Robustness to Unbounded Smoothness of Generalized
SignSGD

Michael Crawshaw* Mingrui Liu* Francesco Orabona*
George Mason University George Mason University Boston University
mcrawsha@gmu.edu mingruil@gmu.edu francesco@orabona.com
Wei Zhang* Zhenxun Zhuang*
IBM T. J. Watson Research Center Meta Platforms, Inc.
weiz@us.ibm.com oldboymls@gmail.com
Abstract

Traditional analyses in non-convex optimization typically rely on the smoothness
assumption, namely requiring the gradients to be Lipschitz. However, recent
evidence shows that this smoothness condition does not capture the properties of
some deep learning objective functions, including the ones involving Recurrent
Neural Networks and LSTMs. Instead, they satisfy a much more relaxed condition,
with potentially unbounded smoothness. Under this relaxed assumption, it has been
theoretically and empirically shown that the gradient-clipped SGD has an advantage
over the vanilla one. In this paper, we show that clipping is not indispensable for
Adam-type algorithms in tackling such scenarios: we theoretically prove that a
generalized SignSGD algorithm can obtain similar convergence rates as SGD with
clipping but does not need explicit clipping at all. This family of algorithms on
one end recovers SignSGD and on the other end closely resembles the popular
Adam algorithm. Our analysis underlines the critical role that momentum plays
in analyzing SignSGD-type and Adam-type algorithms: it not only reduces the
effects of noise, thus removing the need for large mini-batch in previous analyses of
SignSGD-type algorithms, but it also substantially reduces the effects of unbounded
smoothness and gradient norms. To the best of our knowledge, this work is the
first one showing the benefit of Adam-type algorithms compared with non-adaptive
gradient algorithms such as gradient descent in the unbounded smoothness setting.
We also compare these algorithms with popular optimizers on a set of deep learning
tasks, observing that we can match the performance of Adam while beating others.

1 Introduction

Recent years have witnessed a surge in non-convex machine learning models, with a focus on deep
neural networks [27]. DNNs have achieved tremendous progress in a variety of tasks, including
computer vision [26, 18, 23], natural language processing [11, 50], and a lot more. Despite their huge
empirical success, the theoretical analyses of non-convex optimization [21] prove to be fundamentally
more challenging than the established convex optimization theory [4]. Among the numerous literature,
many of them assume smoothness of the objective function, namely requiring the gradients to be
Lipschitz. Under this scenario, past works have succeeded in proving the convergence rates for a
number of algorithms, e.g., Stochastic Gradient Descent [14], AdaGrad [52, 30], and STORM [9, 7].

Nevertheless, it was recently observed that the smoothness assumption does not capture the training
of LSTMs [20]: the Hessian can grow with the size of the gradients [56]. Inspired by this, Zhang et

*Authors in alphabetical order.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Iteration le7 Iteration

>
°

600
—— Adam No Clipping

12500 Adam With Clipping

o
S
=]

30000

s

S

s
w
«n

10000

w
S
S

=

7500 20000

N
5
3
smoothness
Training Loss
w
°
-

o

smoothness

2 5000 W
&
3 2500

10000

-
)
3

N

n

0 25 50 75 100 125 150 175 200
0 Epoch

o

> 0

2500 5000 7500
gradient norm gradient norm

(a) Wikitext-2 (b) WMT’ 16 de-en

@
S

—— Adam No Clipping
Adam With Clipping

2 N
S S

Figure 1: Local gradient Lipschitz constant
vs. Gradient norm on training (a) a 2-layer Trans-
former Encoder on Wikitext-2 (b) a 6-layer o B s 75 a0 15 1% 15 200
Transformer on WMT’ 16 Multimodal Machine

Translation de-en dataset. The colorbar indicates ~ Figure 2: Training GPT-2 on Wikitext-103 using
#lterations in training. Details in Section 5.2. Adam with or without gradient clipping.

Validation Perplexity
Now B
S 5 5 5

Iteration
1le9 Iteration le8 Iteration 1le9 Iteration 1e6 .

30000 2.0 30000 30000

=
«

20000 20000 20000

smoothness
smoothness
smoothness

=
)

10000 g5 10000 10000

0 500 1000 0 0 30 0 [500
absolute gradient value absolute gradient value absolute gradient value absolute gradient value

(a) Encoder First Layer (b) Encoder Last Layer (c) Decoder Second Layer (d) Decoder Last Layer

Figure 3: Local gradient Lipschitz constant vs. absolute gradient value on training a Transformer on
WMT’ 16 Multimodal Translation de-en dataset. Each figure represents a randomly picked coordinate
in corresponding layers. The colorbar indicates #lterations during training. Details in Section 5.2.

al. [56] proposed a relaxed smoothness assumption, named (Lg, L1) smoothness:
IV*F(@)| < Lo + L1 | VF ()| - (1)

They also showed that the well-known gradient clipping technique can ensure Stochastic Gradient
Descent’s (SGD) convergence in such scenarios. Later, their results were improved to show that SGD
with clipping can be made unaffected by the L; in (1) and is able to recover the optimal convergence
rate of SGD under the original smoothness setting [55, 22].

Nevertheless, the (Lg, L) condition has not yet been empirically verified beyond LSTMs. Therefore,
our first contribution lies in studying the applicability and generalization of the (Lg, L1) condition.
In particular, we have empirically verified that the popular Transformer [50] model also seems to
satisfy this assumption, see Figure 1. Yet, we noticed that different coordinates, especially when they
are in different layers of the model, exhibit very distinct Ly and L; values as shown in Figure 3. Hence,
we propose to refine the (Lo, L) assumption in (1) to a coordinate-wise version (Assumption 2) and
consider this to better capture the loss surface when training deep neural networks like Transformers.

Given that we assume (a generalization) of the (Lo, L) assumption, it would be natural to use some
clipping procedure. However, we found out that the use of clipping on Adam [25], while carried out
in common practice [e.g., 53], has no effect on the training and testing performance on optimizing
a large transformer model as shown in Figure 2. In retrospect, this might not be surprising: It is
known that Adam has an implicit clipping behavior due to the normalization by the estimated second
moment of the gradients. Indeed, Adam can be interpreted as a variant of SignSGD [2].

Inspired by this, our second contribution is to propose and analyze a generalized SignSGD algorithm
under the relaxed smoothness assumption. It is parameterized in such a way that it on one end
recovers SignSGD while on the other end closely resembles Adam. Apart from the convergence
rates, we also located the critical role the momentum plays in analyzing Adam-type algorithms: it
not only reduces the effects of noise but also gives an exponential decaying effect on the unbounded
gradient norms and smoothness. This can partly explain the phenomenon that clipping does not help
Adam. Moreover, we show a gap between the upper bound of SignSGD and the lower bound of SGD

in the relaxed smoothness setting. This can be considered as a first step in explaining the superior
performance of Adam in practical deep learning problems.

The structure of this paper is as follows. Section 2 discusses related works and how our paper builds
upon and distinguishes from them. The settings and assumptions are carried out in Section 3. We will
introduce formally the generalized SignSGD algorithm and its analysis in Section 4, with a detailed
discussion on the bounds and the role of momentum. The experimental results are shown in Section 5,
comparing our algorithm with some popular competitors in deep learning tasks. Finally, we draw
some conclusions and discuss the limitations of our work in Section 6.

Notations We will use [d] to denote the sequence [1,2,...,d] and use bold letters to represent
vectors, e.g., u € R?. The j-th coordinate of a vector u is u;. Throughout this paper, we study the
Euclidean space R with the inner product (-,-). E[u] means the expectation with respect to the
underlying probability distribution of a random variable w, and [E;[u] is the conditional expectation
of u conditioned on the past of time ¢. The gradient of F at « is denoted by VF'(x). We use I(+) to

denote the indicator function, ||u|, to denote the p-norm: ||ul|, := (Z?Zl |u;|P)1/P and ||u|| the

maximum norm: |||« = max{|uil,..., |uq|}. We also denote by Zi:l xr = 0 wheni > j.

2 Related Works

Adaptive Gradient Methods Adaptive gradient methods [34, 12, 25, 19, 44] are popular optimizers
for training deep neural networks. The traditional analysis of adaptive gradient methods is providing
regret bounds under the online convex optimization framework [12, 25, 44]. Recently, there are some
analysis of adaptive gradient methods for nonconvex smooth functions [6, 5, 54, 10, 61]. Zou et
al. [60] introduces an intriguing connection between Adam [25] and SignGD [3] when training a
two-layer neural network in the deterministic setting, where SignGD is an algorithm following the
negative gradient sign direction to perform the update. However, these works cannot be directly
extended to nonconvex functions with unbounded smoothness in the stochastic setting. To the best of
our knowledge, this work is the first one establishing guarantees for coordinate-wise type optimizers
like generalized SignSGD as well as Adam-type updates under a relaxed smoothness condition.

Gradient Clipping The algorithm and analysis of gradient clipping can be traced back to [1, 48, 13]
under the assumption that the function is convex and rapidly growing. Hazan et al. [17] considered
gradient clipping in quasi-convex optimization. Mai and Johansson [32] showed the stability and
convergence of stochastic gradient clipping algorithms for convex problems without the smoothness
condition. Gradient clipping is a standard technique in training deep neural networks [39, 40]
such as RNNs and LSTMs. The theoretical analysis of gradient clipping for nonconvex models is
pioneered by [56], in which the authors analyzed the convergence of gradient clipping under the
relaxed smoothness assumption rather than the standard smoothness assumption. Zhang et al. [55]
further improved the convergence rate bound under the same assumption as in [56]. Gradient clipping
is also used when there is a heavy tail noise in the stochastic gradient to establish high probability
convergence rates [8, 15, 57]. Cutkosky and Mehta [7] proved that normalized momentum improves
normalized SGD under a second-order smoothness condition. A close algorithm is the one in [22]
which employs gradient normalization, momentum, and no gradient clipping to tackle the (Lo, L1)
condition (1) and control noise. Yet, their algorithm normalizes each coordinate with the same scale
unlike popular optimizers such as Adam [25]. Moreover, we observe empirically that normalized
SGD with momentum performs worse than Adam. Motivated by this, we propose a coordinate-wise
optimization algorithm which requires new analysis tools compared with [22].

Employ m? to compute v; in Adam Designed to combine the advantages of Adagrad [12] and
RMSProp [49], the update of Adam [25] employs the ratio between the exponential moving average
of the stochastic gradient (m;) and the exponential moving average of the squared stochastic gradient
(v¢). Many variants of Adam have been proposed ever since. Among them, one idea is to use m? to
compute v, instead of g7. The intuition is that 71, represents a better update direction than g, and can
thus better capture the second-moment information. Reddi et al. [43] adopted this change to prove
the convergence of Adam in a federated learning setting; yet, they only consider the smooth setting
and require a large € to obtain convergence in contrast to the original Adam. Later, Wang et al. [51]
explored this idea in more detail, but their analyses are still restricted to the smooth setting. There
also exist other variants of the Adam update that attempt to obtain a more stable update changing the
order of the normalization and momentum operations [see, e.g., 59].

