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Abstract

Traditional analyses in non-convex optimization typically rely on the smoothness
assumption, namely requiring the gradients to be Lipschitz. However, recent
evidence shows that this smoothness condition does not capture the properties of
some deep learning objective functions, including the ones involving Recurrent
Neural Networks and LSTMs. Instead, they satisfy a much more relaxed condition,
with potentially unbounded smoothness. Under this relaxed assumption, it has been
theoretically and empirically shown that the gradient-clipped SGD has an advantage
over the vanilla one. In this paper, we show that clipping is not indispensable for
Adam-type algorithms in tackling such scenarios: we theoretically prove that a
generalized SignSGD algorithm can obtain similar convergence rates as SGD with
clipping but does not need explicit clipping at all. This family of algorithms on
one end recovers SignSGD and on the other end closely resembles the popular
Adam algorithm. Our analysis underlines the critical role that momentum plays
in analyzing SignSGD-type and Adam-type algorithms: it not only reduces the
effects of noise, thus removing the need for large mini-batch in previous analyses of
SignSGD-type algorithms, but it also substantially reduces the effects of unbounded
smoothness and gradient norms. To the best of our knowledge, this work is the
first one showing the benefit of Adam-type algorithms compared with non-adaptive
gradient algorithms such as gradient descent in the unbounded smoothness setting.
We also compare these algorithms with popular optimizers on a set of deep learning
tasks, observing that we can match the performance of Adam while beating others.

1 Introduction

Recent years have witnessed a surge in non-convex machine learning models, with a focus on deep
neural networks [27]. DNNs have achieved tremendous progress in a variety of tasks, including
computer vision [26, 18, 23], natural language processing [11, 50], and a lot more. Despite their huge
empirical success, the theoretical analyses of non-convex optimization [21] prove to be fundamentally
more challenging than the established convex optimization theory [4]. Among the numerous literature,
many of them assume smoothness of the objective function, namely requiring the gradients to be
Lipschitz. Under this scenario, past works have succeeded in proving the convergence rates for a
number of algorithms, e.g., Stochastic Gradient Descent [14], AdaGrad [52, 30], and STORM [9, 7].

Nevertheless, it was recently observed that the smoothness assumption does not capture the training
of LSTMs [20]: the Hessian can grow with the size of the gradients [56]. Inspired by this, Zhang et
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in the relaxed smoothness setting. This can be considered as a first step in explaining the superior
performance of Adam in practical deep learning problems.

The structure of this paper is as follows. Section 2 discusses related works and how our paper builds
upon and distinguishes from them. The settings and assumptions are carried out in Section 3. We will
introduce formally the generalized SignSGD algorithm and its analysis in Section 4, with a detailed
discussion on the bounds and the role of momentum. The experimental results are shown in Section 5,
comparing our algorithm with some popular competitors in deep learning tasks. Finally, we draw
some conclusions and discuss the limitations of our work in Section 6.

Notations We will use [d] to denote the sequence [1, 2, . . . , d] and use bold letters to represent

vectors, e.g., u ∈ R
d. The j-th coordinate of a vector u is uj . Throughout this paper, we study the

Euclidean space R
d with the inner product ⟨·, ·⟩. E[u] means the expectation with respect to the

underlying probability distribution of a random variable u, and Et[u] is the conditional expectation
of u conditioned on the past of time t. The gradient of F at x is denoted by ∇F (x). We use I(·) to

denote the indicator function, ∥u∥p to denote the p-norm: ∥u∥p := (
∑d

j=1 |uj |p)1/p and ∥u∥∞ the

maximum norm: ∥u∥∞ := max{|u1|, . . . , |ud|}. We also denote by
∑j

k=i xk = 0 when i > j.

2 Related Works

Adaptive Gradient Methods Adaptive gradient methods [34, 12, 25, 19, 44] are popular optimizers
for training deep neural networks. The traditional analysis of adaptive gradient methods is providing
regret bounds under the online convex optimization framework [12, 25, 44]. Recently, there are some
analysis of adaptive gradient methods for nonconvex smooth functions [6, 5, 54, 10, 61]. Zou et
al. [60] introduces an intriguing connection between Adam [25] and SignGD [3] when training a
two-layer neural network in the deterministic setting, where SignGD is an algorithm following the
negative gradient sign direction to perform the update. However, these works cannot be directly
extended to nonconvex functions with unbounded smoothness in the stochastic setting. To the best of
our knowledge, this work is the first one establishing guarantees for coordinate-wise type optimizers
like generalized SignSGD as well as Adam-type updates under a relaxed smoothness condition.

Gradient Clipping The algorithm and analysis of gradient clipping can be traced back to [1, 48, 13]
under the assumption that the function is convex and rapidly growing. Hazan et al. [17] considered
gradient clipping in quasi-convex optimization. Mai and Johansson [32] showed the stability and
convergence of stochastic gradient clipping algorithms for convex problems without the smoothness
condition. Gradient clipping is a standard technique in training deep neural networks [39, 40]
such as RNNs and LSTMs. The theoretical analysis of gradient clipping for nonconvex models is
pioneered by [56], in which the authors analyzed the convergence of gradient clipping under the
relaxed smoothness assumption rather than the standard smoothness assumption. Zhang et al. [55]
further improved the convergence rate bound under the same assumption as in [56]. Gradient clipping
is also used when there is a heavy tail noise in the stochastic gradient to establish high probability
convergence rates [8, 15, 57]. Cutkosky and Mehta [7] proved that normalized momentum improves
normalized SGD under a second-order smoothness condition. A close algorithm is the one in [22]
which employs gradient normalization, momentum, and no gradient clipping to tackle the (L0, L1)
condition (1) and control noise. Yet, their algorithm normalizes each coordinate with the same scale
unlike popular optimizers such as Adam [25]. Moreover, we observe empirically that normalized
SGD with momentum performs worse than Adam. Motivated by this, we propose a coordinate-wise
optimization algorithm which requires new analysis tools compared with [22].

Employ m2
t to compute vt in Adam Designed to combine the advantages of Adagrad [12] and

RMSProp [49], the update of Adam [25] employs the ratio between the exponential moving average
of the stochastic gradient (mt) and the exponential moving average of the squared stochastic gradient
(vt). Many variants of Adam have been proposed ever since. Among them, one idea is to use m2

t to
compute vt instead of g2

t . The intuition is that mt represents a better update direction than gt and can
thus better capture the second-moment information. Reddi et al. [43] adopted this change to prove
the convergence of Adam in a federated learning setting; yet, they only consider the smooth setting
and require a large ϵ to obtain convergence in contrast to the original Adam. Later, Wang et al. [51]
explored this idea in more detail, but their analyses are still restricted to the smooth setting. There
also exist other variants of the Adam update that attempt to obtain a more stable update changing the
order of the normalization and momentum operations [see, e.g., 59].
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3 Settings and Preliminaries

In this paper, we focus on the following stochastic optimization problem:

min
x∈Rd

F (x) := Eξ∼D[f(x, ξ)],

where ξ is a random variable representing a randomly selected data sample or random noise following
an unknown distribution D. We will use the following assumptions.

Assumption 1. F : Rd → R is differentiable and bounded from below with infimum F ∗.

Assumption 2. We say that a differentiable function F (x) is (L0,L1)-smooth coordinate-wisely, if

for any x,y ∈ R
d for which ∥x− y∥2 ≤ 1

∥L1∥∞
, we have for any j ∈ [d] that

∣
∣
∣
∣

∂F

∂xj
(y)− ∂F

∂xj
(x)

∣
∣
∣
∣
≤
(
L0,j√
d

+ L1,j

∣
∣
∣
∣

∂F

∂xj
(x)

∣
∣
∣
∣

)

∥y − x∥2 . (2)

We will denote L0 := [L0,1, L0,2, . . . , L0,d]
T and L1 := [L1,1, L1,2, . . . , L1,d]

T .

The original (L0, L1) smoothness assumption (1) in [56] was proposed as a generalization of the
more common smoothness assumption, which says that the gradient should be Lipschitz. Indeed,
when L1,j are zero, we recover the smoothness assumption. In contrast, when L1,j are non-zero,
the smoothness of the function is potentially unbounded. Yet, [56] works with norms and applies
to the global scale, while ours is more fine-grained and applies to each coordinate separately. One
motivation for this assumption comes from [Remark 2.3, 55] where they noted that (1) can be relaxed
to an assumption on gradient differences: there exists K0,K1 > 0 such that

∥∇F (x)−∇F (y)∥2 ≤ (K0 +K1∥∇F (x)∥2)∥x− y∥2, ∀x,y ∈ R
d : ∥x− y∥2 ≤ 1/K1 . (3)

Indeed, our Assumption 2 implies (3) when L0,j = L0 and L1,j = L1 for all j ∈ [d], up to constants

(See Lemma 3 in the Appendix). Note that the 1√
d

factor in ours is exactly for easy comparison

with (3). The reason we turn to the current coordinate-wise version is that we observed a vast variance
across different layers in training Transformer models: (1) is still true globally (Figure 1), but each
layer or even each coordinate satisfies has a very different (L0, L1) pair (Figure 3). The smoothness
assumption has been generalized in orthogonal directions in other work [45, 3, 24].

One merit of Assumption 2 is that it gives us the following descent lemma.

Lemma 1. Let F be (L0,L1)-smooth coordinate-wisely. Then, for any x,y ∈ R
d for which

∥x− y∥2 ≤ 1
∥L1∥∞

, we have

F (y) ≤ F (x) + ⟨∇F (x),y − x⟩+
d∑

j=1

1

2

(
L0,j√
d

+ L1,j

∣
∣
∣
∣

∂F

∂xj
(x)

∣
∣
∣
∣

)

∥y − x∥2|yj − xj | .

Our last assumption is common in the literature studying the (L0, L1) smooth condition [56, 55].

Assumption 3. For each j ∈ [d], there exists σj > 0 such that for all x ∈ R
d and ξ ∼ D, the noise

satisfies

∣
∣
∣[∇f(x, ξ)]j − ∂F

∂xj
(x)
∣
∣
∣ ≤ σj with probability 1. We will denote σ := [σ1, σ2, . . . , σd]

T .

4 A Generalized SignSGD Algorithm

Algorithm 1 Generalized SignSGD (All operations on vectors are element-wise.)

1: Inputs: x1, β1, β2, η
2: m0 = 0, v0 = 0
3: for t = 1, · · · , T do
4: Compute an unbiased estimate ∇f(xt, ξt) of ∇F (xt), denoted as gt
5: mt = β1mt−1 + (1− β1)gt
6: vt = β2vt−1 + (1− β2)m

2
t

7: xt+1 = xt − η mt√
vt

8: end for
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In this section, we present in Algorithm 1 a generalized SignSGD algorithm. This algorithm
encompasses a variety of optimization algorithms.

