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Abstract

In this paper, we study the statistical di�culty of learning to control linear systems. We
focus on two standard benchmarks, the sample complexity of stabilization, and the regret
of the online learning of the Linear Quadratic Regulator (LQR). Prior results state that
the statistical di�culty for both benchmarks scales polynomially with the system state
dimension up to system-theoretic quantities. However, this does not reveal the whole picture.
By utilizing minimax lower bounds for both benchmarks, we prove that there exist non-
trivial classes of systems for which learning complexity scales dramatically, i.e. exponentially,
with the system dimension. This situation arises in the case of underactuated systems, i.e.
systems with fewer inputs than states. Such systems are structurally di�cult to control
and their system theoretic quantities can scale exponentially with the system dimension
dominating learning complexity. Under some additional structural assumptions (bounding
systems away from uncontrollability), we provide qualitatively matching upper bounds. We
prove that learning complexity can be at most exponential with the controllability index of
the system, that is the degree of underactuation.

1. Introduction

In stochastic linear control, the goal is to design a controller for a system of the form

S : xk+1 = Axk +Buk +Hwk, (1)

where xk 2 Rn is the system internal state, uk 2 Rp is some exogenous input, and wk 2 Rr is
some random disturbance sequence. Matrices A, B, H determine the evolution of the state,
based on the previous state, control input, and disturbance respectively. Control theory
has a long history of studying how to design controllers for system (1) when its model is
known (Bertsekas, 2017). However, in reality system (1) might be unknown and we might
not have access to its model. In this case, we have to learn how to control (1) based on data.

Controlling unknown dynamical systems has also been studied from the perspective
of Reinforcement Learning (RL). Although the setting of tabular RL is relatively well-
understood (Jaksch et al., 2010), it has been challenging to analyze the continuous setting,
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where the state and/or action spaces are infinite (Ortner and Ryabko, 2012; Kakade et al.,
2020). Recently, there has been renewed interest in learning to control linear systems. Indeed,
linear systems are simple enough to allow for an in-depth theoretical analysis, yet exhibit
su�ciently rich behavior so that we can draw conclusions about continuous control of more
general system classes (Recht, 2019). In this paper we focus on the following two problems.

Regret of online LQR. A fundamental benchmark for continuous control is the
Linear Quadratic Regulator (LQR) problem, where the goal is to compute a policy 1 ⇡ that
minimizes

J⇤(S) , min
⇡

lim
T!1

1

T
ES,⇡

"
T�1X

t=0

(x0tQxt + u0tRut) + x0TQTxT

#
, (2)

where Q 2 Rn⇥n, R 2 Rp⇥p are the state and input penalties respectively; these penalties
control the tradeo↵ between state regulation and control e↵ort. When model (1) is known,
LQR enjoys a closed-form solution; the optimal policy is a linear feedback law ⇡?,t(xt) = K?xt,
where the control gain K? is given by solving the celebrated Algebraic Riccati Equation
(ARE) (7). If model (1) is unknown, we have to learn the optimal policy from data. In the
online learning setting, the goal of the learner is to find a policy that adapts online and
competes with the optimal LQR policy that has access to the true model. The suboptimality
of the online learning policy at time T is captured by the regret

RT (S) ,
T�1X

t=0

(x0tQxt + u0tRut) + x0TQTxT � TJ⇤(S). (3)

The learning task is to find a policy with as small regret as possible.
Sample Complexity of Stabilization Another important benchmark is the problem

of stabilization from data. The goal is to learn a linear gain K 2 Rm⇥n such that the
closed-loop system A+BK is stable, i.e., such that its spectral radius ⇢(A+BK) is less
than one. Many algorithms for online LQR require the existence of such a stabilizing gain
to initialize the online learning policy (Simchowitz and Foster, 2020; Jedra and Proutiere,
2021). Furthermore, stabilization is a problem of independent interest (Faradonbeh et al.,
2018b). In this setting, the learner designs an exploration policy ⇡ and an algorithm that
uses batch state-input data x0, . . . , xN , u0, . . . , uN�1 to output a control gain K̂N , at the
end of the exploration phase. Here we focus on sample complexity, i.e., the minimum number
of samples N required to find a stabilizing gain.

Since the seminal papers by Abbasi-Yadkori and Szepesvári (2011) and Dean et al.
(2017) both LQR and stabilization have been studied extensively in the literature – see
Section 1.1. Current state-of-the-art results state that the regret of online LQR and the
sample complexity of stabilization scale at most polynomially with system dimension n

RT (S) . Csys
1 poly(n)

p

T , N . Csys
2 poly(n), (4)

where Csys
1 , Csys

2 are system specific constants that depend on several control theoretic
quantities of system (1). However, the above statements might not reveal the whole picture.

In fact, system theoretic parameters Csys
1 , Csys

2 can actually hide dimensional dependence
on n. This dependence has been overlooked in prior work. As we show in this paper,

1. A policy decides the current control input ut based on past state-input values–see Section 2 for details.
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there exist non-trivial classes of linear systems for which system theoretic parameters scale
dramatically, i.e. exponentially, with the dimension n. As a result, the system theoretic
quantities Csys

1 , Csys
2 might be very large and in fact dominate the poly(n) term in the upper

bounds (4). This phenomenon especially arises in systems which are structurally di�cult to
control, such as for example underactuated systems. Then, the upper bounds (4) suggest
that learning might be di�cult for such instances. This brings up the following questions.
Can learning LQR or stabilizing controllers indeed be hard for such systems? How does
system structure a↵ect di�culty of learning?

To answer the first question, we need to establish lower bounds. As we discuss in
Section 1.1, existing lower bounds for online LQR (Simchowitz and Foster, 2020) might not
always reveal the dependence on control theoretic parameters. Chen and Hazan (2021) pro-
vided exponential lower bounds for the start-up regret of stabilization. Still, to the best of
our knowledge, there are no existing lower bounds for the sample complexity of stabiliza-
tion. Recently, it was shown that the sample complexity of system identification can grow
exponentially with the dimension n (Tsiamis and Pappas, 2021). However, it is not clear if
di�culty of identification translates into di�culty of control. Besides, we do not always need
to identify the whole system in order to control it (Gevers, 2005). To answer the second
question, we need to provide upper bounds for several control theoretic parameters. Our
contributions are the following:

Exp(n) Stabilization Lower Bounds. We prove an information-theoretic lower bound
for the problem of learning stabilizing controllers, showing that it can indeed be statistically
hard for underactuated systems. In particular, we show that the sample complexity of
stabilizing an unknown underactuated linear system can scale exponentially with the state
dimension n. To the best of our knowledge this is the first paper to address this issue and
consider lower bounds in this setting.

Exp(n) LQR Regret Lower Bounds. We show that the regret of online LQR can
scale exponentially with the dimension as exp(n)

p
T . In fact, even common integrator-like

systems can exhibit this behavior. To prove our result, we leverage recent regret lower
bounds (Ziemann and Sandberg, 2022), which provide a refined analysis linking regret to
system theoretic parameters. Chen and Hazan (2021) first showed that the start-up cost
of the regret (terms of low order) can scale exponentially with n. Here, we show that this
exponential dependence can also a↵ect multiplicatively the dominant

p
T term.

Exponential Upper Bounds. Under some additional structural assumptions (bounding
systems away from uncontrollability), we provide matching global upper bounds. We show
that the sample complexity of stabilization and the regret of online LQR can be at most
exponential with the dimension n. In fact, we prove a stronger result, that they can be at
most exponential with the controllability index of the system, which captures the structural
di�culty of control – see Section 3. This implies that if the controllability index is small
with respect to the dimension n, then learning is guaranteed to be easy.

1.1. Related Work

System Identification. A related problem is that of system identification, where the
learning objective is to recover the model parameters A,B,H from data (Matni and Tu,
2019). The sample complexity of system identification was studied extensively in the setting
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of fully observed linear systems (Dean et al., 2017; Simchowitz et al., 2018; Faradonbeh et al.,
2018a; Sarkar and Rakhlin, 2018; Fattahi et al., 2019; Jedra and Proutiere, 2019; Wagenmaker
and Jamieson, 2020; Efroni et al., 2021) as well as partially-observed systems (Oymak and
Ozay, 2018; Sarkar et al., 2019; Simchowitz et al., 2019; Tsiamis and Pappas, 2019; Lee
and Lamperski, 2019; Zheng and Li, 2020; Lee, 2020; Lale et al., 2020b). Recently, it was
shown that the sample complexity of system identification can grow exponentially with the
dimension n (Tsiamis and Pappas, 2021).

Learning Feedback Laws. The problem of learning stabilizing feedback laws from data
was studied before in the case of stochastic (Dean et al., 2017; Tu et al., 2017; Faradonbeh
et al., 2018b; Mania et al., 2019) as well as adversarial (Chen and Hazan, 2021) disturbances.
The standard paradigm has been to perform system identification, followed by a robust
control or certainty equivalent gain design. Prior work is limited to sample complexity upper
bounds. To the best of our knowledge, there have been no sample complexity lower bounds.

Online LQR. While adaptive control in the LQR framework has a rich history (Matni
et al., 2019), the recent line of work on regret minimization in online LQR begins with
Abbasi-Yadkori and Szepesvári (2011). They provide a computationally intractable algorithm
based on optimism attaining O(

p
T ) regret. Algorithms based on optimism have since been

improved and made more tractable (Ouyang et al., 2017; Abeille and Lazaric, 2018; Abbasi-
Yadkori et al., 2019; Cohen et al., 2019; Abeille and Lazaric, 2020). In a closely related line of
work, Dean et al. (2018) provide an O(T 2/3) regret bound for robust adaptive LQR control,
drawing inspiration from classical methods in system identification and robust adaptive
control. It has since been shown that certainty equivalent control, without robustness, can
attain the (locally) minimax optimal O(

p
T ) regret (Mania et al., 2019; Faradonbeh et al.,

2020; Lale et al., 2020a; Jedra and Proutiere, 2021). In particular, by providing nearly
matching upper and lower bounds, Simchowitz and Foster (2020) refine this analysis and
establish that the optimal rate, without taking system theoretic quantities into account, is
RT = ⇥(

p
p2nT ). In this work, we rely on the lower bounds by Ziemann and Sandberg

(2022), which provide a refined instance specific analysis and also lower bounds for the
partially observed setting. Here, we further refine their lower bounds to reveal a sharper
dependence of the regret on control theoretic parameters. Hence, we how that certain non-
local minimax complexities can be far worse than RT = ⌦(

p
p2nT ) and scale exponentially

in the problem dimension. Indeed, an exponential start-up cost has already been observed
by Chen and Hazan (2021), in the case of adversarial disturbances. Here we show that this
exponential dependency can persist multiplicatively even for large T , in the case of stochastic
disturbances. Thus, our results complement the results of Chen and Hazan (2021).

1.2. Notation

The transpose of X is denoted by X 0. For vectors v 2 Rd, kvk2 denotes the `2-norm. For
matrices X 2 Rd1⇥d2 , the spectral norm is denoted by kXk2. For comparison with respect to
the positive semi-definite cone we will use ⌫ or � for strict inequality. By P we will denote
probability measures and by E expectation. By poly(·) we denote a polynomial function of
its arguments. By exp(·) we denote a exponential function of its arguments.
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2. Problem Statement

System (1) is characterized by the matrices A 2 Rn⇥n, B 2 Rn⇥p, H 2 Rn⇥r. We assume
that wk ⇠ N (0, Ir) is i.i.d. Gaussian with unit covariance. Without loss of generality the
initial state is assumed to be zero x0 = 0. In a departure from prior work, we do not
necessarily assume that the noise is isotropic. Instead, we consider a more general model,
where the noise Hwk is allowed to be degenerate–see also Remark 6.