3 Settings and Preliminaries

In this paper, we focus on the following stochastic optimization problem:

;Iel}Rnd F(z) := Eeup[f(2,6)],

where ¢ is a random variable representing a randomly selected data sample or random noise following
an unknown distribution D. We will use the following assumptions.

Assumption 1. F : R? — R is differentiable and bounded from below with infimum F*.
Assumption 2. We say that a differentiable function F(x) is (Lo, L1)-smooth coordinate-wisely, if
for any z,y € R? for which ||z — yl|2 < ﬁ, we have for any j € [d] that

OF OF Lo, OF
oy - = <

)~ @) < (22 411 | o @

We will denote Lq := [L()’l, L072, ceey Lo}d]T and Lq := [Ll,h LLQ, e ,Ll,d]T.

+L1J

) ly - s ®

The original (Lo, L) smoothness assumption (1) in [56] was proposed as a generalization of the
more common smoothness assumption, which says that the gradient should be Lipschitz. Indeed,
when L ; are zero, we recover the smoothness assumption. In contrast, when L, ; are non-zero,
the smoothness of the function is potentially unbounded. Yet, [5S6] works with norms and applies
to the global scale, while ours is more fine-grained and applies to each coordinate separately. One
motivation for this assumption comes from [Remark 2.3, 55] where they noted that (1) can be relaxed
to an assumption on gradient differences: there exists Ky, K1 > 0 such that

IVE(2) = VE(y)l2 < (Ko + Ki|[VF(z)||2) |z — yll2, Yo,y € R?: [z —yl2 < 1/K1. (3)

Indeed, our Assumption 2 implies (3) when Lo ; = Lo and L, ; = L, for all j € [d], up to constants

(See Lemma 3 in the Appendix). Note that the ﬁ factor in ours is exactly for easy comparison

with (3). The reason we turn to the current coordinate-wise version is that we observed a vast variance
across different layers in training Transformer models: (1) is still true globally (Figure 1), but each
layer or even each coordinate satisfies has a very different (L, L1) pair (Figure 3). The smoothness
assumption has been generalized in orthogonal directions in other work [45, 3, 24].

One merit of Assumption 2 is that it gives us the following descent lemma.

Lemma 1. Let F be (Lo, Ly)-smooth coordinate-wisely. Then, for any x,y € R for which
H.’B y||2 ‘Ll‘l , we have

OF
37]_(53)

Fy) < Fla)+ (VE(x +Z (L .

)||y—as||2|yj—xj|-

Our last assumption is common in the literature studying the (Lg, L) smooth condition [56, 55].
Assumption 3. For each j € [d), there exists oj > 0 such that for all x € R? and & ~ D, the noise
satisfies |[V f(x,€)]; — gTF(w)‘ < o with probability 1. We will denote o := [0, 02, ...,04)".

4 A Generalized SignSGD Algorithm

Algorithm 1 Generalized SignSGD (All operations on vectors are element-wise.)

1: Inputs: 1, B1, B2,
2: moy = 0, Vo = 0

3: fort=1,--- ,T do
4 Compute an unbiased estimate V f (x;, &) of VF(x;), denoted as g,
5 my = fimy_y + (1 — B1)g,

6: vy = Pove_1 + (1 — f2)m7
7

8

m
Tip1 =Ty — 1 pr
: end for

In this section, we present in Algorithm 1 a generalized SignSGD algorithm. This algorithm
encompasses a variety of optimization algorithms.

At first sight, it seems very similar to Adam. Indeed, if we employ g7 in computing v, instead of m?,
then it is exactly Adam, except for the bias correction terms. We would like to clarify that the idea
of this change has been explored before, as detailed in Section 2. In this paper, the motivation for
adopting this idea comes from the known effect of momentum on reducing the influence of noises [7].
Indeed, in our analysis the difference between m; and VF(x;) is much more controllable than
between g, and V F'(x;). Thus, we consider employing m, in computing v, a better choice.

On the other end, the careful reader might observe that Algorithm 1 recovers the SignSGD with
Momentum algorithm, also called SIGNUM in [3], when setting 5o = 0. Sign-based algorithms
are naturally suited to distributed learning [29] and the idea dated back to at least RPROP [46]. The
convergence to a stationary point (with ¢; norm) under a coordinate-wise smoothness condition
has been established for SignSGD with/without the momentum in [3] though they necessitate large
mini-batches to control the variance of the noise. Yet, we are more interested in their property of the
update size being bounded without the need for explicit clipping.

Note that both SignSGD and Adam are good candidates for optimization algorithms whose update
must be bounded on functions that satisfy the (Lg, L1) condition. Indeed, SignSGD can be seen as
an extreme form of gradient clipping. On the other hand, as said in the introduction, Adam does not
seem to require gradient clipping at all when used to train the large Transformer model in Figure 2.

Hence, we expect our algorithm, a generalization of SignSGD and a close resemblance to Adam, can
enjoy the merits of both and be robust to the unbounded smoothness in the (Lg, L1) scenario. In the
next section, we will formalize this claim by presenting the theoretical analysis of Algorithm 1.

4.1 Theoretical Convergence Analysis

9 ()] Fx) < Plaa)} is
VIl VA

finite for each j € [d], let A be any upper bound on F(x1) — F*, o = min v L) B =

Theorem 1. Under Assumptions 1, 2, and 3, assume M; := sup {

1—a, */5’?2 <lp= 17‘{?“, n= Tl VT Vﬁl‘j\/f,forT > max(

Algorithm 1 guarantees, with probability at least 1 — 0, that

log(dT/8)|| Lot/ * AY4|a||}/? log(dT Lo|[:A
i VF(mt)l_O< og(dT/0)[| Lolly* A o]}y log(dT/8)/[Eol

100dA|| Ly |2, 10000d2Alle ||| L1 |2,
(1-B2)p%[Lolli> (1—B2)2p*Loll3 ’

te[T] pv/1 = B2TH/4 VT

M VI= Bl Lo F
) [||1+H¢7||1eXp 3 EA ?U; /4 +||V (@)1
P V|| L1 |lo]],/ " AL/ r

Furthermore, for the case when By = 0, we have the following refined guarantee:

Tog(dT /|| Lol * AV 4o ||? log(dT/8)/ | Lolli A
miTn] ||VF(a:t)||1O<*/ og(dT/6)| Lol oy N 0g(dT/6)\/|| Lolx

te| T1/4 VT

co(IWWE@IL (L dalh) el)
VT VT = /Lo[:A T
Here, M; denotes the maximum absolute value of the partial derivative of F' for coordinate j among
the sub-level set of F'(x1), namely any point « with F(x) < F(x). In other words, we assume
gradients to be bounded in the sub-level set of F'(x1); yet, we do not make any restriction on gradients
outside of this set. We believe this is not a strong assumption, for example, when the sub-level
set of F'(x1) is bounded, then by the assumed continuity of gradients it trivially holds. Also, we
just require an upper bound and it can even be exponentially large as we have an exponentially
decaying coefficient to counteract it: notice how the term || M ||; is multiplied by a term that decays
exponentially with T'. Better still, when 35 = 0, we no longer even need this assumption and the
algorithm is entirely free of the influence of || M ||;. To see why this is good, we show a refined lower
bound of Gradient Descent under the relaxed smoothness scenario below which is originally in [56].

Theorem 2. Fixe > 0,Lg > 0,L; >0,M > max(f ,€), and o € R. Pick any constant learning

rate 1 for GD, with the knowledge of the above constants. Then, there exists a 1-d (Lo, L1)-smooth
Sunction, bounded from below by [* (finite), and such that sup{|f'(z)| : f(z) < f(z0)} < M on
which the number of iterations T of GD with learning rate 1) to guarantee |f'(xT)| < € is at least

MLy (f(wo) — f* — 122)
ML ’
2¢2 (ln T{]l + 1)

Theorem 2 shows that in the relaxed smoothness setting, GD with any constant step size will suffer
from a linear term depending on L1 M. On a side note, it is a fixed version of the lower bound in
[56]: we provide in Appendix an explanation of errors in their lower bound and our corrected proof.

Compared with GD, our algorithm only has an exponentially decaying dependence on L; M. We
consider this to be substantial merit of our algorithm. Furthermore, when 52 = 0 in which case we
recover the SignSGD with Momentum algorithm, we can even show that it completely removes the
effects of the unbounded gradient norms. Also notice that in such case we actually no longer need the

or (m)‘ :F(x) < F(acl)} being finite for each j € [d] anymore, and

the || L1 || term does not appear in the final bound anymore.

assumption of M; := sup {

We also would like to point out that this bound closely resembles the one achieved by SGD with
gradient clipping algorithm [55] except that we consider the coordinate-wise setting: take the setting

of 85 = 0 for example, we need at most O (A max { [Ldli ”L"Hl d2“‘7”” 0HHL1”4 : d”fg”% }) to get a
1
point z with | VF (x)||; < e with high probability.

Remark 1 The almost surely bounded assumption 3 can be relaxed to sub-gaussian noise, using
standard extensions of Freedman inequality [e.g., 16].

Remark 2 When 85 = 0, we can prove an average-iterate complexity bound (see Proof of Theorem 1
for B2 = 0 in Appendix A.3); yet, we use the min form for consistency between the two cases.

Remark 3 Our bound is incomparable with the one in [55, Theorem 3.2]. Yet, as we said, if
Ly ; = Loand L, ; = L, for all j € [d], then the function satisfies (3). In this case, assuming the
noise vector and the gradient vector to be dense to be able to compare the /1-norm and the ¢5-norm,
we recover the same bound of [55, Theorem 3.2] in terms of dependencies on L4, Lo, and 7. Instead,
in the more general case when Lg ; and L; ; are not uniform vectors, our bound allows a finer control
of the unbounded smoothness.

Remark 4 Careful readers might be concerned on the relations between «, 1, 32, p, and T" when
o # 1. We would like to note that, when 3, is fixed, « is inversely proportional to /7. In turn, the
definition of p means that as T" grows, p grows and approaches 1 — /5. Thus, the two conditions
for T" decreases when 1" grows. This means that there must exists a threshold of 7" above which the
two conditions on 7" always hold. In summary, Theorem 1 conveys the same message as [55] that as
long as the expected ¢ is sufficiently small, the complexity no longer has a dependency on L.

The proof of the theorem is highly technical and it uses recent advancements in the analysis of
momentum methods [7], key techniques to deal with the (Lg, L) assumption [55], as well as a novel
and essential inductive argument to control the norm of past gradients. We want to stress that the
difficulty mainly comes from analyzing Adam-type updates when 85 > 0, while for the other case of
B2 = 0 the proof is significantly simpler. The full proof is in the Appendix, but here we present a
proof sketch that underlines the main steps. First, we list some key lemmas we used but move their
proofs to the appendix due to space constraints.
VI=P2

7Vd|| L1l

Lemma 5. With notations in Algorithm 1, for < T we have || @i—r — x¢]|2 <

|L1Hoc

Lemma 5 limits our focus to the most recent 7 steps on which Assumption 2 and Lemma 1 can apply.