At first sight, it seems very similar to Adam. Indeed, if we employ g2
t in computing vt instead of m2

t ,
then it is exactly Adam, except for the bias correction terms. We would like to clarify that the idea
of this change has been explored before, as detailed in Section 2. In this paper, the motivation for
adopting this idea comes from the known effect of momentum on reducing the influence of noises [7].
Indeed, in our analysis the difference between mt and ∇F (xt) is much more controllable than
between gt and ∇F (xt). Thus, we consider employing mt in computing vt a better choice.

On the other end, the careful reader might observe that Algorithm 1 recovers the SignSGD with
Momentum algorithm, also called SIGNUM in [3], when setting β2 = 0. Sign-based algorithms
are naturally suited to distributed learning [29] and the idea dated back to at least RPROP [46]. The
convergence to a stationary point (with ℓ1 norm) under a coordinate-wise smoothness condition
has been established for SignSGD with/without the momentum in [3] though they necessitate large
mini-batches to control the variance of the noise. Yet, we are more interested in their property of the
update size being bounded without the need for explicit clipping.

Note that both SignSGD and Adam are good candidates for optimization algorithms whose update
must be bounded on functions that satisfy the (L0,L1) condition. Indeed, SignSGD can be seen as
an extreme form of gradient clipping. On the other hand, as said in the introduction, Adam does not
seem to require gradient clipping at all when used to train the large Transformer model in Figure 2.

Hence, we expect our algorithm, a generalization of SignSGD and a close resemblance to Adam, can
enjoy the merits of both and be robust to the unbounded smoothness in the (L0,L1) scenario. In the
next section, we will formalize this claim by presenting the theoretical analysis of Algorithm 1.

4.1 Theoretical Convergence Analysis

Theorem 1. Under Assumptions 1, 2, and 3, assume Mj := sup
{∣
∣
∣
∂F
∂xj

(x)
∣
∣
∣ : F (x) ≤ F (x1)

}

is

finite for each j ∈ [d], let ∆ be any upper bound on F (x1)− F ∗, α = min

(√
∥L0∥1

√
∆

∥σ∥1

√
T

, 1

)

, β1 =

1−α,
√
β2

β1
< 1, ρ = 1−

√
β2

β1
, η =

√
∆α√

∥L0∥1

√
T

, for T ≥ max
(

100d∆∥L1∥2
∞

(1−β2)ρ2∥L0∥1
,
10000d2∆∥σ∥2

1∥L1∥4
∞

(1−β2)2ρ4∥L0∥3
1

)

,

Algorithm 1 guarantees, with probability at least 1− δ, that

min
t∈[T ]

∥∇F (xt)∥1 =O
(√

log(dT/δ)∥L0∥1/41 ∆1/4∥σ∥1/21

ρ
√
1− β2T 1/4

+
log(dT/δ)

√

∥L0∥1∆
ρ
√
T

)

+O
(

∥M∥1 + ∥σ∥1
ρ

exp

(

−
√
1− β2∥L0∥3/41√

d∥L1∥∞∥σ∥1/21 ∆1/4
T 1/4

)

+
∥∇F (x1)∥1

T

)

.

Furthermore, for the case when β2 = 0, we have the following refined guarantee:

min
t∈[T ]

∥∇F (xt)∥1 =O
(√

log(dT/δ)∥L0∥1/41 ∆1/4∥σ∥1/21

T 1/4
+

log(dT/δ)
√

∥L0∥1∆√
T

)

+O
(

∥∇F (x1)∥1√
T

(

1√
T

+
∥σ∥1

√

∥L0∥1∆

)

+
∥σ∥1
T

)

.

Here, Mj denotes the maximum absolute value of the partial derivative of F for coordinate j among
the sub-level set of F (x1), namely any point x with F (x) ≤ F (x1). In other words, we assume
gradients to be bounded in the sub-level set of F (x1); yet, we do not make any restriction on gradients
outside of this set. We believe this is not a strong assumption, for example, when the sub-level
set of F (x1) is bounded, then by the assumed continuity of gradients it trivially holds. Also, we
just require an upper bound and it can even be exponentially large as we have an exponentially
decaying coefficient to counteract it: notice how the term ∥M∥1 is multiplied by a term that decays
exponentially with T . Better still, when β2 = 0, we no longer even need this assumption and the
algorithm is entirely free of the influence of ∥M∥1. To see why this is good, we show a refined lower
bound of Gradient Descent under the relaxed smoothness scenario below which is originally in [56].
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Theorem 2. Fix ϵ > 0, L0 > 0, L1 > 0,M ≥ max(L0

L1
, ϵ), and x0 ∈ R. Pick any constant learning

rate η for GD, with the knowledge of the above constants. Then, there exists a 1-d (L0, L1)-smooth
function, bounded from below by f∗ (finite), and such that sup{|f ′(x)| : f(x) ≤ f(x0)} ≤ M on
which the number of iterations T of GD with learning rate η to guarantee |f ′(xT )| < ϵ is at least

ML1(f(x0)− f∗ − 15ϵ2

16L0
)

2ϵ2
(

ln ML1

L0
+ 1
) .

Theorem 2 shows that in the relaxed smoothness setting, GD with any constant step size will suffer
from a linear term depending on L1M . On a side note, it is a fixed version of the lower bound in
[56]: we provide in Appendix an explanation of errors in their lower bound and our corrected proof.

Compared with GD, our algorithm only has an exponentially decaying dependence on L1M . We
consider this to be substantial merit of our algorithm. Furthermore, when β2 = 0 in which case we
recover the SignSGD with Momentum algorithm, we can even show that it completely removes the
effects of the unbounded gradient norms. Also notice that in such case we actually no longer need the

assumption of Mj := sup
{∣
∣
∣
∂F
∂xj

(x)
∣
∣
∣ : F (x) ≤ F (x1)

}

being finite for each j ∈ [d] anymore, and

the ∥L1∥∞ term does not appear in the final bound anymore.

We also would like to point out that this bound closely resembles the one achieved by SGD with
gradient clipping algorithm [55] except that we consider the coordinate-wise setting: take the setting

of β2 = 0 for example, we need at most O
(

∆max
{

∥σ∥2
1∥L0∥1

ϵ4 ,
d2∥σ∥2

1∥L1∥4
∞

∥L0∥3
1

,
d∥L1∥2

∞
∥L0∥1

})

to get a

point x with ∥∇F (x)∥1 ≤ ϵ with high probability.

Remark 1 The almost surely bounded assumption 3 can be relaxed to sub-gaussian noise, using
standard extensions of Freedman inequality [e.g., 16].

Remark 2 When β2 = 0, we can prove an average-iterate complexity bound (see Proof of Theorem 1
for β2 = 0 in Appendix A.3); yet, we use the min form for consistency between the two cases.

Remark 3 Our bound is incomparable with the one in [55, Theorem 3.2]. Yet, as we said, if
L0,j = L0 and L1,j = L1 for all j ∈ [d], then the function satisfies (3). In this case, assuming the
noise vector and the gradient vector to be dense to be able to compare the ℓ1-norm and the ℓ2-norm,
we recover the same bound of [55, Theorem 3.2] in terms of dependencies on L1, L0, and T . Instead,
in the more general case when L0,j and L1,j are not uniform vectors, our bound allows a finer control
of the unbounded smoothness.

Remark 4 Careful readers might be concerned on the relations between α, β1, β2, ρ, and T when

α ̸= 1. We would like to note that, when β2 is fixed, α is inversely proportional to
√
T . In turn, the

definition of ρ means that as T grows, ρ grows and approaches 1−
√
β2. Thus, the two conditions

for T decreases when T grows. This means that there must exists a threshold of T above which the
two conditions on T always hold. In summary, Theorem 1 conveys the same message as [55] that as
long as the expected ϵ is sufficiently small, the complexity no longer has a dependency on L1.

The proof of the theorem is highly technical and it uses recent advancements in the analysis of
momentum methods [7], key techniques to deal with the (L0, L1) assumption [55], as well as a novel
and essential inductive argument to control the norm of past gradients. We want to stress that the
difficulty mainly comes from analyzing Adam-type updates when β2 > 0, while for the other case of
β2 = 0 the proof is significantly simpler. The full proof is in the Appendix, but here we present a
proof sketch that underlines the main steps. First, we list some key lemmas we used but move their
proofs to the appendix due to space constraints.

Lemma 5. With notations in Algorithm 1, for τ ≤ τ̄ =
√
1−β2

η
√
d∥L1∥∞

, we have ∥xt−τ −xt∥2 ≤ 1
∥L1∥∞

.

Lemma 5 limits our focus to the most recent τ̄ steps on which Assumption 2 and Lemma 1 can apply.

Lemma 7. Assume Assumption 3. With the notation of Algorithm 1, let j ∈ [d] and β1 ≤ 1. Then,
with probability at least 1− 3δ, for any t0 ∈ [t], we have
∣
∣
∣
∣
∣

t0∑

τ=1

βt−τ
1

(

gτ,j −
∂F

∂xj
(xτ )

)
∣
∣
∣
∣
∣
≤ 3σj max(1, log(1/δ)) +

3
√

1− β2
1

√

σ2
j max(1, log(1/δ)) ≜ Ej .
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Lemma 7 is the major tool we use to handle the noise we incur during drawing stochastic gradients.
It is derived based on Lemma 12 in [8].

Lemma 10. With the notation of Algorithm 1 and under the assumptions of Theorem 1, if

∣
∣
∣
∂F
∂xj

(xτ )
∣
∣
∣ ≤

Mj holds for all τ ≤ t and j ∈ [d], and D > 0, then, with probability at least 1− 3tδ we have that,

either

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
<

5Bj

D
or

|mt,j |√
vt,j

≥ ρD

5
√
1− β2

,

where Bj ≜
ηL0,j√

1−β2(1−β1)
+ βτ̄

1 (Mj + σj) + (1− β1)Ej and D ≜ 1− 2η
√
d∥L1∥∞√

1−β2(1−β1)
.

Lemma 10 is similar to Lemma A.2 in [60] which considered the deterministic and smooth setting;
in contrast, our proof is much more challenging in that we need to tackle both the noise and the
unbounded smoothness. With this lemma, we know that either the true gradient is small or that the
update of our Algorithm 1 can be lower bounded.