Assumption 1 Matrices A,B,H and the noise dimension r  n are all unknown. The
unknown matrices are bounded, i.e. kAk2, kBk2, kHk2  M , for some positive constant
M � 1. Matrices B,H have full column rank rank(B) = p  n, rank(H) = r  n. We also
assume that the system is non-explosive ⇢(A)  1.

The boundedness assumption on the state parameters allows us to argue about global sample
complexity upper bounds. To simplify the presentation, we make the assumption that the
system is non-explosive ⇢(A)  1. This setting includes marginally stable systems and is
rich enough to provide insights about the di�culty of learning more general systems.

A policy is a sequence of functions ⇡ = {⇡t}
N�1
t=0 . Every function ⇡t maps pre-

vious state-input values x0, . . . , xt, u0, . . . , ut�1 and potentially an auxiliary randomiza-
tion signal AUX to the new input ut. Hence all inputs ut are Ft-measurable, where
Ft , �(x0, . . . , xt, u0, . . . , ut�1,AUX). For brevity we will use the symbol S to denote a
system S = (A,B,H). Let PS,⇡ (ES,⇡(·)) denote the probability distribution (expectation)
of the input-state data when the true system is equal to S and we apply a policy ⇡.

2.1. Di�culty of Stabilization

In the stabilization problem, the goal is to find a state-feedback control law u = Kx, where
K renders the closed-loop system A + BK stable with spectral radius less than one, i.e.,
⇢(A+BK) < 1. We assume that we collect data x0, . . . , xN , u0, . . . , uN , which are generated
by system (1) using any exploration policy ⇡, e.g. white-noise excitation, active learning
etc. Since we care only about sample complexity, the policy is allowed to be maximally
exploratory. To make the problem meaningful, we restrict the average control energy.

Assumption 2 The control energy is bounded ES,⇡kutk22  �2
u, for some �u > 0.

Next, we define a notion of learning di�culty for classes of linear systems. By Cn we will
denote a class of systems with dimension n. We will define as easy, classes of linear system
that exhibit poly(n) sample complexity.

Definition 1 (Poly(n)-stabilizable classes) Let Cn be a class of systems. Let K̂N be a
function that maps input-state data (u0, x1), . . . ,(uN�1, xN ) to a control gain. We call the
class Cn poly(n)�stabilizable if there exists an algorithm K̂N and an exploration policy ⇡
satisfying Assumption 2, such that for any confidence 0  � < 1:

sup
S2Cn

PS,⇡

⇣
⇢(A+BK̂N ) � 1

⌘
 �, if N�2

u � poly(n, log 1/�,M). (5)
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Our definition requires both the number of samples and the input energy to be polynomial
with the arguments. The above class-specific definition can be turned into a local, instance-
specific, definition of sample complexity by considering a neighborhood around an unknown
system. The question then arises whether linear systems are generally poly(n)-stabilizable.

Problem 1 Are there linear system classes which are not poly(n)-stabilizable? When can
we guarantee poly(n)-stabilizability?

2.2. Di�culty of Online LQR

Consider the LQR objective (2). Let the state penalty matrix Q 2 Rn⇥n
� 0 be positive

definite, with the input penalty matrix R 2 Rp⇥p also positive definite. When the model is
known, the optimal policy is a linear feedback law ⇡? = {K?xk}

T�1
k=0 , where K? is given by

K? = �(B0PB +R)�1B0PA, (6)

and P is the unique positive definite solution to the Algebraic Riccati Equation (ARE)

P = A0PA+Q�A0PB(B0PB +R)�1B0PA. (7)

Throughout the paper, we will assume that QT = P . If the model of (1) is unknown, the
goal of the learner is to find an online learning policy ⇡ that leads to minimum regret RT (S).
In the setting of online LQR, the data are revealed sequentially, i.e. xt+1 is revealed after we
select ut. Contrary to the stabilization problem, here we study regret, i.e. there is a trado↵
between exploration and exploitation. We will define a class-specific notion of learning
di�culty based on the ratio between the regret and

p
T .

Definition 2 (Poly(n)-Regret) Let Cn be a class of systems of dimension n. We say that
the class Cn exhibits poly(n) minimax expected regret if

min
⇡

sup
S2Cn

ES,⇡RT (S)  poly(n,M, log T )
p

T + Õ(1), (8)

where Õ(1) hides poly log T terms.

Our definition here is based on expected regret, but we could have a similar definition based
on high probability regret guarantees – see Dann et al. (2017) for distinctions between the
two definitions. Similar to the stabilization problem, we pose the following questions.

Problem 2 Are there classes of systems for which poly(n)-regret is impossible? When is
poly(n)-regret guaranteed?

3. Classes with Rich Controllability Structure

Before we present our learning guarantees, we need to find classes of systems, where learning
is meaningful. To make sure that the stabilization and the LQR problems are well-defined,
we assume that system (1) is controllable2.

2. We can slightly relax the condition to (A,B) stabilizable (Lale et al., 2020a; Simchowitz and Foster, 2020;
Efroni et al., 2021). To avoid technicalities we leave that for future work.
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Assumption 3 System (1) is (A,B) controllable, i.e. matrix

Ck(A,B) ,
⇥
B AB · · · Ak�1B

⇤
(9)

has full column rank rank(Ck(A,B)) = n, for some k  n.

Unsurprisingly, the class of all controllable systems does not exhibit finite sample complex-
ity/regret, let alone polynomial sample complexity/regret. The main issue is that there exist
systems which satisfy the rank condition but are arbitrarily close to uncontrollability. For
example, consider the following controllable system, which we want to stabilize

xk+1 =


1 ↵
0 0

�
xk +


0
1

�
uk + wk.

The only way to stabilize the system is indirectly by using the second state xk,2, via the
coupling coe�cient ↵. However, we need to know the sign of ↵. If ↵ is allowed to be arbitrarily
small, i.e. the system is arbitrarily close to uncontrollability, then an arbitrarily large number
of samples is required to learn the sign of ↵, leading to infinite complexity. To obtain classes
with finite sample complexity/regret we need to bound the system instances away from
uncontrollability. One way is to consider the least singular value of the controllability
Gramian �k(A,B) at time k:

�k(A,B) ,
k�1X

t=0

AtBB0(A0)t. (10)

An implicit assumption in prior literature is that ��1
min(�k(A,B))  poly(n). We will not

assume this here, since it might exclude many systems of interest, such as integrator-like
systems, also known as underactuated systems, or networks (Pasqualetti et al., 2014). Instead,
we will relax this requirement to allow richer system structures.

To avoid pathologies, we will lower bound the coupling between states in the case of
indirectly controlled systems. To formalize this idea, let us review some notions from system
theory. The controllability index is defined as follows

(A,B) , min {k � 1 : rank(Ck(A,B)) = n} , (11)

i.e., it is the minimum time such that the controllability rank condition is satisfied. It
captures the degree of underactuation and reflects the structural di�culty of control.

Based on the fact that the rank of the controllability matrix at time  is n, we can show
that the pair (A,B) admits the following canonical representation, under a unitary similarity
transformation (Dooren, 2003). It is called the Staircase or Hessenberg form of system (1).

Proposition 3 (Staircase form) Consider a controllable pair (A,B) with controllability
index  and controllability matrix Ck, k � 0. There exists a unitary similarity transformation
U 2 Rn⇥n such that U 0U = UU 0 = I and:

U 0B =

2

66666664

B1

0
0
0
...
0

3

77777775

, U 0AU =

2

66666664

A1,1 A1,2 · · · A1,�1 A1,

A2,1 A2,2 · · · A3,�1 A2,

0 A3,2 · · · A3,�1 A3,

0 0 · · · A4,�1 A4,
...

...
0 0 · · · A,�1 A,

3

77777775

, (12)
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where Ai,j 2 Rpi⇥pj are block matrices, with pi = rank(Ci)� rank(Ci�1), p1 = p, B1 2 Rp⇥p.
Matrices Ai+1,i have full row rank rank(Ai+1,i) = pi+1 and the sequence pi is decreasing.

Matrix U is the orthonormal matrix of the QR decomposition of the first n independent
columns of C(A,B). It is unique up to sign flips of its columns. The above representation
captures the coupling between the several sub-states via the matrices Ai+1,i. It has been
used before as a test of controllability Dooren (2003). This motivates the following definition,
wherein we bound the coupling matrices Ai+1,i away from zero.

Definition 4 (Robustly coupled systems) Consider a controllable system (A,B) with
controllability index . It is called µ�robustly coupled if and only if for some positive µ > 0:

�p(B1) � µ, �pi+1(Ai+1,i) � µ, for all 1  i  � 1, (13)

where B1, Ai+1,i are defined as in the Staircase form (12).

In the previous example, by introducing the µ�robust coupling requirement, we enforce a
lower bound on the coupling coe�cient ↵ � µ, thus, avoiding pathological systems.

In the following sections, we connect the controllability index to the hardness/ease
of control. We prove rigorously why performance might degrade as the index becomes
 = O(n), as, e.g., in the case of integrator-like systems or networks. This cannot be
explained based on prior work or based on global lower-bounds on the least singular value of
the controllability Gramian. The controllability index and the controllability Gramian are
two di↵erent measures that are suitable for di↵erent types of guarantees. The controllability
index captures the structural di�culty of control, so it might be more suitable for class-specific
guarantees versus instance-specific local guarantees.

4. Di�culty of Stabilization

In this section, we show that there exist non-trivial classes of linear systems for which the
problem of stabilization from data is hard. In fact, the class of robustly coupled systems
requires at least an exponential, in the state dimension n, number of samples.

Theorem 5 (Stabilization can be Hard) Consider the class C µ
n, of all µ-robustly cou-

pled systems S = (A,B,H) of dimension n and controllability index . Let Assumption 2
hold and let µ < 1. Then, for any stabilization algorithm, the sample complexity is exponential
in the index . For any confidence 0  � < 1/2 the requirement

sup
S2C µ

n,

PS,⇡

⇣
⇢(A+BK̂N ) � 1

⌘
 �

is satisfied only if

N�2
u �

1

2

✓
1

µ

◆2�2✓1� µ

µ

◆2

log
1

3�
.

Theorem 5 implies that system classes with large controllability index, e.g.  = n, su↵er in
general from sample complexity which is exponential with the dimension n. In other words,
learning di�culty arises in the case of under-actuated systems. Only a limited number of

8
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system states are directly driven by inputs and the remaining states are only indirectly
excited, leading to a hard learning and stabilization problem. Consider now systems

Si : xk+1 =

2

666664

1 ↵iµ 0 · · · 0
0 0 µ · · · 0

. . .
. . .