Lemma 7. Assume Assumption 3. With the notation of Algorithm 1, let j € [d] and 1 < 1. Then,
with probability at least 1 — 30, for any to € [t], we have

Zb’ (gm afj())

< 30 max(1,log(1/6)) \/sz max(1,log(1/9)) £ E; .

\/ﬁl

Lemma 7 is the major tool we use to handle the noise we incur during drawing stochastic gradients.
It is derived based on Lemma 12 in [8].

Lemma 10. With the notation of Algorithm I and under the assumptions of Theorem 1, if % ()] <
M; holds for all T < t and j € [d), and D > 0, then, with probability at least 1 — 3t6 we have that,

. oF 5B; |myl pD
ther | — <=L dl > ,
either oz, (x4) o or 5 2 I

A nLo,; aavs _ _ _ A ¢ _ 2nVd| Ll
where B; = \/ﬁ(()l—,@l) +87(M;+0;)+(1—p1)Ejand D £ 1 M(liﬁl)'
Lemma 10 is similar to Lemma A.2 in [60] which considered the deterministic and smooth setting;
in contrast, our proof is much more challenging in that we need to tackle both the noise and the
unbounded smoothness. With this lemma, we know that either the true gradient is small or that the
update of our Algorithm 1 can be lower bounded.

Lemma 12. Under Assumptions 1, 2, and 3, using the hyperparameters in Theorem 1, denoting
a=1-—pand €, = my — VF(x), forall t and j € [d] we have, with probability at least 1 — 30,

O (@) -

é)xj

t—1
Lo, ;
)L 41V 3 (1)

«
7=0

fennsl < (=)' (a0; + (1=)

oF
ach(wl)

Lemma 12 shows how the use of momentum can help control the noise by choosing 3; wisely. It is
adapted from the proof of Theorem 2 in [8] but with the added difficulty of unbounded smoothness.

Proof sketch of Theorem 1. Observing the formula of setting 51, we can see that when ||o||; <

VILol1A/VT, By = 0. As By < B, Algorithm 1 reduces to SignSGD. In this case, the key

component is Lemma 12 using which we are able to show that Zthl my; — %(:ct) can be
J

controlled as C4 Zle

offsetted by choosing 77 and 3; wisely when we invoke the descent lemma 1. The rest is standard.

Now for the other case in which ||&||; > /|| Lol[1A/VT, we take a different route.

First, notice that Assumption 2 and the Descent Lemma 1 only hold when two points are not too far
away. Thus, we need to restrict our attention to the recent updates (Lemma 5), beyond which we
would have no control. This means we want the influence of those updates too long ago to not have
a big effect on the current one. To make this happen, one natural idea is to use a bounded gradient
assumption, then with the use of exponential averaging, their effect would be quickly reduced. Yet,
assuming directly that all gradients are bounded would trivialize the (Lo, L1) assumption. Thus,

gTF(w)‘ (F(x) < F(wl)} being
finite for each j € [d]. Then, we prove that M; will provide an upper bound to all the true gradients
the algorithm see. We prove it using induction, analyzing separately the case that either the true

gradient is already very small and we have reached the proximity of a stationary point, or the objective
function is monotonically non-increasing and the gradient remains bounded.

8—F x;)| + Cy. The summation of true gradients over time can then be
Oz g

we pose a much weaker condition, assuming that M; := sup {

Having controlled the past gradients, we prove in Lemma 10 that the update of Algorithm 1 is either
very small that we can pass or having a constant lower bound that we can use in the Descent Lemma 1.

Also, considering that this is the stochastic setting, noise typically slows down convergence or can
even cause the algorithm to diverge if the hyperparameters are not chosen wisely. To handle this, we
invoke Freedman’s inequality to show that the addition of adjacent stochastic noise almost cancels
out each other and the absolute value of the sum remains controlled (Lemma 7).

Yet, we still need another block to handle the difference between the true gradient and the momentum
as we are updating in the direction of the momentum instead of the true gradient. Turns our that we

oF g%(mt)

can prove that sign(m;_ ;) = sign (W (wt)) when is not too small. As before, in the case
x;
% (wt)’ is small, we have converged on that coordinate. Combining all these blocks together, we
J

are able to arrive at the final results. O

0.8 0.90
= Our Generalized SignSGD
m— Adam

0.6 == SGD Momentum 0.85
m===SGD Momentum Normalized
m SGDClipGrad

SGDClipMomentum

= OUr Generalized SignSGD

— Adam

s SGD Momentum

0.75 = SGD Momentum Normalized

== SGDClipGrad
SGDClipMomentum

Training Loss
o
>

Test Accuracy
o
[e2]
o

o
N

0.0 0.70
0 25 50 75 100 125 150 0 25 50 75 100 125 150

Epoch Epoch

Figure 4: Training a 20-layer Resnet on CIFAR10. The shading of each curve represents the 95%
confidence interval computed across 5 independent runs from different random seeds.

6.5 100
== QOur Generalized SignSGD = Qur Generalized SignSGD
6.0 m— Adam m— Adam
= SGD Momentum 90 = SGD Momentum
u 5.5 === SGD Momentum Normalized é‘ === SGD Momentum Normalized
S 50 === SGDClipGrad ié === SGDClipGrad
g, : SGDClipMomentum [80 SGDClipMomentum
=]
a
c % 70
i)
—————
3.5 60 —
3.0 0 200 400 600 0 200 400 600
Epoch Epoch

Figure 5: Training an AWD-LSTM to do language modeling (word level) on Penn Treebank. The
shading of each curve represents the 95% confidence interval over 5 independent runs.

5 Experiments

We conducted our experiments using PyTorch [41] on Nvidia V100 GPUs. Codes can be found at
https://github.com/zhenxun-zhuang/Generalized-SignSGD.

5.1 Comparison with Other Optimizers

To validate the efficacy of our Algorithm 1, we compare it with Adam [25], SGD [47], SGD Momen-
tum Normalized [22], SGDClipGrad, and SGDClipMomentum. The latter two are from Algorithm
1 in [55] where SGDClipGrad corresponds to the case when v = 0 and SGDClipMomentum
corresponds to when v = 1.

Training Unless otherwise specified, we use grid-search to fine-tune the initial learning rate for all
optimizers, as well as the clipping threshold for SGDClipGrad and SGDClipMomentum, and 5 for
Adam and our algorithm, to select the one giving the best validation performance on a separated
validation set. We then employ the best performing hyperparameters to train the model over all
training data and report the testing performance. The testing is repeated with random seeds 5 times to
eliminate the influence of stochasticity. For more details, please refer to Section A.4.

Resnet for Image Classification on CIFAR-10 We employ the 20-layer Residual Network model [18]
to do image classification on the CIFAR-10 dataset. Images are normalized per channel using the
means and standard deviations computed from all training images. We adopt the data augmentation
technique following [28] (for training only): 4 pixels are padded on each side of an image and a 32 x
32 crop is randomly sampled from the padded image or its horizontal flip. The mini-batch size is 128
and we train all algorithms for 164 epochs. We do not employ any learning rate decay schedule in
order to focus on the comparison of the optimizers themselves. We fixed the weight decay value to be

Table 1: Average final training loss and test accuracy achieved by each method when optimizing
respective models on each dataset. The + shows 95% confidence intervals of the mean loss/accura-

cy/perplexity value over 5 runs starting from different random seeds.

Methods CIFAR10 Penn Treebank
Training loss Test accuracy Training loss Test perplexity
SGD Momentum 0.2226 £+ 0.0169 0.8674 £ 0.0048 3.8587 £ 0.0058 65.4622 + 0.3842

SGD Momentum Normalized

0.1262 £ 0.0170

0.8795 £ 0.0086

3.8487 £ 0.0073

61.0558 £ 0.3224

SGDClipGrad 0.1288 £ 0.0403 0.8677 £ 0.0106 3.5774 £ 0.0081 60.1604 £ 0.2797
SGDClipMomentum 0.1220 £ 0.0162 0.8809 =+ 0.0022 3.6038 £ 0.0102 59.3052 £ 0.2798
Adam 0.1161 £+ 0.0111 0.8823 £ 0.0041 3.7692 £ 0.0062 58.9005 + 0.3058

Our Algorithm 1

0.1086 + 0.0129

0.8835 + 0.0032

3.7928 £ 0.0425

58.9661 + 1.5218

0.0001 and the momentum parameter (1) to be 0.9. Figure 4 and Table 1 report the training and
testing performance for each algorithm, showing that ours is among the best.

LSTM for Language Modeling on Penn Treebank We adopt a 3-layer AWD-LSTM [35] to do
language modeling on the Penn Treebank (PTB) dataset [33](word level). The mini-batch size is 40
and we trained each algorithm for 750 epochs. Apart from the hyperparameters we stated above, we
further fine-tuned the weight decay value for all algorithms noticing its significant influence on the
performance. We choose the set of hyperparameters that give the smallest final validation perplexity.
We report the results in Figure 5 and Table 1. It can be seen that we can match the performance of
Adam while beating the others.

5.2 Transformers Observe (L, L;)-smoothness

For Figure 1 which verifies the original form (1) of the (Lg, L1) condition using the norm, we
followed the method in Section H.3 of [56]. Specifically, given x; and &1, denote d := x¢41 — T.
We estimate the smoothness at x; by

L IVF@ ot d) - VE@)s
76{51,52 51\7} ||’Yd||2 ’
where {01, 02, ...,y } denotes the sample locations and we use {é, %, %, %, % .

For Figure 3 verifying the coordinate-wise version (2) of the (Lg, L) condition, note that the
equation is symmetric in that if we just swap « and vy it shall still holds. Thus, during plotting, we

8 @)= 85 @01 v min (| 22)|, [22 (2010)]).

Figure 1(a) is on training a 2-layer Transformer Encoder to do language modeling on the Wikitext-2
dataset. The implementation, settings, and parameter choices follow this.! We only plot the first 5
training epochs. Figure 1(b) and 3 are on training a 6-layer Transformer [50] to do machine translation
on the WMT’ 16 Multimodal Machine Translation Task German-English dataset. The implementation

of the transformer is forked from here? and we also follow their default settings. The mini-batch size
is 256 and we trained for 400 epochs using Adam and report the whole training trajectory.

