
NISPA: Neuro-Inspired Stability-Plasticity Adaptation
for Continual Learning in Sparse Networks

Mustafa Burak Gurbuz 1 Constantine Dovrolis 1 2

Abstract
The goal of continual learning (CL) is to learn
different tasks over time. The main desiderata as-
sociated with CL are to maintain performance on
older tasks, leverage the latter to improve learning
of future tasks, and to introduce minimal overhead
in the training process (for instance, to not re-
quire a growing model or retraining). We propose
the Neuro-Inspired Stability-Plasticity Adaptation
(NISPA) architecture that addresses these desider-
ata through a sparse neural network with fixed
density. NISPA forms stable paths to preserve
learned knowledge from older tasks. Also, NISPA
uses connection rewiring to create new plastic
paths that reuse existing knowledge on novel tasks.
Our extensive evaluation on EMNIST, FashionM-
NIST, CIFAR10, and CIFAR100 datasets shows
that NISPA significantly outperforms representa-
tive state-of-the-art continual learning baselines,
and it uses up to ten times fewer learnable pa-
rameters compared to baselines. We also make
the case that sparsity is an essential ingredient for
continual learning. The NISPA code is available
at https://github.com/BurakGurbuz97/NISPA

1. Introduction
Recently, deep neural networks (DNNs) have achieved im-
pressive performance on a wide variety of tasks, and they
often exceed human-level ability. However, they rely on
shuffled, balanced, fixed datasets and stationary environ-
ments (LeCun et al., 2015; Silver et al., 2016; Guo et al.,
2016). As a result, they lack a critical characteristic of gen-
eral intelligence, which is to continually learn over time in a
dynamic environment. Under this Continual Learning (CL)

1School of Computer Science, Georgia Institute of Technol-
ogy, USA. 2KIOS Research and Innovation Center of Excellence,
Cyprus. Correspondence to: Constantine Dovrolis <constan-
tine@gatech.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

scenario, DNNs forget what was learned in earlier tasks
when learning new tasks, leading to a daunting phenomenon
known as Catastrophic Forgetting (CF) (McCloskey & Co-
hen, 1989).

In stark contrast, animals excel at learning and remembering
many different tasks they encounter over time. At least so
far, the brain is the only existing system for successful CL
in complex environments. This highlights the importance
of reviewing basic facts about the brain’s structure and func-
tion, and suggests the design of neuro-inspired mechanisms
to mitigate CF (Hadsell et al., 2020; Hassabis et al., 2017).
We summarize next some insights that provide hints for
successful CL models.

Sparse connectivity: In contrast to DNNs’ dense and
highly entangled connectivity that is prone to interference
(French, 1999), the brain relies on sparse connectivity in
which only few neurons respond to any given stimulus
(Babadi & Sompolinsky, 2014). After extensive synaptic
pruning during childhood (Chechik et al., 1998), the connec-
tion density of the brain stays roughly constant (in healthy
adults). In other words, the brain does not compromise spar-
sity to accumulate knowledge – instead it rewires existing
neurons to create more effective neural pathways. This sug-
gests a first mechanism we can transfer in DNNs: persistent
sparsity over the course of continual learning (Hadsell et al.,
2020).

Functional and structural plasticity: The brain learns
through two forms of plasticity. First, functional or Hebbian
plasticity adjusts the strength of synaptic transmission. A
specific instance of Hebbian plasticity is Spike Timing De-
pendent Plasticity (STDP), which controls the strength of a
synapse based on the relative timing of the corresponding
neurons’ activity (Park et al., 2014; Cooke & Bliss, 2006).
Second, structural plasticity changes the brain’s circuitry
by forming new, or removing existing, synapses. While the
underlying mechanisms are not fully understood yet, recent
studies have shown that synapse rewiring occurs rapidly
during learning (Fu & Zuo, 2011; Kasai et al., 2010; Deger
et al., 2012). This implies that learning takes place in the
brain by simultaneously changing both connection weights
and network architecture. This suggests a second mech-
anism we can transfer to DNNs: connection rewiring to

ar
X

iv
:2

20
6.

09
11

7v
1

 [c
s.L

G
]

18
 Ju

n
20

22

%20https://github.com/BurakGurbuz97/NISPA

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

create new, and prune existing, paths in the network when
learning novel tasks.

Synaptic stability to avoid forgetting: A remarkable trait
of the brain is its capacity to assimilate new information
throughout life without disrupting the stability of previous
knowledge (Parisi et al., 2019). Dendritic spines (single
synaptic inputs) are highly stable after a learning window.
This suggests that stable spines serve as substrates for long-
term information storage (Zuo et al., 2005; Yang et al., 2009;
2014; Grutzendler et al., 2002). For instance, after a mouse
learns a new task the volume of individual dendritic spines
in associated neurons increases. Furthermore, this increased
volume is maintained even after learning additional tasks
(Yang et al., 2009). On the other hand, the mouse forgets
those tasks once those enlarged spines are experimentally
removed. These results support that learning a new task
requires forming task-specific stable synapse ensembles that
are restrained from future change. (Cichon & Gan, 2015;
Hayashi-Takagi et al., 2015). This suggests a third mech-
anism we can transfer to DNNs: disable gradient updates
of certain hidden units’ inputs to retain previously learned
knowledge.

Absence of neurogenesis: There is evidence that adult neu-
rogenesis takes place in few mammalian brain regions, es-
pecially in the cerebellum (Carletti & Rossi, 2008) and
hippocampus (Ming & Song, 2011). However, the brain’s
capacity in terms of number of neurons remains mostly the
same, despite learning more and more tasks over the course
of life. Therefore, creating new neurons is not the brain’s
preferred mechanism to learn new tasks. This suggests a
fourth mechanism we can transfer to DNNs: maintain a
fixed capacity model (fixed number of layers and units),
even if the architecture is dynamic through rewiring.

Absence of rehearsal: The brain does not store ”raw” ex-
amples (e.g., pixel-level images). Also, it does not need peri-
odic retraining on all previously known tasks when learning
new concepts (van de Ven et al., 2020; Hayes et al., 2021).
Instead, and mostly during sleep, the brain consolidates the
memories of important new experiences, avoiding interfer-
ence between old and new memories (Niethard et al., 2017;
Yang et al., 2014). This suggests a fifth mechanism we
can transfer to DNNs: instead of relying on biologically
implausible rehearsal mechanisms to alleviate CF, embed
new knowledge in the DNN’s dynamic architecture.

This paper proposes the Neuro-Inspired Stability-Plasticity
Adaptation (NISPA) architecture for CL that is based on the
five previous mechanisms:

(1) We utilize sparsity to improve CL. Diverging from the
mainstream practice of utilizing a dense architecture, we
start with a sparse network and maintain the same connec-
tion density throughout the learning trajectory.

(2) In contrast to fully connected networks, sparse networks
let us rewire connections. The rewiring process has two
goals: disentangle interfering units to avoid forgetting, and
create novel pathways to encode new knowledge.

(3) Motivated by persistent dendritic spines, we create stable
hidden units by “freezing” the incoming connections of
those units. So, for each learned task, we select a small set
of units that remain stable to avoid forgetting that task.

(4) NISPA does not require model expansion. It sequentially
accumulates knowledge into a fixed set of hidden units.

(5) Similar to sleep and memory consolidation, NISPA re-
quires some time during training to figure out which paths
are essential for remembering a new task and whether new
paths can be added without causing interference with prior
tasks.

From a computational perspective, NISPA only uses an extra
bit per unit to mark whether that unit is stable or plastic.
Furthermore, thanks to sparsity and rewiring, it requires
much fewer parameters to achieve better performance than
state-of-the-art methods.

We have mostly evaluated NISPA on task incremental learn-
ing (van de Ven & Tolias, 2019) (i.e., task labels are avail-
able during testing). Our experiments on EMNIST, Fash-
ionMNIST, CIFAR10, and CIFAR100 datasets show that
NISPA significantly outperforms representative state-of-the-
art methods on both retaining learned knowledge and per-
forming well on new tasks. It also uses up to ten times fewer
learnable parameters compared to baselines.