0 0 0 · · · µ
0 0 0 · · · 0

3

777775
xk +

2

666664

0
0
...
0
µ

3

777775
uk +

2

666664

1
0
...
0
0

3

777775
wk, i 2 {1, 2} , (14)

where 0 < µ < 1, ↵1 = 1, ↵2 = �1. Systems S1, S2 are almost identical with the exception of
element A12 where they have di↵erent signs. Both systems have one marginally stable mode
corresponding to state xk,1. The only way to stabilize xk,1 with state feedback is indirectly,
via xk,2. Given system S1, since ↵1µ > 0, it is necessary that the first component of the gain

is negative K̂N,1 < 0. This follows from the Jury stability criterion, a standard stability test

in control theory (Fadali and Visioli, 2013, Ch. 4.5). Let �1(z) = det(zI �A1 �BK̂N ) be
the characteristic polynomial of system S1. Then one of the necessary conditions in Jury’s
criterion requires:

�1(1) > 0,

which can only be satisfied if K̂N,1 < 0 (see Appendix C for details). On the other hand, we

can only stabilize S2 if K̂N,1 > 0. Hence, the only way to stabilize the system is to identify the
sign of ↵i. In other words, we transform the stabilization problem into a system identification
problem. However, identification of the correct sign is very hard since the excitation of
xk,2 = µn�1uk�n+1 scales with µn�1. The proof relies on Birgé’s inequality (Boucheron et al.,
2013). In Section C we construct a slightly more general example with non-zero diagonal
elements. Our construction relies on the fact that µ < 1. It is an open question whether we
can construct hard learning instances for µ � 1.

One insight that we obtain from the above example is that lack of excitation might lead
to large sample complexity of stabilization. In particular, this can happen when we have an
unstable/marginally stable mode, which can only be controlled via the system identification
bottleneck, like A1,2 in the above example.

Remark 6 (Singular noise) Our stabilization lower bound exploits the fact that the
constructed system (14) has low-rank noise, such that system identification is hard. It is an
open problem whether we can construct examples of systems that are not poly(n)�stabilizable
even though they are excited by full-rank noise. Nonetheless, in our regret lower bounds, we
allow the noise to be full-rank.

4.1. Sample complexity upper bounds

As we show below, sample complexity cannot be worse than exponential under the assumption
of robust coupling. If the exploration policy is a white noise input sequence, then using a
least squares identification algorithm (Simchowitz et al., 2018), and a robust control design
scheme (Dean et al., 2017), the sample complexity can be upper bounded by a function
which is at most exponential with the dimension n. In fact, we provide a more refined
result, directly linking sample complexity to the controllability index . Our proof relies

9
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on bounding control theoretic quantities like the least singular value of the controllablility
Gramian. The details of the proof and the algorithm can be found in Section D.

Theorem 7 (Exponential Upper Bounds) Consider the class C µ
n, of all µ-robustly

coupled systems S = (A,B,H) of dimension n and controllability index . Let Assumption 2
hold. Then, the sample complexity is at most exponential with . There exists an exploration
policy ⇡ and algorithm K̂N such that for any � < 1:

sup
S2C µ

n,

PS,⇡

⇣
⇢(A+BK̂N ) � 1

⌘
 �, if N�2

u � poly

✓⇣M
µ

⌘
,M, n, log 1/�

◆
.

Assume that the constants µ and M are dimensionless. Then, our upper and lower bounds
match qualitatively with respect to the dependence on . Theorem 7 implies that if the
degree of underactuation is mild, i.e.  = O(log n), then robustly coupled systems are
guaranteed to be poly(n)-stabilizable. Our upper bound picks up a dependence on the
quantity M/µ. Recall that M upper-bounds the norm of A. Hence, it captures a notion
of sensitivity of the dynamics A to inputs/noise. In the lower bounds only the coupling
term µ appears. It is an open question to prove or disprove whether the sensitivity of A
a↵ects stabilization or it is an artifact of our analysis. Another important open problem
is to determine the optimal constant that multiplies  in the exponent. Our lower bound
suggests that the exponent can be at least of the order of 2 times . In our upper bounds,
by following the proof, we get an exponent which is larger than 2.

5. Di�culty of online LQR

In the following theorem, we prove that classes of robustly coupled systems can exhibit
minimax expected regret which grows at least exponentially with the dimension n. Let
C µ
n, denote the class of µ-robustly coupled systems S = (A,B,H) of state dimension n and

controllability index . Define the ✏-dilation C µ
n,(✏) of C µ

n, as

C µ
n,(✏) ,

n
(A,B,H) : k

⇥
A� Ã B � B̃

⇤
k2  ✏, for some (Ã, B̃,H) 2 C µ

n,

o
,

which consists of every system in C µ
n, along with its ✏�ball around it.

Theorem 8 (Exponential Regret Lower Bounds) Consider the class C µ
n, of all µ-

robustly coupled systems S = (A,B,H) of state dimension n and controllability index , with
  n� 1. For every ✏ > 0 define the ✏-dilation C µ

n,(✏). Let QT = P , the solution to the
ARE (7), and assume µ < 1. Let 0 < ↵ < 1/4. For any policy ⇡

lim inf
T!1

sup
S2C µ

n,(T�↵)
ES,⇡

RT (S)
p
T

�
1

4
p
n
2

�1
2 .

When the controllability index is large, e.g.  = n, then the lower bounds become exponential
with n. Hence, achieving poly(n)-regret is impossible in the case of general linear systems.
In general, learning di�culty depends on fundamental control theoretic parameters, i.e. on
the solution P to the ARE (7) or the steady-state covariance of the closed-loop system, both
of which can scale exponentially with the controllability index. Existing regret upper-bounds

10
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depend on such quantities in a transparent way Simchowitz and Foster (2020). Here, we
reveal the dependence on such parameters in the regret lower-bounds as well (Lemma 9).

Let us now explain when learning can be di�cult. Consider the following 1�strongly
coupled system, which consists of two independent subsystems

A =

2

666664

0 0 0 0 0
0 1 1 0 0

. . .

0 0 0 1 1
0 0 0 0 1

3

777775
, B =

2

6664

1 0
0 0
...
0 1

3

7775
uk, H = In, Q = In, R = I2, (15)

where the first subsystem is a memoryless system, while the second one is the discrete
integrator of order n� 1. Since the sub-systems are decoupled, the optimal LQR controller
will also be decoupled and structured

K? =


0 0
0 K?,0

�
,

where K?,0 is the optimal gain of the second subsystem. The first subsystem (upper-left) is
memoryless and does not require any regulation, that is, [K?]11 = 0.

Consider now a perturbed system Ã = A � �K?, B̃ = B + �, for some � 2 Rp⇥n.
Such perturbations are responsible for the

p
T term in the regret of LQR (Simchowitz and

Foster, 2020; Ziemann and Sandberg, 2022); systems (A,B) and (Ã, B̃) are indistinguishable
under the control law ut = K?xt since A + BK? = Ã + B̃K?. Now, informally, to get an
exp(n)

p
T regret bound it is su�cient to satisfy two conditions: i) the system is sensitive to

inputs or noise, in the sense that any exploratory signal can incur extra cost, which grows
exponentially with n. ii) the di↵erence Ã�A, B̃ �B is small enough, i.e. polynomial in n,
so that identification of � requires significant deviation from the optimal policy.

The n� 1-th integrator is very sensitive to inputs or noises. As inputs uk,2 and noises wk

get integrated (n� 1)-times, this will result in accumulated values that grow exponentially
as we move up the integrator chain. Hence, the first informal condition is satisfied. To
satisfy the second condition we let the perturbation � have the following structure

� =


0 0
�1 0

�
, (16)

where we only perturb the matrix of the first input uk,1. By using two subsystems and the
above construction, we make it harder to detect �. In particular, because of the structure
of the system ([K?]11 = 0) and the perturbation �, we have Ã = A ��K? = A. Hence
k
⇥
A B

⇤
�
⇥
Ã B̃

⇤
k2 = k�k2  poly(n)k�k2, i.e., the perturbed system does not lie too

far away from the nominal one. This last condition might be crucial. If k�K?k � exp(n)k�k2,
then it might be possible to distinguish between (A,B) and (Ã, B̃) without deviating too
much from the optimal policy. This may happen if we use only one subsystem, since kK?,0k2

might be large. By using two subsystems, we cancel the e↵ect of K?,0 in �K?.
In the stabilization problem, we show that the lack of excitation during the system

identification stage might hurt sample complexity. Here, we show that if a system is too
sensitive to inputs and noises, i.e. some state subspaces are too easy to excite, this can lead
to large regret. Both lack of excitation and too much excitation of certain subspaces can
hurt learning performance. This was observed before in control (Skogestad et al., 1988).

11
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5.1. Sketch of Lower Bound Proof

Let S0 = (A0, B0, In�1) 2 C µ
n�1, be a µ�robustly coupled system of state dimension n� 1,

input dimension p � 1 and controllability index   n � 1. Let P0 be the solution of the
Riccati equation for Q0 = In�1, R0 = Ip�1, with K?,0 the corresponding optimal gain. Define
the steady-state covariance of the closed-loop system

⌃0,x = (A0 +B0K?,0)⌃0,x(A0 +B0K?,0)
0 + In�1. (17)

Now, consider the composite system:

A =


0 0
0 A0

�
, B =


1 0
0 B0

�
, H = In, (18)

with Q = In, R = Ip. Let � be structured as in (16), for some arbitrary �1 of unit
norm k�1k2 = 1. The Riccati matrix of the composite system is denoted by P and the
corresponding gain by K?. Consider the parameterization:

A(✓) = A� ✓�K?, B(✓) = B + ✓�, (19)

for any ✓ 2 R. Let B(✓, ✏) denote the open Euclidean ball of radius ✏ around ✓. For every
✏ > 0, define the local class of systems around S as CS(✏) , {(A(✓), B(✓), In), ✓ 2 B(0, ✏)}.
Based on the above construction and Theorem 1 of Ziemann and Sandberg (2022), a general
information-theoretic regret lower bound, we prove the following lemma.

Lemma 9 (Two-Subsystems Lower Bound) Consider the parameterized family of lin-
ear systems defined in (19), for n, p � 2 where � is structured as in (16). Let Q = In,
R = Ip. Let QT = P (✓), where P (✓) is the solution to the Riccati equation for (A(✓), B(✓)).
Then, for any policy ⇡ and any 0 < a < 1/4 the expected regret is lower bounded by

lim inf
T!1

sup
Ŝ2CS(T�a)

EŜ,⇡

RT (Ŝ)
p
T

�
1

4
p
n

q
�0

1P0 [⌃0,x � In�1]P0�1.

Optimizing over �1, we obtain a lower bound on the order of kP0 [⌃0,x � In�1]P0k2. What
remains to show is that for the (n� 1)-th order integrator (second subsystem in (15)) the
product kP0 [⌃0,x � In�1]P0k2 is exponentially large with n.

Lemma 10 (System Theoretic Parameters can be Large) Consider the (n�1)�th
order integrator (second subsystem in (15)). Let P0 be the Riccati matrix for Q0 = In�1, R0 =
1, with K?,0, ⌃0,x the corresponding LQR control gain and steady-state covariance. Then

kP0 [⌃0,x � In�1]P0k2 �

n�1X

j=1

jX

i=0

✓
j

i

◆2

� 2n�1

Our lemma shows that control theoretic parameters can scale exponentially with the dimen-
sion n. The (n� 1)�th order integrator is a system which is mildly unstable. In Section E.4,
we show that stable systems can also su↵er from the same issue.

12
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5.2. Regret Upper Bounds

Similar to the stabilization problem, we show that under the assumption of robust coupling,
the regret cannot be worse than exp()

p
T with high probability. As we prove in Lemma B.2,

the solution P to the Riccati equation has norm kPk2 that scales at most exponentially
with the index  in the case of robustly-coupled systems. This result combined with the
regret upper bounds of Simchowitz and Foster (2020), give us the following result.

