
Estimation of Entropy in Constant Space
with Improved Sample Complexity

Maryam Aliakbarpour∗ Andrew McGregor † Jelani Nelson ‡ Erik Waingarten §

Abstract

Recent work of Acharya et al. (NeurIPS 2019) showed how to estimate the entropy
of a distribution D over an alphabet of size k up to ±ε additive error by streaming
over (k/ε3) · polylog(1/ε) i.i.d. samples and using only O(1) words of memory.
In this work, we give a new constant memory scheme that reduces the sample
complexity to (k/ε2) · polylog(1/ε). We conjecture that this is optimal up to
polylog(1/ε) factors.

1 Introduction

In the field of streaming algorithms, an algorithm makes one pass (or few passes) over a database
while using memory sublinear in the data it sees to then answer queries along the way or at the data
stream’s end. Researchers have developed various algorithms, as well as memory lower bounds, for
such problems for over four decades [MP80, MG82, AMS99]. For the vast majority of research in
the field, the database is assumed to be fixed, and algorithms are then analyzed through the lens of
worst case analysis.

In this work, we look to further develop the relationship between streaming algorithms and statistics,
specifically studying statistical inference through low-memory streaming algorithms. In this setup,
rather than processing a worst-case instance of some fixed database, our input is instead a distribution
D, and our algorithm processes i.i.d. samples from D with the goal of inferring its properties. Natural
questions then arise, such as understanding the tradeoffs between sample complexity, memory,
accuracy, and confidence, or even understanding whether a low-memory algorithm exists at all for a
particular inference problem even if we allow the streaming algorithm to draw an unlimited number
of samples. Work on streaming algorithms for statistical inference problems began in [GM07],
which studied nonparameteric distribution learning, followed by the work of [CLM10], studying
low-memory streaming algorithms for use in robust statistics and distribution property testing. Interest
in the area later exploded off after work of [SVW16], which explicitly raised the question of whether
low memory might place fundamental limits on learning rates, with a flurry of works proving
such limitations in response [CMVW16, MM17, KRT17, Raz17, GRT18, SSV19, GRT19, GKR20,
GKLR21], starting with a work of [Raz19] on memory/sample tradeoff lower bounds for learning
parities (D generates (x, 〈w, x〉) for x uniform in the hypercube with w an unknown parameter, and
the goal is to learn w).

In this work, following [ABIS19], we focus specifically on the problem of estimating the entropy
of an unknown distribution D over {1, . . . , k} using a low-memory streaming algorithm over i.i.d.

∗Boston University and Northeastern University, maryam.aliakbarpour@gmail.com.
†University of Massachusetts Amherst, mcgregor@cs.umass.edu. Supported by NSF awards CCF-

1934846, CCF-1908849, and CCF-1637536.
‡UC Berkeley, minilek@berkeley.edu. Supported by NSF award CCF-1951384, ONR grant N00014-18-

1-2562, ONR DORECG award N00014-17-1-2127, and a Google Faculty Research Award.
§Stanford University, eaw@cs.columbia.edu. Part of this work is supported by the National Science

Foundation under Award no. 2002201 and Moses Charikar’s Simons Investigator Award.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

samples. It is known that to estimate the entropy up to ε additive error with large constant success
probability, without memory constraints the optimal sample complexity is

n = Θ

(
max

{
1

ε

k

log(k/ε)
,

log2 k

ε2

})
[VV17, VV11, JVHW15, WY16]. Prior work by [BDKR05] also shows that a sublinear number
of samples is possible for multiplicative approximation of entropy for distributions whose entropy
is sufficiently large. The known optimal algorithms from prior work, however, must remember all
samples and hence use Ω(n) words of memory5. The algorithm of [ABIS19] uses only O(1) words
of memory, though at the cost of requiring an increased sample complexity of k · Õ(1/ε3)6. In this
work, our goal is to address the question: to what extent was the worsening of sample complexity in
previous work necessary to achieve constant memory?

Our Contribution. We show that using O(1) words of memory7, it is possible to obtain a sample
complexity of k · Õ(1/ε2), which is an improvement over the previous memory-efficient sample
complexity bound which had cubic dependence on 1/ε. The starting point of our algorithm revisits a
simple estimator proposed by [ABIS19]. Their simple estimator uses O(k log2(k/ε)/ε3) samples to
estimate the entropy in constant space. Our novel contribution is a modification which estimates a bias
incurred by the estimator; this change allows us to use only O(k log2 k log2(1/ε)/ε2) samples. With
the simple estimator with improved sampled complexity in hand, we show how an “interval-based”
algorithm, similar to the one in [ABIS19], improves the dependence on k to k · Õ(1/ε2).

We remark that there has been other work on estimating entropy in the data streaming model
[BG06, CCM10, HNO08, KNW10, JW19], but those works are qualitatively different from our own
current work and that of [ABIS19]. Specifically, they take the worst case point of view, where
the stream items are not drawn i.i.d. from a distribution, but rather the stream itself is viewed as
a worst-case input and the goal is to estimate its empirical entropy. In that model, O(1) memory
algorithms for ±ε additive estimation to entropy provably do not exist, as there is a known memory
lower bound of Ω(1/ε2) bits [JW19].

Overview of Approach. We start by describing the basic algorithm of [ABIS19]. Their basic
estimator takes a single random sample i ∼ D, followed by N more i.i.d. samples. Then, they define
Nx to be the number of these N samples equal to i. The estimate p̂i := Nx/N is an unbiased
estimator of of the probability pi of i according to D, and for large N , log(1/p̂i) is a reasonable
estimator for the entropy H = H(D) = E[[[log(1/pi)]]] of D. One can then average many such
independent estimates. There is an additional technical detail, that p̂i may be zero (ifNx is zero),
which is fixed via a “one-smoothing” trick of actually setting p̂i := (Nx + 1)/N (which introduces
an acceptably small amount of additional bias when N is sufficiently large).