In Section 4.5, we present a NISPA extension for class
incremental learning, where task labels are not provided
during testing. Unfortunately, that extension requires the
storage and replay of few examples for previous classes. We
will aim to address that limitation in future work.

2. Related Work
2.1. Dynamic Sparse Nets for Single-Task Learning

Training sparse neural networks has been extensively ex-
plored (Bellec et al., 2018; Evci et al., 2020; Mocanu et al.,
2018; Liu et al., 2021b; 2020; 2021a). This line of work
proposes different architectures by dropping and growing
connections during training. Similar to the brain, these mod-
els simultaneously learn both connection strengths and a
sparse architecture – but they are restricted to single task
learning.

2.2. Regularization Methods for CL

Regularization-based CL approaches modulate gradient up-
dates, aiming to identify and preserve the weights that are
more important for each task (Kirkpatrick et al., 2017; Zenke

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

et al., 2017; Aljundi et al., 2018; Li & Hoiem, 2017; Serra
et al., 2018; Chaudhry et al., 2018). Besides their mathemat-
ical foundation, these methods are also motivated by studies
of synaptic consolidation (Hadsell et al., 2020). NISPA
can also be classified as a regularization-based CL method.
Other such methods however need to store more complex
regularization parameters (typically floating-point numbers)
for every connection compared to NISPA’s single-bit over-
head per unit.

2.3. Rehearsal Methods for CL

These methods store (Rebuffi et al., 2017; Rolnick et al.,
2019; Isele & Cosgun, 2018) or generate (Shin et al., 2017;
Atkinson et al., 2018; Ramapuram et al., 2020) examples
of previous tasks. They retain knowledge by replaying
those examples periodically. From a neuroscience perspec-
tive storing raw data is not biologically plausible (Hadsell
et al., 2020; van de Ven et al., 2020; Hayes et al., 2021;
Ramirez et al., 2013). It also introduces a major computa-
tional overhead. Additionally, the generative model itself is
susceptible to forgetting and mode collapse. Such methods
require significantly more resources and they are not directly
comparable to NISPA.

2.4. Parameter Isolation Methods for CL

Parameter isolation methods assign different parameters for
each task to mitigate forgetting. This parameter isolation
is often achieved by growing new branches for tasks and
freezing previous task parameters (Rusu et al., 2016; Li
et al., 2021; Sahbi & Zhan, 2021; Yoon et al., 2018; Aljundi
et al., 2017; Rosenfeld & Tsotsos, 2018). However, such
model expansion is often not acceptable in practice because
it increases the computational requirements linearly with
the number of tasks. Another line of work addresses this
limitation by utilizing a fixed-capacity architecture. Similar
to NISPA, such approaches remove certain connections to
limit interference, and they freeze essential connections to
ensure stable performance on previous tasks (Golkar et al.,
2019; Jung et al., 2020b; Sokar et al., 2021). However, they
often depend on hard-to-tune hyperparameters. Additionally
they can suffer from freezing entire layers, which prohibits
further learning (Golkar et al., 2019).

3. NISPA description
Figure 1 illustrates the key ideas in NISPA, while Algo-
rithm 1 (see Appendix) presents the complete method. The
training for each task is divided into “phases“ (e epochs
each). After each phase, we select candidate stable units
(Section 3.3). This selection step is followed by connection
rewiring (Section 3.7). This selection and rewiring cycle is
repeated for several phases until a stopping criterion is met
(Section 3.8). Once a task ends, we promote candidate units

to stable units, freeze the incoming connections of all stable
units (Section 3.2) and reinitialize the weights of plastic
units.

3.1. Notation and Problem Formulation

In most of the paper we consider task incremental learn-
ing, with a sequence of T tasks. For each task t we have a
training dataset Dt and a validation dataset Vt. Task iden-
tifiers are available during training and testing. The layer
l 2 {1, . . . , L} has Nl units and let nl

i (i 2 {1, . . . , Nl}) be
the i-th unit in that layer. Let ✓li,j denote the j-th incoming
connection of nl

i from nl�1
j . We denote the activation of

unit nl
i as anl

i
(x) and the total activation of layer l as al(x),

where x is the input that generates these activations. The
activation function of all units, excluding the outputs, is
ReLU.

NISPA maintains a certain connection density d throughout
the training process. The density d is defined as the ratio
between the number of connections after and before pruning.
Pruning is performed randomly, at initialization, and on a
per-layer basis. In other words, every layer has the same
density d.

In convolutional neural networks (CNNs), a “unit” is re-
placed by a 3D convolution filter. Likewise, a “connection”
is replaced by a 2D kernel.

3.2. Stabilizing a Plastic Unit

The activation of unit nl
i is determined by its parent units’

activations and the weight of incoming connections from
those parents. So, any weight updates during training alter
unit nl

i in two ways: first, directly changing the weights
of incoming connections into the unit. Second, indirectly,
by changing the weights of incoming connections to the
unit’s ancestor units, i.e., units in any path from the inputs
to nl

i. NISPA ensures that stable units receive input only
from other stable units, using connection rewiring (Section
3.7). Additionally, at the boundary between two tasks, it
freezes connections into new stable units to stabilize those
units, i.e., it does not allow the corresponding weights to
change after that point.

3.3. Selecting Candidate Stable Units

At any given time, the units U l of layer l are partitioned into
three disjoint sets: Sl

c, Sl and P l, namely candidate stable,
stable, and plastic units. While learning task t, NISPA
periodically transitions some plastic units from P l into the
set of candidate (stable) units Sl

c. At the end of the training
for that task, the members of Sl

c are promoted into Sl.

Suppose we start with the sets P l and Sl we inherited from
the previous task (if there is no previous task all units are

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Figure 1. The training for each task is divided into “phases“ (e epochs each). Between successive phases, we select candidate stable units,
and the rewiring process takes place. Upon a task boundary, candidate stable units are promoted to stable units, the connections between
stable units are frozen, and we reinitialize the remaining connections.

plastic). First, we compute the total activation at each layer
across all training examples for that task, as follows:

Al =
X

x2Dt

al(x) =
X

x2Dt

NlX

i=1

anl
i
(x) (1)

Next, for each layer we select the candidate stable units Sl
c

as follows:

min
Sl
c✓P l

��Sl
c

�� subject to
X

x2Dt

X

nl
i2Sl

c[Sl

anl
i
(x) � ⌧Al (2)

The aim is to compute the smallest set of units Sl
c ✓ P l that

we need to add to Sl to capture at least a fraction ⌧ of the
total activation in layer l (the selection of ⌧ is discussed in
Section 3.4). Then we remove those elements of Sl

c from
P l.

The previous optimization problem is solved heuristically
as follows. We start with Sl

c ⌘ ;. Then we add plastic units
with the largest total activation one by one into Sl

c, until
the ⌧ criterion is satisfied. If Sl already captures at least ⌧
fraction of the overall layer activation, the algorithm does
not select any candidate stable units and Sl

c remains empty.
Note that the selection process is performed in parallel at
each layer. The input and output layers do not participate in
this process because they are considered stable by definition.

The rationale of the previous approach is: any units that
have remained in Sl

c at the end of that task’s training are
highly active while learning task t. So, to avoid forgetting
that task in the future, we stabilize these units by disabling
any gradient updates in their input paths.

3.4. Calculating ⌧

In the early phases of a task’s training, the activations can
vary erratically. So, it is better to start with a larger ⌧ ,
resulting in more candidate stable units Sl

c. As the training
proceeds, the network becomes more competent in that task,
the activations are more stable, and we can further restrict
the selection of candidate stable units.