Theorem 11 (Exponential Upper Bounds) Consider a µ-robustly coupled system S =
(A,B,H) of dimension n, controllability index . Assume that we are given an initial
stabilizing gain K0. Let Q = In, R ⌫ Ip, and QT = 0. Assume that the noise is non-singular
HH 0 = In3. Let � 2 (0, 1/T ). Using the Algorithm 1 of Simchowitz and Foster (2020) with
probability at least 1� �:

RT (A,B)  poly(n,
�M
µ

�
,M, log 1/�)

p

T + poly(n,
�M
µ

�
,M, log 1/�, P (K0)),

where P (K0) = (A+BK0)0P (K0)(A+BK) +Q+K 0

0RK0.

The result follows immediately by our Lemma B.2 and the upper bounds of Theorem 2
in Simchowitz and Foster (2020). Assuming that the plant sensitivity M and the coupling
coe�cient µ are dimensionless, then if we have a mild degree of underactuation, i.e.  =
O(log n), we get poly(n)-regret with high probability. Note that the above guarantees are
for high probability regret which is not always equivalent to expected regret (Dann et al.,
2017). Our upper-bounds are almost global for all robustly coupled systems, in the sense
that the dominant

p
T -term is globally bounded. To provide truly global regret guarantees

it is su�cient to add an initial exploration phase to Algorithm 1 of Simchowitz and Foster
(2020), which first learns a stabilizing gain K0. For this stage we could use the results of
Section 4.1, and Section D. We leave this for future work.

6. Conclusion

We prove that learning to control linear systems can be hard for non-trivial system classes.
The problem of stabilization might require sample complexity which scales exponentially
with the system dimension n. Similarly, online LQR might exhibit regret which scales
exponentially with n. This di�culty arises in the case of underactuated systems. Such
systems are structurally di�cult to control; they can be very sensitive to inputs/noise or very
hard to excite. If the system is robustly coupled and has a mild degree of underactuation
(small controllability index), then we can guarantee that learning will be easy.

We stress that system theoretic quantities might not be dimensionless. On the contrary,
they might grow very large with the dimension and dominate any poly(n) terms. Hence, going
forward, an important direction of future work is to find policies with optimal dependence on
such system theoretic quantities. Although the optimal dependence is known for the problem
of system identification (Simchowitz et al., 2018; Jedra and Proutiere, 2019), it is still not
clear what is the optimal dependence in the case of control. For example, an interesting open

3. It is possible to relax some of the assumptions on the noise–see Simchowitz and Foster (2020)

13



Tsiamis Ziemann Morari Matni Pappas

problem is to find the optimal dependence of the regret RT on the Riccati equation solution
P . For the problem of stabilization, it is open to find how sample complexity optimally
scales with the least singular value of the controllability Gramian.
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Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

Siew Chan, GC Goodwin, and Kwai Sin. Convergence properties of the Riccati di↵erence
equation in optimal filtering of nonstabilizable systems. IEEE Transactions on Automatic
Control, 29(2):110–118, 1984.

Xinyi Chen and Elad Hazan. Black-Box Control for Linear Dynamical Systems. In Conference
on Learning Theory, pages 1114–1143. PMLR, 2021.

Alon Cohen, Avinatan Hasidim, Tomer Koren, Nevena Lazic, Yishay Mansour, and Kunal
Talwar. Online Linear Quadratic Control. In International Conference on Machine
Learning, pages 1029–1038. PMLR, 2018.

Alon Cohen, Tomer Koren, and Yishay Mansour. Learning Linear-Quadratic Regulators
E�ciently with only

p
T Regret. arXiv preprint arXiv:1902.06223, 2019.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: Uniform
PAC bounds for episodic reinforcement learning. arXiv preprint arXiv:1703.07710, 2017.

14



Learning to Control Linear Systems can be Hard

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample
complexity of the linear quadratic regulator. arXiv preprint arXiv:1710.01688, 2017.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds
for robust adaptive control of the linear quadratic regulator. In Advances in Neural
Information Processing Systems, pages 4188–4197, 2018.

Paul M. Van Dooren. Numerical linear algebra for signals systems and control. Draft notes
prepared for the Graduate School in Systems and Control, 2003.

Yonathan Efroni, Sham Kakade, Akshay Krishnamurthy, and Cyril Zhang. Sparsity in
Partially Controllable Linear Systems. arXiv preprint arXiv:2110.06150, 2021.

M Sami Fadali and Antonio Visioli. Digital Control Engineering: Analysis and Design.
Academic Press, 2013.

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Finite Time
Identification in Unstable Linear Systems. Automatica, 96:342–353, 2018a.

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Finite-time
Adaptive Stabilization of Linear Systems. IEEE Transactions on Automatic Control, 64
(8):3498–3505, 2018b.

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. On Adaptive
Linear–Quadratic Regulators. Automatica, 117:108982, 2020.

Salar Fattahi, Nikolai Matni, and Somayeh Sojoudi. Learning sparse dynamical systems
from a single sample trajectory. arXiv preprint arXiv:1904.09396, 2019.

Michel Gevers. Identification for Control: From the Early Achievements to the Revival of
Experiment Design. European journal of control, 11(4-5):335–352, 2005.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal Regret Bounds for Reinforce-
ment Learning. Journal of Machine Learning Research, 11:1563–1600, 2010.

Yassir Jedra and Alexandre Proutiere. Sample complexity lower bounds for linear system
identification. In IEEE 58th Conference on Decision and Control (CDC), pages 2676–2681.
IEEE, 2019.

Yassir Jedra and Alexandre Proutiere. Minimal Expected Regret in Linear Quadratic Control.
arXiv preprint arXiv:2109.14429, 2021.

Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun.
Information Theoretic Regret Bounds for Online Nonlinear Control. Advances in Neural
Information Processing Systems, 33:15312–15325, 2020.

Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Anima Anandkumar. Explore more
and improve regret in Linear Quadratic Regulators. arXiv preprint arXiv:2007.12291,
2020a.

15



Tsiamis Ziemann Morari Matni Pappas

Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Anima Anandkumar. Loga-
rithmic regret bound in partially observable linear dynamical systems. arXiv preprint
arXiv:2003.11227, 2020b.

Bruce Lee and Andrew Lamperski. Non-asymptotic Closed-Loop System Identification using
Autoregressive Processes and Hankel Model Reduction. arXiv preprint arXiv:1909.02192,
2019.

Holden Lee. Improved rates for identification of partially observed linear dynamical systems.
arXiv preprint arXiv:2011.10006, 2020.

Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalent control of LQR is
e�cient. arXiv preprint arXiv:1902.07826, 2019.

Nikolai Matni and Stephen Tu. A tutorial on concentration bounds for system identification.
In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 3741–3749. IEEE,
2019.

Nikolai Matni, Alexandre Proutiere, Anders Rantzer, and Stephen Tu. From Self-Tuning
Regulators to Reinforcement Learning and Back Again. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pages 3724–3740. IEEE, 2019.

Ronald Ortner and Daniil Ryabko. Online Regret Bounds for Undiscounted Continuous
Reinforcement Learning. Advances in Neural Information Processing Systems, 25, 2012.

Yi Ouyang, Mukul Gagrani, and Rahul Jain. Control of Unknown Linear Systems with
Thompson Sampling. In 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 1198–1205. IEEE, 2017.

Samet Oymak and Necmiye Ozay. Non-asymptotic Identification of LTI Systems from a
Single Trajectory. arXiv preprint arXiv:1806.05722, 2018.

Fabio Pasqualetti, Sandro Zampieri, and Francesco Bullo. Controllability Metrics, Limitations
and Algorithms for Complex Networks. IEEE Transactions on Control of Network Systems,
1(1):40–52, 2014.

Benjamin Recht. A Tour of Reinforcement Learning: The View from Continuous Control.
Annual Review of Control, Robotics, and Autonomous Systems, 2(1):253–279, 2019.

Tuhin Sarkar and Alexander Rakhlin. Near optimal finite time identification of arbitrary
linear dynamical systems. arXiv preprint arXiv:1812.01251, 2018.

Tuhin Sarkar, Alexander Rakhlin, and Munther A Dahleh. Finite-Time System Identification
for Partially Observed LTI Systems of Unknown Order. arXiv preprint arXiv:1902.01848,
2019.

Max Simchowitz and Dylan Foster. Naive Exploration is Optimal for Online LQR. In
International Conference on Machine Learning, pages 8937–8948. PMLR, 2020.

16



Learning to Control Linear Systems can be Hard

Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning
Without Mixing: Towards A Sharp Analysis of Linear System Identification. arXiv preprint
arXiv:1802.08334, 2018.

Max Simchowitz, Ross Boczar, and Benjamin Recht. Learning Linear Dynamical Systems
with Semi-Parametric Least Squares. arXiv preprint arXiv:1902.00768, 2019.

Sigurd Skogestad, Manfred Morari, and John C Doyle. Robust Control of Ill-Conditioned
Plants: High-Purity Distillation. IEEE transactions on automatic control, 33(12):1092–
1105, 1988.

Anastasios Tsiamis and George J Pappas. Finite Sample Analysis of Stochastic System
Identification. In IEEE 58th Conference on Decision and Control (CDC), 2019.

Anastasios Tsiamis and George J. Pappas. Linear Systems can be Hard to Learn. arXiv
preprint arXiv:2104.01120, 2021.

Stephen Tu, Ross Boczar, Andrew Packard, and Benjamin Recht. Non-Asymptotic Analysis
of Robust Control from Coarse-Grained Identification. arXiv preprint arXiv:1707.04791,
2017.

Andrew Wagenmaker and Kevin Jamieson. Active learning for identification of linear
dynamical systems. In Conference on Learning Theory, pages 3487–3582. PMLR, 2020.

Yang Zheng and Na Li. Non-asymptotic identification of linear dynamical systems using
multiple trajectories. IEEE Control Systems Letters, 5(5):1693–1698, 2020.

Ingvar Ziemann and Henrik Sandberg. Regret Lower Bounds for Learning Linear Quadratic
Gaussian Systems. arXiv preprint arXiv:2201.01680, 2022.

17



Tsiamis Ziemann Morari Matni Pappas

Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem Statement 5
2.1 Di�culty of Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Di�culty of Online LQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Classes with Rich Controllability Structure 6

4 Di�culty of Stabilization 8
4.1 Sample complexity upper bounds . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Di�culty of online LQR 10
5.1 Sketch of Lower Bound Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Regret Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Conclusion 13

Appendix 19

A System Theoretic Preliminaries 19
A.1 Properties of the Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . 19

B System Theoretic Bounds for Robustly Coupled Systems 20

C Lower Bounds for the problem of Stabilization 24
C.1 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D Upper Bounds for the problem of Stabilization 26
D.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D.2 System Identification Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D.3 Sensitivity of Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
D.4 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E Regret Lower Bounds 30
E.1 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
E.2 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
E.3 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
E.4 Stable System Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

18



Learning to Control Linear Systems can be Hard

Appendix A. System Theoretic Preliminaries

In this section, we review briefly some system theoretic concepts. A system (A,B) 2 Rn⇥(n+p)

is controllable if and only if the controllability matrix

Ck(A,B) =
⇥
B AB · · · Ak�1B

⇤

has full column rank for some k  n. The minimum such index  that the rank condition
is satisfied is called the controllability index, and it is always less or equal than the state
dimension n. A system (A,B) is called stabilizable if and only if there exists a matrix
K 2 Rp⇥n such that A+BK is stable, i.e. has spectral radius ⇢(A+BK). Any controllable
system is also stabilizable. A system (A0, B0) is called observable if and only if (A,B) is
controllable. Similarly (A0, B0) is detectable if and only if (A,B) is stabilizable.