Lemma 12. Under Assumptions 1, 2, and 3, using the hyperparameters in Theorem 1, denoting
α = 1− β1 and ϵt = mt −∇F (xt), for all t and j ∈ [d] we have, with probability at least 1− 3δ,

|ϵt+1,j | ≤ (1−α)t
(

ασj + (1− α)

∣

∣

∣

∣

∂F

∂xj

(x1)

∣

∣

∣

∣

)

+
ηL0,j

α
+αEj+(1−α)η

√
dL1,j

t−1
∑

τ=0

(1−α)τ
∣

∣

∣

∣

∂F

∂xj

(xt−τ )

∣

∣

∣

∣

.

Lemma 12 shows how the use of momentum can help control the noise by choosing β1 wisely. It is
adapted from the proof of Theorem 2 in [8] but with the added difficulty of unbounded smoothness.

Proof sketch of Theorem 1. Observing the formula of setting β1, we can see that when ∥σ∥1 ≤
√

∥L0∥1∆/
√
T , β1 = 0. As β2 < β1, Algorithm 1 reduces to SignSGD. In this case, the key

component is Lemma 12 using which we are able to show that
∑T

t=1

∣
∣
∣mt,j − ∂F

∂xj
(xt)

∣
∣
∣ can be

controlled as C1

∑T
t=1

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣ + C2. The summation of true gradients over time can then be

offsetted by choosing η and β1 wisely when we invoke the descent lemma 1. The rest is standard.

Now for the other case in which ∥σ∥1 >
√

∥L0∥1∆/
√
T , we take a different route.

First, notice that Assumption 2 and the Descent Lemma 1 only hold when two points are not too far
away. Thus, we need to restrict our attention to the recent updates (Lemma 5), beyond which we
would have no control. This means we want the influence of those updates too long ago to not have
a big effect on the current one. To make this happen, one natural idea is to use a bounded gradient
assumption, then with the use of exponential averaging, their effect would be quickly reduced. Yet,
assuming directly that all gradients are bounded would trivialize the (L0,L1) assumption. Thus,

we pose a much weaker condition, assuming that Mj := sup
{∣
∣
∣
∂F
∂xj

(x)
∣
∣
∣ : F (x) ≤ F (x1)

}

being

finite for each j ∈ [d]. Then, we prove that Mj will provide an upper bound to all the true gradients
the algorithm see. We prove it using induction, analyzing separately the case that either the true
gradient is already very small and we have reached the proximity of a stationary point, or the objective
function is monotonically non-increasing and the gradient remains bounded.

Having controlled the past gradients, we prove in Lemma 10 that the update of Algorithm 1 is either
very small that we can pass or having a constant lower bound that we can use in the Descent Lemma 1.

Also, considering that this is the stochastic setting, noise typically slows down convergence or can
even cause the algorithm to diverge if the hyperparameters are not chosen wisely. To handle this, we
invoke Freedman’s inequality to show that the addition of adjacent stochastic noise almost cancels
out each other and the absolute value of the sum remains controlled (Lemma 7).

Yet, we still need another block to handle the difference between the true gradient and the momentum
as we are updating in the direction of the momentum instead of the true gradient. Turns our that we

can prove that sign(mt,j) = sign
(

∂F
∂xj

(xt)
)

when

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣ is not too small. As before, in the case

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣ is small, we have converged on that coordinate. Combining all these blocks together, we

are able to arrive at the final results.
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Table 1: Average final training loss and test accuracy achieved by each method when optimizing
respective models on each dataset. The ± shows 95% confidence intervals of the mean loss/accura-
cy/perplexity value over 5 runs starting from different random seeds.

Methods
CIFAR10 Penn Treebank

Training loss Test accuracy Training loss Test perplexity

SGD Momentum 0.2226 ± 0.0169 0.8674 ± 0.0048 3.8587 ± 0.0058 65.4622 ± 0.3842
SGD Momentum Normalized 0.1262 ± 0.0170 0.8795 ± 0.0086 3.8487 ± 0.0073 61.0558 ± 0.3224

SGDClipGrad 0.1288 ± 0.0403 0.8677 ± 0.0106 3.5774 ± 0.0081 60.1604 ± 0.2797
SGDClipMomentum 0.1220 ± 0.0162 0.8809 ± 0.0022 3.6038 ± 0.0102 59.3052 ± 0.2798

Adam 0.1161 ± 0.0111 0.8823 ± 0.0041 3.7692 ± 0.0062 58.9005 ± 0.3058
Our Algorithm 1 0.1086 ± 0.0129 0.8835 ± 0.0032 3.7928 ± 0.0425 58.9661 ± 1.5218

0.0001 and the momentum parameter (β1) to be 0.9. Figure 4 and Table 1 report the training and
testing performance for each algorithm, showing that ours is among the best.

LSTM for Language Modeling on Penn Treebank We adopt a 3-layer AWD-LSTM [35] to do
language modeling on the Penn Treebank (PTB) dataset [33](word level). The mini-batch size is 40
and we trained each algorithm for 750 epochs. Apart from the hyperparameters we stated above, we
further fine-tuned the weight decay value for all algorithms noticing its significant influence on the
performance. We choose the set of hyperparameters that give the smallest final validation perplexity.
We report the results in Figure 5 and Table 1. It can be seen that we can match the performance of
Adam while beating the others.

5.2 Transformers Observe (L0, L1)-smoothness

For Figure 1 which verifies the original form (1) of the (L0, L1) condition using the norm, we
followed the method in Section H.3 of [56]. Specifically, given xt and xt+1, denote d := xt+1 − xt.
We estimate the smoothness at xt by

L̂t = max
γ∈{δ1,δ2,...,δN}

∥∇F (xt + γd)−∇F (xt)∥2
∥γd∥2

,

where {δ1, δ2, . . . , δN} denotes the sample locations and we use { 1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6}.

For Figure 3 verifying the coordinate-wise version (2) of the (L0,L1) condition, note that the
equation is symmetric in that if we just swap x and y it shall still holds. Thus, during plotting, we

compare
∣

∣

∣

∂F
∂xj

(xt+1)− ∂F
∂xj

(xt)
∣

∣

∣/|xt+1,j−xt,j | vs. min
(∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣ ,
∣
∣
∣
∂F
∂xj

(xt+1)
∣
∣
∣

)

.

Figure 1(a) is on training a 2-layer Transformer Encoder to do language modeling on the Wikitext-2
dataset. The implementation, settings, and parameter choices follow this.1 We only plot the first 5
training epochs. Figure 1(b) and 3 are on training a 6-layer Transformer [50] to do machine translation
on the WMT’16 Multimodal Machine Translation Task German-English dataset. The implementation
of the transformer is forked from here2 and we also follow their default settings. The mini-batch size
is 256 and we trained for 400 epochs using Adam and report the whole training trajectory.

5.3 Clipping does not Affect Adam’s Performance

We compare clipping and non-clipping for Adam optimizer on the Wikitext-103 (103 million tokens,
180MB) [36] language modeling task, with a 16-layer GPT-2 transformer model [42]. This GPT-2
model has an input length of 256 tokens, 410-dimension word embedding, 16 Attention layers with
10 Attention heads and 2100 hidden dimensions. Model size is 201.58 MB. The vocabulary size is
28996. We use the hyper-parameter settings prescribed in [53]: batch size 256, warm up learning rate
from 0 to 2.5× 10−4 in the first 64000 samples (i.e., 250 iterations) and then cosine-anneal learning
rate to zero, on top of an Adam optimizer. It takes about 40 hours to train 200 epochs on 8 V100
GPUs. We use clipping threshold max_norm 0.25 for the entire model as prescribed in the literature
[53]. We also count that with this clipping scheme, clipping occurs in every single batch. As we can
see from Figure 2, neither training loss (2.79 vs 2.76) nor perplexity score (27.92 vs 27.97) differs
much in the clipping and non-clipping case, which is consistent with our theory that Adam naturally
achieves gradients clipping effect.

1https://pytorch.org/tutorials/beginner/transformer_tutorial.html
2https://github.com/jadore801120/attention-is-all-you-need-pytorch
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6 Conclusion and Limitations

Smoothness has been a widely adopted condition for proving convergence rates of algorithms in
the non-convex optimization scenario. Yet, it has been found that this assumption does not capture
losses when employing some deep learning models including RNNs and LSTMs. In light of this, a
relaxed smoothness assumption was proposed that aligns well with the practice. We observed that
the loss surface of training using Transformers also exhibits this relaxed smoothness. Under this
assumption, SGD with clipped gradient has been proven to work well. However, we found that
clipping is not necessary for achieving convergence in such a setting. Indeed, we showed that a
generalized SignSGD algorithm does not require explicit clipping but can almost guarantee the same
bound as SGD with clipping. In the analyses, we identified the key effect of using momentum in
analyzing Adam-type algorithms, that it reduces both the noise and the unbounded gradient norms.
Finally, we conducted a variety of deep learning tasks showing that our algorithm can match Adam’s
performance while exceeding others.

Limitations The current work is in no way a perfect one and there are many directions worth
exploring beyond it. First of all, though our algorithm could be seen as a close resemblance to the
original Adam algorithm, they are still not equal. Considering the huge popularity of Adam and
its established effectivity in practice, it is worth studying whether Adam in its original form can
converge in the relaxed smooth setting. Second, while our Theorem 1 are upper bounds and cannot be
directly compared between the two cases of β2, it does suggests that β2 = 0 minimizes the worst-case
convergence rate. However, it still does not fully explain the phenomenon that a choice of β2 close to
1 yields better performance in using our Algorithm 1 as well as Adam in practice. Third, despite there
are lower bounds showing that, for example, GD with a constant step size can be arbitrarily worse
than GD with clipping, it would be more meaningful to study whether the relaxed smooth condition
is inherently more difficult, possibly by establishing a lower bound for all first-order optimization
algorithms. Fourth, we did show that Transformers observe the relaxed smoothness condition, but we
consider it more beneficial to research in-depth what properties or structures make a model satisfy
such conditions. Finally, when conducting our experiments, we observed that the weight decay
value plays a prominent role in each optimizer’s performance, and that the best weight decay value
varies for different optimizers. Thus, one potential direction would be to explore different ways of
incorporating the regularization in a way to preserve the scale-freeness [37, 38] of Algorithm 1, just
as AdamW [31] does [58].
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A Appendix

A.1 Properties of the coordinate-wise (L0,L1) Assumption 2

Below, we prove the descent lemma for coordinate-wisely (L0,L1)-smooth functions satisfying
Assumption 2.

