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Abstract

Inspired by recent strides in empirical efficacy of implicit learning in many robotics tasks, we seek
to understand the theoretical benefits of implicit formulations in the face of nearly discontinuous
functions, common characteristics for systems that make and break contact with the environment
such as in legged locomotion and manipulation. We present and motivate three formulations for
learning a function: one explicit and two implicit. We derive generalization bounds for each of these
three approaches, exposing where explicit and implicit methods alike based on prediction error
losses typically fail to produce tight bounds, in contrast to other implicit methods with violation-
based loss definitions that can be fundamentally more robust to steep slopes. Furthermore, we
demonstrate that this violation implicit loss can tightly bound graph distance, a quantity that often
has physical roots and handles noise in inputs and outputs alike, instead of prediction losses which
consider output noise only. Our insights into the generalizability and physical relevance of violation
implicit formulations match evidence from prior works and are validated through a toy problem,
inspired by rigid-contact models and referenced throughout our theoretical analysis.

Keywords: Implicit learning, contact dynamics, learning nearly discontinuous functions, general-
ization error bounds

1. Introduction

Extreme stiffness or even discontinuity is abundant in physical robotics tasks in which systems
make or break contact with the environment (Yang and Posa, 2021; Ubellacker et al., 2021; Khader
et al., 2020; Kolev and Todorov, 2015). Implicit learning is increasingly common to represent these
complex functions, as are loss formulations with embedded optimization problems (Florence et al.,
2022; de Avila Belbute-Peres et al., 2018; Fazeli et al., 2017a,b; Amos and Kolter, 2017). These
approaches have demonstrated significant empirical performance benefits over explicit approaches
in real robotics tasks, in agreement with the effectiveness of implicit models in other fields like
trajectory optimization (Posa et al., 2014; Patel et al., 2019) and rigid body dynamics modeling
(Stewart and Trinkle, 1996; Anitescu and Potra, 1997; Chatterjee and Ruina, 1998). In particular,
ContactNets (Pfrommer* et al., 2020) learns frictional contact behaviors implicitly, using a deep
neural network (DNN) to represent inter-body distances and contact geometries. The empirical
results from ContactNets show significantly improved sample complexity over explicit alternatives.

Other works motivate this implicit learning trend by exposing inadequacies of explicit ap-
proaches for nearly discontinuous functions (Parmar et al., 2021). Our goal is to expose why implicit
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formulations are often better suited for these tasks, through the lenses of generalizability and rela-
tionship to graph distance, which we will motivate as a physically meaningful quantity. We focus
on a specific class of functions f that can be stiff. This complicated, vector-valued, deterministic
function y = f(x) has structure such that it can be formulated as an implicit optimization problem
defined by the following system of equations,

y=g(z,A) (1)
such that A = argmin A (x,y,\). (1b)
AEA

This is a general formulation which can represent classes of smooth and discontinuous functions
alike. We aim to understand the value of learning these implicit functions g and h over learning the
function f directly and how loss designs can affect how beneficial implicit formulations can be.

1.1. Contributions and Outline

We contribute two analyses of implicit formulations, applied to two implicit approaches as well
as their explicit counterpart, introduced in Section 2. First, we derive generalization error bounds
for these three approaches in Section 3, drawing from extensive literature in uniform convergence
(Shalev-Shwartz and Ben-David, 2014; Shalev-Shwartz et al., 2010), whose application to overpa-
rameterized DNNs has become better understood (Golowich et al., 2018; Neyshabur et al., 2018).
With the results of these tools, we indicate a common failure mode of explicit approaches to gener-
alize well, and more importantly we discuss why an implicit formulation can avoid this explosion of
generalization error bounds even when learning a nearly discontinuous function. These theoretical
results validate the sample efficiency observed by implicit methods in practice.

Second, in Section 4, we demonstrate that a violation-based implicit loss formulation can closely
bound graph distance, a meaningful quantity grounded in the physical intuition for how to measure
fit of a function. We motivate graph distance as potentially a more useful measure than standard
prediction accuracy, specifically when functions are highly stiff. This analysis motivates selection
of a hyperparameter ¢ introduced in the violation implicit loss. Application of the generalization
error bound analysis from Section 3 indicates that at this choice of ¢, the violation implicit approach
can boast significant sample complexity benefits over prediction methods.