This intuition suggests a gradual reduction of ⌧ , starting
with ⌧1 = 1 in the first phase, and decreasing ⌧ in step
sizes that increase with every phase. To do so we use the
following cosine annealing schedule:

⌧p =
1

2

✓
1 + cos

✓
p⇥ ⇡

k

◆◆
(3)

, where p is the phase number and k (typically 30 or 40) is
a hyperparameter that determines the shape of the function.

Figure 2. A and B show the activation distributions in a sparse
(10% density) two-layer multilayer perceptron after training on
MNIST – both distributions are highly skewed. C demonstrates
that skewness does not change much during training. D shows that
the removal of highly active units hurts the performance of the
model much more than the removal of other units.

3.5. Skewness of activations

One may ask whether too many units will be selected as
stable, not leaving enough plastic units for subsequent tasks.
Prior work has observed that using ReLUs leads to a per-
layer activation distribution that is highly skewed across

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

different network architectures and datasets (Kurtz et al.,
2020; Hu et al., 2016; Rhu et al., 2018; Georgiadis, 2019).
The main reason for this skewness is that a ReLU maps all
negative pre-activations to zero. As a result, the activation
of most units is almost zero, while only few units have a
large activation. Figure 2-A,B shows an example of this
phenomenon on the MNIST classification task.

Figure 2-C shows that the skewness of the activation distri-
bution (one per layer) is high even at the first epoch, and it
remains high throughout the training period.

This is an important point for NISPA because it suggests
we can satisfy the ⌧ constraint by selecting only few units
from the right tail of the distribution (i.e., the most active
units). So, we expect that many units will remain plastic for
learning future tasks.

3.6. Activation as a Measure of Importance

Another concern may be whether the total activation of a
unit is a valid indicator of its contribution to learning a task.
Activations are often used to determine which units are more
important for a given task in problems such as CL (Jung
et al., 2020a; Golkar et al., 2019), network pruning (Kurtz
et al., 2020; Hu et al., 2016; Rhu et al., 2018), and model
interpretation (Erhan et al., 2009; Zeiler & Fergus, 2014).
There are several empirical results that support this choice,
such as the observation that removing the most active units
degrades performance much more than removing the same
number of randomly chosen units (Jung et al., 2020a). Sim-
ilar results for the MNIST classification task are shown in
Figure 2-D, highlighting the strong correlation between a
unit’s activation and its importance for a given task.

3.7. Connection Rewiring

NISPA leverages connection rewiring for two reasons: miti-
gate forgetting and create novel pathways for forward trans-
fer. Rewiring follows the selection of candidate stable units
Sl
c at the end of each phase, and it consists of (1) dropping

and (2) growing connections, as described next.

(1) We remove connections from plastic units to (possi-
bly candidate) stable units. So, future changes in a plastic
unit’s functionality will not propagate to stable units. More
formally, given Sl, P l, and Sl

c, all connections ✓li,j where
nl
i 2 Sl [Sl

c and nl�1
j 2 P l�1 are dropped.

(2) Dropping some connections from a layer l is followed
by growing the same number of new connections in layer l,
maintaining the per-layer density. The new connections are
selected randomly as long as they do not form new inputs
to stable units (i.e., ✓li,j where nl

i 2 P l and nl�1
j 2 U l�1).

This guarantees that connection growth will not disrupt
representations learned by stable units.

The weight of new connections is initialized based on ex-
isting weights, as follows. Let µl be the mean and �l the
standard deviation of the existing weights at layer l. We
sample a new weight as ✓l ⇠ Nl(µl,�l).

NISPA only grows connections between plastic units (type-
1) or from (possibly candidate) stable units to plastic units
(type-2). Type-1 and type-2 connections serve different
purposes. Type-1 connections may enable learning new
representations for future tasks. In contrast, type-2 connec-
tions promote forward transfer, as plastic units can utilize
learned and stable representations. Depending on the simi-
larities across tasks and the layer at which the connections
are added, type-1 could be more or less valuable than type-2.

3.8. Stopping criterion

The number of phases is not fixed. Instead, we track the
highest accuracy achieved so far on the validation dataset Vt.
At the end of each phase, if the new accuracy is worse than
the best seen accuracy, we stop training and revert the model
to the end of the previous phase. In other words, we perform
early stopping at the level of phases instead of epochs.

Note that a task’s training ends with a final sequence of
e epochs. This allows the network to recover from any
performance loss due to the last rewiring process.

We observed that plastic units start with a bias from the last
task’s training, which hinders learning the new task. For
this reason we re-initialize the weights of all non-frozen
connections before the training for a new task starts.

4. Experimental Results
In this section, we compare NISPA against state-of-the-art
CL methods and other baselines. We also conduct ablation
studies to evaluate the importance of different NISPA mech-
anisms. We primarily consider three task sequences. First,
a sequence of 5 tasks derived from EMNIST (Cohen et al.,
2017) and FashionMNIST (Xiao et al., 2017) that we refer
to as EF-MNIST – Task1: 10 digits, Task2: initial 13 upper-
case letters, Task3: remaining 13 uppercase letters, Task4:
11 lowercase letters (different than their uppercase counter-
parts), Task5: 10 FashionMNIST classes. Second, five tasks
with two classes each from CIFAR10 (Krizhevsky et al., a).
And third, 20 tasks derived from CIFAR100 (Krizhevsky
et al., b) with five classes per task.

In the case of EF-MNIST, we use a three-layer multi-
layer perceptron (MLP) with 400 units each. For CI-
FAR10/CIFAR100, we use a network with four convolu-
tional layers (3x3 kernel, stride=1 – 64 filters at first two
layers, 128 filters at next two layers – second and fourth
convolutional layers use max-pooling), followed by two lin-
ear layers (hidden layer with 1024 units followed by output

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

layer).

The output layer relies on a multi-head approach in which
the activations of irrelevant output units are masked out
during training and testing.

NISPA utilizes uniform random pruning (the edge weight
is set to zero or each 2D filter is set to a zero-matrix, with
equal probability) at initialization. The MLP density is 20%
and the CNN density is 10%, unless stated otherwise.

4.1. Supervised Learning on Vision Datasets

4.1.1. COMPARISON WITH SINGLE TASK LEARNERS

Suppose we use NISPA with density d to sequentially learn
T tasks. First, let us compare with two baselines: a single
task learner (STL) with density d represents a performance
upper bound because it dedicates all parameters to learn
only a single task. Also, an STL with density d

T (referred to
as “STL ISO”) represents a lower bound as it corresponds
to partitioning the network into T equal-size subnetworks
and learning a different task in each subnetwork.

Figure 3 shows that NISPA outperforms STL ISO, and
performs close to STL, in the first four tasks of EF-MNIST.
However, it performs rather poorly on Task-5. The first
four tasks consist of handwritten digits and letters, while
Task-5 is fashion items. Therefore, NISPA cannot leverage
its knowledge of previous tasks in Task-5.

Figure 3 also shows that in the case of CIFAR10 and CI-
FAR100, where all tasks come from the same domain,
NISPA dominates STL ISO and matches the performance
of STL on most tasks. Note that STL ISO fails to learn
the CIFAR100 task – its accuracy is less than 50%. This
highlights that NISPA’s success is not only due to parame-
ter isolation (dropping and freezing connections). Sharing
representations via novel connections from stable to plastic
units plays a crucial role in successful CL.

4.1.2. COMPARISON WITH STATE-OF-THE-ART
METHODS

We compare NISPA to three well-known regularization
methods: EWC (Kirkpatrick et al., 2017), SI (Zenke et al.,
2017), and MAS (Aljundi et al., 2018). We also compare
with the parameter isolation method CLNP (Golkar et al.,
2019). All four methods are suitable baselines because,
similar to NISPA, they do not rely on model expansion
or rehearsal. These baselines use dense networks (density
d = 1), giving them five to ten times more learnable pa-
rameters compared to NISPA (see Appendix Table 5 for an
exact comparison).