Lemma 1. Let F be (L0,L1)-smooth coordinate-wisely. For any x,y ∈ R
d for which ∥x− y∥2 ≤

1
∥L1∥∞

, we have

F (y) ≤ F (x) + ⟨∇F (x),y − x⟩+
d∑

j=1

(
L0,j√

d
+ L1,j

∣
∣
∣
∂F
∂xj

(x)
∣
∣
∣

)

∥y − x∥2
2

|yj − xj | .

Proof of Lemma 1.

F (y) = F (x) +

∫ 1

0

⟨∇F (x+ u(y − x)),y − x⟩du

= F (x) + ⟨∇F (x),y − x⟩+
∫ 1

0

⟨∇F (x+ u(y − x))−∇F (x),y − x⟩du

≤ F (x) + ⟨∇F (x),y − x⟩+
∣
∣
∣
∣

∫ 1

0

⟨∇F (x+ u(y − x))−∇F (x),y − x)⟩du
∣
∣
∣
∣

≤ F (x) + ⟨∇F (x),y − x⟩+
∫ 1

0

|⟨∇F (x+ u(y − x))−∇F (x),y − x⟩| du

≤ F (x) + ⟨∇F (x),y − x⟩+
∫ 1

0

d∑

j=1

∣
∣
∣
∣

[
∂F

∂xj
(x+ u(y − x))− ∂F

∂xj
(x)

]

(yj − xj)

∣
∣
∣
∣
du

≤ F (x) + ⟨∇F (x),y − x⟩+
∫ 1

0

d∑

j=1

∣
∣
∣
∣

∂F

∂xj
(x+ u(y − x))− ∂F

∂xj
(x)

∣
∣
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|yj − xj |du

= F (x) + ⟨∇F (x),y − x⟩+
d∑

j=1

∫ 1

0

∣
∣
∣
∣

∂F

∂xj
(x+ u(y − x))− ∂F
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|yj − xj |du

≤ F (x) + ⟨∇F (x),y − x⟩+
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∂xj
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∣
∣
∣
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∥y − x∥2|yj − xj |du

= F (x) + ⟨∇F (x),y − x⟩+
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(
L0,j√

d
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∣
∣
∣
∂F
∂xj

(x)
∣
∣
∣

)

∥y − x∥2
2

|yj − xj | ,

where the second inequality uses the fact that

∣
∣
∣

∫ b

a
F (x)dx

∣
∣
∣ ≤

∫ b

a
|F (x)|dx and the final one is due to

Assumption 2.

The following Lemma shows that our coordinate-wise (L0,L1) smooth assumption 2 is equivalent
to the original (L0, L1) smooth assumption (1) at least in 1-d case.

Lemma 2. Let F : R → R be a twice continuously differentiable function. Then if (1) there exists
some K0,K1 ≥ 0 such that it holds for any x, y ∈ R with |y − x| ≤ 1

K1
that |F ′(y) − F ′(x)| ≤

(K0 +K1|F ′(x)|)|y − x|, then (2) there exists some L0, L1 ≥ 0 such that it holds for any x ∈ R
d

that |F ′′(x)| ≤ L0 + L1|F ′(x)|, and vice versa.

Proof of Lemma 2. (1) ⇒ (2) By definition, for any x ∈ R, we know that

F ′′(x) = lim
h→0

F ′(x+ h)− F ′(x)

h
≤ lim

h→0

|F ′(x+ h)− F ′(x)|
|h|
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≤ lim
h→0

(K0 +K1|F ′(x)|)|h|
|h| = K0 +K1|F ′(x)| .

(2) ⇒ (1) This is a special case for 1-d and c = 1 of Corollary A.4 in [55].

Lemma 3. When L0,j = L0 and L1,j = L1 for all j ∈ [d], Assumption 2 implies (3) (up to
constants).

Proof. Suppose all L0,j , L1,j are the same across j, then we have

∥∇F (y)−∇F (x)∥2 =

√
√
√
√

d∑

j=1

∣
∣
∣
∣

∂F

∂xj
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∣
∣
∣
∣

2
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√
√
√
√
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d
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∣
∣
∣
∣
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∣
∣
∣
∣

)2

× ∥y − x∥22

≤

√
√
√
√
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2L2
0,j

d
+ 2L2

1,j

∣
∣
∣
∣

∂F
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∣
∣
∣

2
)

× ∥y − x∥22

≤
√
2L0∥y − x∥2 +

√
2L1∥y − x∥2

√
√
√
√

d∑

j=1

∣
∣
∣
∣

∂F

∂xj
(x)

∣
∣
∣
∣

2

=
(√

2L0 +
√
2L1∥∇F (x)∥2

)

× ∥y − x∥2 .

A.2 Proof of Lower Bound

Theorem 2. Fix ϵ > 0, L0 > 0, L1 > 0,M ≥ max(L0

L1
, ϵ), and x0 ∈ R. Pick any constant learning

rate η for GD, with the knowledge of the above constants. Then, there exists a 1-d (L0, L1)-smooth
function, bounded from below by f∗ (finite), and such that sup{|f ′(x)| : f(x) ≤ f(x0)} ≤ M on
which the number of iterations T of GD with learning rate η to guarantee |f ′(xT )| < ϵ is at least

ML1(f(x0)− f∗ − 15ϵ2

16L0
)

2ϵ2
(

ln ML1

L0
+ 1
) .

Proof of Theorem 2. By Lemma 2, we know that, in 1-d case, our coordinate-wise (L0,L1) assump-
tion 2 is equivalent as the original one (1). Thus, without loss of generality, we use the original
condition (1) in the proof. We will construct two different (L0, L1)-smooth functions based on the
value of η.

Case η > 2
ML1

(

ln ML1

L0
+ 1
)

. In this case, we can construct a function on which GD does not

converge, hence the lower bound is trivially true. Consider the function

f(x) =







L0
e−L1x−1

L2
1

x < − 1
L1

L0
x2

2 + L0

2L2
1

x ∈ [− 1
L1
, 1
L1

]

L0
eL1x−1

L2
1

x > 1
L1

Note that f is (L0, L1)-smooth. Without loss of generality, we can assume x0 = 1
L1

(

ln ML1

L0
+ 1
)

,

in fact if this is not the case we can translate the function f accordingly. This setting of x0 guarantees
that the bound on the gradient is correct. Moreover, with this choice, we claim the function will diverge.
To see this, we use mathematical induction to show that |xt+1| > |xt| and sign(xt+1) ̸= sign(xt) for
any t ≥ 0. First, for the case when t = 0, we have

x1 = x0 − ηf ′(x0) = x0 −
ηL0

L1
eL1x0−1 = x0 − ηM < x0 − 2x0 = −x0 .
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Then suppose the condition holds up until t and we prove for t+ 1. From the formula of f , we have
that sign(f ′(x)) = sign(x) and that f is monotonically increasing with |x|. Thus, from the update
of gradient descent which moves along the negative direction of the gradient, if we can show that
|xt+1| > |xt|, then sign(xt+1) ̸= sign(xt). This yields

|xt+1| = |xt − ηf ′(xt)| > |xt| ⇐ η|f ′(xt)| > 2|xt| ⇐ ηL0 >
2|xt|L1

exp(L1|xt| − 1)
.

Now, note that ψ(x) = 2|x|L1

exp(L1|x|−1) is decreasing for x > 1
L1

and increasing for x < − 1
L1

. Hence,

we have that

ηL0 >
2|x0|L1

exp(L1|x0| − 1)
>

2|xt|L1

exp(L1|xt| − 1)
,

where the first inequality is true by the choice of x0 >
1
L1

and the condition on η and the second one

is true by the induction hypothesis.

Case η ≤ 2
ML1

(

ln ML1

L0
+ 1
)

.

Now, consider

f(x) =







−ϵx, x < − 3ϵ
2L0

L0

2 x
2 − L3

0x
4

27ϵ2 + 9ϵ2

16L0
, x ∈ [− 3ϵ

2L0
, 3ϵ
2L0

]

ϵx, x > 3ϵ
2L0

We have that f is (L0, 0)-smooth, hence also (L0, L1)-smooth. Note that the presence of the fourth
power makes this function twice differentiable. Moreover, the maximum gradient in this case is
ϵ ≤M .

As before, without loss of generality, let the initial point x0 = 3ϵ
2L0

+∆, where ∆ > 0. We have that

f(x0) − f∗ = ϵ
(

∆+ 3ϵ
2L0

)

− 9ϵ2

16L0
, hence ∆ = 1

ϵ (f(x0)− f∗) − 15ϵ
16L0

. Now, while we stay on

the last branch of the function, we have

xt+1 = xt − ηϵ ≥ xt − ϵ
2

ML1

(

ln
ML1

L0
+ 1

)

.

Hence, we have that, for

t ≤ ML1∆

2ϵ
(

ln ML1

L0
+ 1
) =

ML1

(

f(x0)− f∗ − 15ϵ2

16L0

)

2ϵ2
(

ln ML1

L0
+ 1
) ,

we guarantee |f ′(xt)| = ϵ.

Errors in the lower bound in [56] As we said in the main text, unfortunately, the lower bound
theorem in [56] is wrong, both statement and proof. First of all, they have a logarithm of a quantity
with units, M , which is an undefined mathematical operation. A closer look at the proof reveals
that, differently from the statement of their theorem, they construct a function with L0 = L1, which
explains why these terms are missing in the logarithm. Moreover, it is also unclear if the second
constructed function satisfies the assumptions of the theorem. We correct all these issues by properly
scaling the constructed functions so that they always satisfy the (L0, L1) condition and all the units
are coherent. This result in the correct term inside the logarithm and the right conditions on L0, L1,
M , and ϵ.

A.3 Proof of Theorem 1

We first write down some notations here that we will use heavily later for easier reference:

τ̄ =

√
1− β2

η
√
d∥L1∥∞

, α = 1− β1, ρ = 1− β
1/2
2 β−1

1 ,

ϵt = mt −∇F (xt), ϵ̃t = gt −∇F (xt),

17



Ej = 6σj max(1, log(1/δ)) +
6

√

1− β2
1

√

σ2
j max(1, log(1/δ)),

Bj =
ηL0,j√

1− β2(1− β1)
+ βτ̄

1 (Mj + σj) + (1− β1)Ej ,

Cj = 1 +
η
√
dL1,j

(1− β1)
√
1− β2

, D = 1− 2η
√
d∥L1∥∞√

1− β2(1− β1)
,

A =
ρ

10
√
1− β2

.