We ground our theoretical analysis with the presentation of a toy problem introduced in Section
2.2 and continually referenced throughout. This physically-motivated example provides demonstra-
tion of the utility of our general results: we generate a concrete value for € and demonstrate data
efficient generalization error bounds separated by over two orders of magnitude in dataset size in
comparison to explicit approaches. We conclude in Section 5 with avenues for future work to build
upon our results.

2. Problem Formulation

We seek to learn a function f(x) given i.i.d. pairs drawn from a distribution {z; = (x;,y;)}7" ~ D
such that y; ~ f(x;). We adopt an empirical risk minimization approach and consider the following
three choices of model and training loss constructions.

Explicit approach (exp): Learn f¢ (x) directly, with explicit loss (on a data point of index 7)

2
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This is a common [2 or prediction loss many works in the literature employ including for regression
(Fernandez-Delgado et al., 2019), as it is a direct measure of the output error of a learned function
acting on a provided input.

Naive implicit approach (nimp): Learn the implicit g (x, \) and h?(x,y, \) where X satisfies
(1b) for the learned h. This loss is

(3a)

2
Bionp (i, Yi) = ‘ i — 9% (i, \)
such that \; = argmin h’ (x4, q° (Tiy A), A). (3b)
A€A
Many prior works including Amos and Kolter (2017) take this approach, which requires differentiat-
ing through an arg min. Like the explicit approach, this also measures the output error of a function
acting on a provided input, only now the output also depends on a learned implicit variable which
minimizes (3b). The motivation for such a constraint is that it embeds complex relationships, often
physically-motivated, between hidden states that explicit approaches do not supervise (Raissi and
Karniadakis, 2018).

We note at this point that if the parameters represent the same physical quantities across both
approaches, the explicit loss is equivalent to the naive implicit loss. Prediction approach (pred)
refers jointly to both of these when their parameters are shared.

Violation implicit approach (vimp): Learn the implicit g% (z, \) and h?(z, y, \) with loss

2 1
yi_ge(xh)‘)H +Eh9($iayi7)\)v “4)

leimp(xia yl) = I)\IIGIZI\I ‘
which introduces a hyperparameter, €, that weights the relative importance between the two terms.
Together, this violation loss allows and balances violation of the prediction matching term defined
by g with the A constraints defined by h. In contrast with the explicit and naive implicit approaches,
Section 4 shows that this approach addresses errors in both the inputs and outputs of the functions.
Notably with a realizable h, this approach also maintains the true global minimum: zero noise and
a correct model correspond to zero loss. Works including ContactNets (Pfrommer* et al., 2020)
employ this violation implicit structure.

2.1. Notation and Assumptions

Let D denote a distribution over input and output data points Z = (X', )), with (z1,y1), ... (Zn, Yn)
as n i.i.d. samples from D. We assume bounds on 6§ and A as By and B, respectively. All other
bounds we impose to be Vz € D,V ||A|| < By, V ||0]| < By, including bounds on f, g, A, lexps lnimp.
and lyimp as By, By, B, Bexp, Bnimp, and Byimp, respectively.

Let F, G, and H be parametric function spaces f : X — YV, g : X x A — Y, and h :
X x Y x A — RT, respectively, for all parameters, 6. For example, the parametric function class
is F={f:0cRk 0| < By, % is bounded V ||0|| < By, V(z,y) € Z}, and similarly for G and
H. We assume that min) , ,, h? = 0 and miny h%(z, g% (z, \), \) = 0, V. All loss function classes,
Larel: X x ) — R, for all parameters, 6, defining the f, g, and/or h therein.

We define specific Lipschitz constants as Lip,d(x,.) to refer to the Lipschitz constant of a

function d with respect to *, allowing * to change any inputs noted as ’.” and holding all other
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Figure 1: Toy problem of a 1-dimensional point mass falling under gravity until colliding inelastically with
the ground. The zeroed loss landscapes of the three approaches are depicted with a zoomed in view at right.
The explicit and naive implicit approach for this toy problem result in the same loss landscape. The violation
implicit approach in contrast features a more balanced ascent from its minimum on both sides of the optimal
parameter value, better suited for optimization via stochastic gradient descent.