Our improvement begins with the observation that log(1/p̂i) is not an unbiased estimator for H .
We first propose a similar but different estimator to the previous simple estimator. We also begin
by taking a random sample i ∼ D; however, rather than lettingNx be sampled from the binomial
distribution Bin(N, pi), we sample a negative binomial random variable X , which is the number
of additional draws to see i exactly t more times (t is a parameter of the algorithm). Henceforth
we let NB(t, p) denote such a negative binomial random variable, where the underlying Bernoulli
experiment has success probability p. Then E[[[X]]] = t/pi, and we will use log(X/t) as a reasonable
estimate of log(1/pi). This estimator is also biased, but we can correct for this bias using a few more
samples.

Specifically, let Y = Xpi/t and consider the degree-r Taylor expansion of our estimate log(X/t)
and the ideal quantity log(1/pi). As it will turn out, the expectation of the degree-r Taylor expansion
of log(X/t)− log(1/pi) = logY is a degree-r polynomial in pi. By drawing r additional samples,

5As in prior work, we use a “word”, or “machine word”, to denote a unit of memory that can hold Θ(log(k/ε))
bits. Essentially, a machine word is large enough to hold the name of an item in the alphabet, as well as the value
of ε.

6We use Õ(f) to denote a function which is O(f · poly(log f))
7More precisely, we provide a uniform algorithm which given any k, ε generates a program with source code

of size O(log log(1/ε)) words, and that fixed program can then process any stream in O(1) words of working
memory.

2

we may design an estimator for this polynomial, and subtract it from log(X/t). Correcting some
of the bias in this way gives us our improved estimate for log(1/pi). Our analysis of this scheme
shows that a sample complexity of (k/ε2) · polylog(k/ε) suffices. We then describe and analyze
an improved algorithm in Section 3, which achieves (k/ε2) · polylog(1/ε) sample complexity by
additionally incorporating a “bucketing” scheme, similar to one proposed in [ABIS19]. The idea is to
partition the possibilities for values of X into disjoint intervals I` = [b`−1, b`) for ` = 1, 2, . . . , L
and optimized choices of the breakpoints b`, then estimate both Pr[[[X ∈ I`]]] and the conditional
contributions to entropy conditioned onX ∈ I` for each `. By estimating separately for each I`, one
can show that the conditional variance is reduced to obtain an overall smaller sample complexity of
(k/ε2) · polylog(1/ε), a strict improvement over that of [ABIS19]; details are in Section 3.

Lower bounds: Diakonikolas et al. [DGKR19] show lower bounds for sample-memory tradeoffs
for testing uniformity of distributions. They construct a distribution p over [2k] such that for every
i ∈ [k], the probabilities of the elements 2i and 2i− 1 are (1 +

√
ε)/(2k) and (1−

√
ε)/(2k) while

the order is picked randomly. They show that any streaming algorithm that uses m bits of memory, n
samples, and can distinguish p from the uniform distribution over [2k] with high constant probability
requires: (i) m · n = Ω(kε), and (ii) if n ≤ k0.9 and m ≥ n2/k0.9, m · n = Ω(k log k

ε2). It is not
hard to see that the entropy of the difference between uniform distribution and p is Θ(ε). While this
trade-off indicates a more general relation between the memory usage and samples, only (i) applies to
constant memory algorithms (since (ii) requires n ≤ k0.9). With a word being log(k/ε) bits, (i) leads
to a lower bound of Ω(k/(ε log(k/ε))) samples (the same as with unbounded memory). This leaves
open whether the sample complexity for O(1)-word algorithms is Ω(k/ε) or Ω(k/ε2). We speculate
the latter, and we discuss our conjecture in Section 4.

2 A Simple Algorithm and Analysis

Let k ∈ N, and D be an unknown distribution supported on [k]. For any i ∈ [k], we denote the
probability that i ∈ [k] is sampled by D as pi. The goal is to design a low-space streaming algorithm
which receives independent samples from D and outputs an estimate to the entropy:

H(D)
def
=

k∑
i=1

pi log

(
1

pi

)
= Ei∼D

[[[
log

(
1

pi

)]]]
,

where logarithms above and throughout this paper are base-2, unless otherwise stated.

2.1 An Estimator for log(1/pi)log(1/pi)log(1/pi)

As mentioned in Section 1, similarly to [ABIS19] the algorithm aims to estimate H(D) by taking
a sample i ∼ D and estimating log(1/pi). Then, averaging these estimates will give an estimator
for H(D) (albeit with a super-linear dependence on k, which we fix in Section 3). We describe the
estimator in Figure 1.

There are three main steps in the analysis. In the first, we show that the estimator has small bias. The
second is showing that the above estimator has low variance. Finally, we show that the estimator
may be computed with few bits. In Figure 1, we set r = Θ(log(1/ε)) and t = Θ(log2(1/ε)) to
obtain an estimator whose bias is at most ε and variance is at most O(log2 k). It then follows that
repeating the estimate of log(1/pi) for O(log2 k/ε2) i.i.d. chosen i ∼ D gives the desired estimate
with probability at least 2/3. These parameter settings establish the following theorem:
Theorem 1. There exists a single-pass data stream algorithm using O(1) words of working memory
that processes a stream of O(kε−2 log2 k log2(1/ε)) i.i.d. samples from an unknown distribution D
on [k] and returns an additive ε approximation of H(D) with probability 2/3.