)

compare

5.3 Clipping does not Affect Adam’s Performance

We compare clipping and non-clipping for Adam optimizer on the Wikitext-103 (103 million tokens,
180MB) [36] language modeling task, with a 16-layer GPT-2 transformer model [42]. This GPT-2
model has an input length of 256 tokens, 410-dimension word embedding, 16 Attention layers with
10 Attention heads and 2100 hidden dimensions. Model size is 201.58 MB. The vocabulary size is
28996. We use the hyper-parameter settings prescribed in [53]: batch size 256, warm up learning rate
from 0 to 2.5 x 10~% in the first 64000 samples (i.e., 250 iterations) and then cosine-anneal learning
rate to zero, on top of an Adam optimizer. It takes about 40 hours to train 200 epochs on 8 V100
GPUs. We use clipping threshold max_norm 0.25 for the entire model as prescribed in the literature
[53]. We also count that with this clipping scheme, clipping occurs in every single batch. As we can
see from Figure 2, neither training loss (2.79 vs 2.76) nor perplexity score (27.92 vs 27.97) differs
much in the clipping and non-clipping case, which is consistent with our theory that Adam naturally
achieves gradients clipping effect.

'nttps://pytorch.org/tutorials/beginner/transformer_tutorial.html
2https ://github.com/jadore801120/attention-is—-all-you—-need-pytorch

6 Conclusion and Limitations

Smoothness has been a widely adopted condition for proving convergence rates of algorithms in
the non-convex optimization scenario. Yet, it has been found that this assumption does not capture
losses when employing some deep learning models including RNNs and LSTMs. In light of this, a
relaxed smoothness assumption was proposed that aligns well with the practice. We observed that
the loss surface of training using Transformers also exhibits this relaxed smoothness. Under this
assumption, SGD with clipped gradient has been proven to work well. However, we found that
clipping is not necessary for achieving convergence in such a setting. Indeed, we showed that a
generalized SignSGD algorithm does not require explicit clipping but can almost guarantee the same
bound as SGD with clipping. In the analyses, we identified the key effect of using momentum in
analyzing Adam-type algorithms, that it reduces both the noise and the unbounded gradient norms.
Finally, we conducted a variety of deep learning tasks showing that our algorithm can match Adam’s
performance while exceeding others.

Limitations The current work is in no way a perfect one and there are many directions worth
exploring beyond it. First of all, though our algorithm could be seen as a close resemblance to the
original Adam algorithm, they are still not equal. Considering the huge popularity of Adam and
its established effectivity in practice, it is worth studying whether Adam in its original form can
converge in the relaxed smooth setting. Second, while our Theorem 1 are upper bounds and cannot be
directly compared between the two cases of 3s, it does suggests that S2 = 0 minimizes the worst-case
convergence rate. However, it still does not fully explain the phenomenon that a choice of 35 close to
1 yields better performance in using our Algorithm 1 as well as Adam in practice. Third, despite there
are lower bounds showing that, for example, GD with a constant step size can be arbitrarily worse
than GD with clipping, it would be more meaningful to study whether the relaxed smooth condition
is inherently more difficult, possibly by establishing a lower bound for all first-order optimization
algorithms. Fourth, we did show that Transformers observe the relaxed smoothness condition, but we
consider it more beneficial to research in-depth what properties or structures make a model satisfy
such conditions. Finally, when conducting our experiments, we observed that the weight decay
value plays a prominent role in each optimizer’s performance, and that the best weight decay value
varies for different optimizers. Thus, one potential direction would be to explore different ways of
incorporating the regularization in a way to preserve the scale-freeness [37, 38] of Algorithm 1, just
as AdamW [31] does [58].

Acknowledgements

Michael Crawshaw is supported by the Institute for Digital Innovation fellowship from George Mason
University. Michael Crawshaw and Mingrui Liu are both supported by a grant from George Mason
University. Francesco Orabona is supported by the National Science Foundation under the grants
no. 1908111 “AF: Small: Collaborative Research: New Representations for Learning Algorithms
and Secure Computation”, no. 2022446 “Foundations of Data Science Institute”, and no. 2046096
“CAREER: Parameter-free Optimization Algorithms for Machine Learning”. The majority of work
of Zhenxun Zhuang was done when he was a Ph.D. student at Boston University.

References

[1] Yal. Alber, Alfredo N. Iusem, and Mikhail V. Solodov. On the projected subgradient method for
nonsmooth convex optimization in a Hilbert space. Mathematical Programming, 81(1):23-35,
1998.

[2] Lukas Balles and Philipp Hennig. Dissecting Adam: The sign, magnitude and variance of
stochastic gradients. In International Conference on Machine Learning, pages 404—-413. PMLR,
2018.

[3] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560-569. PMLR, 2018.

[4] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

10

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
Adam-type algorithms for non-convex optimization. In International Conference on Learning
Representations, 2019.

Zaiyi Chen, Zhuoning Yuan, Jinfeng Yi, Bowen Zhou, Enhong Chen, and Tianbao Yang.
Universal stagewise learning for non-convex problems with convergence on averaged solutions.
In International Conference on Learning Representations, 2019.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. In International
Conference on Machine Learning, pages 2260-2268. PMLR, 2020.

Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic opti-
mization with heavy tails. Advances in Neural Information Processing Systems, 34, 2021.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
SGD. In Advances in Neural Information Processing Systems, pages 15236-15245, 2019.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence
proof of Adam and Adagrad. arXiv preprint arXiv:2003.02395, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Yuri Ermoliev. Stochastic quasigradient methods. In Numerical techniques for stochastic
optimization, number 10 in Springer Series in Computational Mathematics, pages 141-185.
Springer, 1988.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.

Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Stochastic optimization with
heavy-tailed noise via accelerated gradient clipping. arXiv preprint arXiv:2005.10785, 2020.

Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for
non-smooth stochastic gradient descent. In Conference on Learning Theory, pages 1579-1613.
PMLR, 2019.

Elad Hazan, Kfir Y Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex
optimization. In Advances in Neural Information Processing Systems, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, and Brian Kingsbury. Deep neural
networks for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29,
2012.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. Found.
Trends Mach. Learn., 10:142-336, 2017.

Jikai Jin, Bohang Zhang, Haiyang Wang, and Liwei Wang. Non-convex distributionally robust

optimization: Non-asymptotic analysis. In Advances in Neural Information Processing Systems,
volume 34, pages 2771-2782. Curran Associates, Inc., 2021.

11

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hiiger, Peter Schlicht, Tim Wirtz, and
Stefan Wrobel. Efficient decentralized deep learning by dynamic model averaging. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pages
393—-409. Springer, 2018.

Ahmed Khaled and Peter Richtarik. Better theory for SGD in the nonconvex world. arXiv
preprint arXiv:2002.03329, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Inferna-
tional Conference on Learning Representations, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097-1105, 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial intelligence and statistics, pages 562-570. PMLR, 2015.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with
the parameter server. In OSDI, volume 14, pages 583-598, 2014.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with
adaptive stepsizes. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 983-992. PMLR, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

Vien V Mai and Mikael Johansson. Stability and convergence of stochastic gradient clipping:
Beyond lipschitz continuity and smoothness. In International Conference on Machine Learning,

pages 7325-7335. PMLR, 2021.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of English: The Penn Treebank. Comput. Linguist., 19(2):313-330, June
1993.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. arXiv preprint arXiv:1002.4908, 2010.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. ICLR, 2017.

Francesco Orabona and David Pal. Scale-free algorithms for online linear optimization. In
International Conference on Algorithmic Learning Theory, pages 287-301. Springer, 2015.

Francesco Orabona and Dévid Pal. Scale-free online learning. Theoretical Computer Science,
716:50-69, 2018. Special Issue on ALT 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient
problem. corr abs/1211.5063 (2012). arXiv preprint arXiv:1211.5063, 2012.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks. In International conference on machine learning, pages 1310-1318. PMLR,
2013.

12

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024-8035, 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
International Conference on Learning Representations, 2018.

Peter Richtdrik and Martin Takdc. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144:1-38, 2014.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In IEEE international conference on neural networks, pages
586-591. IEEE, 1993.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400-407, 1951.

Naum Zuselevich Shor. Minimization methods for non-differentiable functions, volume 3.
Springer Science & Business Media, 2012.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26-31, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Yizhou Wang, Yue Kang, Can Qin, Huan Wang, Yilun Xu, Yulun Zhang, and Yun Raymond
Fu. Rethinking Adam: A twofold exponential moving average approach. arXiv preprint
arXiv:2106.11514, 2021.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes. In International Conference on Machine Learning, pages 6677-6686.
PMLR, 2019.

Thomas Wolf. Transfer Learning in Natural Language Processing, 2019. Available at https:
//github.com/huggingface/naacl_transfer_learning_tutorial.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. Advances in neural information processing systems, 31,
2018.

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms
for non-convex optimization. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 15511-15521.
Curran Associates, Inc., 2020.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances
in Neural Information Processing Systems, 33:15383—-15393, 2020.

13

[58] Zhenxun Zhuang, Mingrui Liu, Ashok Cutkosky, and Francesco Orabona. Understanding
AdamW through proximal methods and scale-freeness. Transactions on Machine Learning
Research, 2022.

[59] Liu Ziyin, Zhikang T Wang, and Masahito Ueda. LaProp: Separating momentum and adaptivity
in Adam. arXiv preprint arXiv:2002.04839, 2020.

[60] Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of
Adam in learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371,
2021.

[61] Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition
for convergences of Adam and RMSProp. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11127-11135, 2019.

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This
paper is mainly a theoretical one analyzing machine learning algorithms, we do not
forsee any potential negative societal impacts of our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] See the Appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] In the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1 and A 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes] Included in the code folder of the
supplemental materials.

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? Data use follows the permission of corresponding licenses.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Appendix

A.1 Properties of the coordinate-wise (Lo, L1) Assumption 2
Below, we prove the descent lemma for coordinate-wisely (Lg, L1)-smooth functions satisfying
Assumption 2.

Lemma 1. Let F be (Lg, L1)-smooth coordinate-wisely. For any x,y € R? for which ||z — y||2 <
m, we have

22(@)|) lly - s
2

Fly) < Fla) + (VF(x).y —a) + >~

J

d (Lo,j +L1,j | ‘
v — ;| -

1

Proof of Lemma 1.
F(y) = F(x) + /0 (VF(x +u(y —),y — x)du
1
=F(z)+ (VF(z),y — x) —l—/o (VF(x +u(y —x)) — VF(x),y — x)du

< F(z)+ (VF(z),y —) +

/O (VF(z + uly — o)) — VF(@),y — x))du

< F(x)+(VF(z),y —) —l—/o (VF(x+u(y —z)) — VF(x),y —)| du

1 d
< @)+ (TPl -2+ [Y[Fr @ty -2 - 5 @] 5 -)|
1 d
< Pla) + (VP(@).y—=)+ [3| @+ uy =) - 5= @) Iy~ ldo
d 1
= Fla)+ (VF@)y—2)+ 3 [|7+ uy =) - 5= (@), — ol
Y (Lo, OF
<F(a:)+<VF(w),y—m>+j§_:l/o “<\/g + Ly &Cj(w))y—wllzlyj—wjdu

9 (@)) lly - =l
2

L i
(5 + Lo

|yj *$j|)

where the second inequality uses the fact that ’ f: F(a:)dx’ < f; |F(x)|dx and the final one is due to
Assumption 2. O

The following Lemma shows that our coordinate-wise (Lg, L1) smooth assumption 2 is equivalent
to the original (Lo, L) smooth assumption (1) at least in 1-d case.

