions
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2-dimensional vector for 2D Shapes, 3D Blocks, and Rush Hour and a 4-dimensional vector for Reacher. The output of the
equivariant encoders for each environment is listed in Table 1.

Transition T The object-oriented environments use message-passing transition models where the edge and node networks
have the same structure as the encoder (3-layer MLPs). For Reacher and 3D Teapot, the transition model T is a MLP with
512 hidden units for the non-equivariant version and 256 for the equivariant version. Actions are concatenated to the latent
z and are input into the transition models which then outputs a z′ of the same dimension as the input z. We use one-hot
encoding for discrete actions.

Gram-Schmidt embedding for Teapot transition model In the case of the teapot domain, the transition model is
constrained to output an element of SO(3) representing a positively-oriented orthonormal frame. This is achieved by having
the network output two vector u, v ∈ R3 and then performing Gram-Schmidt orthogonalization. Only two vectors are
necessary since orthogonality and orientation determine the third, after producing two orthonormal vectors u′, v′, the third
vector w′ is uniquely determined by the property that it completes a positively-oriented orthonormal frame and can be
computed by cross product. In summary,

u′ = u/∥u∥, v′ =
v − (u′ · v)u′

∥v − (u′ · v)u′∥
,

w′ = u′ × v′, y = [u′ v′ w′].

F. Training details
For training, we use 1000 episodes of length 100 as training data for the grid world environments (2D shapes, 3D blocks,
Rush Hour), 2000 episodes of length 10 for Reacher, and 100,000 episodes of length 1 for the 3D teapot. For Reacher, the
starting state is restricted to a subset of the whole state space, so we perform warm starts with 50 random actions in order to
generate more diverse data. The evaluation datasets are generated with different seeds from the training data to ensure that
transitions are different. In the generalization experiments for 2D Shapes and 3D blocks, we set the number of episodes in
the training data to 100,000 with length 1 to avoid any distribution shifts in the data (e.g. performing up continuously will
produce many transitions where all blocks are blocked by the boundaries).

For the object-oriented environments, we follow the hyperparameters used in (Kipf et al., 2020): a learning rate of 5× 10−4,
batch size of 1024, 100 epochs, and the hinge margin γ = 1. We find that these hyperparameters work well for all other
environments, except that Reacher uses a batch size of 256 and mixed precision training was used for both non-equivariant,
fully-equivariant, and our method, in order to keep the batch size relatively high for stable contrastive learning. Most
experiments were run on a single Nvidia RTX 2080Ti except for 3D Blocks which used a single Nvidia P100 12GB.

G. Group Representations
We explain the notation and definitions of the different representations of the groups considered in the paper and displayed
in Table 1.

The ρstd representation of C4 or D4 on R2 is by 2-by-2 rotation and reflection matrices. The ρstd representation of S5

permutes the standard basis of R5. The regular representation ρreg of G permutes the basis element of R|G| according
to the multiplication table of G. The trivial representation of G fixes R as ρtriv(g) · x = x. For D4, ρflip(g) = ±1 is a
representation on R depending only on if g contains a reflection. Given representations (ρ1,Rn1) and (ρ2,Rn2) of G1 and
G2, (ρ1 ⊠ ρ2)(g1, g2)(v ⊗ w) = g1v ⊗ g2w gives a representation on G1 ×G2 on Rn1 ⊗ Rn2 .

H. Proof of Proposition 4.1
Proposition (4.1). Let A′ ⊂ A. Assume ρA(G) · A′ = A, i.e. every MDP action is a G-transformed version of one in A′.
Consider D′ sampled from S × A′ × S. Denote D = G · D′ ⊂ S × A × S the set of all G-transforms of all of samples
in D′. Assume a G-invariant norm. Denote the full model TS(s, a) = T (E(S(s)), a). Assume model error is bounded
∥TS(s, a)−z′∥ ≤ ϵ1 where z′ = E(S(s′)) and equivariance errors are bounded ∥TS(ρS(g)s, ρA(g)a)−ρZ(g)TS(s, a)∥ ≤
ϵ2 and ∥E(S(ρS(g)s

′)− ρZ(g)z
′∥ ≤ ϵ3 for all g ∈ G and all (s, a, s′) ∈ D′. Then model error on the full action space is

also bounded ∥TS(s, a)− z′∥ ≤ ϵ1 + ϵ2 + ϵ3 for all (s, a, s′) ∈ D.
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Proof. Let (s1, a1, s′1) ∈ D. Then there exists (s, a, s′) ∈ D′ such that (ρS(g)s, ρA(g)a, ρS(g)s′) = (s1, a1, s
′
1). Let

z′ = E(S(s′)) and z′1 = E(S(s′1)). By triangle inequality

∥TS(s, a)− z′∥ = ∥TS(ρS(g
−1)s1, ρA(g

−1)a1)− z′∥
≤ ∥TS(ρS(g

−1)s1, ρA(g
−1)a1)− ρZ(g

−1)TS(s1, a1)∥+ ∥ρZ(g−1)TS(s1, a1)− ρZ(g
−1)z′1∥

+ ∥ρZ(g−1)z′1 − z′∥

By the bound on equivariance error, the first term is bounded by ϵ2. The third term is bounded

∥ρZ(g−1)z′1 − z′∥ = ∥ρZ(g−1)E(S(s′1))− E(S(ρS(g
−1)s′1))∥ ≤ ϵ3.

By invariance of the norm, the middle term

∥ρZ(g−1)TS(s1, a1)− ρZ(g
−1)z′1∥ = ∥TS(s1, a1)− z′1∥ ≤ ϵ1

Combining the bounds yields the result.

If S learns to be equivariant, then the composite models T (E(S(·), ·)) and E(S(·)) will be equivariant, thus minimizing ϵ2
and ϵ3. Minimizing ϵ1 is part of the objective. Thus low error on unseen MDP actions A is feasible.

The assumption the norm ∥ · ∥ is G-invariant is valid for, e.g., rotations, reflections, and permutations. If the norm is not
invariant, then the proof goes through with the modified loss bound ϵ1∥g−1∥+ ϵ2 + ϵ3 where ∥g∥ denotes the operator norm
of the element g ∈ G which relates the sample to one in D′.