The space complexity in the theorem above follows since computing the estimator just requires
maintaining integers in the sets [k], [t], and [r], as well as computing a low-degree polynomial.
To compute the average of multiple estimators in small space it suffices to compute the sum of
the estimates where each estimator is computed in series. The sample complexity bound (given
the specified parameters) in the above theorem follows directly from the sample complexity of
LogEstimator. By virtue of the fact our estimators are based on negative binomial distributions (X

3

Subroutine LogEstimator(D, i)
Input: Sample access to a distribution D supported on [k], an index i ∈ [k] where pi 6= 0.
Output: A number η ∈ R≥0, which is our bias estimate.

1. We draw enough samples from D so that i is sampled exactly t times, and letX ∈ N
denote the number of samples taken.

2. For r ∈ N, let f : R→ R denote the degree-r Taylor expansion of log z centered at 1,
and ht : [0, 1]→ R be the degree-r polynomial satisfying

ht(ρ) = EZ∼NB(t,ρ)

[[[
f

(
Z · ρ
t

)]]]
.

Finally, g : [0, 1]r → R is the linear function with g(ρ, ρ2, . . . , ρr) = ht(ρ). We take r
additional independent samples from D, and for j ∈ [r], we letBj be the indicator
random variable that the first j samples were all i. Note that {Bj}j∈[r] can be encoded
using a single counter requiring log r bits.

3. We return

η
def
= log

(
X

t

)
− g (B1,B2, . . . ,Br) .

Figure 1: Description of the estimator for log(1/pi).

in Figure 1 is the number of Bernoulli trials until t successes), this in turn follows directly from the
expectation of negative binomial distributions:
Fact 2.1 (Expected Sample Complexity of LogEstimator). Suppose we draw i ∼ D and execute
LogEstimator(D, i). Then, the expected sample complexity is

k∑
i=1

pi

(
r +

t

pi

)
= r + tk.

Although the number of samples we draw is a random variable that is only bounded in expectation,
note that it implies the existence of a good algorithm that always has a bounded sample complexity:
namely, we can simply terminate the algorithm early and output Fail if it draws a large constant factor
times more samples than we expect, which happens with low probability by Markov’s inequality.

Before moving on to the showing the properties of the estimator, we verify that ht(ρ) is a degree-r
polynomial.
Lemma 2.2. For any r ∈ N, let f : R→ R denote the degree-r Taylor expansion of log(z) centered
at 1. Then, for any ρ > 0 and t ∈ N,

ht(ρ) = EZ∼NB(t,ρ)

[[[
f

(
Z · ρ
t

)]]]
is a polynomial of degree at most r.

Proof. Recall that the random variable Z ∼ NB(t, ρ) is the number of independent trials from a
Ber(ρ) distribution before one sees t successes. Furthermore, f is the degree-r Taylor expansion of
log z centered at 1, and

f(z) =
1

ln(2)

r∑
i=1

(−1)i+1

i
· (z − 1)r.

By linearity of expectation, it suffices to show that for every j ∈ {1, . . . , r}, EZ

[[[
(Zρ/t− 1)j

]]]
is a

degree-j polynomial in ρ. Note that Z is a sum of t independent Geo(ρ) random variables, so by
expanding (1

t

∑t
i=1Giρ− 1)j and applying linearity of expectation once more, it suffices to show

that

EG∼Geo(ρ)

[[[
(G · ρ)

j
]]]

= ρjEG∼Geo(ρ)

[[[
Gj
]]]

= ρj
∞∑
k=1

ρ(1− ρ)k−1kj

4

is a degree-j polynomial in ρ. We note that this latter term, EG

[[[
Gj
]]]

may be expressed as ρ ·
Li−j(1− ρ), where Li−j(·) is the polylogarithm function (see [Wei]). Li−j(1− ρ) happens to be a
rational function, where the denominator is exactly ρj+1, which cancels the ρj+1 term . In addition,
the numerator of Li−j(1 − ρ) is a degree-j polynomial in ρ, which gives the desired polynomial
representation.

Finally, it will be useful for the variance calculation to show that the correction term is always
bounded, which we show here.

Lemma 2.3. There exists a universal constant c > 0 such that, for any r, t ∈ N, if we let g : [0, 1]r →
R be the linear function where g(ρ, ρ2, . . . , ρr) = ht(ρ), then g(b) ∈ [−c, c] for all b ∈ {0, 1}r.

Proof. Recall g : [0, 1]r → R is the linear function where g(ρ, ρ2, . . . , ρr) = ht(ρ). Hence, in order
to show that g : {0, 1}r → R is bounded, it suffices to show that the sum-of-magnitudes of the r + 1
coefficients of ht is bounded. Since we have

ht(ρ) = EZ∼NB(t,ρ)

[[[
f

(
Z · ρ
t

)]]]
=

1

ln(2)

r∑
i=1

(−1)i+1

i
·EZ∼NB(t,ρ)

[[[(
Z · ρ
t
− 1

)i]]]
.

Notice that in Lemma 2.2, we showed that each EZ

[[[
(Zρ/t− 1)i

]]]
is a degree-i polynomial in ρ,

and the bound (3) implies that, for each i ∈ {1, . . . , r} these polynomials are at most
(
O(i/

√
t)
)i

in magnitude. Furthermore, since these are degree-i polynomials bounded in [0, 1], we conclude

(by Lemma 4.1 in [She13]), that the coefficients in EZ

[[[
(Zρ/t− 1)

i
]]]

are at most
(
O(i/

√
t)
)i

. In
particular, we have that the r coefficients of ht(ρ) are at most

r∑
i=1

1

i
·
(
O(i/

√
t)
)i
≤

r∑
i=1

(
O(i/

√
t)
)i

= O(1/
√
t)

because r/
√
t can be made an arbitrarily small constant. To show that g : {0, 1}r → R is bounded,

we add the magnitudes of the r coefficients, which is O(r/
√
t) = O(1) when r = O(log(1/ε)) and

t = O(log2(1/ε)).