Lemma 2. Let F' : R — R be a twice continuously differentiable function. Then if (1) there exists
some Ko, K1 > 0 such that it holds for any x,y € R with |y — x| < 1% that |F'(y) — F'(x)] <
(Ko + K1|F'(2)|)|y — x|, then (2) there exists some Lo, Ly > 0 such that it holds for any x € R?
that |F" (z)| < Lo + L1|F'(x)], and vice versa.

Proof of Lemma 2. (1) = (2) By definition, for any € R, we know that

’ Y / v
:hmF(erh) F'(x) < hm\F(z+h) F'(z)|
h—0 h h—0 ||

F// (I)

15

(Ko + Kq|[F'()|)|h]
|h|

(2) = (1) This is a special case for 1-d and ¢ = 1 of Corollary A.4 in [55]. O]

h—0

Lemma 3. When Lo ; = Lo and L j = Ly for all j € [d], Assumption 2 implies (3) (up to
constants).

Proof. Suppose all Ly ;, Ly ; are the same across j, then we have

2

d
OF oF
[VF(y) — VF(z)|2 = \ ; 87;1:](31 - 873,”](:2)
d 2
Lo oF)
B , |oF _
<\ (55 s g, @) <l -
d 2 2
213, OF
< Z;<Gﬂ+2ﬁga%@>>x|y—w%

IA

= (V2Lo + V2LIIVF(@)]2) x Ily — > - O

A.2 Proof of Lower Bound

Theorem 2. Fixe > 0,Ly > 0,L1 >0,M > max(%’7 €), and xo € R. Pick any constant learning

rate 1) for GD, with the knowledge of the above constants. Then, there exists a 1-d (L, L1)-smooth
Sunction, bounded from below by f* (finite), and such that sup{|f'(z)| : f(z) < f(x0)} < M on
which the number of iterations T of GD with learning rate 1) to guarantee |f'(xT)| < € is at least

52
MLy (f(x0) = f* = 1o52)
2¢2 (ln % + 1)
0

Proof of Theorem 2. By Lemma 2, we know that, in 1-d case, our coordinate-wise (Lg, L1) assump-

tion 2 is equivalent as the original one (1). Thus, without loss of generality, we use the original

condition (1) in the proof. We will construct two different (Lg, L;)-smooth functions based on the

value of 7.

ML
Lo

converge, hence the lower bound is trivially true. Consider the function

Case nn > TQLl (ln L4+ 1). In this case, we can construct a function on which GD does not

—Liz—1 1
€ —_—
Ly 2 xr < I,
2
_ x Lo _ 1 1
f@)=q Loy + 313 v €[~ 1]
Liz—1
e lm 1
LQ L% x > I,

Note that f is (Lo, L1)-smooth. Without loss of generality, we can assume xo = L% (ln ”ﬁl + 1),

in fact if this is not the case we can translate the function f accordingly. This setting of x(guarantees
that the bound on the gradient is correct. Moreover, with this choice, we claim the function will diverge.
To see this, we use mathematical induction to show that |z;41| > |z;| and sign(z,4+1) # sign(z;) for
any t > 0. First, for the case when ¢ = 0, we have

nLo eL1$0*1

=x9—nNM < x9 — 220 = —20 .
Ly

1 = To —Uf/(l“o) =Ty —

16

Then suppose the condition holds up until ¢ and we prove for ¢ 4+ 1. From the formula of f, we have
that sign(f'(x)) = sign(x) and that f is monotonically increasing with |x|. Thus, from the update
of gradient descent which moves along the negative direction of the gradient, if we can show that
|zt 1| > |x¢], then sign(as11) # sign(a¢). This yields

2|$t|L1

= |z — nf’ > || < n|f > 2|2y <= nlo > — .
|Zeg1] = |ze = nf' (@e)| > [@e] <= nlf'(2)| > 2|2 <= nLo oLz = 1)

Now, note that ¢(z) = #ﬁ‘l_l) is decreasing for x > L% and increasing for x < —L%. Hence,
we have that
2|xo|L 2|x¢| L
1L > 2ol il L

exp(Lifzo| — 1) ~ exp(Li|ze| — 1)’

where the first inequality is true by the choice of zg > L% and the condition on 7 and the second one
is true by the induction hypothesis.

2 ML,
Casen < S (ln To + 1).
Now, consider
—€x, T < —23;0
_) Lo, 2 Liz* 9¢? 3¢ 3¢
f(z) 2 T 272 T T6Lg° x€[32L0’2L0]
€
€x, xr > 3Lg

We have that f is (Lg, 0)-smooth, hence also (Lg, L1)-smooth. Note that the presence of the fourth
power makes this function twice differentiable. Moreover, the maximum gradient in this case is
e < M.

As before, without loss of generality, let the initial point zg = 2350 + A, where A > 0. We have that

2 .
flxg) — f*=¢€ (A + 23;0) - 1%%0, hence A = L (f(zo) — f*) — 125;0. Now, while we stay on
the last branch of the function, we have
= > 2 (M
Ti41 = T ne = I GMLl n LO .
Hence, we have that, for
2
o uLaA MLy (f(wo) = f* 35
2 (ln%—i—l) 262 (ln%—l—l) ’
0 0
we guarantee | f'(z¢)| = e. O

Errors in the lower bound in [56] As we said in the main text, unfortunately, the lower bound
theorem in [56] is wrong, both statement and proof. First of all, they have a logarithm of a quantity
with units, M, which is an undefined mathematical operation. A closer look at the proof reveals
that, differently from the statement of their theorem, they construct a function with Ly = Ly, which
explains why these terms are missing in the logarithm. Moreover, it is also unclear if the second
constructed function satisfies the assumptions of the theorem. We correct all these issues by properly
scaling the constructed functions so that they always satisfy the (Lg, L) condition and all the units
are coherent. This result in the correct term inside the logarithm and the right conditions on L, L1,
M, and e.

A.3 Proof of Theorem 1

We first write down some notations here that we will use heavily later for easier reference:

/1 —
7[327 (1:1—61, p:l— 21/261_17
V|| L1l

et:mt—VF(zct), ét:gt—VF(ﬂft),

T =

17

E; = 60 max(1,log(1/6)) \/7\/032 max(1,log(1/d)),

L N SR L1 Y S _

Bj = \/q(lj* ﬂl) +Bl (MJ + J) + (1 61)Eg

L mVdhy _ 2V Ll
e TR P T ma -y

_ P
101 —(Bs

Also, we would need the following formula many times:

_ 1 ay/1—p2 _ ay/1—po
B = (1 — a)a nVdlLilleo < e nVdllLilloo 4)

where in the first inequality we used the fact that (1 — z)*/* < L for0 < 2 < 1.
Lemma 4. With the notations in Algorithm 1, for each coordinate j € [d] we have

|, 1
mg; = 1 - 61 Zﬁ g‘r,ja Vt,j = 1 - 62 Z/B ’J7 \/’LTJJ S W .

Proof of Lemma 4. For allt > 1, we have

my; = Bime—1,; + (1 — B1)ge,;

= Bi[Bimi—2; + (1 = B1)gi—15] + (1 = B1) g,

t
=(1-p1) ZB?TQT,J‘ .
T=1

Similarly for v; ;. Next,

Mgl |mt,] < — 1 0

v/ Ut,j \/ 1— ﬂz Tm?,j V1I=15s
The following lemma shows when we can apply Assumption 2 and Lemma 1.

) Lo . VS _
Lemma 5. With notations in Algorithm 1, for < 7 = VAT Ve have || @i—r —x¢]|2 < HLIHM
Proof of Lemma 5. Using Lemma 4 we have
u nT 1 1
o7y — @il < D |wemij — Temigr] < < = llz -yl < ;77— -0
i = gl S)l —memivial S G < o .

The following two lemmas are the major tools we use to analyze the effects of noises.
Lemma 6 (Lemma 12, [8]). Suppose X1, ..., X1 is a martingale difference sequence in a Hilbert
space such that || X;| < R almost surely for some constant R. Further, assume E.[|| X,||?] < o?
with probability 1 for some constants o;, where B[] 2 E[-|€1, &, . . ., & 1] denotes the expectation

conditioned on all past randomnesses. Then, with probability at least 1 — 30, for all k < T we have

k

> X

t=1

k
< 3Rmax(1,log(1/8)) + 3 Zaf max(1,log(1/4)) .

t=1

Lemma 7. Assume Assumption 3. With the notation of Algorithm 1, let j € [d] and $1 < 1. Then,
with probability at least 1 — 36, for any to € [t], we have

(gm - ai:())

< 30, max(1,log(1/9))

oF max(1,log(1/4)) .

Y

18

Proof of Lemma 7. Recall Assumption 3 and notice that ﬁTT < 1forall 7 € [1,t], we know that

2
‘,Bf_T (gm' ‘91 (:cT))‘ < o; almost surely. It also means E, {(e (gm' 8f (a:T)»] <

Bf(t_ﬂa;‘f. Now, note that in Algorithm 1 g_ is an unbiased estimate of VF(x,) namely

E, { b= <9m or (337)>] = 0. Thus, { = (gw» — gTFj(wT))}l) is a martingale differ-

3y

ence sequence. Then, using Lemma 6, with probability at least 1 — 34, we have for all ¢y € [t]

that
OF
t—T1 L
7 (90 @)

< 30, max(1,log(1/0)) + 3 Zﬁw T)a2 max(1,log(1/4))

T=1

/1 ﬁQ

The following lemma upper bounds the differences between recent true gradients and the current one.

< 30, max(1,log(1/9)) \/0'?- max(1,log(1/4)). O

Lemma 8. With the notation of Algorithm 1 and under the assumptions in Theorem 1, for any j € [d]

and any to witht —tog < 7 = Pz TP mo, we have

E;ﬂ 0= 0| < (Boa - VA G000) gt
Proof of Lemma 8.
2%‘@—%@)
_;%B (2 L | G @)) o=l

oF
= (L07j+L17j\/g’a%)

)¢L¢%§:t7

T=to
Ui
> (1=p)2V1=02
where the first inequality is due to Assumption 2 and Lemma 5, the second inequality uses Lemma 4,
and the final inequality uses the fact that Z,If:l ka* < ﬁ forany 0 < a < 1. O

OF
§ (LOJ + Ll,j\/&’axlj(ﬂft)

The following lemma upper bounds a past momentum with the current one.
Lemma 9. With the notation of Algorithm 1 and under the assumptions of Theorem 1, for any

- J1i-Ps
<7F=_Ml=b _
TET= e with probability at least 1 — 30, it holds that

. OF
il <677 (Il +| 550

oF
+ (Lo_’j + Ll,j\/a ‘ax](dht)

Ui
———t (1 - Bl)E-) .
)(151)\/152 !
Proof of Lemma 9. Denoting by €; = g, — VF(x;) and using Lemma 4, we have

]-_ﬁlzﬁt‘rl) 1_61 Zﬁtrl

[mi—r,j — By "5 = |(

19

1 - ﬂl Z Bf T— 1
i=t—7+1
<(1-p1) Z Bt” (D+ (1 —p) Z BT | (5)
i=t—1+1 1=t—1+1
We now upper bound the first term of (5) using Lemma 8 by using the fact that 7 < nimz
T—1 T— 1 T—1 8F
Y < <l > s S < 2) — o (@)
i=t—7+1 i=t—7+1 i=t—7+1 J
oF OF np
< Lo+ LijVd|+— . :
B 5333(1= (A ‘3%’ ()) (1=51)*V1-=P2

Finally, the second term of (5) can be bounded using Lemma 7 by noticing that
Z Bt T— 7.~__ (Zﬂt 7.€l] Zﬁt 1€1J>) O

i=t—7+1
The following Lemma is adapted from [60]. Yet, they only considered Adam under the L-smooth
setting and when there is no noise. The existence of noise and the relaxed smoothness assumption
makes the proofs substantially more challenging. With this lemma, we know that either the true
gradient is small or that the update of our Algorithm 1 can be lower bounded.