Figure 4 shows results for each dataset. First, NISPA
matches or outperforms CLNP on EF-MNIST, and it does
much better than other baselines although they have five

times more learnable parameters. On CIFAR10 and CI-
FAR100, we observe a more significant gap between NISPA
and all baselines. EWC has the closest performance to
NISPA in the CIFAR100 tasks (on the average, 70.96%
versus 75.88% respectively). This is remarkable because
NISPA uses ten times fewer learnable parameters than EWC.

Interestingly, in contrast to CLNP’s good performance on
an MLP, it performs similarly to other regularization-based
methods on CNNs. CLNP aggressively freezes convolu-
tional filters, leading to a mostly frozen network after few
initial tasks. This limitation is also mentioned by the CLNP
authors (Golkar et al., 2019) – the first task alone almost
freezes the entire first and second convolutional layers, leav-
ing little room for learning new low-level features in subse-
quent tasks. In contrast, NISPA’s phased approach selects
gradually the plastic units that will be stabilized for each
task, and the training process continues during rewiring
allowing the network to adapt to rewiring changes.

On the other hand, the gap between regularization-based
methods and NISPA is more significant in initial tasks (see
Figure 4-Right). We argue that this is because those base-
lines only address one aspect of forgetting: they penalize
weight changes of some important connections. However,
they overlook the indirect interference caused by altering
the weights of an ancestor of a stable unit. So, the effect
of small changes accumulates throughout the network, and
when the task sequence is long enough, those baselines still
suffer from forgetting.

Table 4 (see Appendix) shows the standard deviation of the
average accuracy across all tasks and 5 runs. NISPA has the
most stable performance compared to other CL baselines.

4.2. Sparsity Improves Continual Learning

In general, sparse networks are desirable since they require
less computation and storage than their dense counterparts.
However, we also argue that sparsity can also help with
the CL objective. To understand why, consider first a fully
connected network: the stabilization of a unit with NISPA
will cause all units at the previous layer to either lose or
freeze one of their outgoing connections. In contrast, in
a sparse network only few connections would be affected.
More generally, a sparse network allows NISPA to reduce
the “interference” across tasks because each task relies on
relatively few (compared to the size of the entire network)
interconnected stable units that do not receive any input
from plastic units.

Figure 5 shows the interplay between network density and
the performance of NISPA. We observe that there is always a
critical density at which the performance is optimal. Denser
models suffer from highly entangled units, while sparser
models suffer from under-fitting. An interesting open ques-

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Figure 3. Accuracy for each task after learning is complete. Each data point indicates the average accuracy across five runs (± one
std.deviation). STL ISO performs poorly on CIFAR100 tasks – its accuracy is less than 50% – so we omit STL ISO from the CIFAR100
plot.

Figure 4. Accuracy for each task after learning is complete. Each data point indicates the average accuracy across five runs (± one
std.deviation). We highlight the top-2 competing methods (NISPA and EWC) in the CIFAR100 plot.

tion is to better characterize and even predict that critical
network density for a given sequence of tasks.

4.3. NISPA Efficiently Reuses Representations

NISPA aims to reuse representations and promote forward
transfer, by maintaining connections from stable units to
plastic units at the next layer. So, we may ask: how does
the similarity across two tasks affect the number of new
stable units that will be required to learn the second task?
We expect that learning a second task that is similar to the
first will require the stabilization of fewer new units than
learning a very different second task.

To examine this hypothesis quantitatively we train an MLP
on classifying MNIST. The second task is the same but
operating on permuted MNIST images, in which we have
permuted randomly a fraction pr of the pixels. We chose this
task because random permutations are equally challenging
for an MLP as classifying the original images. Therefore,
the only variable in this experiment is pr, which is a knob
to adjust the similarity of the two tasks (see Appendix C.4
for details).

Figure 6 shows the number of additional stable units that
NISPA selects for the second task. As expected, the number

Table 1. Average accuracy across all tasks for different connection
growth methods.

Growth 10% Permutation 100% Permutation

Novel 97.3 97.3
Random 97.2 97.2
Transfer 97.3 97.0

of additional stable units increases as pr increases, because
previously learned representations become less helpful. In
this particular task sequence we do not observe a pattern
about the layer in which new stable units are formed. An
interesting open question is to examine whether a visual
task that is based on similar low-level features would create
stable units only at the higher layers.

4.4. Other Connection Growth Mechanisms

In section 3.7, we mentioned that type-1 connections (be-
tween plastic units) create novel paths while type-2 connec-
tions (from stable units to plastic units) promote forward
transfer between tasks. NISPA randomly selects between
these two connection types. In this section, we explore how
different connection growth mechanisms perform depend-

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Figure 5. The effect of network density on NISPA’s performance. Bars show the average accuracy across all tasks. The magenta bar shows
the density level at which NISPA performs best.

Figure 6. Bars show the percentage of additional stable units se-
lected after the first task. The first task is standard MNIST classifi-
cation, while the second task is the same but with permuted input
pixels.

ing on the similarity of consecutive tasks. We generate two
task sequences, each with 5 tasks. The first sequence in-
cludes five permuted MNIST tasks, where in each task we
randomly choose 10% of all input pixels and permute them.
This corresponds to a sequence with quite similar tasks. In
the second sequence, each task includes independent per-
mutations of all pixels. Therefore, those tasks do not share
common features.

In addition to NISPA’s random connection growth mech-
anism, we consider the following two mechanisms. The
first, referred to as Novel, only grows type-1 connections
to create novel paths in the network. The second, referred
to as Transfer, only grows type-2 connections. Details are
given in the Appendix C.5.

Figure 7 shows the growth in the number of stable units,
while Table 1 shows NISPA’s performance on the two task
sequences. First, note that growing only type-2 connections
is beneficial if the tasks are similar because those connec-
tions promote forward transfer and reduce the number of

Figure 7. Growth in the number of stable units on permuted-
MNIST tasks using different wiring algorithms.

new stable units required. However, the Transfer growth
mechanism results in the worst accuracy when the tasks are
quite different.

On the other hand, growing only type-1 connections in-
creases rapidly the number of stable units even though that
is not needed in terms of accuracy. Also, this Novel growth
mechanism does not attempt to exploit similarities across
tasks, and it achieves approximately the same accuracy on
both sequences of this experiment.

These results suggest that we can tweak the growing mech-
anism and get better performance with fewer stable units
as long as we have some prior knowledge about the simi-
larity of different tasks. However, without such knowledge,
NISPA’s Random growth mechanism is a good tradeoff
between exploiting forward transfer and creating novel net-
work pathways.

4.5. NISPA in Class Incremental Learning

NISPA requires task labels to pick the correct classifica-
tion head – lower layers are agnostic to task labels. This
is significantly different than methods that utilize task in-
formation throughout the architecture, such as (Rusu et al.,
2016; Mallya et al., 2018). Therefore, we claim that the
main ideas in NISPA are not specific to task incremental
learning.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Table 2. Average accuracy across all tasks once learning is complete (± one std.dev). The best model (excluding NI, which is an upper
bound) is presented in bold.

Buffer Size 10 Samples Per Class 50 Samples Per Class 100 Samples Per Class
MNIST EF-MNIST CIFAR10 MNIST EF-MNIST CIFAR10 MNIST EF-MNIST CIFAR10

NI 97±0.2 82±0.3 80±0.2 97±0.2 82±0.3 80±0.2 97±0.2 82±0.3 80±0.2
NISPA-Replay 77±1.2 66±1.4 38 ±2.0 86±1.9 74±0.7 51±1.5 90±0.6 77±0.5 57±0.8
DER 57±2.0 64±0.9 19±4.7 84±1.3 77±0.3 30±9.9 87±0.9 79±0.6 33±1.2
ER 60±4.2 56±0.6 19±1.0 80±4.3 70±0.5 22±6.8 86±1.5 74±0.7 33±1.9
iCaRL 73±1.4 51±0.6 40±2.7 74±1.9 45±0.7 47±2.5 61±3.7 57±0.2 30±1.8
A-Gem 51±4.7 53±3.5 23±1.1 58±8.9 55±3.7 22±1.7 46±7.5 54±2.1 22±1.0

To support this claim, we present a variation of NISPA
for Class Incremental Learning that we refer to as NISPA-
Replay. First, NISPA-Replay does not freeze the connec-
tions in the final layer. Second, it utilizes a replay buffer
that stores few random examples for each task, and train
on those while learning a new task. Since all paths from
inputs to the stable units of the penultimate layer are frozen,
replay only affects the input weights of output units. We
admit that replay of “raw” examples is not a biologically
plausible approach – but it is still much simpler that other
approaches for incremental continual learning based on com-
plex sampling/replay or generative models (see Appendix
D for details).