inputs constant (in this example, z). Those required are
Ly = Lipg f(3.), Lgg = Lipgg(z, A; ), Lno =Lipgh(z,y, A;.),  (5)
Lg,)\ = Llp/\ g(x, - 0)7 Lh,)x = Llp)\ h(xv Y, 9)7 Lf\ltlgmp) = Llp@ )‘;imp('rv Y; ')a (Sb)

*
nimp

*

where \ vimp

is the unique minimizing solution to (1b) (similarly for defining Lf\i,?p through A
using ||y — gH2 + % instead of h). If % is invertible and if there are no constraints on A, sensitivity

analysis (Gould et al., 2016) shows that L(nigmp) is given by

>\7
| dx* 9°n\ " 9%h
L(nlmp) = sup |::| = sup — (> (6)
M z,y,\;0 do z,y,\;0 N 060X x,y,\;0
Additionally, we will use the functions pos(.) = max(0,.) and neg(.) = — min(0, .) which repre-

sent the positive and negative part of their inputs. pos(z) is equivalent to the rectified linear unit
activation ReLU(z) = {0 if z < 0, z if x > 0} (Nair and Hinton, 2010).

2.2. Toy Problem

To ground the general analysis with a physically-relevant manifestation, we present and refer to
an example throughout this paper. Consider the following toy problem: a 1-dimensional point
mass falling under gravity, with a flat ground whose interactions with the point mass are perfectly
inelastic. See Figure 1 for a schematic of this scenario.

We parameterize this problem with a scalar 6 that represents the approximated height of the
ground, such that §* = z,. The state of the system x = [z; v] is the point mass’ position and
velocity, and y = v’ is the velocity after a time step At. When the mass is under free fall, it under-
goes projectile motion due to gravity (assume other continuous forces are negligible). Using rigid
body time stepping simulation approaches via a linear complementarity program (LCP) (Stewart
and Trinkle, 1996), f%(z) takes the form

0 —
fe(x) =U—= agravAt + pos (_U + agravAt + Atz> . @)
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2.2.1. IMPLICIT REPRESENTATION

In the LCP rigid body simulation technique (Stewart and Trinkle, 1996), an implicit scalar variable
A > 0 corresponds to the contact impulse between the ground and the point mass. The function g
produces a dynamics prediction from the state x over the time step At as

1
ge(m, A) = v — Ggray At + E)\’ )

with m as the system mass and where X satisfies (1b) with an unconstrained h,
1 1
h? <[ i ] v, )\) = §neg(z + /At — )% + §neg()\)2 + pos(z + v'At — 0)pos(N\),  (9)

which enforces no contact forces at a distance, no pulling contact forces, and no interpenetration of
the mass with the rigid ground at the end of the time step.

3. Generalization Bounds

We wish to quantify a maximum bound for the generalization error of our general models. General-
ization error is the difference between an empirical error observed on training data and the expected
error on the true distribution of data. Define the generalization error A‘;en = 19(D) — 19(S) for
19(D) the expected error on the true distribution of data (population risk), and 1?(S) the measured
error on a dataset S = {z;}I' | ~ D" (empirical risk). Bartlett and Mendelson (2002) produce
a bound on the generalization error in terms of Rademacher complexity (Shalev-Shwartz and Ben-
David, 2014) of the hypothesis function class, and application of Dudley’s entropy integral (Dudley,
2014) can convert Rademacher complexity into quantifiable properties of the parameters, loss for-
mulation, and function class (details and proof of the following theorem in ??). Combining these
steps, we can bound generalization error via the following theorem.

Theorem 1 Fix a failure probability 6 € (0,1), and assume that the loss function lapproach €
Lapproach : Z — [0, Bapproach| }» With Lapproach,g as its Lipschitz constant with respect to its parame-
ters 6 € R¥, is acting on a parametric hypothesis function class with data S = {z1, ...z} ~ D™
Then with probability at least 1 — § and Vlypproach € Lapproach and for all hypothesis functions in the
class,

log(l/é).

k
A‘gen, a_pproach S 44Lapproach,QBn9 \/; + Bapproach ( 10)

This approach is most suitable for underparameterized models (n > k). Similar analysis better
suited for overparameterized DNNSs exists (Golowich et al., 2018; Neyshabur et al., 2018) but is not
used in this section. With Theorem 1, generalization bounds for each approach can be reduced to
the loss Lipschitz constant with respect to the function class parameters, 6. Applying Theorem 1
and differentiating through the embedded optimization problems, we can compute these Lipschitz
constants for the three losses as

Lexp,@ = QBexpo,G; (1 1)
Luinp.o = 2Baimp (LoaLVG™ + L) (12)
Lyinp.o = 2Buimp (LoaLSG™ + L) + - (L0aZ$™ + Lna) (13)
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Full derivations of these Lipschitz constants are provided in Appendix ??.