Let A be stable (⇢(A) < 1) and consider the transfer matrix (zI � A)�1, z 2 C in the
frequency domain. The H1-norm is given by

k(zI �A)�1
kH1 = sup

|z|=1
k(zI �A)�1

k2.

Using the identity (I � D)�1 = I + D + D2 . . . for ⇢(D) < 1, we can upper bound the
H1-norm by

k(zI �A)�1
kH1 

1X

t=0

kAt
k2.

A.1. Properties of the Riccati Equation

Consider the infinite horizon LQR problem defined in (2). Let (A,B) be controllable and
assume that Q � 0 is positive semi-definite and R � 0 is positive definite. As we stated in
Section 2, the optimal policy K?xk has the following closed-form solution

K? = �(B0PB +R)�1B0PA,

where P is the unique positive definite solution to the Discrete Algebraic Riccati
Equation

P = A0PA+Q�A0PB(B0PB +R)�1B0PA.

Moreover, A+BK? is stable, i.e. ⇢(A+BK?) < 1. The above solution is well-defined under
the conditions of (A,B) controllable, Q � 0, R � 0. Note that we can relax the conditions
to Q ⌫ 0 being positive semi-definite, (A,Q1/2) detectable, and (A,B) stabilizable, which is
a well-known result in control theory (Chan et al., 1984, Th. 3.1).

Consider now the finite-horizon LQR problem, under the same assumptions of (A,B)
controllable, Q � 0, and R � 0

J⇤

T (S) , min
⇡

ES,⇡

"
T�1X

t=0

(x0tQxt + u0tRut) + x0TQTxT

#
. (A.1)

The optimal policy is a feedback law Ktxt, t  T � 1, with time varying gains. The gains
satisfy the following closed-form expression

Kt = �(B0Pt+1B +R)�1B0Pt+1A,

19



Tsiamis Ziemann Morari Matni Pappas

where Pt satisfies the Riccati Di↵erence Equation

Pt = A0Pt+1A+Q�A0Pt+1B(B0Pt+1B +R)�1B0Pt+1A, PT = QT .

It turns out that as we take the horizon to infinity T ! 1, then we get limT!1 Pk = P
exponentially fast, for any fixed k, where P is the positive definite solution to the Algebraic
Riccati Equation. The convergence is true under the conditions of (A,B) controllable, Q � 0,
R � 0. Again we could relax the conditions to Q ⌫ 0 being positive semi-definite, (A,Q1/2)
detectable, and (A,B) stabilizable (Chan et al., 1984, Th. 4.1). Note that if we select the
terminal cost QT = P , then trivially Pt = P for all t  T , and we recover the same controller
as in the infinite horizon case.

Finally, a nice property of the Riccati recursion is that the right-hand side is order-
preserving with respect to the matrices P,Q. In particular, define the operator:

g(X,Y ) = A0XA+ Y �A0Y B(B0XB +R)�1B0Y A.

Then, if X1 ⌫ X2, we have that g(X1, Y ) ⌫ g(X2, Y ) (Anderson and Moore, 2005, Ch. 4.4).
Similarly, if Y1 ⌫ Y2 then g(X,Y1) ⌫ g(X,Y2).

Appendix B. System Theoretic Bounds for Robustly Coupled Systems

The first result lower bounds the least singular value of the controllability Gramian in terms
of the sensitivity M , the coupling coe�cient µ, and the controllability index  of the system.

Theorem B.1 (Gramian lower bound (Tsiamis and Pappas, 2021)) Consider a sys-
tem (A,B,H) that satisfies Assumption 1, with  its controllability index. Assume that
(A,B) is µ-robustly coupled. Then, the least singular value of the Gramian � = �(A,B) is
lower bounded by:

��1
min(�)  µ�2

✓
3M

µ

◆2

.

Proof The result follows from Theorem 5 in Tsiamis and Pappas (2021). The theorem
statement requires a di↵erent condition, called robust controllability. However, the proof
still goes through if we have µ�robust coupling instead. Recall that C = C(A,B) is the
controllability matrix (9) of (A,B) at . Following the proof in (Tsiamis and Pappas, 2021),
we arrive at p

�min(�)  kC
†

k2  k⌅�1
k2k↵k2,

where

⌅ =

2

4
1 1 µ�1

M
µ

2+M
µ

M
µ

0 0 µ�1

3

5 , ↵ =

2

64

1
µ
M
µ2

1
µ

3

75 .

The result follows from the crude bounds k⌅k2  3M/µ, k↵k2 
p
3M/µ�2 where we

assumed that M > 1.

The following result, upper bounds the solution P to the LQR Riccati equation in terms
of the sensitivity M , the coupling coe�cient µ, and the controllability index  of the system.
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Lemma B.2 (Riccati Upper Bounds) Let the system (A,B) 2 Rn⇥(n+p) be controllable
and µ�robustly coupled with controllability index . Let R 2 Rp⇥p be positive definite and
Q 2 Rn⇥n be positive semi-definite. Assume T >  and consider the Riccati di↵erence
equation:

Pk�1 = A0PkA+Q�A0PkB(B0PkB +R)�1B0PkA, PT = Q.

Then, the Riccati matrix evaluated at time 0 is upper-bounded by

kP0k2  poly
⇣�M

µ

�
,M,, kQk2, kRk2

⌘
.

As a result, if Q � 0, then the unique positive definite solution P of the algebraic Riccati
equation:

P = A0PA+Q�A0PB(B0PB +R)�1B0PA

satisfies the same bound

kPk2  poly
⇣�M

µ

�
,M,, kQk2, kRk2

⌘
.

Proof The optimal policy of the LQR problem does not depend on the noise. Even for
deterministic systems, the optimal policy still have the same form ut = K?xt. This property
is known as certainty equivalence (Bertsekas, 2017, Ch. 4). In fact, for deterministic systems,
the cost of regulation is given explicitly by x00Px0. We leverage this idea to upper bound
the stabilizing solution of the Riccati equation P .
Step a) Noiseless system upper bound. Consider the noiseless version of system (1)

xk+1 = Axk +Buk, kx0k2 = 1. (B.1)

Let u0:t be the shorthand notation for

u0:t =

2

64
ut
...
u0

3

75 .

Consider the deterministic LQR objective

min
u0:T�1

J(u0:T�1) , x0TQxT +
N�1X

k=0

x0kQxk + u0kRuk

s.t. dynamics (B.1).

The optimal cost of the problem is given by (Bertsekas, 2017, Ch. 4)

min
u0:T�1

J(u0:T�1) = x00P0x0,

where P0 is the value of Pt at time t = 0. Let u0:T�1 be any input sequence. Immediately,
by optimality, we obtain an upper bound for the Riccati matrix P0:

x00P0x0  J(u0:T�1). (B.2)
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Hence, it is su�cient to find a suboptimal policy that incurs a cost which is at most
exponential with the controllability index .
Step b) Suboptimal Policy. It is su�cient to drive the state x to zero at time  with
minimum energy u0:�1 and then keep xt+1 = 0, ut = 0, for t � . Recall that Ck is the
controllability matrix at time k. By unrolling the state x:

x = Ax0 + Cu0:�1.

To achieve x = 0, it is su�cient to apply the minimum norm control

u0:�1 = �C
†

A
x0,

which leads to input penalties

T�1X

k=0

u0kRuk  kRk2�
�1
min(�)M

2,

where we used the fact that kx0k2 = 1. For the state penalties, we can write in batch form

x1: ,

2

64
x
...
x1

3

75 =

2

6664

B AB · · · A�1B
0 B · · · A�2B
...
0 0 · · · B

3

7775
u0:�1 +

2

6664

A

A�1

...
A

3

7775
x0.

Exploiting the Toeplitz structure of the first matrix above and by Cauchy-Schwartz

TX

t=0

x0tQxt  kQk2(kx1:k
2
2 + 1)

 2kQk2
�
(
�1X

t=0

kAtBk2)
2
ku0:�1k

2
2 +

X

t=0

kAt
k2
�

 22kQk2(M
4
kRk2�

�1
min(�) +M2).

Putting everything together and since x0 is arbitrary, we finally obtain

kP0k2 
kRk2

�min(�)
(M2 + 22kQk2M

4) + 22kQk2M
2. (B.3)

The result for P0 now follows from Theorem B.1.
Step c) Steady State Riccati. If the pair (A,Q1/2) is observable, then from standard
LQR theory-see Section A.1, limT!1 P0 = P and the bound for P follows directly.

Similar results have been reported before (Cohen et al., 2018; Chen and Hazan, 2021).
However, instead of  and (M/µ), the least singular value ��1

min(�k) shows up in the bounds,
for some k � .

Finally, based on Lemmas B.10, B.11 of Simchowitz and Foster (2020), we provide some
upper bounds on the H1�norm of the closed loop response (zI �A+BK)�1, where K is
the control gain of the optimal LQR controller for some Q and R.
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Lemma B.3 (LQR Robustness Margins) Let the system (A,B) 2 Rn⇥(n+p) be con-
trollable and µ�robustly coupled. Let R = Ip, Q = In. Let P be the stabilizing solution of
the algebraic Riccati equation:

P = A0PA+Q�A0PB(B0PB +R)�1B0PA

with K? the respective control gain K? = �(B0PB +R)�1B0PA. The spectral radius and the
H1-norm of the closed loop response are upper bounded by

(1� ⇢(A+BK?))
�1

 poly
⇣�M

µ

�
,M,

⌘
(B.4)

k(zI �A�BK?)
�1

kH1  poly
⇣�M

µ

�
,M,

⌘
(B.5)

Proof First, note that since Q = I, immediately (A,Q1/2) is observable and the stabilizing
solution P is well-defined. Note that the Riccati solution P also satisfies the Lyapunov
equation

P = (A+BK?)
0P (A+BK?) + I +K 0

?K? ⌫ (A+BK?)
0P (A+BK?) + I ⌫ I.

As a result,

(A+BK?)
0(A+BK?)

i)
� (A+BK?)

0P (A+BK?) = P � I
ii)
� (1� kPk

�1
2 )P, (B.6)

where i) follows from P ⌫ I. To prove ii) observe that P � I = P 1/2(I � P�1)P 1/2 and
P�1

⌫ kPk
�1
2 I. Hence

P � I ⌫ P 1/2(I � kPk
�1
2 I)P 1/2 = (1� kPk

�1
2 )P.

Applying inequality (B.6) recursively

(A+BK?)
t0(A+BK?)

t = k(A+BK?)
t
k
2
2 

�
1� kPk

�1
2

�t
P.

From here, we immediately deduce that

⇢(A+BK?) 
q
1� kPk

�1
2 ,

which by Lemma B.2 proves (B.4). For the H1 norm bound

k(zI �A�BK?)
�1

kH1 

X

t�0

k(A+BK?)
t
k2  kPk

1/2
2

1

1�
q
1� kPk

�1
2

 kPk
1/2
2

1 +
q
1� kPk

�1
2

kPk
�1
2

 2kPk
3/2
2 .