We benchmark NISPA-Replay against four well-known
baselines that also rely on replay, namely, Experience Re-
play (ER) (Chaudhry et al., 2019b), Dark Experience Replay
(DER) (Buzzega et al., 2020), iCaRL (Rebuffi et al., 2017),
and A-GEM (Chaudhry et al., 2019a). Furthermore, the
Non-Incremental (NI) model learns all classes simultane-
ously and serves as an upper bound. Baselines are randomly
pruned to have the same number of parameters as NISPA
for a fair comparison. For reference, we also present results
for dense baselines in the Appendix Table 6.

Table 2 shows the average accuracy across all tasks for
various buffer sizes. With few exceptions, NISPA outper-
forms other baselines across datasets and buffer sizes. This
confirms that the main ideas in NISPA are promising even
when task labels are not available during inference. On
the other hand, the gap between the NI model (where there
is no continual learning) and NISPA-Replay is quite large,
suggesting that there is still plenty of space for improving
the application of NISPA in the context of class incremental
learning.

Note that DER outperforms NISPA on the EF-MNIST
dataset. DER stores logits along with raw samples. Logits
is a vector of 57 entries (for EF-MNIST), which is compa-
rable to the size of those images. So DER has a valuable
additional signal about the previous state of the network,
which is not available to other baselines including NISPA.

We observe that once the size of the logits signal becomes
insignificant compared to the size of the input (e.g., in CI-
FAR10), the performance of DER drops considerably.

The second exception is iCaRL on CIFAR10, when we
have 10 replay samples per class. This “tiny buffer” setting
requires excellent use of the few stored examples, especially
for natural images. Therefore, we attribute the success of
iCaRL to its sophisticated sample selection strategy, while
NISPA selects samples randomly.

5. Conclusions and Future Work
NISPA is a neuro-inspired approach for continual learning.
To the best of our knowledge, it is the first method that
works with a constant-density sparse network throughout
the learning trajectory. Combining sparsity with rewiring,
NISPA dominates state-of-the-art approaches on benchmark
datasets with a large margin while having orders of magni-
tude less learnable parameters.

In future work, we aim to adapt NISPA to class incremental
learning without requiring the replay of ”raw” examples.
Second, we will explore strategies to “unfreeze” carefully
selected stable units, when the number of remaining plastic
units drops below a certain level, so that NISPA can keep
learning new tasks while controlling the degree of forgetting
for older tasks. Finally, although random connection growth
is appropriate for exploring different network configurations,
we aim to develop a more sophisticated approach that con-
siders additional signals such as network-theoretic metric to
maximize the benefit of growing new connections.

Acknowledgements
This work was supported by the National Science Founda-
tion (Award: 2039741) and by the DARPA Lifelong Learn-
ing Machines (L2M) program of MTO (Cooperative Agree-
ment HR0011-18-2-0019). The authors are grateful to the
ICML 2022 reviewers and to Cameron E. Taylor, Qihang
Yao, and Shreyas M. Patil for their constructive comments.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

References
Aljundi, R., Chakravarty, P., and Tuytelaars, T. Expert gate:

Lifelong learning with a network of experts. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and
Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. In The European Conference on Computer
Vision (ECCV), 2018.

Atkinson, C., McCane, B., Szymanski, L., and Robins,
A. V. Pseudo-recursal: Solving the catastrophic forget-
ting problem in deep neural networks. arXiv preprint,
abs/1802.03875, 2018.

Babadi, B. and Sompolinsky, H. Sparseness and expansion
in sensory representations. Neuron, 83, 2014.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
rewiring: Training very sparse deep networks. In Interna-
tional Conference on Learning Representations, 2018.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. Dark experience for general continual learn-
ing: a strong, simple baseline. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Carletti, B. and Rossi, F. Neurogenesis in the cerebellum.
The Neuroscientist : a review journal bringing neurobiol-
ogy, neurology and psychiatry, 14, 2008.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H.
Riemannian walk for incremental learning: Understand-
ing forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), 2018.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-GEM. In Interna-
tional Conference on Learning Representations, 2019a.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,
Dokania, P. K., Torr, P. H. S., and Ranzato, M. Continual
learning with tiny episodic memories. arXiv preprint,
abs/1902.10486, 2019b.

Chechik, G., Meilijson, I., and Ruppin, E. Synaptic prun-
ing in development: A computational account. Neural
computation, 10, 1998.

Cichon, J. and Gan, W.-B. Branch-specific dendritic ca2+
spikes cause persistent synaptic plasticity. Nature, 520,
2015.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. EM-
NIST: an extension of MNIST to handwritten letters.
arXiv preprint, abs/1702.05373, 2017.

Cooke, S. and Bliss, T. Plasticity in human central nervous
system. Brain : a journal of neurology, 129, 2006.

Deger, M., Helias, M., Rotter, S., and Diesmann, M. Spike-
timing dependence of structural plasticity explains co-
operative synapse formation in the neocortex. PLOS
Computational Biology, 8, 2012.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. Visual-
izing higher-layer features of a deep network. Technical
Report, Univeristé de Montréal, 2009.

Evci, U., Gale, T., Menick, J., Rivadeneira, P. S. C., and
Elsen, E. Rigging the lottery: Making all tickets winners.
In International Conference of Machine Learning, 2020.

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in Cognitive Sciences, 3, 1999.

Fu, M. and Zuo, Y. Experience-dependent structural plastic-
ity in the cortex. Trends in Neurosciences, 34, 2011.

Georgiadis, G. Accelerating convolutional neural networks
via activation map compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

Golkar, S., Kagan, M., and Cho, K. Continual learning via
neural pruning. arXiv preprint, abs/1903.04476, 2019.

Grutzendler, J., Kasthuri, N., and Gan, W.-B. Long-term
dendritic spine stability in the adult cortex. Nature, 420,
2002.

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew,
M. S. Deep learning for visual understanding: A review.
Neurocomputing, 187, 2016.

Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. Embrac-
ing change: Continual learning in deep neural networks.
Trends in Cognitive Sciences, 24, 2020.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick,
M. Neuroscience-inspired artificial intelligence. Neuron,
95, 2017.

Hayashi-Takagi, A., Yagishita, S., Nakamura, M., Shirai, F.,
Wu, Y., Loshbaugh, A., Kuhlman, B., Hahn, K., and Ka-
sai, H. Labelling and optical erasure of synaptic memory
traces in the motor cortex. Nature, 525, 2015.

Hayes, T. L., Krishnan, G. P., Bazhenov, M., Siegelmann,
H. T., Sejnowski, T. J., and Kanan, C. Replay in deep
learning: Current approaches and missing biological ele-
ments. arXiv preprint, abs/2104.04132, 2021.

Hu, H., Peng, R., Tai, Y., and Tang, C. Network trimming:
A data-driven neuron pruning approach towards efficient
deep architectures. arXiv preprint, abs/1607.03250, 2016.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Isele, D. and Cosgun, A. Selective experience replay for
lifelong learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Jung, S., Ahn, H., Cha, S., and Moon, T. Continual learning
with node-importance based adaptive group sparse regu-
larization. In Advances in Neural Information Processing
Systems, volume 33, 2020a.