For a steep function f, the difficulty in generalization can be clearly seen in the presence of
Ly in (11). For the naive implicit form, particularly in problems like our toy example where A
defines that stiffness, this difficulty has been shifted to Lf\rjlemp) in (12). This corresponds to a poorly
conditioned %, whose inverse appears in (6). The violation implicit approach, on the other hand,
can avoid this problem because g can act as a regularizing term on h: the second partial derivative
of ||y — g||* + % with respect to A can be much better conditioned than that of % on its own, allowing
Lf\\tlgmp) to be small even when Lf\%mp ) is not. Here we remember the role of the hyperparameter e: at
large values, it relaxes the optimality criteria in (1b); at small values, the violation implicit approach
approximates the naive implicit and thus explicit approaches.

It is important to note that the primary advantage of the naive implicit form over the explicit form
can come from a difference in parameterizations. Parameters in the form of neural network weights
and biases, for example, are not shared across different approaches, so the Lipschitz constants and

thus generalization error bounds would differ for DNNs learning f versus g and h.

3.1. Generalization Bounds for Toy Problem

This difference, however, is not present in our toy problem, where the parameter 6 represents ground
height in all three approaches. This demonstrates the possible generalization error bound advantage
of the violation implicit approach over the alternatives. The required loss Lipschitz constants with
respect to the learned parameters are given by (11)-(13). Values for all of the Lipschitz constants
are provided in Table 1 in algebraic and numerical form, given the following parameter choices:
Pmax = 8 MELErs, Vmax = 15 M/s, agray = 9.81 m/s?, At = 0.005 seconds, m = 1 kilogram, and
Amax = M(Umax + gAt) = 15.05 Newton-seconds. Derivations of these quantities are provided in
Appendix ??. The max appears for some parameters due to specifying the h function as piece-wise
continuous over different domains to remove the embedded neg and pos functions.
Substituting these values into Equations (11)-(13), the loss Lipschitz constants are

1 m?
Lvimp,G = B mBnimp + )\max 1+ g ’ (14)
1
Lnimp,9 = 2BnimpKta (15)
1
Lexp,@ = ZBeprt- (16)

This reveals the scaling of the explicit (and naive implicit, which behave identically in terms of
generalization due to their equivalent parameterization) generalization bounds with Ait, an artifact
of discretizing the impact event. These Lipschitz constants can get arbitrarily large with small time
steps; an unfortunate characteristic since small time steps are preferred for simulation accuracy. In
contrast, the violation implicit approach avoids this poor scaling. Its generalization does depend
on At since the included A\,.x parameter in its expression is usually described as a function of
time. This is typically calculated as Amax = M(Umax + GgrayAt), Which we see Apax & MUmax
as At — 0. Thus, as At gets arbitrarily small, the generalization error for the violation implicit
approach does not grow unboundedly as it can for the explicit approach. Given these are upper
bounds, we can only guarantee the violation implicit approach has provably easy generalization
regardless of At. Such a guarantee cannot be made for the explicit and naive implicit approaches.
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Table 1: Lipschitz Constants in Toy LCP Model

Parameter Expression Numerical Value
1
Ly A 200
Lgx % 1
L. 0 0
L max { Pmax, Amax } 15.05
Lo max { Pmax; Amax } 15.05
By | mes {585 &) 200
AV m? 1

We note that increasing the hyperparameter € to tighten the violation implicit generalization
bounds comes at the expense of relaxing the physical feasibility of the solution. This means at
high e values, the optimization could select unrealistic contact impulses corresponding to contact
forces at a distance, penetration of the rigid mass with the ground, or contact forces that pull the
objects together instead of pull apart. We will discover however that this approximation error can
be bounded when an upper bound is placed on €, derived in the next section.