2.2 Bounding Bias of Estimator

Lemma 2.4. Let D be any distribution and consider any i ∈ [k]. If, for ε ∈ (0, 1), we instantiate
LogEstimator(D, i) with r = Θ(log(1/ε)) and t = Θ(log2(1/ε)), which produces the random

variable η, then
∣∣∣E[[[η]]]− log

(
1
pi

)∣∣∣ ≤ ε.
The remainder of the section constitutes the proof of Lemma 2.4, which will follow from a sequence
of claims.

Claim 2.5. In an execution of LogEstimator(D, i), letX and η be defined as in Line 1 and Line 3
of Figure 1, and let Y = X · pi/t. Then,

E[[[η]]]− log

(
1

pi

)
= EX[[[h(Y)]]],

where h(z) is the error in the degree-r Taylor expansion of log z at 1.

Lemma 2.6. For any ε ∈ (0, 1), letting r = Θ(log(1/ε) and t = Θ(log2(1/ε)), we have that for
pi > 0, |EX[[[h(Y)]]]| ≤ ε.

5

Proof. Whenever z ∈ (0, 2), we may write log(z) as its Taylor expansion centered at 1. In particular,
we have

|h(z)| = | log(z)− f(z)|

=

∣∣∣∣∣ 1

ln(2)

∞∑
`=1

(−1)`+1(z − 1)`

`
− 1

ln(2)

r∑
`=1

(−1)`+1(z − 1)`

`

∣∣∣∣∣
=

∣∣∣∣∣ 1

ln(2)

∞∑
`=r+1

(−1)`+1(z − 1)`

`

∣∣∣∣∣
=

∣∣∣∣∣ (z − 1)r

ln(2)

∞∑
`=1

(−1)` · (z − 1)`

r + `

∣∣∣∣∣ = |z − 1|r
∣∣∣∣∣ 1

ln(2)

∞∑
`=1

(−1)` · (z − 1)`

r + `

∣∣∣∣∣ (1)

First, consider the case that z ∈ (1, 2). Then, we may re-write (1) as

|z − 1|r
∣∣∣∣∣ 1

ln(2)

∞∑
`=1

(−1)` · (z − 1)`

r + `

∣∣∣∣∣
= |z − 1|r ·

∣∣∣∣∣ 1

ln(2)

∞∑
`=1

(z − 1)2`−1

r + 2`

(
r + 2`

r + 2`− 1
− (z − 1)

)∣∣∣∣∣ . (2)

Whenever z ∈ (1, 2), then every term in the right-most summation of (2) is positive; indeed,
(z − 1)2`−1/(r + 2`) > 0 because z > 1, and (r + 2`)/(r + 2` − 1) > 1 while (z − 1) < 1. In
particular, for z ∈ (1, 2), we may upper bound the right-most summation in (2) by upper bounding
each term. For every ` ∈ N, we may upper bound each term

(z − 1)2`−1

r + 2`

(
r + 2`

r + 2`− 1
− (z − 1)

)
≤ (z − 1)2`−1

2`

(
2`

2`− 1
− (z − 1)

)
=

(z − 1)2`−1

2`− 1
− (z − 1)2`

2`
.

Plugging this upper bound into each term of (2), we have that z ∈ (1, 2) satisfies

|h(z)| ≤ |z − 1|r
∣∣∣∣∣ 1

ln(2)

∞∑
`=1

(
(z − 1)2`−1

2`− 1
− (z − 1)2`

2`

)∣∣∣∣∣
= |z − 1|r

∣∣∣∣∣ 1

ln(2)

∞∑
`=1

(−1)`+1 · (z − 1)`

`

∣∣∣∣∣ = |z − 1|r| log z|.

We now consider z ∈ (0, 1). Here, every term in the right-most summation in (1), (−1)`(z−1)`/(r+
`), is positive. So we upper bound

|h(z)| = |z − 1|r
∣∣∣∣∣ 1

ln(2)

∞∑
`=1

(−1)` · (z − 1)`

r + `

∣∣∣∣∣
≤ |z − 1|r

∣∣∣∣∣ 1

ln(2)

∞∑
`=1

(−1)` · (z − 1)`

`

∣∣∣∣∣
= |z − 1|r| log z|.

The final case occurs when z ≥ 2, and we may no longer use the series representation. However, in
this case, we have

|h(z)| ≤ | log z|+ |f(z)| ≤ | log z|+
r∑
`=1

|z − 1|`

`
≤ | log z|+ r|z − 1|r+1.

In all cases, we have

|EX[[[h(Y)]]]| ≤ EX[[[|h(Y)|]]] ≤ O(r) ·EX

[[[
|Y − 1|r+1

]]]
+ ε/2 +EX[[[1 {Y ≤ 1/10} log(1/Y)]]],

6

where we used the fact that Y > 0 and r = Θ(log(1/ε)) to say (9/10)r < ε/2. In order to bound
the above two quantities, we use the fact that the random variable Y is a subgamma random variable
and thus has good concentration around its mean (which is 1 for the case of Y), giving the desired
inequality.