Also, we would need the following formula many times:

βτ̄
1 = (1− α)

1
α

α
√

1−β2

η
√

d∥L1∥∞ ≤ e
− α

√
1−β2

η
√

d∥L1∥∞ , (4)

where in the first inequality we used the fact that (1− x)1/x ≤ 1
e for 0 < x < 1.

Lemma 4. With the notations in Algorithm 1, for each coordinate j ∈ [d] we have

mt,j = (1− β1)

t∑

τ=1

βt−τ
1 gτ,j , vt,j = (1− β2)

t∑

τ=1

βt−τ
2 m2

τ,j ,
|mt,j |√
vt,j

≤ 1√
1− β2

.

Proof of Lemma 4. For all t ≥ 1, we have

mt,j = β1mt−1,j + (1− β1)gt,j
= β1[β1mt−2,j + (1− β1)gt−1,j ] + (1− β1)gt,j

= . . . = (1− β1)

t∑

τ=1

βt−τ
1 gτ,j .

Similarly for vt,j . Next,

|mt,j |√
vt,j

=
|mt,j |

√

(1− β2)
∑t

τ=1 β
t−τ
2 m2

τ,j

≤ 1√
1− β2

.

The following lemma shows when we can apply Assumption 2 and Lemma 1.

Lemma 5. With notations in Algorithm 1, for τ ≤ τ̄ =
√
1−β2

η
√
d∥L1∥∞

, we have ∥xt−τ −xt∥2 ≤ 1
∥L1∥∞

.

Proof of Lemma 5. Using Lemma 4 we have

|xt−τ,j − xt,j | ≤
τ∑

i=1

|xt−i,j − xt−i+1,j | ≤
ητ√
1− β2

≤ 1√
d∥L1∥∞

⇒ ∥x− y∥2 ≤ 1

∥L1∥∞
.

The following two lemmas are the major tools we use to analyze the effects of noises.

Lemma 6 (Lemma 12, [8]). Suppose X1, . . . , XT is a martingale difference sequence in a Hilbert
space such that ∥Xt∥ ≤ R almost surely for some constant R. Further, assume Et[∥Xt∥2] ≤ σ2

t

with probability 1 for some constants σt, where Et[·] ≜ E[·|ξ1, ξ2, . . . , ξt−1] denotes the expectation
conditioned on all past randomnesses. Then, with probability at least 1− 3δ, for all k ≤ T we have

∥
∥
∥
∥
∥

k∑

t=1

Xt

∥
∥
∥
∥
∥
≤ 3Rmax(1, log(1/δ)) + 3

√
√
√
√

k∑

t=1

σ2
t max(1, log(1/δ)) .

Lemma 7. Assume Assumption 3. With the notation of Algorithm 1, let j ∈ [d] and β1 < 1. Then,
with probability at least 1− 3δ, for any t0 ∈ [t], we have
∣
∣
∣
∣
∣

t0∑

τ=1

βt−τ
1

(

gτ,j −
∂F

∂xj
(xτ )

)
∣
∣
∣
∣
∣
≤ 3σj max(1, log(1/δ)) +

3
√

1− β2
1

√

σ2
j max(1, log(1/δ)) .
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Proof of Lemma 7. Recall Assumption 3 and notice that βt−τ
1 ≤ 1 for all τ ∈ [1, t], we know that

∣
∣
∣βt−τ

1

(

gτ,j − ∂F
∂xj

(xτ )
)∣
∣
∣ ≤ σj almost surely. It also means Eτ

[(

βt−τ
1

(

gτ,j − ∂F
∂xj

(xτ )
))2

]

≤

β
2(t−τ)
1 σ2

j . Now, note that in Algorithm 1 gτ is an unbiased estimate of ∇F (xτ ) namely

Eτ

[

βt−τ
1

(

gτ,j − ∂F
∂xj

(xτ )
)]

= 0. Thus,
{

βt−τ
1

(

gτ,j − ∂F
∂xj

(xτ )
)}

1,...,t
is a martingale differ-

ence sequence. Then, using Lemma 6, with probability at least 1 − 3δ, we have for all t0 ∈ [t]
that

∣
∣
∣
∣
∣

t0∑

τ=1

βt−τ
1

(

gτ,j −
∂F

∂xj
(xτ )

)
∣
∣
∣
∣
∣
≤ 3σj max(1, log(1/δ)) + 3

√
√
√
√

t0∑

τ=1

β
2(t−τ)
1 σ2

j max(1, log(1/δ))

≤ 3σj max(1, log(1/δ)) +
3

√

1− β2
1

√

σ2
j max(1, log(1/δ)) .

The following lemma upper bounds the differences between recent true gradients and the current one.

Lemma 8. With the notation of Algorithm 1 and under the assumptions in Theorem 1, for any j ∈ [d]

and any t0 with t− t0 ≤ τ̄ =
√
1−β2

η
√
d∥L1∥∞

, we have

t∑

τ=t0

βt−τ
1

∣
∣
∣
∣

∂F

∂xj
(xt)−

∂F

∂xj
(xτ )

∣
∣
∣
∣
≤
(

L0,j + L1,j

√
d

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)
η

(1− β1)2
√
1− β2

.

Proof of Lemma 8.

t∑

τ=t0

βt−τ
1

∣
∣
∣
∣

∂F

∂xj
(xt)−

∂F

∂xj
(xτ )

∣
∣
∣
∣

≤
t∑

τ=t0

βt−τ
1

(
L0,j√
d

+ L1,j

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)

∥xt − xτ∥2

≤
t∑

τ=t0

βt−τ
1

(

L0,j + L1,j

√
d

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)
η(t− τ)√
1− β2

=

(

L0,j + L1,j

√
d

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)
η√

1− β2

t∑

τ=t0

(t− τ)βt−τ
1

≤
(

L0,j + L1,j

√
d

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)
η

(1− β1)2
√
1− β2

,

where the first inequality is due to Assumption 2 and Lemma 5, the second inequality uses Lemma 4,

and the final inequality uses the fact that
∑N

k=1 ka
k ≤ 1

(1−a)2 for any 0 < a < 1.

The following lemma upper bounds a past momentum with the current one.

Lemma 9. With the notation of Algorithm 1 and under the assumptions of Theorem 1, for any

τ ≤ τ̄ =
√
1−β2

η
√
d∥L1∥∞

, with probability at least 1− 3δ, it holds that

|mt−τ,j | ≤β−τ
1

(

|mt,j |+
∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
+

(

L0,j + L1,j

√
d

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)
η

(1− β1)
√
1− β2

+ (1− β1)Ej

)

.

Proof of Lemma 9. Denoting by ϵ̃t = gt −∇F (xt) and using Lemma 4, we have

|mt−τ,j − β−τ
1 mt,j | =

∣
∣
∣
∣
∣
(1− β1)

t∑

i=1

βt−τ−i
1 gi,j − (1− β1)

t−τ∑

i=1

βt−τ−i
1 gi,j

∣
∣
∣
∣
∣
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= (1− β1)

∣
∣
∣
∣
∣

t∑

i=t−τ+1

βt−τ−i
1 gi,j

∣
∣
∣
∣
∣

≤ (1− β1)

∣
∣
∣
∣
∣

t∑

i=t−τ+1

βt−τ−i
1

∂F

∂xj
(xi)

∣
∣
∣
∣
∣
+ (1− β1)

∣
∣
∣
∣
∣

t∑

i=t−τ+1

βt−τ−i
1 ϵ̃i,j

∣
∣
∣
∣
∣
.(5)

We now upper bound the first term of (5) using Lemma 8 by using the fact that τ ≤
√
1−β2

η∥L1∥1
:

∣
∣
∣
∣
∣

t∑

i=t−τ+1

βt−τ−i
1

∂F

∂xj
(xi)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

t∑

i=t−τ+1

βt−τ−i
1

∂F

∂xj
(xt)

∣
∣
∣
∣
∣
+

t∑

i=t−τ+1

βt−τ−i
1

∣
∣
∣
∣

∂F

∂xj
(xt)−

∂F

∂xj
(xi)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

β−τ
1

1− β1
+

(

L0,j + L1,j

√
d

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)
ηβ−τ

1

(1− β1)2
√
1− β2

.

Finally, the second term of (5) can be bounded using Lemma 7 by noticing that
∣
∣
∣
∣
∣

t∑

i=t−τ+1

βt−τ−i
1 ϵ̃i,j

∣
∣
∣
∣
∣
≤ β−τ

1

(∣
∣
∣
∣
∣

t∑

i=1

βt−i
1 ϵ̃i,j

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

t−τ∑

i=1

βt−i
1 ϵ̃i,j

∣
∣
∣
∣
∣

)

.

The following Lemma is adapted from [60]. Yet, they only considered Adam under the L-smooth
setting and when there is no noise. The existence of noise and the relaxed smoothness assumption
makes the proofs substantially more challenging. With this lemma, we know that either the true
gradient is small or that the update of our Algorithm 1 can be lower bounded.

Lemma 10. With the notation of Algorithm 1 and under the assumptions of Theorem 1, if

∣
∣
∣
∂F
∂xj

(xτ )
∣
∣
∣ ≤

Mj holds for all τ ≤ t and j ∈ [d], and D > 0, then, with probability at least 1− 3tδ we have that,

either

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
<

5Bj

D
or

|mt,j |√
vt,j

≥ ρD

5
√
1− β2

.

Proof. Given that

∣
∣
∣
∂F
∂xj

(xτ )
∣
∣
∣ ≤ Mj for any τ ≤ t and j ∈ [d], using Lemma 4 and Assumption 3,

it is immediate to show that |mt,j | ≤Mj + σj . Then, denote τ̂ = ⌊τ̄⌋ =
⌊ √

1−β2

η
√
d∥L1∥∞

⌋

namely the

largest integer that is no greater than τ̄ , from Lemma 4, we have

|mt,j |√
vt,j

=
|mt,j |

√

(1− β2)
∑t−1

τ=0 β
τ
2m

2
t−τ,j

=
|mt,j |

√
1− β2

√
∑t−1

τ=τ̂+1 β
τ
2m

2
t−τ,j +

∑τ̂
τ=0 β

τ
2m

2
t−τ,j

≥ |mt,j |
√
1− β2

√

(Mj + σj)2
βτ̂+1

2

1−β2
+
∑τ̂

τ=0 β
τ
2m

2
t−τ,j

≥ |mt,j |
(Mj + σj)β

τ̄/2
2 +

√
1− β2

∑τ̂
τ=0 β

τ/2
2 |mt−τ,j |

>
|mt,j |

(Mj + σj)βτ̄
1 +

√
1− β2

∑τ̂
τ=0 β

τ/2
2 |mt−τ,j |

,

where the final inequality uses the assumption that
√
β2 < β1. Using Lemma 9 and the definition of

ρ = 1− β
1/2
2 β−1

1 ∈ (0, 1], with probability at least 1− 3tδ, as we need to invoke Lemma 7 for at
most t times, we have

√
vt,j√

1− β2
≤ (|mt,j |+ (1− β1)Ej)

τ̂∑

τ=0

β
τ/2
2 β−τ

1 +
βτ̄
1 (Mj + σj)√

1− β2
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+

(∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
+

(

L0,j + L1,j

√
d

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)
η

(1− β1)
√
1− β2

) τ̂∑

τ=0

β
τ/2
2 β−τ

1

≤
(

|mt,j |+ Cj

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
+Bj

)
1

ρ
,

where in the last inequality we used the fact that 1
ρ ≥ 1√

1−β2
.