Lemma 10. With the notation of Algorithm I and under the assumptions of Theorem 1, if gTF (x,)| <
M holds for all T < t and j € [d], and D > 0, then, with probability at least 1 — 3t6 we have that,
oF 5B; |my; pD
either | — (x,)| < == or I > .
a$j(t) D Vt,j 51— 62
Proof. Given that ‘— z;)| < M; forany 7 <t and j € [d], using Lemma 4 and Assumption 3,
it is immediate to show that |m, ;| < M, + o;. Then, denote 7 = |7| = in\fi MJ namely the
1]lco
largest integer that is no greater than 7, from Lemma 4, we have
Ml _ [
Vi -) S sl
[
Vl_ﬁQ\/ZT T+1 /82mt 7‘]+Z Oﬂ;mgfr,j
- |41
— F1 PS
VI=5s \/(Mj +03)? P + S BgmE
> |,
- T/2 2
(M +03)85" + VT = B2 27 5[mirj]
me, |

T M o) B AT B B]

where the final inequality uses the assumption that /(2 < (1. Using Lemma 9 and the definition of

p=1-— 1/ > ﬁl € (0, 1], with probability at least 1 — 3¢4, as we need to invoke Lemma 7 for at
most ¢ times we have

AN _ r2g=r BLM; +0;)
m S (|mt7_]| + 1 ﬁl Zﬁ \/11_762J

20

(Jazt

< <|mt,j + Cj

OF
+ (Lo,j + Ly ;Vd ’a%(ﬂ%)

1
)L
)p

where in the last inequality we used the fact that

)) S

oF
gj(fﬂt)

>
j %(mﬁ‘%—Bj.
] gTI:(wt) + Bj, then
|5 P ©)
Vi 2V1T=P2

Case 2: |m, ;| < C; ’%(w)| + B, then we have

Vg < J

2\/752<

)| + B) .

Also, for |m; ;| we have from Lemma 4 that

t t—7—1
|mt,j| = (1 - ﬁl) Zﬁi_T‘gT,] = 1 - 61 Z /8 gT,] 1 - ﬂl Z B gT,j
T=1 T=t—7
t t—7—1
>(1-B)| > BT z:)|— (1= 51) 25 (’)_g‘r,j>’ (1—p1) Zﬁ "grj
T=t—7 T=t—7
Ry Ro R3

The first term can be bounded below by using Lemma 8 and that 7 + 1 > 7:

Ri>(1-p1) Zﬁ —(1=5) Zﬁ ()‘35(%))‘
T=t—7 T=t—7 J
g NMdlagn \[OF | Lojn
2<1 . (1—ﬁ1>ﬁ1—ﬂ2> or, ™| T TV E

The second term can be bounded using Lemma 7. Thus

. VidLy jn OF Lo sor
Ima gl > (1 - Bl - m> %j(mt) - (lfﬂl)—jl\/fﬂz —B1(M; +0;) = (1= B)E;
oF
> D 8—%(33,5) Bj s

where we used (4) and that e~ < 1 for z > 0.

Therefore, with probability at least 1 — 3t we have

OF
iyl o P (D 0a; \¥)‘ j) 7
NN (€5 |8 @0)| + ;)
Given that D > 0, depending on the relative size of ’— x;)| vs. B;, we have following two cases.

21

< F.

Case 2.1: ‘%(wt)

J

Case 2.2: ‘% (:nt)‘ > 5%", using the fact that the r.h.s of (7) is decreasing in Bj, we have

4D
5P
>

Vi T2 T=R (G + B)

where in the last inequality we used the fact that C; + D < 2. Note that D < 1 so the above lower
bound is smaller than (6). O

oF
ﬂj(wt)‘ 2pD pD
= b)

g%(wt)’ - 5V1=PB2(C;+ D) VI=5s

|mt,j|

The following two lemmas are for the special case of B3 = 0.

Lemma 11. With choices of parameters in Theorem 1, when 33 = 0, we have ||x111 — x|z =
1
WA < o

Proof of Lemma 11. Using the fact that & < 1 and the condition on 7', we have

- VA« - VA - VA Lol _ 1 '
VIILoliVT = \/I[Lo[iVT = \/[[Lolly 10VdvVA| L1|loc ~ Vd||L1lso

The following lemma is adapted from the proof of Theorem 2 in [8].

Lemma 12. Under Assumptions 1, 2, and 3, using the settings of the hyperparameters in Theorem 1,
denoting o = 1 — 51 and €, = my — VF(x;), forallt > 1 and j € [d] we have, with probability at
least 1 — 36,

OF nL = oF
0,5 } : T
|6t+17j| S (I—Oé)t (OéO’j + (1 — Oé) 87%(231))-FO/—FOZEJ‘—F(I—O()?]\/gLLj (1—0{) 6—%(%_7)

7=0

Proof of Lemma 12. Denote €&, = g, — VF(x;) and S;(a,b) = gTFj(a) — g—i(b). Then, from

Assumption 2 and Lemma 11, for all ¢ > 1 and all j € [d] we have
€] = Oéél — (1 — OZ)VF(:El), (8)

oF
87j(wt)) |ir1 — xel]2 . (9)

1 Lo ;
@111 — 2ell2 < 2 = |Sj(@ey1,)| < (\/é + L1,
o0

We can derive the following recursive formulation for any ¢ > 1:
mit1y = (1 —a)me;+agi,

OF oF .
= (1 — Oé)i(illt) + (1 — a)et,j + Oéi(ﬁct_s_l) + €ryj

axj 8xj
OF -
= %(m“_l) + (1 — Ot)Sj(.’I]t, $t+1) + (1 — 01)6157]' + Q€¢41,5,
J
which implies
€t41,5 = (1 — Oé)GtJ‘ + (1 — a)Sj(a:t,le) + a€t+17j . (10)

Unravel (10) from 1 to ¢ gives us

t—1 t—1
epry=(1—a)e;+(1—a)Y (1—a) Sj(@ir@ip1r) Fay (1—a) &p1ry-
=0 7=0

Take the absolute value of both sides, to obtain

t—1 i—1
1, <= a)ffers|+ (1 =) > (1= a)7|S(@1—r, @rp17)| + | (1) ér1 -
=0 7=0

22

t—1
Lo.; OF
< =a)fes|+ (=) S =) (22 4 Lo | G @)) fovsror = oirll + o
7=0
t—1 t—1
S(l - Ot)t‘Gl,j| + (1 - Oé)’l]Lo,j Z(l - Oz)T + (1 - a)n\/ngyj Z(l - Oz)T 7((151577) + OéEj
=0 =0 J
F Lo = r
<(1-a)t <aoj +(1—a) %j(ml)) + % + (1 — a)nVdLy ;}u a)” ach(mt‘T) + aEj,

where the second inequality uses (9) and Lemma 7, the fourth and fifth inequalities use (9), and the
final one is due to (8). O]

oF (m)‘ . F(z) < F(ml)} is

Theorem 1. Under Assumptions 1, 2, and 3, assume M; := sup {

finite for each j € [d], let A be any upper bound on F(x1) — F*, o = min (v \‘||:|\0 \}/», , b1 =
VB . VB . 100dA|| Ly |2, 10000d*Allo || \|L1|\;§O)
1=, B <1 p=1-Y2 n= B forT > me (25 ey AT)

Algorithm 1 guarantees, with probability at least 1 — 6, that

log(dT/3)|| Lo |1/ *AY4||o||'? log(dT/8)\/|[Lo1 A
in |VF(mt)1:O<\/°g /)| Loll; ol N 0g(dT'/8)+/|| Lol|x

te(T] pv/T— BT/ pVT

— 3/4
o (1Mol ((VERIL) | I9F)h
’ VIANERINT T

Furthermore, for the case when By = 0, we have the following refined guarantee:

log(dT/8)|| Lot/ * AY4|o||}/? log(dT Lo|[:A
min [IVF(@0)] = (JW Lol A4l 1og(dT/5) V[Eoll

te[T] T1/4 VT

Lo IVE (1)l E ol +IIUHl .
VT VT [Loll1 A T

Proof of Theorem 1 for 33 = 0. From Lemma 11 we know that ||, 11 — T¢ll2 < o= H for all

t € [T)]. Thus, we can apply Lemma 1 to have
F(wyi1) — F(xy)

¢ (5t Ly |95 @0)]) [— o
SA(VF(xy), i1 —) + z; 5 |Tt4+1,5 — T,
J:

d Lo, + L1;Vd

e

= (VEF (), —nsign(my)) + Z 5 n
d Lo+ Li;Vd %(wt)
= —n||[VF(z)[l + n(VF(x,),sign(VF(a;)) — sign(m)) + > 5 - n
j=1
d_ Lo+ L1V | §E ()
= —n||VF(x;) —(xy) | [sign (3;:(:;:9) + Sign(mt,j)] +Z 0 1 . da; ‘772 ’

j=1

23

where I(-) is the indicator function and the first inequality uses Lemma 1,

Now, note that

. OF . OF OF
e (G55 o) # st <1 G50 | 2 500 = S)
61j t
Thus, denoting by €; = m; — VF(x;) gives
d. Lo, + L1]\/g QTF(CCt)‘
F(a1) = F@) < —nllVE (@)1 + 2nlle + 5 N
j=1
d
_ I Zollin* | n°Vd or
= =V F @Ol + 2oled + = + 55 Ly 5
Sum both sides overt = 1,...,T, to have
. |Lo|im*T n*Vd OF
- —nZHVF = ||1+2nZ||e o+ Lol VISt 2 5 (@)
t=1 j=1
an
Use Lemma 12 to bound each coordinate of Zthl ll€s]]1:
T-1
D leerl
t=0
T-1
F Lo ;
< [(1 —a)t (aaj +(1-a) a7(901) > 00y an}
—~ Oz a
T—1t-1
+(1—anVdLy; Y > (1-a) (a:t)
t=0 7=0
1|oF nL T fl OF
0’] t—r’
—oi 4+ = |2 QBT+ (1— I . 2w
o5+~ awj(ml) + + +(1—a)pVd U;T; @) axj(a:)
oOF nLo ;T — (= . oF
=o0j+— a—mj(asl) + + BT + (1 — a)pVdLy 2 t:T,(l —a)') (1-a) %j(wT,)
T-1
1|oF nLo ;T (1 —a)nVdLy oF
S gj + a aixj(ml) + —— +OZEJT+ f Z aixj(mt)

t=1

The above one holds with probability at least 1 — 37' as we invoked Lemma 12 for 7" times which in
turns means invoking Lemma 7 for 7" times. Yet, the above inequality would need to sum from j =1
to d, meaning in total we would invoke Lemma 7 for d7" times. Thus, following results hold with
probability at least 1 — 3dT9.