Jung, S., Ahn, H., Cha, S., and Moon, T. Adaptive
group sparse regularization for continual learning. arXiv
preprint, abs/2003.13726, 2020b.

Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A.,
and Noguchi, J. Structural dynamics of dendritic spines
in memory and cognition. Trends in Neurosciences, 33,
2010.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., Hassabis, D., Clopath, C.,
Kumaran, D., and Hadsell, R. Overcoming catastrophic
forgetting in neural networks. Proceedings of the Na-
tional Academy of Sciences, 114, 2017.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research), a.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-100 (canadian
institute for advanced research), b.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr,
J., Goin, M., Leiserson, W., Moore, S., Shavit, N., and
Alistarh, D. Inducing and exploiting activation sparsity
for fast neural network inference. In Proceedings of
the 37th International Conference on Machine Learning,
volume 119, 2020.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521, 2015.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelligence,
40, 2017.

Li, Z., Meng, M., He, Y., and Liao, Y. Continual learning
with laplace operator based node-importance dynamic
architecture neural network. In International Conference
on Neural Information Processing, 2021.

Liu, J., Xu, Z., Shi, R., Cheung, R. C. C., and So, H. K. Dy-
namic sparse training: Find efficient sparse network from
scratch with trainable masked layers. In International
Conference on Learning Representations, 2020.

Liu, S., Mocanu, D. C., Matavalam, A. R. R., Pei, Y., and
Pechenizkiy, M. Sparse evolutionary deep learning with
over one million artificial neurons on commodity hard-
ware. Neural Computing and Applications, 33, 2021a.

Liu, S., Yin, L., Mocanu, D. C., and Pechenizkiy, M. Do
we actually need dense over-parameterization? in-time
over-parameterization in sparse training. In International
Conference on Machine Learning, 2021b.

Mallya, A., Davis, D., and Lazebnik, S. Piggyback: Adapt-
ing a single network to multiple tasks by learning to mask
weights. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

McCloskey, M. and Cohen, N. J. Catastrophic interference
in connectionist networks: The sequential learning prob-
lem. Psychology of Learning and Motivation, 1989.

Ming, G.-L. and Song, H. Adult neurogenesis in the mam-
malian brain: Significant answers and significant ques-
tions. Neuron, 70, 2011.

Mocanu, D., Mocanu, E., Stone, P., Nguyen, P., Gibescu,
M., and Liotta, A. Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by
network science. Nature Communications, 9, 2018.

Niethard, N., Burgalossi, A., and Born, J. Plasticity during
sleep is linked to specific regulation of cortical circuit
activity. Frontiers in Neural Circuits, 11, 2017.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 113, 2019.

Park, J., Jung, S.-C., and Eun, S.-Y. Long-term synaptic
plasticity: Circuit perturbation and stabilization. The Ko-
rean Journal of Physiology & Pharmacology, 18, 2014.

Ramapuram, J., Gregorova, M., and Kalousis, A. Lifelong
generative modeling. Neurocomputing, 404, 2020.

Ramirez, S., Liu, X., Lin, P.-A., Suh, J., Pignatelli, M.,
Redondo, R., Ryan, T., and Tonegawa, S. Creating a false
memory in the hippocampus. Science (New York, N.Y.),
341, 2013.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C.
icarl: Incremental classifier and representation learning.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Rhu, M., O’Connor, M., Chatterjee, N., Pool, J., Kwon,
Y., and Keckler, S. Compressing dma engine: Leverag-
ing activation sparsity for training deep neural networks.
In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2018.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and
Wayne, G. Experience replay for continual learning. In
Advances in Neural Information Processing Systems, vol-
ume 32, 2019.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Rosenfeld, A. and Tsotsos, J. K. Incremental learning
through deep adaptation. IEEE transactions on pattern
analysis and machine intelligence, 42, 2018.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint,
abs/1606.04671, 2016.

Sahbi, H. and Zhan, H. FFNB: forgetting-free neural
blocks for deep continual visual learning. arXiv preprint,
abs/2111.11366, 2021.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In International Conference on Machine Learning,
2018.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. Advances in neural informa-
tion processing systems, 30, 2017.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L.,
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneer-
shelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,
J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mas-
tering the game of go with deep neural networks and tree
search. Nature, 529, 2016.

Sokar, G., Mocanu, D. C., and Pechenizkiy, M. Spacenet:
Make free space for continual learning. Neurocomputing,
439, 2021.

van de Ven, G., Siegelmann, H., and Tolias, A. Brain-
inspired replay for continual learning with artificial neural
networks. Nature Communications, 11, 2020.

van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint, abs/1904.07734, 2019.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint, abs/1708.07747, 2017.

Yang, G., Pan, F., and Gan, W.-B. Stably maintained den-
dritic spines are associated with lifelong memories. Na-
ture, 462, 2009.

Yang, G., Lai, C., Cichon, J., Ma, L., and Gan, W.-B. Sleep
promotes branch-specific formation of dendritic spines
after learning. Science (New York, N.Y.), 344, 2014.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong
learning with dynamically expandable networks. In Inter-
national Conference on Learning Representations, 2018.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision, 2014.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International Confer-
ence on Machine Learning, 2017.

Zuo, Y., Lin, A., Chang, P., and Gan, W.-B. Development
of long-term dendritic spine stability in diverse regions
of cerebral cortex. Neuron, 46, 2005.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

A. NISPA Pseudocode

Algorithm 1 NISPA on task t (repeated for every task). Let M be the network and U be the set of all units in the network.
Also, S, Sc, and P denote the set of all stable, candidate stable, plastic units, respectively. Furthermore, e is the number of
epochs in a phase, af is the validation accuracy loss we are willing to accept, and k is the hyperparameter for scheduling ⌧
(see Section 3.4).
Require: S, P , M , e, af , k # S, P , and M are inherited from the previou task.

1: amax 0, ⌧ 1, p 1 # p is the phase index and amax is the best accuracy so far.
Unit selection and rewiring cycle.

2: loop
3: M Train(M,Dt, e) # Train M on Dt for e epochs.
4: CacheM[p] M # Store the parameters of M .
5: a Validate(M,Vt) # Compute the validation accuracy a on Vt

6: amax max(amax, a) # Update the amax if needed.
If stopping criterion (Section 3.8) is not met, perform selection/rewiring.

7: if amax � af  a then
8: ⌧ 1

2

�
1 + cos

�p⇥⇡
k

��
Update ⌧ using phase index p.

9: Sc SelectCandidates(M,P, S, ⌧) # Candidate unit selection as described in Section 3.3.
10: CacheS[p] S [Sc # Store the set of stable units.
11: M Drop(M,P, S, Sc) # Drop connections from P l to S [Sc (Section 3.7).
12: M Grow(M,P, S, Sc) # Randomly grow connections from U to P (Section 3.7).
13: p p+ 1 # Increase the phase index.
14: else
15: M CacheM[p� 1] # Revert the network to the end of the previous phase.
16: S CacheS[p� 2] # Restore saved stable units associated with the restored network.
17: M Freeze(M,S) # Freeze input connections to units in S.
18: M Reinit(M,P) # Reinitialize connections from U to P .
19: return M , S # Start task t+ 1.
20: end if
21: end loop

B. Additional Results
B.1. Weight Re-initialization and ⌧ -Schedules

Here we evaluate the following two aspects of NISPA’s design. First, to re-initialize the plastic unit connections on task
boundaries. Second, to decrease ⌧ across successive phases based on a cosine annealing function, with steps of increasing
size.

We compare NISPA with its ablated versions that do not re-initialize weights and that use a linear decrease schedule
for ⌧ (decrease with a constant step size of 0.05). Table 3 shows the results for this comparison. We observe that re-
initialization and the cosine annealing schedule are most effective when used together in both the MLP (EF-MNIST) and
CNN (CIFAR100) architectures. The improvements are small but consistent.