Thus, we consider following two cases depending on the relative size of |mt,j | vs. Cj

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣+Bj .

Case 1: |mt,j | > Cj

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣+Bj , then

|mt,j |√
vt,j

>
ρ

2
√
1− β2

. (6)

Case 2: |mt,j | ≤ Cj

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣+Bj , then we have

√
vt,j ≤

2
√
1− β2
ρ

(

Cj

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
+Bj

)

.

Also, for |mt,j | we have from Lemma 4 that

|mt,j | = (1− β1)

∣
∣
∣
∣
∣

t∑

τ=1

βt−τ
1 gτ,j

∣
∣
∣
∣
∣
≥ (1− β1)

∣
∣
∣
∣
∣

t∑

τ=t−τ̂

βt−τ
1 gτ,j

∣
∣
∣
∣
∣
− (1− β1)

∣
∣
∣
∣
∣

t−τ̂−1∑

τ=1

βt−τ
1 gτ,j

∣
∣
∣
∣
∣

≥ (1− β1)

∣
∣
∣
∣
∣

t∑

τ=t−τ̂

βt−τ
1

∂F

∂xj
(xτ )

∣
∣
∣
∣
∣

︸ ︷︷ ︸

R1

− (1− β1)

∣
∣
∣
∣
∣

t∑

τ=t−τ̂

βt−τ
1

(
∂F

∂xj
(xτ )− gτ,j

)
∣
∣
∣
∣
∣

︸ ︷︷ ︸

R2

− (1− β1)

∣
∣
∣
∣
∣

t−τ̂−1∑

τ=1

βt−τ
1 gτ,j

∣
∣
∣
∣
∣

︸ ︷︷ ︸

R3

.

The first term can be bounded below by using Lemma 8 and that τ̂ + 1 ≥ τ̄ :

R1 ≥ (1− β1)

∣
∣
∣
∣
∣

t∑

τ=t−τ̂

βt−τ
1

∂F

∂xj
(xt)

∣
∣
∣
∣
∣
− (1− β1)

∣
∣
∣
∣
∣

t∑

τ=t−τ̂

βt−τ
1

(
∂F

∂xj
(xτ )−

∂F

∂xj
(xt)

)
∣
∣
∣
∣
∣

≥
(

1− βτ̄
1 −

√
dL1,jη

(1− β1)
√
1− β2

)∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
− L0,jη

(1− β1)
√
1− β2

.

The second term can be bounded using Lemma 7. Thus,

|mt,j | ≥
(

1− βτ̄
1 −

√
dL1,jη

(1− β1)
√
1− β2

)∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
− L0,jη

(1− β1)
√
1− β2

− βτ̄
1 (Mj + σj)− (1− β1)Ej

≥ D

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
−Bj ,

where we used (4) and that e−x ≤ 1
x for x > 0.

Therefore, with probability at least 1− 3tδ we have

|mt,j |√
vt,j

≥
ρ
(

D
∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣−Bj

)

2
√
1− β2

(

Cj

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣+Bj

) . (7)

Given that D > 0, depending on the relative size of

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣ vs. Bj , we have following two cases.
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Case 2.1:

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣ <

5Bj

D .

Case 2.2:

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣ ≥ 5Bj

D , using the fact that the r.h.s of (7) is decreasing in Bj , we have

|mt,j |√
vt,j

≥
4D
5 ρ
∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣

2
√
1− β2

(
Cj +

D
5

)
∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣

≥ 2ρD

5
√
1− β2(Cj +D)

≥ ρD

5
√
1− β2

,

where in the last inequality we used the fact that Cj +D ≤ 2. Note that D < 1 so the above lower
bound is smaller than (6).

The following two lemmas are for the special case of β2 = 0.

Lemma 11. With choices of parameters in Theorem 1, when β2 = 0, we have ∥xt+1 − xt∥2 =

η
√
d ≤ 1

∥L1∥∞
.

Proof of Lemma 11. Using the fact that α ≤ 1 and the condition on T , we have

η =

√
∆α

√

∥L0∥1
√
T

≤
√
∆

√

∥L0∥1
√
T

≤
√
∆

√

∥L0∥1

√

∥L0∥1
10
√
d
√
∆∥L1∥∞

≤ 1√
d∥L1∥∞

.

The following lemma is adapted from the proof of Theorem 2 in [8].

Lemma 12. Under Assumptions 1, 2, and 3, using the settings of the hyperparameters in Theorem 1,
denoting α = 1− β1 and ϵt = mt −∇F (xt), for all t ≥ 1 and j ∈ [d] we have, with probability at
least 1− 3δ,

|ϵt+1,j | ≤ (1−α)t
(

ασj + (1− α)

∣
∣
∣
∣

∂F

∂xj
(x1)

∣
∣
∣
∣

)

+
ηL0,j

α
+αEj+(1−α)η

√
dL1,j

t−1∑

τ=0

(1−α)τ
∣
∣
∣
∣

∂F

∂xj
(xt−τ )

∣
∣
∣
∣
.

Proof of Lemma 12. Denote ϵ̃t = gt − ∇F (xt) and Sj(a, b) = ∂F
∂xj

(a) − ∂F
∂xj

(b). Then, from

Assumption 2 and Lemma 11, for all t ≥ 1 and all j ∈ [d] we have

ϵ1 = αϵ̃1 − (1− α)∇F (x1), (8)

∥xt+1 − xt∥2 ≤ 1

∥L1∥∞
⇒ |Sj(xt+1,xt)| ≤

(
L0,j√
d

+ L1,j

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)

∥xt+1 − xt∥2 . (9)

We can derive the following recursive formulation for any t ≥ 1:

mt+1,j = (1− α)mt,j + αgt+1,j

= (1− α)
∂F

∂xj
(xt) + (1− α)ϵt,j + α

∂F

∂xj
(xt+1) + αϵ̃t+1,j

=
∂F

∂xj
(xt+1) + (1− α)Sj(xt,xt+1) + (1− α)ϵt,j + αϵ̃t+1,j ,

which implies

ϵt+1,j = (1− α)ϵt,j + (1− α)Sj(xt,xt+1) + αϵ̃t+1,j . (10)

Unravel (10) from 1 to t gives us

ϵt+1,j = (1− α)tϵ1,j + (1− α)

t−1∑

τ=0

(1− α)τSj(xt−τ ,xt+1−τ ) + α

t−1∑

τ=0

(1− α)τ ϵ̃t+1−τ,j .

Take the absolute value of both sides, to obtain

|ϵt+1,j | ≤(1− α)t|ϵ1,j |+ (1− α)
t−1∑

τ=0

(1− α)τ |Sj(xt−τ ,xt+1−τ )|+ α

∣
∣
∣
∣
∣

t−1∑

τ=0

(1− α)τ ϵ̃t+1−τ,j

∣
∣
∣
∣
∣
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≤(1− α)t|ϵ1,j |+ (1− α)
t−1∑

τ=0

(1− α)τ
(
L0,j√
d

+ L1,j

∣
∣
∣
∣

∂F

∂xj
(xt−τ )

∣
∣
∣
∣

)

∥xt+1−τ − xt−τ∥2 + αEj

≤(1− α)t|ϵ1,j |+ (1− α)ηL0,j

t−1∑

τ=0

(1− α)τ + (1− α)η
√
dL1,j

t−1∑

τ=0

(1− α)τ
∣
∣
∣
∣

∂F

∂xj
(xt−τ )

∣
∣
∣
∣
+ αEj

≤(1− α)t
(

ασj + (1− α)

∣
∣
∣
∣

∂F

∂xj
(x1)

∣
∣
∣
∣

)

+
ηL0,j

α
+ (1− α)η

√
dL1,j

t−1∑

τ=0

(1− α)τ
∣
∣
∣
∣

∂F

∂xj
(xt−τ )

∣
∣
∣
∣
+ αEj ,

where the second inequality uses (9) and Lemma 7, the fourth and fifth inequalities use (9), and the
final one is due to (8).

Theorem 1. Under Assumptions 1, 2, and 3, assume Mj := sup
{∣
∣
∣
∂F
∂xj

(x)
∣
∣
∣ : F (x) ≤ F (x1)

}

is

finite for each j ∈ [d], let ∆ be any upper bound on F (x1)− F ∗, α = min

(√
∥L0∥1

√
∆

∥σ∥1

√
T

, 1

)

, β1 =

1−α,
√
β2

β1
< 1, ρ = 1−

√
β2

β1
, η =

√
∆α√

∥L0∥1

√
T

, for T ≥ max
(

100d∆∥L1∥2
∞

(1−β2)ρ2∥L0∥1
,
10000d2∆∥σ∥2

1∥L1∥4
∞

(1−β2)2ρ4∥L0∥3
1

)

,

Algorithm 1 guarantees, with probability at least 1− δ, that

min
t∈[T ]

∥∇F (xt)∥1 =O
(√

log(dT/δ)∥L0∥1/41 ∆1/4∥σ∥1/21

ρ
√
1− β2T 1/4

+
log(dT/δ)

√

∥L0∥1∆
ρ
√
T

)

+O
(

∥M∥1 + ∥σ∥1
ρ

exp

(

−
√
1− β2∥L0∥3/41√

d∥L1∥∞∥σ∥1/21 ∆1/4
T 1/4

)

+
∥∇F (x1)∥1

T

)

.

Furthermore, for the case when β2 = 0, we have the following refined guarantee:

min
t∈[T ]

∥∇F (xt)∥1 =O
(√

log(dT/δ)∥L0∥1/41 ∆1/4∥σ∥1/21

T 1/4
+

log(dT/δ)
√

∥L0∥1∆√
T

)

+O
(

∥∇F (x1)∥1√
T

(

1√
T

+
∥σ∥1

√

∥L0∥1∆

)

+
∥σ∥1
T

)

.