The proof of (B.5) now follows from Lemma B.2.
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Appendix C. Lower Bounds for the problem of Stabilization

In this section, we prove Theorem 5 by using information theoretic methods. The main
idea is to find systems that are nearly indistinguishable from data but require completely
di↵erent stabilization schemes. We rely on Birgé’s inequality (Boucheron et al., 2013), which
we review below for convenience.

Definition C.1 (KL divergence) Let P, Q be two probability measures on some space
(⌦,A). Let Q be absolutely continuous with respect to P, that is Q(A) = EP(Y 1A) for some
integrable non-negative random variable with EP(Y ) = 1. The KL divergence D(Q||P) is
given by

D(Q||P) , EQ(log Y ).

Theorem C.2 (Birgé’s Inequality (Boucheron et al., 2013)) Let P0, P1 be probabil-
ity measures on (⌦, E) and let E0, E1 2 E be disjoint events. If 1�� , mini=0,1 Pi(Ei) � 1/2
then

(1� �) log
1� �

�
+ � log

�

1� �
 D(P1||P0).

The KL divergence between two Gaussian distributions with same variance is given below.

Lemma C.3 (Gaussian KL divergence) Let P = N (µ1,�2) and Q = N (µ2,�2) then

D(Q||P) = 1

2�2
(µ1 � µ2)

2.

C.1. Proof of Theorem 5

It is su�cient to prove it for  = n. The proof for  < n is similar. Let ↵ > 0 be such that
↵+ µ < 1. Consider the systems:

S1 : xk+1 =

2

666664

1 µ 0 · · · 0
0 ↵ µ · · · 0

. . .
. . .

0 0 0 · · · µ
0 0 0 · · · ↵

3

777775
xk +

2

666664

0
0
...
0
µ

3

777775
uk +

2

666664

1
0
...
0
0

3

777775
wk,

S2 : xk+1 =

2

666664

1 �µ 0 · · · 0
0 ↵ µ · · · 0

. . .
. . .

0 0 0 · · · µ
0 0 0 · · · ↵

3

777775
xk +

2

666664

0
0
...
0
µ

3

777775
uk +

2

666664

1
0
...
0
0

3

777775
wk.

By construction, the systems are µ�robustly coupled. Denote the state matrices by A1, A2

for S1, S2 respectively. Let �1(z) = det(zI �A1 �BK̂N ), �2(z) = det(zI �A2 �BK̂N ) be
the respective characteristic polynomials. By Jury’s criterion (Fadali and Visioli, 2013, Ch.
4.5), a necessary (but not su�cient) condition for stability is:

�1(1) > 0, �2(1) > 0.
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An direct computation gives:

�1(1) =

�����������

0 �µ 0 · · · 0
0 1� ↵ �µ · · · 0

. . .
. . .

0 0 0 · · · �µ
�K̂N,1 �K̂N,2 �K̂N,3 · · · 1� ↵� K̂N,n

�����������

= �K̂N,1µ
n�1, �2(1) = K̂N,1µ

n�1.

As a result, the events:

E1 =
n
⇢(A1 +BK̂N ) < 1

o
✓

n
K̂N,1 < 0

o
, E2 =

n
⇢(A2 +BK̂N ) < 1

o
✓

n
K̂N,1 > 0

o

are disjoint. By Theorem C.2, a necessary condition for stabilizing both systems with
probability larger than 1� � is:

D(P1||P2) � (1� 2�) log
1� �

�
� log

1

2.4�
� log

1

3�
. (C.1)

Here Pi is a shorthand notation for PSi,⇡, for i = 1, 2.
Meanwhile, by the chain rule of KL divergence (see Exercise 4.4 in Boucheron et al.

(2013)):

D(P1||P2) = EP1

⇣
D(P1(AUX)||P2(AUX))

+
NX

k=0

D(P1(xk|x0:k�1, u0:k�1,AUX)||P2(xk|x0:k�1, u0:k�1,AUX))

+
N�1X

k=0

D(P1(uk|x0:k, u0:k�1,AUX)||P2(uk|x0:k, u0:k�1,AUX)
⌘
,

where x0:k is a shorthand notation for x0, . . . , xk (same for u0:k). By P(X|Y ) we denote
the conditional distribution of X given Y . Note that the inputs have the same conditional
distributions under both measures hence their KL divergence is zero. As a result

D(P1||P2) = EP1

NX

k=0

D(P1(xk|x0:k�1, u0:k�1,AUX)||P2(xk|x0:k�1, u0:k�1,AUX))

1)
= EP1

NX

k=0

D(P1(xk|xk�1, uk�1)||P2(xk|xk�1, uk�1)

2)
= EP1

NX

k=0

D(P1(xk,1|xk�1,1, xk�1,2)||P2(xk,1|xk�1,1, xk�1,2)
⌘
,

where 1) follows from the Markov property of the linear system and 2) follows from an
application of the chain rule, the structure of the dynamics, and the fact that all xk,j have
the same distribution for j � 2. Recall that the normal distribution is denoted by N (µ,⌃).
Now we can explicitly compute the KL divergence:

D(P1||P2) = EP1

NX

k=1

D(N (↵xk�1,1 + µxk�1,2, 1)||N (↵xk�1,1 � µxk�1,2, 1))
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i)
= EP1

NX

k=1

2µ2x2k�1,2 = 2µ2
NX

k=1

EP1x
2
k�1,2, (C.2)

where i) follows by Lemma C.3. By (C.1), (C.2), and Lemma C.4, it is necessary to have

N�2
u �

1

2

✓
1

↵+ µ

◆2n�2✓1� a� µ

µ

◆2

log
1

3�

Since we are free to choose ↵, it is su�cient to choose ↵ = 0. ⌅

Lemma C.4 Consider system S1 as defined above. Recall that P1 is a shorthand notation
for PS1,⇡. Then, under Assumption 2, we have

EP1x
2
k,2  �2

u(↵+ µ)2n�2

✓
1

1� (a+ µ)

◆2

Proof Let e2 denote the canonical vector e2 =
⇥
0 1 0 · · · 0

⇤0
. Then

xk,2 =
kX

t=1

e02A
t�1Buk�t =

kX

t=n�1

e02A
t�1Buk�t,

where the second equality follows from the fact that e02A
t�1B, for t  n� 1. Moreover, we

can upper bound: ��e02At�1B
��  (↵+ µ)t�1,

which follows from the fact that the sub-matrix [A1]2:n,2:n of A1 if we delete the first row
and column is bi-diagonal and Toeplitz hence k[A1]2:n,2:nk2  ↵+ µ. Define ct , (↵+ µ)t�1.
Then, we can upper bound |xk,2| by

|xk,2| 
kX

t=n�1

ct |uk�t| .

By Cauchy-Schwartz and Assumption 2

ES1,⇡u
2
k  �2

u, ES1,⇡ |ukut|  �2
u.

Finally, combining the above results

ES1,⇡x
2
k,2  �2

u(
kX

t=n�1

ct)
2
 �2

u(↵+ µ)2n�2

✓
1

1� (a+ µ)

◆2

,

which completes the proof.

Appendix D. Upper Bounds for the problem of Stabilization

We employ a naive passive learning algorithm, where we employ a white-noise exploration
policy to excite the state. Our gain design proceeds in two parts. First, we perform system
identification based on least squares (Simchowitz et al., 2018). Second, we use robust control
to design the gain based on the identified model and bounds on the identification error of A
and B, similar to Dean et al. (2017).

26



Learning to Control Linear Systems can be Hard

White Noise
Experiments

System
Identification

Controller
Design

x0, . . . , xN
u0, . . . , uN�1

ÂN , B̂N

✏A, ✏B

K̂N

Figure 1: The block diagram of the stabilization scheme. First, we generate white noise
inputs ut ⇠ N (0, �̄2

uI) to excite the system. Then we perform system identification
based on least squares to obtain estimates ÂN , B̂N of the true system matrices.
Finally, we design a controller gain K̂N , based on the system estimates and upper
bounds ✏A, ✏B on the estimation error.

D.1. Algorithm

The block diagram for the algorithm is shown in Fig. 1. To generate the input data
u0, . . . , uN�1, we employ white noise inputs uk ⇠ N (0, �̄2

uI), �̄
2
u = �2

u/p, where we normalize
with p in order to satisfy Assumption 2. For the system identification part, we use a least
squares algorithm

⇥
ÂN B̂N

⇤
= arg min

{F2Rn⇥n,G2Rn⇥p}

N�1X

t=0

kxt+1 � Fxt �Gutk
2
2, (D.1)

to obtain estimates of the matrices A ,B. Now, let ✏A, ✏B be large enough constants such
that kA� ÂNk2  ✏A, kB � B̂Nk2  ✏B . To design the controller gain K̂N , it is su�cient to
solve the following problem

find K 2 Rp⇥n

s.t.

����

 p
2✏A(zI � ÂN � B̂NK)�1

p
2✏BK(zI � ÂN � B̂NK)�1

�����
H1

< 1.
(D.2)

The idea behind the scheme is the following. Let K̂N be a gain that stabilizes the estimated
plant (ÂN , B̂N ). To make sure that it also stabilizes the nominal plant (A,B) we impose some
additional robustness conditions. In fact, as we show in Theorem D.2, any feasible gain of
problem (D.2) will stabilize any plant (Â, B̂) that satisfies kÂ�ÂNk2  ✏A, kB̂�B̂Nk2  ✏B ,
including the nominal one. In this work, we do not study how to e�ciently solve (D.2).
For e�cient implementations one can refer to Dean et al. (2017). Note that the certainty
equivalent LQR design (Mania et al., 2019) or the SDP relaxation method (Cohen et al.,
2018; Chen and Hazan, 2021) could also work as stabilization schemes.

D.2. System Identification Analysis

Here we review a fundamental system identification result from Simchowitz et al. (2018).
The original proof can be easily adapted to the case of singular noise matrices H (Tsiamis
and Pappas, 2021).

Theorem D.1 (Identification Sample Complexity) Consider a system S = (A,B,H)
such that Assumption 1 is satisfied. Let (A,B) be controllable with �k = �k(A,B) the
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respective controllability Gramian and  = (A,B) the respective controllability index.
Then, under the least squares system identification algorithm (D.1) and white noise inputs
uk ⇠ N (0, �̄2

uIp), we obtain

PS,⇡(k
⇥
A� ÂN B � B̂N

⇤
k2 � ✏)  �

if we have a large enough sample size

N �̄2
u �

poly(n, log 1/�,M)

✏2�min(�)
logN.

Proof The proof is almost identical to the one of Theorem 4 in Tsiamis and Pappas (2021).
The di↵erence is that here we consider only the Gramian and index of (A,B) in the final
bound, while in Tsiamis and Pappas (2021) the Gramian and index of (A

⇥
H B

⇤
) appears.

We repeat the proof here to avoid notation ambiguity. Our goal is to apply Theorem 2.4
in (Simchowitz et al., 2018). Define the noise-controllability Gramian �h

t = �t(A,H) as well
as the combined controllability Gramian

�c
t = �t(A,

⇥
�̄uB H

⇤
) = �̄2

u�t + �h
t .

Define yk =
⇥
x0k u0k

⇤0
. It follows that for all j � 0 and all unit vectors v 2 R(n+p)⇥1, the

following small-ball condition is satisfied:

1

2

2X

t=0

P(
��v0yt+j

�� �
p
v0�sbv|F̄j) �

3

20
, (D.3)

where

�sb =


�c
 0
0 �̄2

uIp

�
. (D.4)

Equation (D.3) follows from the same steps as in Proposition 3.1 in Simchowitz et al. (2018)
with the choice k = 2.