Definition 2.7 (Subgamma Random Variable). For σ,B ∈ R, a random variable Z with expectation
µ is (σ,B)-subgamma if for all λ ∈ R with |λ| < 1/|B|,

ψZ(λ)
def
= ln

(
E
[[[
eλ(Z−µ)

]]])
≤ λ2σ2

2(1− λ|B|)
.

It is not hard to verify (see Section B) that the random variable Y is centered at 1, and that there
are constants α, β ∈ R≥0 so Y is (α/

√
t, β/t)-subgamma. Then, by taking the Taylor expansion of

E
[[[
eλ(Y−1)

]]]
, we have that for any |λ| < t/β, and any j ∈ N,

EX

[[[
|Y − 1|j

]]]
≤ j!

λj
· exp

(
α2λ2

2t(1− λβ/t)

)
≤ αjj!

tj/2
· e3, (3)

by picking λ =
√
t/α, which is less than t/β for large enough t. Letting j = r + 1 and setting

t = O(r2), we get the desired bound of o(ε/r). In order to bound EX[[[1 {Y ≤ 1/10} log(1/Y)]]],
we compute it explicitly, and recall thatX ≥ t, so that the above event is satisfied only if pi ≤ 1/10.

EX[[[1 {Y ≤ 1/10} log(1/Y)]]] ≤ EX

[[[
1 {Y ≤ 1/10}

Y

]]]

=

t/(10pi)∑
`=t

(
`− 1

t− 1

)
pti(1− pi)`−t ·

t

`pi
≤ t

10pi
max

`∈[t,t/(10pi)]

(
e(`− 1)

t− 1

)t−1
pt−1i · t

`

≤ t

10
max

`∈[t,t/(10pi)]

(
e2(`− 1)

t− 1

)t−2
pt−2i = exp(−Ω(t)).

3 Improving Sample Complexity via Bucketing

In this section, we focus on estimating the expected value of log(X/t) with error at most ε. Our goal
here is to remove the poly(log k) dependencies in the sample complexity of estimation. In particular,
we prove the following theorem, which improves on the dependence of k in Theorem 1.

Theorem 2. There exists a single-pass data stream algorithm using O(1) words of working memory
that processes a stream of O(k log4(1/ε)/ε2) i.i.d. samples from an unknown distribution D on [k]
and returns an additive ε approximation of H(D) with probability at least 2/3.

Given the work done in Section 2, it will suffice to estimate the quantity H (we give the explicit
reduction in Lemma 3.1 shortly):

H := Ei∼D,X∼NB(t,pi)[[[log (X/t)]]] , (4)

where t is set to Θ(log2(1/ε)), such that we can then apply the correction term of Section 2. Recall
that the randomness in the above expectation is taken over the random choice of i ∼ D, andX is a
negative binomial random variable drawn from NB(t, pi) . First, we show that it suffices to estimate
(4) in order to estimate the entropy, given our tools from Section 2.

Lemma 3.1. Consider a fixed distribution D, and for ε > 0 suppose Ĥ ∈ R is such that |H − Ĥ| ≤
ε. Then, there exists a O(1) word streaming algorithm which given Ĥ and using an additional
O(log(1/ε)/ε2) independent samples from D, outputs an estimate to the entropy of D up to error
±2ε with probability at least 0.9.

It thus suffices to design an algorithm to estimate (4). Our approach is to use a bucketing scheme. At
a high level, we partition the range ofX into L intervals: I1, I2, . . . , IL. We compute the conditional
expectation of log(X/t) in each interval separately. Then, we take the weighted average of these
conditional expectations, where the weights are determined by the probability of the intervals.

7

Unbounded XXX: As specified above, the random variable X is a mixture of negative binomial
random variables, soX may be unbounded. In addition, if we had sampled i ∼ D where pi was very
small,X’s value will tend to be very large. It will be convenient to introduce a parameter Xmax ∈ N
and consider the random variableX ′ := min(X, Xmax). Let H̃ denotes the expected value ofX ′:

H̃ := Ei,X

[[[
log(X ′/t)

]]]
.

For the rest of the section, we will seek to approximate H̃ , and the fact that this is a good estimate for
H follows from the following lemma.
Lemma 3.2. Let i ∼ D, and let X and be a negative binomial random variable from NB(t, pi).
Let X ′ be the bounded version of X: X ′ := min(X, Xmax). Let t ∈ N and ε ∈ (0, 1). If we set
Xmax = tk/(ln(2)ε), then∣∣∣H − H̃∣∣∣ = Ei,X

[[[
log(X/t)− log(X ′/t)

]]]
≤ ε .

Comparison to related work: It is worth noting that the proofs in this section are inspired by the
work of [ABIS19]. The authors used a similar bucketing technique to estimate entropy. While the
structure of our proof is similar, there are subtle differences between our work and what they did.
First, we are focusing on estimating different quantities. In particular, we work with an unbounded
random variable while their estimator is bounded. Moreover, they have a two-step bucketing system
where they draw a sample i and two estimates for pi; they use one estimate for detecting which
bucket falls into and the second one to estimate entropy in that bucket. One of the complications
of this approach is that the second estimator may fall into a different bucket; Thus, they have to
“clip" the second estimator to make sure it is close to the bucket of the first estimator. We have
circumvented these hurdles by using the same estimate for detecting which bucket we are in and
estimating log(X/t) in that bucket.

The algorithm: We write H̃ in terms of conditional expectation in the intervals.

H̃ =
L∑
`=1

Pri∼D,X∼NB(t,pi)
[[[
X ′ ∈ I`

]]]︸ ︷︷ ︸
q`:=

·Ei∼D,X∼NB(t,pi)
[[[

log(X ′/t) |X ′ ∈ I`
]]]︸ ︷︷ ︸

H`:=

.