Table 3. Average accuracy across five runs and all tasks (± 1 std.deviation). R and NR stand for “re-initialization” and “no re-initialization”,
respectively. Also, Cos and Lin stand for “cosine annealing” and “linear decrease”, respectively.

Dataset R+Cos R+Lin NR+Cos NR+Lin

EF-MNIST 91.6±0.2 91.0±0.1 90.7±0.3 91.0±0.2
CIFAR100 75.9±1.3 74.7±1.0 74.9±0.6 75.5±0.5

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

B.2. Stability of NISPA

Table 4 presents the standard deviation of the average task accuracy across 5 runs. NISPA has the most stable performance
compared to other CL baselines.

Table 4. Standard deviation of the average task accuracy across 5 runs.

Methods EF-MNIST CIFAR10 CIFAR100

NISPA 0.15 0.19 1.30
CLNP 0.18 0.67 5.14
EWC 2.11 2.43 2.00
SI 0.55 2.36 1.83
MAS 2.02 1.26 1.97

B.3. Comparison of Learnable Parameters

Table 5 compares the number of learnable parameters between NISPA and the baselines we consider. CLNP’s exact number
of parameters slightly varies during training because it drops some connections between tasks. For simplicity, we calculated
all multipliers based on the initial number of parameters. We note that the final number of parameters in CLNP is still
multiple times larger than NISPA. For example, in our experiments, CLNP has 73% density before starting task-5 on
EF-MNIST, while NISPA has 20% density of throughout training.

The actual difference is not exactly 5⇥ and 10⇥ because we do not prune the bias terms and the first convolutional layer for
NISPA (see Appendix C.3).

Table 5. Multipliers indicate the number of parameters compared to NISPA.

Methods EF-MNIST CIFAR10 CIFAR100

NISPA 1⇥ 1⇥ 1⇥
CLNP 4.94⇥ 9.94⇥ 9.97⇥
EWC 4.94⇥ 9.94⇥ 9.97⇥
SI 4.94⇥ 9.94⇥ 9.97⇥
MAS 4.94⇥ 9.94⇥ 9.97⇥

B.4. Class Incremental Learning – Dense Baselines

In Table 6, we present class incremental results for dense baselines. Dense baselines have up to 10 times more learnable
parameters than NISPA, so they do not represent a fair comparison.

C. Experimental Details
C.1. Datasets

In all datasets (CIFAR10, CIFAR100, MNIST, EMNIST, and FashionMNIST), we report the accuracy on the official test
dataset and use 10% of the training dataset for validation. We perform early stopping (including early stopping at the phase
level) based on validation accuracy. Likewise, we fine-tune the hyperparameters for NISPA and all baselines using the
validation datasets. We have not performed any data augmentation.

C.2. Hyperparameters

We train all models using the Adam optimizer, unless noted otherwise. We tuned the hyperparameters of all baselines and
report each method’s best performance. Our hyperparameter search space included the suggested values for baselines, when
available.

NISPA has the following hyperparameters:

• e: the number of epochs for each phase.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Table 6. Average accuracy across tasks and 5 runs (± 1 std.deviation). Dense baselines are denoted with the suffix ”-D” (e.g., DER-D or
ER-D).

Buffer Size 10 Samples Per Class 50 Samples Per Class 100 Samples Per Class
MNIST EF-MNIST CIFAR10 MNIST EF-MNIST CIFAR10 MNIST EF-MNIST CIFAR10

NI-D 96 ±0.3 78±1.1 79±0.5 96±0.3 78±1.1 79±0.5 96±0.3 78±1.1 79±0.5
NI 97±0.2 82±0.3 80±0.2 97±0.2 82±0.3 80±0.2 97±0.2 82±0.3 80±0.2
NISPA-Replay 77±1.2 66±1.4 38 ±2.0 86±1.9 74±0.7 51±1.5 90±0.6 77±0.5 57±0.8
DER 57±2.0 64±0.9 19±4.7 84±1.3 77±0.3 30±9.9 87±0.9 79±0.6 33±1.2
ER 60±4.2 56±0.6 19±1.0 80±4.3 70±0.5 22±6.8 86±1.5 74±0.7 33±1.9
iCaRL 73±1.4 51±0.6 40±2.7 74±1.9 45±0.7 47±2.5 61±3.7 57±0.2 30±1.8
A-Gem 51±4.7 53±3.5 23±1.1 58±8.9 55±3.7 22±1.7 46±7.5 54±2.1 22±1.0
DER-D 73±4.0 71±0.4 25±1.0 90±1.2 80±0.4 31±10.7 93±2.0 81±0.4 39±14.5
ER-D 69±1.2 60±0.6 22±0.7 87±0.8 73±0.4 22±9.9 90±0.6 76±0.3 41±1.3
iCaRL-D 72±0.9 66±0.4 55±1.4 67±0.8 52±0.3 57±0.3 74±0.6 65±0.3 58±0.5
A-Gem-D 40±6.3 55±1.8 22±1.5 26±2.9 56±1.6 28±0.7 32±9.4 51±4.4 23±0.6

• af : the validation accuracy loss we are willing to accept between successive phases.

• k: the shape parameter of the cosine annealing function that governs the step size for ⌧ .

• d: the per-layer density level. Note that if this is relatively high (e.g., 80% or more), NISPA does not guarantee a
constant density level because growing a new connection for every dropped connection is not always possible.

NISPA’s performance is not “fragile” with respect to any of these hyperparameters. They only control natural trade-offs. For
example, decreasing af puts more emphasis on early tasks and results in more aggressive freezing, reducing the number
of available units for future tasks. e and k determine the number of epochs. For instance, a smaller k decreases ⌧ faster,
resulting in fewer phases, and decreasing the number of epochs in which the model is trained. Figure 8 shows the shape of
the cosine annealing function for various k values. Finally, a density between 0.05 and 0.2 works best for NISPA. Extremely
low density hinders training since the network underfits the given tasks. On the other hand, dense networks have highly
entangled units, making the isolation between tasks challenging. Table 7 summarizes all hyperparameter values used in this
paper.

Figure 8. Cosine annealing function.

C.3. Weight Initialization and Sparsification

Weights are initialized using Kaiming’s method. Specifically, they are sampled from a zero-centered Gaussian distribution
with variance inversely proportional to each layer’s width: �2

l = 2
Nl

.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Table 7. Hyperparameters for NISPA for each task sequence. � is an extra hyperparameter used only for replay in incremental class
learning (see Section D).

Dataset Learning Rate Batch Size e af k d �

EMNIST + FashionMNIST 0.01 512 5 0.75 30 0.2 –
CIFAR100 0.002 64 5 2.5 30 0.1 –
CIFAR10 0.002 128 5 0.75 30 0.1 –
Permuted MNIST (5 tasks, 10%) 0.01 1024 2 0.75 40 0.1 –
Permuted MNIST (5 tasks, 100%) 0.01 1024 3 0.75 40 0.1 –
Permuted MNIST (2 tasks) 0.01 256 5 0.5 40 0.25 –
Replay MNIST (10 per class) 0.05 512 3 0.5 30 0.1 5
Replay EF-MNIST (10 per class) 0.05 128 5 1.5 30 0.3 0.5
Replay CIFAR10 (10 per class) 0.001 256 5 2 40 0.1 1
Replay MNIST (50 per class) 0.05 64 3 1 30 0.1 5
Replay EF-MNIST (50 per class) 0.1 256 5 2.5 30 0.3 0.5
Replay CIFAR10 (50 per class) 0.001 256 5 1 40 0.1 7.5
Replay MNIST (100 per class) 0.1 256 5 0.5 30 0.1 5
Replay EF-MNIST (100 per class) 0.05 128 5 2 30 0.3 1
Replay CIFAR10 (100 per class) 0.002 512 5 2 40 0.1 5

Newly grown connections are initialized to small values based on existing connection weights. Formally, for each layer l we
compute the mean µl and the standard deviation �l of existing weights. Then, at layer l, we sample newly added connection
weights as ✓ ⇠ Nl(µl,�l).