Next, we determine an upper bound �̄ for the gram matrix
PN�1

t=0 yty0t. Using a Markov
inequality argument as in (Simchowitz et al., 2018, proof of Th 2.1), we obtain that

P(
N�1X

t=0

yty
0

t � �̄) � 1� �,

where

�̄ =
n+ p

�
N


�c
N 0
0 �̄2

uIp

�
.

Now, we can apply Theorem 2.4 of Simchowitz et al. (2018). With probability at least
1� 3� we have k

⇥
A� ÂN B � B̂N

⇤
k2  ✏ if:

N �
poly(n, log 1/�,M)

✏2�min(�c
)

log det(�̄��1
sb ),
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where we have simplified the expression by including terms in the polynomial term. Using
Lemma 1 in Tsiamis and Pappas (2021), we obtain

log det(�̄��1
sb ) = poly(n,M, log 1/�) logN.

Moreover, we use the lower bound �c
k ⌫ �̄2

u�k, which holds for every k � 0.

We note that we can easily obtain sharper bounds by considering the combined controllability
Gramian �k(A,

⇥
�̄uB H

⇤
) for the identification stage. For the economy of the presentation,

we omit such an analysis here.

D.3. Sensitivity of Stabilization

Here we prove that when (D.2) is feasible, then K̂N stabilizes all plants (A,B) such that
kA� ÂNk2  ✏A, kB � B̂Nk2  ✏B. We also show that feasibility is guaranteed as long as
we can achieve small enough error bounds ✏A, ✏B.

Theorem D.2 Let K̂N be a feasible solution to problem (D.2) for some ✏A, ✏B > 0. Then
for any system (A,B) such that kA� ÂNk2  ✏A, kB � B̂Nk2  ✏B we have that

⇢(A+BK̂N ) < 1.

Moreover, there exists an ✏0 > 0 such that

✏0 = poly
⇣�M

µ

�
,M,

⌘

and Problem (D.2) is feasible if ✏A, ✏B  ✏0.

Proof Let K̂N be a feasible solution to problem (D.2). Define �x = (zI � ÂN � B̂NK̂N )�1,
which is well-defined and stable since ✏A > 0 and k�xkH1 < 1/(

p
2✏A). Define the system

di↵erence
� , (ÂN �A)�x + (B̂N �B)K̂N�x

It follows from simple algebra that:

zI �A�BK̂N = zI � ÂN � B̂NK̂N + (ÂN �A) + (B̂N �B)K̂N

= (I +�)(zI � ÂN � B̂NK̂N ).

If (I +�)�1 is stable then the closed loop response is stable and well-defined

(zI �A�BK̂N )�1 = (zI � ÂN � B̂NK̂N )�1(I +�)�1.

But (I +�)�1 being stable is equivalent to

k(I +�)�1
kH1 < 1.

A su�cient condition for this to occur is to require (Dean et al., 2017)

k�kH1 < 1.
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By Proposition 3.5 (select ↵ = 1/2) of (Dean et al., 2017)

k�kH1 <

����

 p
2✏A(zI � ÂN � B̂NK)�1

p
2✏BK(zI � ÂN � B̂NK)�1

�����
H1

< 1.

This completes the proof of ⇢(A+BK̂N ) < 1.
To prove feasibility consider the optimal LQR gain K?, for Q = In, R = Ip. Following

Lemma 4.2 in Dean et al. (2017), if the following su�cient condition holds

(✏A + ✏BkK?k2)k(zI �A�BK?)
�1

kH1  1/5,

then K? is a feasible solution
����

 p
2✏A(zI � ÂN � B̂NK?)�1

p
2✏BK?(zI � ÂN � B̂NK?)�1

�����
H1

< 1.

Hence, we can choose

✏0 =
�
5(1 + kK?k2)k(zI �A�BK?)

�1
kH1

�
�1

. (D.5)

The fact that ✏0 = poly
⇣�

M
µ

�
,M,

⌘
follows from Lemmas B.2, B.3.

D.4. Proof of Theorem 7

Let ut ⇠ N (0, �̄2
uI), with �̄2

u = �2
u/p. Consider the stabilization algorithm as described

in (D.1), (D.2). Consider the ✏0 defined in (D.5). By Theorems D.1, D.2, if

N�2
u �, poly(n, log 1/�,M)

✏20�min(�)| {z }
N

logN

we have with probability at least 1� � that kA� ÂNk2, kB � B̂Nk2  ✏0 and problem (D.2)
is feasible with ✏B = ✏A = ✏0. By Theorems B.1 D.2,

N = poly

✓⇣M
µ

⌘
,M, n, log 1/�

◆
.

To complete the proof we use the fact that

N � c logN if N � 2c log 2c.

Appendix E. Regret Lower Bounds

First let us state an application of the main result of Ziemann and Sandberg (2022). Consider
a system (A,B,H) 2 Rn⇥(n+p+n), where (A,B) is controllable and H = In. Let P be the
respective Riccati matrix for Q = In, R = Ip, with K? the respective optimal LQR gain. Fix
a matrix � 2 Rp⇥n and define the family of systems:

A(✓) = A� ✓B�, B(✓) = B + ✓�, H(✓) = In, (E.1)
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where ✓ 2 B(0, ✏), for some small ✏. Assume that ✏ is small enough, such that the Riccati
equation has a stabilizing solution for every system in the above family. The respective
Riccati matrix is denoted by P (✓) and the LQR gain by K(✓). The derivative of K?(✓) with
respect to ✓ at point ✓ = 0 is given by the following formula.

Lemma E.1 (Lemma 2.1 (Simchowitz and Foster, 2020)) If the system (A,B) is
stabilizable, then

d

d✓
K?(✓)|✓=0 = �(B0PB +R)�1�0P (A+BK⇤).

Finally, let ⌃x be the solution to the Lyapunov equation:

⌃x = (A+BK?)⌃x(A+BK?)
0 + In. (E.2)

Theorem E.2 (Application of Theorem 1 in Ziemann and Sandberg (2022))
Consider a system S = (A,B,H) 2 Rn⇥(n+p+n), where (A,B) is controllable and H = In.
Let P be the respective solution of the algebraic Riccati equation for Q = In, R = Ip, with K?

the respective optimal LQR gain. Recall the definition of ⌃x in (E.2). Define the family of
systems CS(✏) , {(A(✓), B(✓), In), ✓ 2 B(0, ✏)} as defined in (E.1), for any ✏ > 0 su�ciently
small such that P (✓) and K?(✓) are well-defined. Let QT = P (✓). Then for any ↵ 2 (0, 1/4):

lim inf
T!1

sup
Ŝ2CS(T�a)

EŜ,⇡

RT (Ŝ)
p
T

�
1

2
p
2

r
F

L
, (E.3)

where

F = tr

✓
(B0PB +R)�1�0P [⌃x � In]P�

◆

L = n(k�K?k
2
2 + k�k

2
2)k(B

0PB +R)�1
k2

Proof Note that if �0P (A+BK?) = 0, then since ⌃x ⌫ In is invertible

�0P (A+BK?) = 0 , �0P (A+BK?)⌃x(A+BK?)
0P� = 0

, �0P (⌃x � In)P� = 0.

This implies that F = 0 and the regret lower bound becomes 0, in which case the claim of
the theorem is trivially true. Hence, we will assume that �0P (A+BK?) 6= 0.

All systems in the family have the same closed-loop response under the control policy
u = K?x. In particular, for all ✓ 2 B(0, ✏):

d

d✓

⇥
A(✓) B(✓)

⇤  In
K?

�
=
⇥
��K? �

⇤  In
K?

�
= 0.

Moreover, by Lemma E.1

d

d✓
K?(✓)|✓=0 = (B0PB +R)�1�0P (A+BK?) 6= 0.

By Proposition 3.4 in Ziemann and Sandberg (2022), the above two conditions imply that
the family CS(✏) is ✏�uninformative (see Section 3 in Ziemann and Sandberg (2022) for
definition).
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Next, by Lemma 3.6 in Ziemann and Sandberg (2022), the family is also L�information
regret bounded (see Section 3 in Ziemann and Sandberg (2022) for the definition), where

L = tr(In)k
⇥
��K? �

⇤
k
2
2k(B

0PB +R)�1
k2

i)
 n(k�K?k

2
2 + k�k

2
2)k(B

0PB +R)�1
k2.

Inequality i) follows from tr(In) = n and the norm property

k
⇥
M1 M2

⇤
k
2
2 = k

⇥
M1 M2

⇤ ⇥
M1 M2

⇤0
k2 = kM1M

0

1+M2M
0

2k2  kM1k
2
2+ kM2k

2
2.

Applying Theorem 1 in Ziemann and Sandberg (2022), we get (E.3), for L defined as
above and

F = tr

✓⇥
⌃x ⌦ (B0P (✓)B +R)

⇤
(
d

d✓
vecK?(✓)|✓=0)(

d

d✓
vecK?(✓)|✓=0)

0

◆
,

where ⌦ is the Kronecker product and is the vectorization operator (mapping a matrix into
a column vector by stacking its columns). Using the identities:

vec(XY Z) = (Z 0
⌦X)vec(Y ), tr(vec(X)vec(Y )0) = tr(XY 0),

we can rewrite F as

F = tr

✓
(B0P (✓)B +R)

d

d✓
K(✓)|✓=0⌃x

d

d✓
K 0(✓)|✓=0

◆
.

By Lemma E.1 and the property tr(XY ) = tr(Y X), we finally get

F = tr

✓
(B0PB +R)�1�0P (A+BK⇤)⌃x(A+BK⇤)P�

◆
.

The result follows from (A+BK⇤)⌃x(A+BK⇤)0 = ⌃x � In.

E.1. Proof of Lemma 9

The result follows by Theorem E.2. We only need to compute and simplify F , L. Due to
the structure of system (18), we have

P =


1 0
0 P0

�
, K? =


0 0
0 K0,?

�
.

Moreover, due to the structure of the perturbation � in (16)

B0PB +R =


2 0
0 B0

0P0B0 +R0

�
, P�(B0PB +R)�1�0P =

1

2


0 0
0 P0�1�0

1P0

�
.

Hence

F =
1

2
tr

✓
0 0
0 P0�1�0

1P0

�
(⌃x � In)

◆
=

1

2
�0

1P0(⌃0,x � In�1)P0�1

Finally we have L  n, since �K? = 0, �1 has unit norm, and R = Ip. ⌅
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E.2. Proof of Lemma 10

First note that P0 ⌫ Q0 = In�1. As a result, we have

kP0(⌃0,x � In�1)P0k2 � k⌃0,x � In�1k2.

It is su�cient to lower bound k⌃0,x � In�1k2. Consider the recursion:

⌃k = (A0 +B0K0,?)⌃k�1(A0 +B0K0,?)
0 + In�1, ⌃0 = 0.

Then ⌃0,x = limk!1⌃k ⌫ ⌃n�1 ⌫ In�1. The second inequality follows from monotonicity
of the Lyapunov operator:

g(X) = (A0 +B0K0,?)X(A0 +B0K0,?)
0 + In�1,

i.e. g(X) ⌫ g(Y ) if X ⌫ Y . What remains is to lower bound k⌃n�1 � In�1k2. Let
e1 =

⇥
1 0 · · · 0

⇤0
be the first canonical vector. Due to the structure of A0, B0

e01(A0 +B0K0,?)
i = e01(A0)

i, for i  n� 1.