Let q` denote the probability ofX ′ being in I`, and H` denote the conditional expectation in I`. Our
algorithm estimate q` and H` for each interval to find an estimate for H̃ . Below we give a brief
description of our algorithm, and the pseudocode can be found in Algorithm 1.

Below, we define b0 = t < b1 < · · · < bL = Xmax to be L + 1 parameters (which we will set
shortly) that denote the boundary points of the intervals:

I` = [b`−1, b`) ∀i ∈ [L− 1] , IL = [bL−1, bL] .

For each interval I`, we draw r` samples from D, namely i1, . . . , ir` ∼ D. For each ij , we
start drawing samples from D in the process of drawing a negative binomial random variable
Xj ∼ NB(t, pij); then, we will set X ′j = min(Xj , Xmax). Furthermore, we will only consider
X ′j’s that fall in I`, which means that we can stop early if we already knowX ′j will be too large. In
particular, if we draw b` samples and have not observed t instances of ij , we can already conclude
X ′j is not in I` and stop sampling. Among these r` samples {i1, . . . , ir`}, let c` denote the number
ofX ′j’s that fall into I`. We estimate the weight of each bucket by q̂̂q̂q := c`/r`. For the last bucket,
we set q̂̂q̂q` in a way that the sum of the weight is one:

q̂̂q̂q` =
c`
r`
, ∀j = 1, . . . , L− 1 , q̂̂q̂qL := 1−

L−1∑
j=1

q̂̂q̂qL .

Also, we compute an average of log(X ′j/t) of suchX ′j’s and denote it by Ĥ̂ĤH`:

Ĥ̂ĤH` =

∑r`
j=1 1{X

′
j ∈ I`} · log(X ′j/t)

c`
∀` = 1, . . . , L .

In these definitions, we take Ĥ̂ĤHL = log(bL/t) if cL = 0 and for the sake of analysis Ĥ̂ĤH` = H` if
c` = 0 for ` < L; note that the value of Ĥ̂ĤH` will be multiplied by 0 in this case and hence we may
define Ĥ̂ĤH` arbitrarily. Our estimate for H̃ is the weighted sum of Ĥ̂ĤH`, i.e., Ĥ̂ĤH =

∑L
`=1 q̂̂q̂q` · Ĥ̂ĤH`.

8

Algorithm 1 Estimating E[[[logX/t]]] via Bucketing
1: procedure LOGESTIMATOR(k, ε, sample access to D)
2: Ĥ̂ĤH ← 0
3: for ` = 1, 2, . . . , L do
4: c` ← 0, Ĥ̂ĤH` ← 0
5: for r` times do
6: Draw i ∼ D
7: Draw b` samples from D but terminate early if t occurrences of i are observed.
8: X ← number of samples drawn
9: Ĥ̂ĤH` ← Ĥ̂ĤH` + log(X/t) · 1{X ∈ I`} and c` ← c` + 1{X ∈ I`}

10: Define

q̂̂q̂q` ←

{
c`/r` if ` < L

1−
∑L−1
`=1 q̂̂q̂q` if ` = L

and Ĥ̂ĤH` ←

Ĥ̂ĤH`/c` if c` > 0

H` if c` = 0, ` < L

log(bL/t) if c` = 0, ` = L

. Note that if c` = 0 and ` < L, the definition of Ĥ̂ĤH` is just for analysis since in that case
q̂̂q̂q` = 0 and the output does not depend on Ĥ̂ĤH`.

11: Ĥ̂ĤH ← Ĥ̂ĤH + q̂̂q̂q`Ĥ̂ĤH`

Lemma 3.3. Define Error :=
∑L
`=1 q̂̂q̂q` · Ĥ̂ĤH`−

∑L
`=1 q` ·H`. For any setting of t = b0 < · · · < bL =

Xmax and {r` ∈ N : ` ∈ [L]}, we have

E
[[[
Error2

]]]
≤ 2 ·

L−1∑
`=1

q` log2(bL/b`−1)

r`
+ 6 ·

L∑
`=1

q` log2(b`/b`−1)

r` + 1

Proof of Lemma 3.3. We start by rewriting Error as follows:

Error =

L∑
`=1

(q̂̂q̂q` − q`) Ĥ̂ĤH` +

L∑
`=1

q`

(
Ĥ̂ĤH` −H`

)
=
L−1∑
`=1

(q̂̂q̂q` − q`) Ĥ̂ĤH` +

(
1−

L−1∑
`=1

q̂̂q̂q` − 1 +
L−1∑
`=1

q`

)
Ĥ̂ĤHL +

L∑
`=1

q`

(
Ĥ̂ĤH` −H`

)
=
L−1∑
`=1

(q̂̂q̂q` − q`)
(
Ĥ̂ĤH` − Ĥ̂ĤHL

)
+

L∑
`=1

q`

(
Ĥ̂ĤH` −H`

)
. (5)

Using the fact that q̂̂q̂q` is an unbiased estimator for q` and that for ` ≤ L − 1, Ĥ̂ĤH` is an unbiased
estimator of H` even when conditioned on a specific value of q̂̂q̂q`, we have

∀` 6= `′ ∈ [L− 1] : E
[[[

(q̂̂q̂q` − q`)
(
Ĥ̂ĤH` − Ĥ̂ĤHL

)
(q̂̂q̂q`′ − q`′)

(
Ĥ̂ĤH`′ − Ĥ̂ĤHL

)]]]
= 0

and
∀` 6= `′ ∈ [L] : E

[[[
q`

(
Ĥ̂ĤH` −H`

)
q`′
(
Ĥ̂ĤH`′ −H`′

)]]]
= 0 .