Networks are initially sparsified using unstructured random pruning on a per-layer basis. So, each connection of the same
layer has equal chance of removal, and the density is the same across all layers.

The only exception is that we do not prune the first layer in convolutional architectures. Given a three-channel image input,
units in the first layer are connected to the input via only three connections, and so if we prune that first layer, we will likely
create a lot of ”dead units” (without any inputs) at the first layer. For example, at 0.1 density, units at the first layer will be
dead with a probability (1� 0.1)3 = 0.729. Keeping the first layer dense avoids this problem. Note that this change has
almost no effect on the total number of connections.

C.4. Permuted MNIST Experiments

In the permuted MNIST task sequences of Sections 4.3 and 4.4, we use MNIST classification as the first task. The following
tasks are based on the same dataset but with permuted input features (i.e., MNIST pixels). For each permutation, we
randomly selected pr of the pixels and shuffle them.

In Section 4.3, we use an MLP with three hidden layers that consist of 400 units each. In Section 4.4, we consider an
MLP with two hidden layers, each with 2000 units. This architectural change was necessary to ensure that (1) all models
reach similar accuracy on all tasks, and (2) they always have enough plastic units to stabilize if needed. Otherwise, it is not
possible to make a fair comparison (if a model picks fewer stable units but does not perform similarly with its counterparts).

C.5. Other Connection Growth Mechanisms

In Section 4.4, we experiment with two different connection growing mechanisms, namely, Transfer and Novel. The Novel
mechanism randomly samples which connection to grow among type-1 candidate connections. On the other hand, the
Transfer mechanism randomly samples among type-2 candidate connections.

In some corner cases, such as when the number of stable and plastic units is highly imbalanced, there may not be enough
available candidates from one of these types. To make a fair comparison between different mechanisms, we need to ensure
that all models have the same number of parameters (i.e., the same density). Therefore, we let each growth mechanism
select the other connection type when needed to reach a certain density. This is a corner case that rarely happens in our
experiments.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

C.6. NISPA in Convolutional Neural Networks:

In CNNs, a “unit” represents a 3D convolution filter. Likewise, a “connection” represents a 2D kernel instead of a single
weight. Therefore, when we perform an operation, such as dropping or freezing a connection, we consider the entire 2D
kernel representing the connection between two units. Note that this formulation reduces the FLOP count immensely by
eliminating operations performed on most 2D feature maps.

CNN units output a 2D matrix instead of a scalar value. So, we consider the sum of all entries of that matrix as the activation
of the unit.

C.7. Handling “Dead Units”

The NISPA rewiring process can rarely result in units without any incoming (for stable units) or outgoing (for plastic units)
connections. We refer to them as “dead units” and they are handled as follows:

• If a plastic unit lost all its outputs, we connect it to another plastic unit (randomly chosen) at the next layer.

• If a stable unit does not have any incoming connections from stable units, we degrade it to a plastic unit.

C.8. The Last Task

We do not assume that the number of tasks is known beforehand. If NISPA knew which task will be the final, it could
select all free units as stable for that task, and use all the remaining capacity of the network to learn that final task as well
as possible. We do not assume such knowledge, and so NISPA selects the smallest number of stable units so that it can
continue learning new tasks in the future.

C.9. The Multi-Head Setting

In task-incremental learning, we use a multi-head setting at the output layer. However, instead of replacing the output head
for each task, all heads are present from the start. Interference is avoided by masking out activations (during training and
testing) depending on the task. This is effectively the same with the standard multi-head setting. Having all heads available
from the start however makes the connection growth process simpler at the penultimate layer. For example, when we drop
incoming connections to Task 1 output units (which are stable at that point), we can add the same number of connections
from units at the penultimate layer to output heads of future tasks (that are still plastic at that point). When we reach the last
task, there are no plastic units at the output layer anymore. So when we drop connections from that layer, we cannot add any
connections back. This means that the density slightly decreases during the last task. This density decrease is negligible.

D. NISPA-Replay and Class Incremental Learning
In Section 4.5, we present a variation of NISPA called NISPA-Replay for incremental class learning. We evaluate this
variation against four baselines using the following cumulative average accuracy metric. Suppose we have n tasks, and let
aendj be the model accuracy evaluated on the held-out test set of the j-th task after learning all tasks. The average cumulative
accuracy is: 1

n

Pn
i=1 a

end
i .

D.1. NISPA-Replay

Training:
NISPA-Replay splits the loss terms for memory and task samples. Specifically, the loss function for task t becomes:

E(x,y)⇠Dt
[LCE(y, f(x)] + � E(x,y)⇠B [LCE(y, f(x))] (4)

f is the model, Dt is the dataset of task t, B is the memory buffer, LCE is the standard cross-entropy loss, and � is a
hyperparameter (see Table 7). In other words, for every gradient update, we get samples from the task dataset along with
samples from the memory buffer, and perform one training step.

We omit the weight re-initialization step in NISPA-Replay for the following reason. Assigning random weights to existing
units arbitrarily changes the activation of output units dedicated for future classes. This affects all units at the softmax layer
and prevents trained output units (for previously seen classes) from making valid predictions.

Neuro-Inspired Stability-Plasticity Adaptation for Sparse Continual Learning

Sampling:
We initialize a fixed-sized buffer with random samples. We ensure that each class seen so far has the same number of
samples stored. We could implement a more sophisticated buffering strategy for NISPA-Replay. However, our goal here is
to show that the good performance of NISPA-Replay in class incremental learning is due to the main ideas behind NISPA –
and not due to any sophisticated methods we use for replay buffering or sample selection.

Datasets:
EF-MNIST and CIFAR10 class sequences are as presented in Section 4. The MNIST experiment is a standard split-MNIST
sequence with five tasks, where each task consists of two consecutive digits.

Architectures:
For EF-MNIST and MNIST, we use an MLP, and for CIFAR10, we used a CNN. The MLP and CNN details are the same as
in Section 4. Furthermore, NISPA-Replay and baselines are initially sparsified using uniform random pruning, as described
in the main paper. The MLP density is 10% on MNIST, 30% on EF-MNIST, and the CNN density is 10% on CIFAR10.
NISPA-Replay hyperparameters are given in Table 7.

Optimization:
We tuned all baselines searching the hyperparameter space for best performance. Also, we tried using both Adam and SGD
optimizers. We observed that rehearsal baselines (ER, DER, iCaRL, A-GEM) perform best with SGD on all datasets. On
the other hand, NISPA-Replay performs best with SGD on MNIST and EF-MNIST, and with Adam on CIFAR10.

D.2. Baselines

Experience Replay (ER): This simple replay algorithm sequentially learns new classes while also training on a small
memory. It uses the same loss function as NISPA-Replay. This method can be thought of as a lower bound for any replay
method. Surprisingly, it has been shown to outperform more complex CL approaches with memory replay (Buzzega et al.,
2020; Chaudhry et al., 2019b).

Dark Experience Replay (DER): This recent method is a simple extension to ER (Buzzega et al., 2020), and it also
replays raw samples. The only difference is that instead of storing hard class labels, it stores the logits of the trained model,
and these logits are used as targets for replay samples. It has been shown to outperform seven well-known replay-based
methods by a large margin on several datasets (Buzzega et al., 2020).

iCaRL: This is one of the most well-known replay methods (Rebuffi et al., 2017). It is novel in several aspects: clustering-
based classification, sample selection, and loss function.

A-GEM: This method is different than other baselines as it stores raw samples but does not directly use them in training
(Chaudhry et al., 2019a). Instead, it projects gradients of novel tasks based on gradients computed for memory samples. It
also needs to store raw examples to compute gradients at a particular time in the training process.