4. Graph Distance

We present in this section the mathematical foundation to relate the violation implicit loss in (4) to a
physically meaningful characteristic. Relating this loss to the concept of graph distance ensures that
our aims of minimizing generalization error and training loss are in the pursuit of a quality model.

4.1. Merits of Graph Distance and Prediction Losses

Consider an arbitrary predictive model of the form y = f?(z), defined either explicitly or implicitly.
The set of all input-output pairs predicted by this model is the graph of the function f?(z):

Go = { m Ly = f%)} - a7

If the noise component of a datapoint (z;, ;) is most likely to be small (e.g., when x; and y; have
Gaussian white noise), then a necessary condition for the datapoint to match the model y = ()
well is that there exists an input-output pair (Z;, 7;) ~ (x;, y;) in the graph of f?(x). Graph distance
is therefore a natural metric to capture model accuracy:
|: Tr — Iy :|
@) — i

Particularly, when applied to predictive models where z is a system state and y is the next state at a
following time step, it is often reasonable to believe there are similar noise distributions on the input
and output, and thus weight the difference in « and y equally in (18). By contrast, prediction losses
like the explicit loss and naive implicit loss only consider noise in the output:

18 o (@iyi) = llyi — f(@i)l® . (19)

ng (Z‘Z‘, yi) = dist <|:l’z:| ,GQ) = min

7

’. (18)
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Figure 2: Illustration of graph distance versus prediction error on a function with a stiff region. For the
annotated data point at left where the function is smooth, graph distance is similar to prediction error. In
contrast, the annotated data point at the stiff region demonstrates a drastic disparity between these metrics.

While graph distance is a less ubiquitous performance metric than prediction loss, it has a rich
history in statistical analysis through errors-in-variables modelling (Cifarelli, 1988), dating as far
back as Adcock’s 1878 method for linear regression (Adcock, 1878).

One potential reason graph distance-type losses are not more widely used is the complexity
introduced in the form of an optimization problem in the loss (18). For non-stiff systems, it is not
clear that this complexity is warranted; in fact, for f¢(z) with a small Lipschitz constant, prediction
and graph distance losses are equal up to a small constant (See Appendix ?? for a detailed proof):

> 19, (xi,y:)

Lemma 2 If f%(z) is Ly-Lipschitz in z, lgxp(a:i,yi) > da, (zi,yi)? > 1z
!

However, we find that stiff, implicit models offer a unique combination of properties that make
prediction loss a less suitable tool for analysis. First, as the implicit model already embeds an
optimization problem in prediction loss, it no longer has a significant computational advantage over
graph distance in many cases. Second, the stiffness of the model can induce a large discrepancy
between prediction loss and graph distance, which scales with the Lipschitz constant Ly of f o(x)
(Lemma 2). This can result in large prediction loss even when the model closely matches the data
(see Figure 2 for an illustrative example). Finally, we have seen in Section 3 that when Ly >> 1,
common analyses of prediction loss can fail to guarantee small generalization error, and thus cannot
provide a guarantee of low test set graph distance. We now show that the better-behaved violation
loss in fact can be used to tightly bound test set graph distance, even for such stiff cases.

4.2. Violation Loss as a Proxy for Graph Distance

Given that graph distance is a key metric of interest for a predictive model, and that the violation
implicit loss can be shown to generalize well, we now establish conditions under which low graph
distance can be guaranteed by low violation loss. For implicit models of the form in (1a)-(1b), the
graph Gy of the model is defined as

Gy = { B] SN e A, gO(a, ) =y AR (z,y, N) = 0} . (20)
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We will show that a relationship between the violation loss and graph distance can be established if

lfimp has a quadratic growth behavior as defined in Karimi et al. (2016) and reproduced below.

Definition 3 A function f(x) has u-Quadratic Growth (1-QG) if for all x,

dist <w, argrr%in f(afr))2 < i <f(x) - H%in f(f)) : (21)

For our purposes, we assume that lgimp(azi, y;) 18 p(€)-QG for some yu(€) > 0, noting that this value
depends on the e in the violation loss. This condition holds for instance when ¢? is affine in (x, \)
and h is strictly convex, but is not limited to such strict assumptions; we will see in Section 4.3 that
it holds on the toy example, despite the fact that A’ in this case is non-convex and non-smooth.