Proof of Theorem 1 for β2 = 0. From Lemma 11 we know that ∥xt+1 − xt∥2 ≤ 1
∥L1∥∞

for all

t ∈ [T ]. Thus, we can apply Lemma 1 to have

F (xt+1)− F (xt)

≤ ⟨∇F (xt),xt+1 − xt⟩+
d∑

j=1

(
L0,j√

d
+ L1,j

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣

)

∥xt+1 − xt∥2
2

|xt+1,j − xt,j |

= ⟨∇F (xt),−ηsign(mt)⟩+
d∑

j=1

L0,j + L1,j

√
d
∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣

2
η2

= −η∥∇F (xt)∥1 + η⟨∇F (xt), sign(∇F (xt))− sign(mt)⟩+
d∑

j=1

L0,j + L1,j

√
d
∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣

2
η2

= −η∥∇F (xt)∥1 + 2η
d∑

j=1

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
I

[

sign

(
∂F

∂xj
(xt)

)

̸= sign(mt,j)

]

+

d∑

j=1

L0,j + L1,j

√
d
∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣

2
η2 ,
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where I(·) is the indicator function and the first inequality uses Lemma 1,

Now, note that

I

[

sign

(
∂F

∂xj
(xt)

)

̸= sign(mt,j)

]

≤ I

[∣
∣
∣
∣

∂F

∂xj
(xt)−mt,j

∣
∣
∣
∣
≥
∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

]

≤

∣
∣
∣
∂F
∂xj

(xt)−mt,j

∣
∣
∣

∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣

.

Thus, denoting by ϵt = mt −∇F (xt) gives

F (xt+1)− F (xt) ≤ −η∥∇F (xt)∥1 + 2η∥ϵt∥1 +
d∑

j=1

L0,j + L1,j

√
d
∣
∣
∣
∂F
∂xj

(xt)
∣
∣
∣

2
η2

= −η∥∇F (xt)∥1 + 2η∥ϵt∥1 +
∥L0∥1η2

2
+
η2
√
d

2

d∑

j=1

L1,j

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
.

Sum both sides over t = 1, . . . , T , to have

F ∗ − F (x1) ≤ −η
T∑

t=1

∥∇F (xt)∥1 + 2η

T∑

t=1

∥ϵt∥1 +
∥L0∥1η2T

2
+
η2
√
d

2

T∑

t=1

d∑

j=1

L1,j

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
.

(11)

Use Lemma 12 to bound each coordinate of
∑T

t=1 ∥ϵt∥1:

T−1∑

t=0

|ϵt+1,j |

≤
T−1∑

t=0

[

(1− α)t
(

ασj + (1− α)

∣
∣
∣
∣

∂F

∂xj
(x1)

∣
∣
∣
∣

)

+
ηL0,j

α
+ αEj

]

+ (1− α)η
√
dL1,j

T−1∑

t=0

t−1∑

τ=0

(1− α)τ
∣
∣
∣
∣

∂F

∂xj
(xt−τ )

∣
∣
∣
∣

= σj +
1

α

∣
∣
∣
∣

∂F

∂xj
(x1)

∣
∣
∣
∣
+
ηL0,jT

α
+ αEjT + (1− α)η

√
dL1,j

T−1∑

t=1

t∑

τ ′=1

(1− α)t−τ ′
∣
∣
∣
∣

∂F

∂xj
(xτ ′)

∣
∣
∣
∣

= σj +
1

α

∣
∣
∣
∣

∂F

∂xj
(x1)

∣
∣
∣
∣
+
ηL0,jT

α
+ αEjT + (1− α)η

√
dL1,j

T−1∑

τ ′=1

(
T−1∑

t=τ ′

(1− α)t

)

(1− α)−τ ′
∣
∣
∣
∣

∂F

∂xj
(xτ ′)

∣
∣
∣
∣

≤ σj +
1

α

∣
∣
∣
∣

∂F

∂xj
(x1)

∣
∣
∣
∣
+
ηL0,jT

α
+ αEjT +

(1− α)η
√
dL1,j

α

T−1∑

t=1

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
.

The above one holds with probability at least 1− 3Tδ as we invoked Lemma 12 for T times which in
turns means invoking Lemma 7 for T times. Yet, the above inequality would need to sum from j = 1
to d, meaning in total we would invoke Lemma 7 for dT times. Thus, following results hold with
probability at least 1− 3dTδ.

Now, put the above inequality back into (11) to have

F ∗ − F (x1)

≤− η

T∑

t=1

∥∇F (xt)∥1 +
∥L0∥1η2T

2
+
η2
√
d

2

T∑

t=1

d∑

j=1

L1,j

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
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+ 2η

d∑

j=1

(

σj +
1

α

∣
∣
∣
∣

∂F

∂xj
(x1)

∣
∣
∣
∣
+
ηL0,jT

α
+ αEjT +

(1− α)η
√
dL1,j

α

T∑

t=1

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

)

=− η
T∑

t=1

∥∇F (xt)∥1 +
∥L0∥1η2T

2
+
η2
√
d

2

T∑

t=1

d∑

j=1

L1,j

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
+ 2η∥σ∥1

+
2η

α
∥∇F (x1)∥1 +

2η2∥L0∥1T
α

+ 2ηαT

d∑

j=1

Ej +
2η2

√
d

α

T∑

t=1

d∑

j=1

L1,j

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣

=− η

T∑

t=1

∥∇F (xt)∥1 + 2η∥σ∥1 +
2η

α
∥∇F (x1)∥1 +

(
1

2
+

2

α

)

∥L0∥1η2T + 2ηαT

d∑

j=1

Ej

+

(
1

2
+

2

α

)

η2
√
d

T∑

t=1

d∑

j=1

L1,j

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
.

Now, using the definitions of η and α, and the conditions on T , we have
(
1

2
+

2

α

)

η2
√
dL1,j ≤

η

2

(

1 +
4

α

) √
d
√
∆α√
T

∥L1∥∞
√

∥L0∥1
≤ η

2

5
√
d
√
∆√

αT

∥L1∥∞
√

∥L0∥1

=
η

2

5
√
d
√
∆√

T

∥L1∥∞
√

∥L0∥1
·max

( √

∥σ∥1T 1/4

∥L0∥1/41 ∆1/4
, 1

)

=
η

2
max

(

5
√
d
√

∥σ∥1∥L1∥∞∆1/4

∥L0∥3/41 T 1/4
,
5
√
d
√
∆√

T

∥L1∥∞
√

∥L0∥1

)

≤ η

2
.

Thus, we have

F ∗−F (x1) ≤ −η
2

T∑

t=1

∥∇F (xt)∥1+2η∥σ∥1+
2η

α
∥∇F (x1)∥1+

(
1

2
+

2

α

)

∥L0∥1η2T+2ηαT

d∑

j=1

Ej .

Divide both sides by T and rearrange terms to give

1

T

T∑

t=1

∥∇F (xt)∥1 ≤ 2

ηT
[F (x1)− F ∗] +

4

T
∥σ∥1 +

4

αT
∥∇F (x1)∥1 +

5

α
∥L0∥1η

+ 24∥σ∥1(αmax(1, log(1/δ)) +
√
α
√

max(1, log(1/δ))) .

Now, we need to consider the following two cases:

1. ∥σ∥1 <
√

∥L0∥1

√
∆√

T
: then α = 1 and η =

√
∆√

∥L0∥1

√
T

1

T

T∑

t=1

∥∇F (xt)∥1 ≤ 2
√

∥L0∥1√
∆
√
T

[F (x1)− F ∗] +
5∥L0∥1

√
∆

√

∥L0∥1
√
T

+
4
√

∥L0∥1
√
∆

T 3/2
+

4

T
∥∇F (x1)∥1

+
24
√

∥L0∥1
√
∆(max(1, log(1/δ)) +

√

max(1, log(1/δ)))√
T

≤ 59max(1, log(1/δ))
√

∥L0∥1∆√
T

+
4

T
∥∇F (x1)∥1 . (12)

2. ∥σ∥1 ≥
√

∥L0∥1∆√
T

: then α =

√
∥L0∥1∆

∥σ∥1

√
T

≤ 1 and η = ∆3/4

∥L0∥1/4
1

√
∥σ∥1T 3/4

1

T

T∑

t=1

∥∇F (xt)∥1
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≤2∥L0∥1/41

√

∥σ∥1
∆3/4T 1/4

[F (x1)− F ∗] +
4∥σ∥1
T

+
4∥σ∥1

√

∥L0∥1∆T
∥∇F (x1)∥1 +

5∥L0∥1/41

√

∥σ∥1∆1/4

T 1/4

+
24max(1, log(1/δ))

√

∥L0∥1∆√
T

+
24
√

max(1, log(1/δ))∥L0∥1/41

√

∥σ∥1∆1/4

T 1/4

≤31
√

max(1, log(1/δ))∥L0∥1/41 ∆1/4
√

∥σ∥1
T 1/4

+
24max(1, log(1/δ))

√

∥L0∥1∆√
T

+
4∥σ∥1∥∇F (x1)∥1
√

∥L0∥1∆T
+

4∥σ∥1
T

.

Put δ′ = δ
3dT concludes the proof.

Proof of Theorem 1 for general β2. Note that when ∥σ∥1 ≤
√

∥L0∥1∆√
T

, α = 1, β2 < β2
1 = 0. Then

our Generalized SignSGD algorithm 1 reduces to the SignSGD algorithm, and thus has the same

guarantee of (12). Therefore, we only consider the other case when ∥σ∥1 ≥
√

∥L0∥1∆√
T

.

Note that the only randomness comes from evaluating stochastic gradients. In the following proof, we
will need to invoke Lemma 7 for T times for each coordinate j ∈ [d]. Therefore, the following results
hold with probability at least 1− 3dTδ. For simplicity, we use the term "with high probability" later
in the proof to denote this.

We derive the following quantity which will be used multiple times later:

η

α
=

1
√

∥L0∥1
·
√
∆√
T

· 1√
α

=
1

√

∥L0∥1
·
√
∆√
T

· ∥σ∥1/21 T 1/4

∥L0∥1/41 ∆1/4
=

∥σ∥1/21 ∆1/4

∥L0∥3/41 T 1/4
. (13)

First, from Lemma 10 we have D = 1− 2
√
d∥L1∥∞η

(1−β1)
√
1−β2

. Then, from the choice of the hyperparameters,

we have √
d∥L1∥∞η

(1− β1)
√
1− β2

=
∥L1∥∞√
1− β2

·
√
d∥σ∥1/21 ∆1/4

∥L0∥3/41 T 1/4
≤ ρ

10
≤ 1

10
.