Hence,

E
[[[
Error2

]]]
≤ 2 ·E

(L−1∑
`=1

(q̂̂q̂q` − q`)
(
Ĥ̂ĤH` − Ĥ̂ĤHL

))2
+ 2 ·E

(L∑
`=1

q`

(
Ĥ̂ĤH` −H`

))2

= 2 ·E

[[[
L−1∑
`=1

(q̂̂q̂q` − q`)2
(
Ĥ̂ĤH` − Ĥ̂ĤHL

)2]]]
+ 2 ·E

[[[
L∑
`=1

q2`

(
Ĥ̂ĤH` −H`

)2]]]

≤ 2 ·
L−1∑
`=1

Var[[[q̂̂q̂q`]]] (log(bL/b`−1)
2

+ 2 ·
L∑
`=1

q2`E

[[[(
Ĥ̂ĤH` −H`

)2]]]
(6)

9

Recall q̂̂q̂q` is the average of r` Bernoulli random variables, each set to 1 with probability q`. Hence,

Var[[[q̂̂q̂q`]]] =
q`(1− q`)

r`
≤ q`
r` + 1

. (7)

To bound the expectation of (Ĥ̂ĤH` −H`)
2 recall the definition of Ĥ̂ĤH`: we take a sample i ∼ D, then

X ∼ NB(t, pi) to check whetherX ′ ∈ I`; if so, we increment c` and use log(X ′/t) as an estimate
for H`. Crucially, if we condition on any non-zero value of c`, Ĥ̂ĤH` is an unbiased estimator given by
averaging c` values, all of which are bounded in the interval [log(b`−1/t), log(b`/t)]. If c` = 0, the
estimator sets Ĥ̂ĤH` to log(b`/t). In particular, since for all non-zero positive integers, 1/c ≤ 2/(c+1),
we may write

E

[[[(
Ĥ̂ĤH` −H`

)2]]]
≤ Pr[[[c` = 0]]] · log2(b`/b`−1) + 2Ec`

[[[
(log(b`/t)− log(b`−1/t)

2

c` + 1

]]]
≤ q`(1− q`)r` · log2(b`/b`−1) + 2Ec`

[[[
1

c` + 1

]]]
log2(b`/b`−1)

≤ 1

1 + r`
· log2(b`/b`−1) +

2

q`(1 + r`)
log2(b`/b`−1)

≤ 3

q`(r` + 1)
log2(b`/b`−1) (8)

where the second last inequality used that q(1 − q)r ≤ 1/(r + 1) for any q ∈ [0, 1] and that since
c` is distributed as Bin(q`, r`), we have Ec`

[[[
(c` + 1)−1

]]]
≤ 1/(q`(r` + 1). The proof of this last

inequality appears as Lemma 6 in [ABIS19], which we reproduce below for convenience:

Ec∼Bin(q,r)

[[[
1

1 + c

]]]
=

r∑
l=0

(
r

l

)
ql(1− q)r−l · 1

l + 1
=

r∑
l=0

(
r

l

)
ql(1− q)r−l · 1

r + 1
· r + 1

l + 1

=
1− (1− q)r

q(r + 1)
≤ 1

q(r + 1)
.

Substituting Eq. 7 and Eq. 8 into Eq. 6 gives the lemma.

We consider the following setting of parameters, where we let L = log∗ k,8 such that we have b0 = t,
and

∀` ∈ {1, . . . , L− 1}, b`
def
=

tk

(log(`) k)3
, bL

def
=
tk

ε
and let r`

def
=

80 log2(bL/b`−1)

ε2
. (9)

It is fairly straightforward to show that Algorithm 1 uses a constant number of words. Note that
r` (similarly b`’s) can be computed from r`−1, so we do not need to calculate and store all the r`’s
beforehand. Also, to compute q̂̂q̂qL, we do not need all the q̂̂q̂q`’s. We only need to keep a running sum of
q̂̂q̂q` . Thus, we only need a constant number of words of memory. We analyze correctness simply by
bounding the variance. Namely, the remainder of the section will be devoted to proving the following
lemma, which will imply that our estimator will be within ±ε of H̃ with constant probability.
Lemma 3.4. The expected sample complexity of the algorithm is O(k log4(1/ε)/ε2) and returns an
±O(ε) approximation with probability 0.9.

4 Conclusions

We presented an algorithm for returning an additive ε approximation of the Shannon entropy of a
distribution over [k]. The algorithm required O(k ε−2 log4(1/ε)) i.i.d. samples from the unknown
distribution and a constant number of words of memory. In terms of the ε dependence, this improves
over the state-of-the-art [ABIS19] by a factor 1/ε in the sample complexity. More generally, we
expect that the technique used, that of correcting the bias via low-degree polynomials will be useful
in the context of the other inference problems in the data stream setting. The main open problem is
determining whether the sample complexity of our result is optimal. We conjecture that this is the
case, up to the poly(log(1/ε)) factors. See Section D for a discussion of this conjecture.

8Recall that log∗ z is the number of iterated logarithms (base 2) before the result is less than or equal to 1.

10

References

[ABIS19] Jayadev Acharya, Sourbh Bhadane, Piotr Indyk, and Ziteng Sun. Estimating entropy
of distributions in constant space. In Proceedings of the 32nd Annual Conference on
Neural Information Processing (NeurIPS), pages 5163–5174, 2019.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[BDKR05] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity of
approximating the entropy. SIAM J. Comput., 35(1):132–150, 2005.

[BG06] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams.
In Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland,
September 11-13, 2006, Proceedings, pages 148–159, 2006.