Hence

k⌃n�1 � In�1k2 � e01(⌃n�1 � In�1)e1

=
n�1X

k=1

e01A
k
0(A

0

0)
ke1.

After some algebra we can compute analytically

k⌃n�1 � In�1k2 �

n�1X

k=1

kX

t=0

✓
k

t

◆2

=
n�1X

k=1

✓
2k

k

◆
�

✓
2(n� 1)

n� 1

◆
�

✓
2
n� 1

n� 1

◆n�1

= 2n�1,

which completes the proof. ⌅

E.3. Proof of Theorem 8

It is su�cient to prove the result for the class Cµ
n,n�1. If n > + 1, then we can consider the

system:

Ã =


0 0
0 A

�
, B̃ =


In��1 0

0 B

�
, H̃ =


In��1 0

0 H

�

where (A,B,H) 2 C µ
,�1 and repeat the same arguments.

The proof follows from Lemma 9 and Lemma 10. What remains to show that for every ✏

CS(✏) ✓ C µ
n,n�1(✏).

This follows from the fact that �K? = 0, hence A = A(✓) and kB�B(✓)k = ✓k�k2 = ✓  ✏.
Thus,

k
⇥
A�A(✓) B �B(✓)

⇤
k2  ✏.

Since CS(✏) ✓ C µ
n,n�1(✏), we get

lim inf
T!1

sup
S2C µ

n,n�1(T
�a)

EŜ,⇡

RT (Ŝ)
p
T

� lim inf
T!1

sup
Ŝ2CS(T�a)

EŜ,⇡

RT (Ŝ)
p
T

⌅
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E.4. Stable System Example

Here we show that the local minimax expected regret can be exponential in the dimension
even for stable systems. Using again the two subsystems trick, consider the following stable
system

S : xk+1 =

2

666664

0 0 0 0 0
0 ⇢ 2 0 0

. . .

0 0 0 ⇢ 2
0 0 0 0 ⇢

3

777775
xk +

2

6664

1 0
0 0
...
0 1

3

7775
uk + wk, 0 < ⇢ < 1, (E.4)

with Q = In, R = I2. Following the notation of (18) let:

A0 =

2

666664

⇢ 2 0 0 0
0 ⇢ 2 0 0

. . .

0 0 0 ⇢ 2
0 0 0 0 ⇢

3

777775
, B0 =

2

666664

0
0
...
0
1

3

777775
, Q0 = In�1, R0 = 1, (E.5)

where A0 2 R(n�1)⇥(n�1) and B0 2 Rn�1. Note that A0 has spectral radius ⇢ < 1. Let

� =


0 0
�1 0

�
. Then, by Lemma 9, the local minimax expected regret for system S, given

the perturbation �1 is lower bounded by

lim inf
T!1

sup
Ŝ2CS(T�a)

EŜ,⇡

RT (Ŝ)
p
T

�
1

4
p
n

q
�0

1P0 [⌃0,x � In�1]P0�1.

As we show in the following lemma, the quantity
p
�0

1P0 [⌃0,x � In�1]P0�1 is exponential
with n if we choose �1 appropriately. Although the system is stable, it is very sensitive to
inputs and noises. Any signal uk,2 that we apply gets amplified by 2 as we move up the
chain from state xk,n to state xk,2. As a result, any suboptimal policy will result in excessive
excitation of the state.

Lemma E.3 (Stable systems can be hard to learn) Consider system (E.5) Let P0 be
the Riccati matrix for Q0 = In�1, R0 = 1, with K?,0, ⌃0,x the corresponding LQR control
gain and steady-state covariance, respectively. Then

kP0 [⌃0,x � In�1]P0k2 � 24n�8 + o(1),

where o(1) goes to zero as n ! 1.

Proof Let �1 =
⇥
0 0 · · · 1 0

⇤0
. It is su�cient to prove that

�0

1P0(⌃0,x � In�1)P0�1

is exponential. Using the identity ⌃0,x � In�1 = (A0 +B0K?,0)⌃0,x(A0 +B0K?,0)0, ⌃0,x ⌫ I,
we have:

�0

1P0(⌃0,x � In�1)P0�1 � k�0

1P0(A0 +B0K?,0)k
2
2.
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By Lemma E.5 and Lemma E.4 it follows that

k�0

1P0(A0 +B0K?,0)k
2
2 � 24n�8 + o(1).

Lemma E.4 (Riccati matrix can grow exponentially) For system (E.5) we have:

B0

0P0B0 +R0 � 22n�4 + 1.

Proof Consider the Riccati operator:

g(X,Y ) = A0

0XA0 + Y �A0

0XB0(B
0

0XB0 +R0)
�1B0

0XA0.

Based on the above notation, we have P0 = g(P0, Q0). The Riccati operator is monotone (An-
derson and Moore, 2005), i.e

X1 ⌫ X2 ) g(X1, Y ) ⌫ g(X1, Y ).

It is also trivially monotone with respect to Y . Let X0 = 0, then the recursion Xt+1 =
g(Xt, Q0) converges to P0. By monotonicity

P0 ⌫ Xt, for all t � 0

Let ei denote the i-th canonical vector in Rn�1. By monotonicity, we also have:

X1 = g(X0, Q0) ⌫ g(X0, e1e
0

1) = e1e
0

1|{z}
X̃1

Repeating the argument:

X2 = g(X1, Q0) ⌫ g(X̃1, Q0) ⌫ g(X̃1, e1e
0

1) = A0

0X̃1A0 + e1e
0

1| {z }
X̃2

= A0

0e1e
0

1A0 + e1e
0

1

= 22e2e
0

2 + ⇢2e1e
0

1 + 2⇢e1e
0

2 + 2⇢e2e
0

1

Similarly,

Xn�1 = g(Xn�2, Q0) ⌫ g(X̃n�2, e1e
0

1) = (A0

0)
n�2e1e

0

1A
n�2
0 + (A0

0)
n�1e1e

0

1A
n�1
0 + · · ·+ e1e

0

1,

where we use the fact that every X̃k is orthogonal to B0 for k  n� 2. As a result:

[P0]n�1,n�1 � [Xn]n�1,n�1 � e0n�1(A
0

0)
n�2e1e

0

1A
n�2
0 en�1

= (e01A
n�2
0 en�1)

2 = ([An�2
0 ]1,n�1)

2 (E.6)

What remains is to compute [An�2
0 ]1,n�1. Define by J 2 R(n�1)⇥(n�1) the companion matrix:

J =

2

666664

0 1 0 0 0
0 0 1 0 0

. . .

0 0 0 0 1
0 0 0 0 0

3

777775
.
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Since A0 = ⇢I + 2J and I commutes with J by the binomial expansion formula:

An�2
0 = 2n�2Jn�2 +

n�3X

t=0

2t
✓
n� 2

t

◆
J t.

Since e01J
n�1en�1 = 1, e01J

ten�1 = 0, for t  n� 2, we obtain:

([An�2
0 ]1,n�1)

2 = 22n�4. (E.7)

By (E.6) and (E.7) we finally get

B0

0P0B0 +R0 = [P0]n�1,n�1 + 1 � 22n�4 + 1

Lemma E.5 We have:

k�0

1P0(A0 +B0K?,0)k2 � (0.5 + o(1))(B0

0P0B0 +R0),

where the o(1) is in the large n regime.

Proof Let ei denote the i-th canonical vector in Rn�1. It is su�cient to show that
��(B0

0P0B0 +R0)
�1�0

1P0(A0 +B0K?,0)en�1

�� � 0.5 + o(1).

For simplicity we will denote:

↵ , [P0]n�1,n�1, � , [P0]n�2,n�2, � , [P0]n�1,n�2.

Due to the structure of A0, we have

A0en�1 = ⇢en�1 + 2en�2.

Using this, we obtain

K?,0en�1 = �(B0

0P0B0 + 1)�1B0

0P0A0en�1 = �(↵+ 1)�1e0n�1P0(⇢en�1 + 2en�2)

= �(↵+ 1)�1(⇢↵+ 2�). (E.8)

Combining the above results

(B0

0P0B0 +R)�1�0

1P0(A0 +B0K?,0)en�1 = (B0

0P0B0 + 1)�1e0n�2P0(A0 +B0K?,0)en�1

= (↵+ 1)�1

⇢
e0n�2P0(⇢en�1 + 2en�2)� e0n�2P0en�1(↵+ 1)�1(⇢↵+ 2�)

�

= (↵+ 1)�1
�
⇢� + 2� � �(↵+ 1)�1(⇢↵+ 2�)

 

= 2(↵+ 1)�1
�
� � (↵+ 1)�1�2

 
� (↵+ 1)�2⇢�

i)
=

2

↵+ 1

⇢
� �

�2

↵+ 1

�
+ o(1),
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where i) follows from Lemma E.6. What remains to show is that

2

↵+ 1

⇢
� �

�2

↵+ 1

�
= 0.5 + o(1). (E.9)

Using the algebraic Riccati equation:

↵ = e0n�1A
0

0P0A0en�1 + 1� e0n�1A
0

0P0B0(↵+ 1)�1B0

0P0A0en�1

= (⇢en�1 + 2en�2)
0P0(⇢en�1 + 2en�2) + 1

� (⇢en�1 + 2en�2)
0P0en�1(↵+ 1)�1e0n�1P0(⇢en�1 + 2en�2)

= ⇢2↵+ 4� + 4⇢� + 1�
(⇢↵+ 2�)2

↵+ 1

= 4� +
⇢2↵+ 4⇢� + ↵+ 1� 4�2

↵+ 1
.

Dividing both sides with ↵+ 1:

↵

1 + ↵
=

4

↵+ 1

⇢
� �

�2

↵+ 1

�
+

4⇢�

(↵+ 1)2
+

1 + ⇢2↵

(1 + ↵)2

Rearranging the terms gives:

2

↵+ 1

⇢
� �

�2

↵+ 1

�
� 0.5 = �

0.5

1 + ↵
�

2⇢�

(↵+ 1)2
�

1 + ⇢2↵

2(1 + ↵)2

By Lemma E.6 the second term in the right-hand side is o(1). By Lemma E.4, ↵ = ⌦(22n),
hence all remaining terms also go to zero, which completes the proof of (E.9).

Lemma E.6 Recall the notation in the proof of Lemma E.5

↵ , [P0]n�1,n�1, � , [P0]n�1,n�2.

Then, we have: ����
�

(↵+ 1)2

���� = o(1)

Proof We use the relation:

P0 = (A0 +B0K?,0)
0P0(A0 +B0K?,0) +Q0 +K 0

?,0R0K?,0 ⌫ K 0

?,0R0K?,0.

Multiplying from the left and right by en�1 and by invoking (E.8) we obtain:

↵ �

✓
⇢↵+ 2�

↵+ 1

◆2

= (⇠ + �)2,

where for simplicity we define ⇠ = ⇢↵
↵+1 , � = 2�

↵+1 . We can further lower bound the above
expression by:

↵ � (⇠ + �)2 � ⇠2 + �2
� 2⇠ |�| .
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This is a quadratic inequality and holds if and only if:

⇠ �
p
↵  |�|  ⇠ +

p
↵.

As a result:

2
|�|

↵+ 1
 ⇢+

p
↵+ 1

which leads to
|�|

↵+ 1
 0.5

⇢+
p
↵+ 1

↵+ 1
= O(1/

p
↵) = o(1)

since ↵ = ⌦(22n).
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