To construct an inequality between violation loss and graph distance, we first prove (See Ap-
pendix ??) the that the minimization of leimp(:ci, y;) is related to the model’s graph Gy:

Lemma 4 min lfimp(x, y) = 0, and arg min lfimp(;v, y) = Gy.
.y .y

Lemma 4 follows directly from the definition of the model’s graph Gy and does not rely on

any model assumptions beyond those in Section 3. However, under the assumption that leimp has
quadratic growth, this result can be extended to a comparison with graph distance:

0

) 2 l@
vimp

Theorem 5 Assumel me) W‘mp(xivyi)-

is 1(€)-OG. Then for any datapoint (x;,y;), dg, (z:,yi)* <

Proof This claim follows directly from Lemma 4, as we can substitute arg min, , lgimp(x, y) =Gy
and min, , lfimp(:p, y) = 0 directly into the definition of quadratic growth. [ |

Many of the properties that would allow for the violation loss optimization problem (4) to be solved,
such as strong convexity, quadratic error bound, Polyak-F.ojasiewicz, or Kurdyka-t.ojasiewicz, are
in fact equally or more strict that quadratic growth (Karimi et al., 2016). Thus while an additional
assumption is required, Theorem 5 often holds when the violation loss is computationally tractable.

The inequality provided in Theorem 5 is particularly useful because it separates squared graph
distance and violation loss by a constant factor uniformly over any possible data point. This inequal-
ity therefore is preserved under expectation, such that

2
E[:{:; y|~D [dGe (x7y)2] < mE[CE, y|~D [leimp(xay)} .

Given that Section 3 guarantees lfimp generalizes well for large €, guaranteeing low test-set graph

distance therefore reduces to showing that lyimp is 11(€)-QG with both € and 1i(¢) sufficiently large.

4.3. Graph Distance Property for Toy Problem

With derivations in Appendix ??, leimp is 1-QG if we select € < min (%, %2) While this choice
is not required, the feasible bounds for p are (0, 2), with O corresponding to infinite € and 2 corre-
sponding to ¢ = 0. Our work provides the understanding that ¢ — oo means the violation implicit
approach ignores optimality constraints and thus loses its relationship to graph distance, while € = 0
converts the formulation to the naive implicit approach, which loses tight generalization guarantees.
Selecting ¢+ = 1 balances these two important characteristics, and thus can inform a selection of e.
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Figure 3: Generalization error bounds as a function of dataset size for the 3 approaches (left) and as a function
of failure probability for the violation implicit approach (right) applied to the 1-D toy problem. The € value
is chosen via analysis relating the violation loss to graph distance: € = min(i7 %) which is i for the values
in the toy problem. The explicit and naive implicit approaches have identical bounds which require over two
orders of magnitude more data to achieve the violation implicit approach’s generalization error guarantees.

With € = min (i, %2) and m = 1 kilogram for the specifics of the toy problem, we select

€= i to balance the violation implicit approach’s ability to generalize and its physical meaning as
a loss. The loss landscapes and bounds depicted in Figures 1 and 3, respectively, feature this value
of ¢; Figure 3 in particular still shows that the generalization of the violation implicit approach can
be drastically better than the other approaches at this choice of .

5. Conclusion

We introduced and motivated three different approaches for learning a model: explicit, naive im-
plicit, and violation implicit. We demonstrated benefits of the violation implicit approach in terms of
its ability to generalize more reliably and its close relationship to graph distance, a metric that better
suits functions with uncertainty in both outputs and inputs. Together, these two benefits motivate
a theoretically-grounded value for the violation implicit approach’s hyperparameter, €, balancing
better generalization with tighter relationship to graph distance. Our inelastic contact toy problem
demonstrates this choice of e results in significant generalization error bound improvements over
either alternative approach as well as twice its loss upper bounds graph distance squared.

This paper focused on generalization error bounds, but Figure 1 also illustrates that the opti-
mization landscape of a violation implicit loss itself is improved from that of a prediction loss.
We have observed this benefit empirically from our work on contact learning (Parmar et al., 2021;
Pfrommer* et al., 2020). Given typical properties associated with ease of learnability like convexity
(Boyd et al., 2004) or smoothness (Karimi et al., 2016) are not commonly met by formulations of
interest (including our toy problem), we seek a more general explanation in our future work.
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