Now, put the above inequality back into (11) to have

F* — F(z)
T
HL0H1772T 2\[5F
<=0 _IVF()]: + 5 ZZ 1§ (z+)
t=1 t=1 j—1

24

oF

T
nLOJT (1 —a)nVdLy
> E T AT AL A -
+ + + o) oz, ()

t=1

d
1|oF
+2772 <0j+a‘8x-(w1)

J

)

:*HZHVF || + HL0H1772T 7]2\[22 L

tljl

T d
2n 20%|| Lo ||, T f
v E ZEIOME 4 onaTy E; L
+ 2 V(@) + =2+ 20 ;ﬂ: o+ §:i§:i 1

oF
dx;

)| + 2nllo]lx

T

2n 1
=y IVEE s 2ol + 2Rl (44 2) ol s 2073,
t=1 7j=1

BF
fEt

(32 2

t=1 j=1

Now, using the definitions of 17 and «, and the conditions on 7', we have
(L4 2)van, <2 (144)WF Ll _ n5VaVA L
2 § = @) VT Vol 2 VaT /Lol
_SVAVA Ll VoW TV
2 VT |L0|1 |L0||1/4A1/4’
= " mnax <5f¢||a L)L A 5VAVA L1m> y

2 ||L ||3/4T1/4 ’ f / ‘LO ‘1 2 ’

Thus, we have
e M 1 2 ¢
F*—F(x1) < —3 > |VF(wt)1+2n||a||1+a||VF(£L'1)||1+<2 + a) | Zolh*T+2naT > E; .

t=1 j=1
Divide both sides by 7" and rearrange terms to give

T
1 2 4 4 5
— F <—|F — F*]+ = —||VF —||L
7 L IVF @Ol < plF @) = 1+ pllolh + CplVP@nlh+ 2ol

+ 24|lo||1 (e max(1,1og(1/6)) + v/ar/max(1,1log(1/4)))

Now, we need to consider the following two cases:

1. |lo|: < V”Loll\/» :thena =1andn = \/HLT\ﬁ\F
T \ﬁf VI Lol VT T/
N 24«/||L0||1\/E(max(1,log(1/5)) + /max(1,log(1/9)))
VT
59max(1,log(1/0))v/|| Lol1A 4
< — .
VLol A — +/IlLol1A A3/4
2. o]l > SV It then o = VT <landn= T RRCIE

1 T
= S IVl
t=1

25

2| Loli* /] 4 4 5| Loli/* /o1 A4

> A3/4T1/4 T /||L0||1AT T1/4

24max(1,log(1/6))\/[LoliA 24y/max(1,1og(1/6))|| Lolli/* /o AL/4

+ +
VT T1/4
max(1, 1og(1/6))|| Lo|; ' AY4\/[olly | 24max(1,log(1/))y/[Loel1 A
+
T1/4 \/T
Aol [VE@): | 4llofl
VLol AT T

Put &' = ﬁ concludes the proof. O

Proof of Theorem 1 for general 2. Note that when ||o||; < 7V”L\/%H1A, a=1,3y < % =0. Then

our Generalized SignSGD algorithm 1 reduces to the SignSGD algorithm, and thus has the same
guarantee of (12). Therefore, we only consider the other case when ||o||; > RACLIEY

Note that the only randomness comes from evaluating stochastic gradients. In the following proof, we
will need to invoke Lemma 7 for 7" times for each coordinate j € [d]. Therefore, the following results
hold with probability at least 1 — 3d7'9. For simplicity, we use the term "with high probability" later
in the proof to denote this.

We derive the following quantity which will be used multiple times later:

n 1 VA 1 1 N o e A N

o = = b= = (13)

a Loy VT Vo /|Lolli VT |Lo|l/*AV4 ||Lo|¥*T/4"

_ 1 2Vd|Lifeen

First, from Lemma 10 we have D Then, from the choice of the hyperparameters,

(=B)V1-B2"
we have L
Vd|Lillson 1Ll _\/3||cr||1/ A4 1
L=PVI=PB VI=B |Lo|f}/*T/¢ ~ 10~ 10

Thus, we have D > 1 — % > % and, as v/B2/61 < 1,

o P _ 4
5v1— B — 10T Pa

(14)

Also, for those coordinates with small gradients ‘gTF(sct)‘ < %" < 10Bj, we have
J

oF O, my
783:]- (@) - (Te41,5 — T15) = Wamj (x1) NG
_ 8F E)F o 0F mm
=—An —amj (xy) +n)axj (xy) (A sign <83:j (a:t)> 'Ut,j)
oF 1
<~ Ap | | — .
< - An ‘ 5, (@)] + 10 (m + A) (15)

We are now ready to prove the theorem. We will need to use Lemma 10, hence we first need to show
< M; holds for all

7 < tandall j € [d]. From the definition of M stated in the theorem, in order to guarantee this, we
only need to prove that F'(x,) < F(x;) for all 7 < t. We will prove this by induction.

that all past true gradients are bounded by M}, namely that, for any ¢, '% (x,)
z;

For ¢ = 1 the condition is trivially true.

We then assume that the condition holds for ¢ and prove based on this that it still holds for ¢ + 1.

26

For those coordinates with | 2 ()

> 5gj ,denote 7 = |T| = [7 Vl_BQJ with high probability,

we have o lEale
’mt,j_ggi(wt) = [(1-51) ilﬁ gr,j—gfj(wt)
< |1 -8 Zlel gl la—p) S are, - M:(wt)
= i
< B1(M; +) + B] “ﬂw)
sa-m)| 3 (G ﬁ%ﬂ'
2080 3 8 (- g >ﬂ
Y
<(1-D) |5t + B,
<(1-%) [@] < | g, (16)

where the first equality comes from Lemma 4; for the second inequality, the third term can be bounded
using Lemma 8, and the final term can be bounded using Lemma 7; for the third inequality, we

used (4) and that e=® < 1 for z > 0. This inequality implies that sign(m, ;) = sign ((a:t))
with high probability.
Denote U, = {] € [d: ’aF(t)

1 < 7 which means ||z;41 — 2¢]|2 < W (Lemma 5). Thus, using Lemma 1, with high probability
we have

F(ziy1) — Fxy)

> —} From the choices of hyperparameters we can show that

(mt)

d (I;;J +L1j

) l2ess = @io

< <VF(.’I},5), LTi41 — Cct> + Z 2 |$t+1,j - l‘t,j|
j=1
L
“ [or myl (5 Lo [22 @0)]) lmess — il
Z 87 77$1gn() - + 5 |xt+1,j — Tt
j=1 Ut
oF
3F ’ |mtj| (‘ 1 d Lo;+ Ll,j\/a 677(%)
< —n (x¢ + xy)| +10nB; | —==+A) | + : n
JEU ax] VUi J% ’ vi-F Jj=1 201 = %)
d L()’J +L17J d g—F(a:t) d
< —An|VF +, - 2410 17

where the second inequality uses (15), (16), and Lemma 4, and the third inequality uses Lemma 10
and (14).

Now, noticing the conditions on 7, a, 82 < 612 < (1, and T, use (13) to have

Vil _ oVl 1 _ 0 ValLllslol*AYE _npyT=B; _ 1

=) =2 a2 gt T2 10

A.

o

27

Thus, (17) becomes

Ay 7| Lol () -
F - F < ——||VF — + 10 18
(@e41) = Fl@e) < = |[VE (@)1 + (1 55) +10n @]ZZ (18)
Therefore, either
vFenl < el o (L +1)§ijj, (19)
T A - B2) A1 = B2 =

or F(wt+1) — F(ﬂ:t) < 0.

This concludes the mathematical induction up until (19) is met for the first time which we denote as
To. In the following, we will explain that if (19) holds then the algorithm has found an approximate
stationary point.

Now, suppose T' < Tp, then (18) holds all the time and we sum both sides of it from 1 to 7" to have,
with high probability,
T

d
[Lol[17*T (>
F* — < IVF () 1t S —gyy T B;
Rearrange terms to obtain
RS 2 nl| Lol
VF <= VF < = [F(y)—F*+—122 o0 ——— +1 B;.
i VPOl < £ 3 IVFEh < rlFe) P o0 (5o +)Z_j ;

(20)
Note that RHS of (19) is less than RHS of (20). Thus, for the other case of T" > T}, (20) still holds.

Recalling that p = 1 — ‘g? A=A P < B2 < B, and By & — 1R 4 gT(M; +

(1=B1)VI=P2
o)+ 6(1 — p1)o; max(1,log(1/4)) + \/1% \/ > max(1,log(1/5)), we have

20 w1 10n[Lollx 10 [Loll1n r
t]fglj{l] IVF ()1 <W7T[F($1) - P+ AT +20(+ 1) (W + A1 (1M + ||0|1))

+120[|o ||+ (1 — 1) (; + 1) (max(uog(l/a)) + max(1,1og(1/5))> .

1-p2
VI Loll1A VLol A A3/4 .
When ||o]||; > ”7, then o = and n . Hence, we obtain
lorfl = vT lellivT H%H”‘\/HGH T3/4°

in [|[VEF
min [VF ()1

1/4 1/4 1/2:m3/4 1/4 1/2
< 2Ll el P 0Ly (10, 1)(AY4 a1} Lol

+ BL(IM s +)
oT T R VI=BalLol Tt

TN 1/4 1/4) _\1/2
+120 < /? + 1> <”\I}O%|1A max(1,log(1/9)) + = ”LT||1/4 oy max(l,log(l/é)))

20 10 20+ 120 1,1log(1/6
- (N <+1> max(1,log(1/))) AVA| Lol o)

pT1/4 p VI = BT1/4
10 0 V| Loll1 A <10 > _
+ +120 +1) max(1,log(1/8 >+20 Z4+1) BT (|M|L+ |l
(p <p) (1,1og(1/6)) Wi 5 Bi[M|1 + o)

28

Table 2: Hyperparameter grid search ranges and choices yielding the highest validation accuracy for
each optimizer for training a 20-layer Resnet to do image classification on CIFAR-10. ("Ir" denotes
the initial learning rate, "clip" denotes the clipping parameter v in Algorithm 1 of [55], and "#2" is

defined in [25] for Adam and in Algorithm 1 for ours.)