Thus, we have D ≥ 1− 1
5 ≥ 1

2 and, as
√
β2/β1 < 1,

ρD

5
√
1− β2

≥ ρ
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√
1− β2

= A . (14)

Also, for those coordinates with small gradients
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∂F

∂xj
(xt) · (xt+1,j − xt,j) =− η

∂F

∂xj
(xt) ·

mt,j√
vt,j

=−Aη

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
+ η

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
·
(

A− sign

(
∂F

∂xj
(xt)

)
mt,j√
vt,j

)

≤−Aη

∣
∣
∣
∣

∂F

∂xj
(xt)

∣
∣
∣
∣
+ 10Bjη

(
1√

1− β2
+A

)

. (15)

We are now ready to prove the theorem. We will need to use Lemma 10, hence we first need to show

that all past true gradients are bounded by Mj , namely that, for any t,
∣
∣
∣
∂F
∂xj

(xτ )
∣
∣
∣ ≤Mj holds for all

τ ≤ t and all j ∈ [d]. From the definition of Mj stated in the theorem, in order to guarantee this, we
only need to prove that F (xτ ) ≤ F (x1) for all τ ≤ t. We will prove this by induction.

For t = 1 the condition is trivially true.

We then assume that the condition holds for t and prove based on this that it still holds for t+ 1.
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For those coordinates with
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where the first equality comes from Lemma 4; for the second inequality, the third term can be bounded
using Lemma 8, and the final term can be bounded using Lemma 7; for the third inequality, we

used (4) and that e−x ≤ 1
x for x > 0. This inequality implies that sign(mt,j) = sign

(
∂F
∂xj

(xt)
)

with high probability.

Denote Ut =
{

j ∈ [d] :
∣
∣
∣
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∣
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D

}

. From the choices of hyperparameters we can show that

1 ≤ τ̄ which means ∥xt+1−xt∥2 ≤ 1
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(Lemma 5). Thus, using Lemma 1, with high probability

we have
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where the second inequality uses (15), (16), and Lemma 4, and the third inequality uses Lemma 10
and (14).

Now, noticing the conditions on η, α, β2 < β2
1 < β1, and T , use (13) to have

η2
√
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≤ η

√
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2
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Thus, (17) becomes

F (xt+1)− F (xt) ≤ −Aη
2
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Therefore, either
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A
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or F (xt+1)− F (xt) ≤ 0.

This concludes the mathematical induction up until (19) is met for the first time which we denote as
T0. In the following, we will explain that if (19) holds then the algorithm has found an approximate
stationary point.

Now, suppose T ≤ T0, then (18) holds all the time and we sum both sides of it from 1 to T to have,
with high probability,
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Rearrange terms to obtain
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Note that RHS of (19) is less than RHS of (20). Thus, for the other case of T > T0, (20) still holds.
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Table 2: Hyperparameter grid search ranges and choices yielding the highest validation accuracy for
each optimizer for training a 20-layer Resnet to do image classification on CIFAR-10. ("lr" denotes
the initial learning rate, "clip" denotes the clipping parameter γ in Algorithm 1 of [55], and "β2" is
defined in [25] for Adam and in Algorithm 1 for ours.)

Optimizer Grid Search Range Best Choice

SGD Momentum lr {1e-5, 0.0001, 0.001, 0.01, 0.05, 0.07, 0.1, 0.2, 0.3, 1, 10} lr=0.07

SGD Momentum Normalized lr {0.0001, 0.001, 0.01, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.5 1, 10} lr=0.1

SGDClipGrad
lr {0.001, 0.01, 0.05, 0.1, 0.5, 1, 10}

clip {0.1, 1, 10}
lr=0.5
clip=1

SGDClipMomentum
lr {0.001, 0.01, 0.1, 1, 5, 10, 20, 50}

clip {0.01, 0.1, 1, 10}
lr=10

clip=0.1

Adam
lr {1e-5, 0.0001, 0.0007, 0.0009, 0.001, 0.002, 0.003, 0.01, 0.1}

β2 {0.4, 0.8, 0.999}
lr=0.0009
β2=0.999

Our Algorithm 1
lr {5e-5, 8e-5, 0.0001, 0.0002, 0.0005, 0.001, 0.01}

β2 {0.4, 0.8, 0.999}
lr=0.0002
β2 = 0.999

≤ 1560∆1/4∥L0∥1/41 ∥σ∥1/21

√
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ρ
√
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+
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.

Finally, taking δ′ = δ
3dT , we obtain the stated result.

A.4 More Experiment Details

In this section, we provide more details for the experiments we show in Section 5.

Hyperparameter Tuning During the validation stage, we used grid-search to fine-tune respective
hyperparameters and choose the ones that yield the best validation results. We tuned the hyperpa-
rameters using the following two-stage grid searching strategy: First, search over a coarse grid, and
select the one yielding the best validation result. Next, continue searching in a fine grid centering
at the best-performing hyperparameters found in the coarse stage, and in turn, take the best one as
the final choice. Also, whenever the best-performing hyperparameters lie in the boundary of the
searching grid, we always extend the grid to make the final best-performing hyperparameters fall into
the interior of the grid, if possible.

Resnet on CIFAR-10 We randomly selected 10% images from the training dataset for validation.
Yet, during testing, we trained on the whole training dataset. The detailed search ranges and the
hyperparameter choices yielding the highest validation accuracy for each optimizer are listed in
Table 2.

AWD-LSTM on Penn Treebank We used the original train-validation-test split that comes with
the dataset. The momentum parameter (β1) is fixed to be 0.9 except for SGDClipGrad which does
not use momentum. The detailed search ranges and the hyperparameter choices yielding the lowest
validation perplexity for each optimizer are listed in Table 3.

A.5 Training a Transformer Model on WMT’16 German-English Translation Task

We noted that Transformers [50] are gaining huge popularities recently and reported in Figure 1
and 3 that Transformers observe the relaxed smoothness conditions. Thus, to further showcase
the effectivity of our algorithm 1 compared with other optimizers listed in 5.1, we train a 6-layer
Transformer model to do machine translation on the WMT’16 Multimodal Machine Translation
Task German-English dataset. The implementation of the transformer is forked from here3 and we
inherited the default model structure. We also adopted the warm-up steps of 128000 and the learning
rate decay strategy as recommended by the GitHub repo. The mini-batch size is 256 and we trained
for 400 epochs.

3https://github.com/jadore801120/attention-is-all-you-need-pytorch
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Table 3: Hyperparameter grid search ranges and choices yielding the lowest validation perplexity
for each optimizer for training an AWD-LSTM to do language modeling on Penn Treebank. ("wd"
denotes the weight decay value, "lr" denotes the initial learning rate, "clip" denotes the clipping
parameter γ in Algorithm 1 of [55], and "β2" is defined in [25] for Adam and in Algorithm 1 for
ours.)

Optimizer Grid Search Range Best Choice

SGD Momentum
wd {1e-7, 1.2e-6, 5e-6, 1e-5, 1e-4, 1e-3}
lr {0.001, 0.01, 0.1, 0.5, 0.8, 1, 2, 4, 5}

wd=1e-5
lr=1

SGD Momentum Normalized
wd {1e-7, 1.2e-6, 5e-6, 1e-5, 5e-5, 1e-4}
lr {0.01, 0.05, 0.1, 0.5, 0.8, 1, 2, 4, 5, 10}

wd=5e-6
lr=2

SGDClipGrad
wd {1e-7, 1.2e-6, 5e-6, 1e-5}

lr {0.1, 0.5, 1, 5, 10, 20, 30, 40, 50, 60, 70}
clip {1, 2.5, 7.5, 10, 15, 20}

wd=1.2e-6
lr=50

clip=10

SGDClipMomentum
wd {1e-7, 1.2e-6, 5e-6, 1e-5}

lr {5, 10, 20, 30, 50, 100}
clip {1, 2.5, 7.5}

wd=1.2e-6
lr=20

clip=2.5

Adam
wd {1e-7, 1.2e-6, 5e-6, 1e-5}

lr {0.0001, 0.001, 0.002, 0.003, 0.01, 0.1}
β2 {0.4, 0.8, 0.999}

wd=5e-6
lr=0.002
β2=0.999

Our Algorithm 1
wd {1e-7, 1.2e-6, 5e-6, 1e-5}

lr {0.0001, 0.001, 0.002, 0.003, 0.01, 0.1}
β2 {0.4, 0.8, 0.999}

wd=1.2e-6
lr=0.001
β2=0.999

Table 4: Average final training loss, test perplexity, and test accuracy achieved by each method
when optimizing the Transformer model on the WMT’16 Multimodal Machine Translation Task
German-English dataset. The ± shows 95% confidence intervals of the mean value over 5 runs
starting from different random seeds.

Methods Training loss Test perplexity Test accuracy

SGD Momentum 2.8045± 0.0209 10.4319± 0.1973 63.9108± 0.5797
SGD Momentum Normalized 2.9268± 0.0512 10.5793± 0.6383 63.0774± 0.8231

SGDClipGrad 3.0214± 0.0508 10.5974± 0.3527 62.2534± 0.3145
SGDClipMomentum 2.8128± 0.0295 10.4677± 0.3619 63.6562± 0.5370

Adam 1.4303± 0.0009 8.9088± 0.1294 68.9828± 0.2786
Our Algorithm 1 1.6263± 0.0024 7.2731± 0.0870 68.5790± 0.4693

For the hyperparameter tuning, the momentum parameter (β1) is fixed to be 0.9 except for SGDClip-
Grad which does not use momentum. We then used grid-search to fine-tune the initial learning rate
and the weight decay value for all optimizers, as well as the clipping threshold for SGDClipGrad and
SGDClipMomentum, and β2 for Adam and our algorithm. We select the combination of hyperparam-
eters that gives the lowest validation perplexity. The detailed search ranges and the hyperparameter
choices yielding the lowest validation perplexity for each optimizer are listed in Table 3.

We then employ the best-performing hyperparameters to report the testing performance. The testing
is repeated with random seeds 5 times to eliminate the influence of stochasticity. The results are
reported in Figure 6 and Table 4. Here the accuracy means the proportion of correct correspondences
of words, namely the same word at the same location, between the machine-translated output and the
target. It can be seen that we can still match the performance of Adam while beating the others. Also,
note that the curves of SGD Momentum and the ones of SGDClipMomentum overlap as they utilize
the same weight decay values and initial learning rates, and turns out clipping is seldomly performed
when employing SGDClipMomentum.
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