Optimizer Grid Search Range Best Choice
SGD Momentum Ir {1e-5, 0.0001, 0.001, 0.01, 0.05, 0.07, 0.1, 0.2, 0.3, 1, 10} 1r=0.07
SGD Momentum Normalized | Ir {0.0001, 0.001, 0.0, 0.0, 0.07, 0.09, 0.1, 0.2, 0.3, 0.5 1, 10} r=0.1
. Ir {0.001, 0.01, 0.05, 0.1, 0.5, 1, 10} =05
SGDClipGrad clip {0.1, 1, 10} clip=1
. Ir {0.001, 0.01, 0.1, 1, 5, 10, 20, 50} =10
SGDClipMomentum clip {0.01,0.1, 1, 10} clip=0.1
Adam Ir {1e-5, 0.0001, 0.0007, 0.0009, 0.001, 0.002, 0.003, 0.01, 0.1} | 1r=0.0009
a B2 {0.4,0.8,0.999} 32=0.999
Our Aleorithm 1 Ir {5¢-5, 8¢-5, 0.0001, 0.0002, 0.0003, 0.001, 0.01} 1r=0.0002
ur Algortthim B2 {0.4, 0.8, 0.999} B2 =0.999
1/4 1/2
- 1560A1/4|| Lo |1/* || |32 /max(T, log(1/5)) . 1330 max(1,log(1/6))v/][Lo[i A
- pV/1 =BT/ T
220 VI=BILolly* 14
+ — (M1 + |lo|[1) exp (— /2 14T/ ~
p V|| Ly || |||l AY
. . ;8 .
Finally, taking §’ = a7 WE obtain the stated result. O

A.4 More Experiment Details

In this section, we provide more details for the experiments we show in Section 5.

Hyperparameter Tuning During the validation stage, we used grid-search to fine-tune respective
hyperparameters and choose the ones that yield the best validation results. We tuned the hyperpa-
rameters using the following two-stage grid searching strategy: First, search over a coarse grid, and
select the one yielding the best validation result. Next, continue searching in a fine grid centering
at the best-performing hyperparameters found in the coarse stage, and in turn, take the best one as
the final choice. Also, whenever the best-performing hyperparameters lie in the boundary of the
searching grid, we always extend the grid to make the final best-performing hyperparameters fall into
the interior of the grid, if possible.

Resnet on CIFAR-10 We randomly selected 10% images from the training dataset for validation.
Yet, during testing, we trained on the whole training dataset. The detailed search ranges and the
hyperparameter choices yielding the highest validation accuracy for each optimizer are listed in
Table 2.

AWD-LSTM on Penn Treebank We used the original train-validation-test split that comes with
the dataset. The momentum parameter (7) is fixed to be 0.9 except for SGDClipGrad which does
not use momentum. The detailed search ranges and the hyperparameter choices yielding the lowest
validation perplexity for each optimizer are listed in Table 3.

A.5 Training a Transformer Model on WMT’16 German-English Translation Task

We noted that Transformers [50] are gaining huge popularities recently and reported in Figure 1
and 3 that Transformers observe the relaxed smoothness conditions. Thus, to further showcase
the effectivity of our algorithm 1 compared with other optimizers listed in 5.1, we train a 6-layer
Transformer model to do machine translation on the WMT’ 16 Multimodal Machine Translation
Task German-English dataset. The implementation of the transformer is forked from here® and we
inherited the default model structure. We also adopted the warm-up steps of 128000 and the learning
rate decay strategy as recommended by the GitHub repo. The mini-batch size is 256 and we trained
for 400 epochs.

3https ://github.com/jadore801120/attention-is—-all-you—-need-pytorch

29

Table 3: Hyperparameter grid search ranges and choices yielding the lowest validation perplexity
for each optimizer for training an AWD-LSTM to do language modeling on Penn Treebank. ("wd"
denotes the weight decay value, "Ir" denotes the initial learning rate, "clip" denotes the clipping
parameter -y in Algorithm 1 of [55], and "(>" is defined in [25] for Adam and in Algorithm 1 for

ours.)

Optimizer Grid Search Range Best Choice
wd {le-7, 1.2e-6, 5e-6, le-5, le-4, 1e-3} wd=1e-5
SGD Momentum Ir {0.001,0.01, 0.1,0.5,08, 1,2, 4, 5) Ir=1
. wd {1e-7, 1.2e-6, 5e-6, le-5, Se-5, le-4} wd=5e-6
SGD Momentum Normalized | v 01 0,05 0.1,0.5,0.8, 1,2, 4, 5, 10} Ir=2
wd {1e-7, 1.2e-6, 5e-6, 1e-5} wd=1.2e-6
SGDClipGrad Ir {0.1,0.5, 1, 5, 10, 20, 30, 40, 50, 60, 70} Ir=50
clip {1, 2.5, 7.5, 10, 15, 20} clip=10
wd {1e-7, 1.2e-6, 5e-6, 1e-5} wd=1.2e-6
SGDClipMomentum Ir {5, 10, 20, 30, 50, 100} Ir=20
clip {1, 2.5,7.5} clip=2.5
wd {1e-7, 1.2e-6, 5e-6, 1e-5} wd=5e-6
Adam Ir {0.0001, 0.001, 0.002, 0.003, 0.01, 0.1} 1r=0.002
B2 {0.4,0.8,0.999} B2=0.999
wd {1e-7, 1.2e-6, 5e-6, 1e-5} wd=1.2e-6
Our Algorithm 1 Ir {0.0001, 0.001, 0.002, 0.003, 0.01, 0.1} 1r=0.001
B2 {0.4,0.8,0.999} B2=0.999

Table 4: Average final training loss, test perplexity, and test accuracy achieved by each method
when optimizing the Transformer model on the WMT’ 16 Multimodal Machine Translation Task
German-English dataset. The 4 shows 95% confidence intervals of the mean value over 5 runs

starting from different random seeds.

Methods Training loss Test perplexity Test accuracy
SGD Momentum 2.8045 £ 0.0209 | 10.4319+0.1973 | 63.9108 + 0.5797
SGD Momentum Normalized | 2.9268 £ 0.0512 10.5793 £ 0.6383 63.0774 + 0.8231
SGDClipGrad 3.0214 £ 0.0508 | 10.5974 £ 0.3527 | 62.2534 £ 0.3145
SGDClipMomentum 2.8128 £0.0295 | 10.4677 +£0.3619 | 63.6562 + 0.5370
Adam 1.4303 +0.0009 | 8.9088 +0.1294 | 68.9828 + 0.2786
Our Algorithm 1 1.6263 + 0.0024 | 7.2731 +0.0870 | 68.5790 £ 0.4693

For the hyperparameter tuning, the momentum parameter (1) is fixed to be 0.9 except for SGDClip-
Grad which does not use momentum. We then used grid-search to fine-tune the initial learning rate
and the weight decay value for all optimizers, as well as the clipping threshold for SGDClipGrad and
SGDClipMomentum, and 35 for Adam and our algorithm. We select the combination of hyperparam-
eters that gives the lowest validation perplexity. The detailed search ranges and the hyperparameter
choices yielding the lowest validation perplexity for each optimizer are listed in Table 3.

We then employ the best-performing hyperparameters to report the testing performance. The testing
is repeated with random seeds 5 times to eliminate the influence of stochasticity. The results are
reported in Figure 6 and Table 4. Here the accuracy means the proportion of correct correspondences
of words, namely the same word at the same location, between the machine-translated output and the
target. It can be seen that we can still match the performance of Adam while beating the others. Also,
note that the curves of SGD Momentum and the ones of SGDClipMomentum overlap as they utilize
the same weight decay values and initial learning rates, and turns out clipping is seldomly performed
when employing SGDClipMomentum.

30

7 60 80
6 50
60
>
25 £ 40 o
(=] ©
- Q —
o = ot
c4 5 30 0 40
£ g g
83 B 20 i
= () =
. 20
2 10
1 0 0
0 200 400 0 200 400 0 200 400
Epoch Epoch Epoch
= Our Generalized SignSGD = SGD Momentum = SGDClipGrad
m— Adam m—= SGD Momentum Normalized SGDClipMomentum

Figure 6: Training a 6-layer Transformer model to do machine translation on the WMT’ 16 Multimodal
Machine Translation Task German-English dataset. The shading of each curve represents the 95%
confidence interval computed across five independent runs from different random seeds.

Table 5: Hyperparameter grid search ranges and choices yielding the lowest validation perplexity
for each optimizer for training a 6-layer Transformer to do machine translation on the WMT’16
Multimodal Machine Translation Task German-English dataset. ("wd" denotes the weight decay
value, "Ir" denotes the initial learning rate, "clip" denotes the clipping parameter « in Algorithm 1
of [55], and " (35" is defined in [25] for Adam and in Algorithm 1 for ours.)

Optimizer Grid Search Range Best Choice
wd [1e-6, 0.001, 0.01, 0.1, 1, 10, 100, 1000} wa=1
SGD Momentum Ir {0.1, 1. 10, 100, 1000, 10000} Ir=1
) wd {16, 0.001, 0.01, 0.1, T, 10, 100, 1000} Wa=1
SGD Momentum Normalized | "¢ 01 01,1, 10, 100, 1000, 10000, 100000} | Ir=10000
wd [1-6, 0.01, 0.1, 1, 10, 100, 1000} Wa=T
SGDClipGrad Ir {0.01, 0.1, 1, 10, 100, 1000, 10000} Ir=10
clip {0.01,0.1, 1, 10} clip=1
wd {16-6, 0.01, 0.1, T, 10] Wd=T
SGDClipMomentum Ir {0.01, 0.1, 1, 10, 100, 1000, 10000} Ir=1
clip {0.01, 0.1, 1, 10} clip=1
wd {1e-6, 0.001, 0.01, 0.1, T, 10, 100} Wd=0.1
Adam Ir {0.1, 1, 10, 100, 1000, 10000} Ir=10
85 {0.9,0.98, 0.999} $8,=0.98
wd {16, 0.001, 0.01, 0.1, T, 10, 100} Wd=0.1
Our Algorithm 1 Ir {0.1, 1, 10, 100, 1000, 10000} Ir=10
3, {0.9, 0.98, 0.999} 8,=0.98

31

	Introduction
	Related Works
	Settings and Preliminaries
	A Generalized SignSGD Algorithm
	Theoretical Convergence Analysis

	Experiments
	Comparison with Other Optimizers
	Transformers Observe (L0, L1)-smoothness
	Clipping does not Affect Adam's Performance

	Conclusion and Limitations
	Appendix
	Properties of the coordinate-wise (bold0mu mumu L0L0L0L0L0L0 ,bold0mu mumu L1L1L1L1L1L1) Assumption 2
	Proof of Lower Bound
	Proof of Theorem 1
	More Experiment Details
	Training a Transformer Model on WMT'16 German-English Translation Task