[CCM10] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm
for estimating the entropy of a stream. ACM Trans. Algorithms, 6(3):51:1–51:21, 2010.

[CLM10] Steve Chien, Katrina Ligett, and Andrew McGregor. Space-efficient estimation of
robust statistics and distribution testing. In Proceedings of the 1st Annual Conference
Innovations in Computer Science (ICS), pages 251–265, 2010.

[CMVW16] Michael S. Crouch, Andrew McGregor, Gregory Valiant, and David P. Woodruff.
Stochastic streams: Sample complexity vs. space complexity. In Piotr Sankowski and
Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA
2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 32:1–32:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[DGKR19] Ilias Diakonikolas, Themis Gouleakis, Daniel M Kane, and Sankeerth Rao. Communi-
cation and memory efficient testing of discrete distributions. In Conference on Learning
Theory, pages 1070–1106. PMLR, 2019.

[GKLR21] Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz. Memory-sample lower
bounds for learning parity with noise. In Proceedings of the 25th International Workshop
on Randomization and Computation (RANDOM), pages 60:1–60:19, 2021.

[GKR20] Sumegha Garg, Pravesh K. Kothari, and Ran Raz. Time-space tradeoffs for distinguish-
ing distributions and applications to security of goldreich’s PRG. In Proceedings of the
24th International Workshop on Randomization and Computation (RANDOM), pages
21:1–21:18, 2020.

[GM07] Sudipto Guha and Andrew McGregor. Space-efficient sampling. In Proceedings of the
11th International Conference on Artificial Intelligence and Statistics (AISTATS), pages
171–178, 2007.

[GRT18] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds
for learning. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 990–1002, 2018.

[GRT19] Sumegha Garg, Ran Raz, and Avishay Tal. Time-space lower bounds for two-pass
learning. In Proceedings of the 34th Computational Complexity Conference (CCC),
pages 22:1–22:39, 2019.

[HNO08] Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming
entropy via approximation theory. In Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science (IEEE), pages 489–498, 2008.

[JVHW15] Jiantao Jiao, Kartik Venkat, Yanjun Han, and Tsachy Weissman. Minimax estimation of
functionals of discrete distributions. IEEE Trans. Inf. Theory, 61(5):2835–2885, 2015.

[JW19] Rajesh Jayaram and David P. Woodruff. Towards optimal moment estimation in
streaming and distributed models. In Dimitris Achlioptas and László A. Végh, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute
of Technology, Cambridge, MA, USA, volume 145 of LIPIcs, pages 29:1–29:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

11

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity
of sketching and streaming small norms. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, page 1161–1178, USA,
2010. Society for Industrial and Applied Mathematics.

[KRT17] Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 1067–1080, 2017.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program.,
2(2):143–152, 1982.

[MM17] Dana Moshkovitz and Michal Moshkovitz. Mixing implies lower bounds for space
bounded learning. In Proceedings of the 30th Conference on Learning Theory (COLT),
pages 1516–1566, 2017.

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. Theor.
Comput. Sci., 12:315–323, 1980.

[Raz17] Ran Raz. A time-space lower bound for a large class of learning problems. In Proceed-
ings of the 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pages 732–742, 2017.

[Raz19] Ran Raz. Fast learning requires good memory: A time-space lower bound for parity
learning. J. ACM, 66(1):3:1–3:18, 2019.

[She13] Alexander A. Sherstov. Making polynomials robust to noise. Theory Comput., 9:593–
615, 2013.

[SSV19] Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for
linear regression with small error. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 890–901, 2019.

[SVW16] Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and
statistical queries. In Proceedings of the 29th Conference on Learning Theory (COLT),
pages 1490–1516, 2016.

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. In Proceedings of
the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
403–412, 2011.

[VV17] Gregory Valiant and Paul Valiant. Estimating the unseen: Improved estimators for
entropy and other properties. J. ACM, 64(6):37:1–37:41, 2017.

[Wei] Eric W. Weisstein. Polylogarithm. from MathWorld–A Wolfram Web resource. Last
accessed Feb. 9 2022.

[WY16] Yihong Wu and Pengkun Yang. Minimax rates of entropy estimation on large alphabets
via best polynomial approximation. IEEE Trans. Inf. Theory, 62(6):3702–3720, 2016.

12

Checklist

1. For all authors...
1.1 Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
1.2 Did you describe the limitations of your work? [N/A] The model assumes that the

stream consists of iid samples. This is discussed in the introduction.
1.3 Did you discuss any potential negative societal impacts of your work? [Yes]
1.4 Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

2.1 Did you state the full set of assumptions of all theoretical results? [Yes]
2.2 Did you include complete proofs of all theoretical results? [Yes] Proofs not included in

the body of the paper are included in the supplementary material/appendix.
3. If you ran experiments...

3.1 Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

3.2 Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

3.3 Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

3.4 Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
4.1 If your work uses existing assets, did you cite the creators? [N/A]
4.2 Did you mention the license of the assets? [N/A]
4.3 Did you include any new assets either in the supplemental material or as a URL? [N/A]

4.4 Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

4.5 Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
5.1 Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
5.2 Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
5.3 Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Variance of LogEstimator

We now bound the variance of our estimator by O(log2 k). Recall that the output of LogEstimator
is given by log(X/t) − g(B1, . . . ,Br), where the function g is bounded. Since the variance we
seek is O(log2 k), it suffices to show that the variance of log(X/t) is O(log2 k) with i ∼ D, since
subtracting g changes the estimate by at most a constant (see Lemma 2.3).

Lemma A.1. Let i ∼ D andX denote the number of independent trials from Ber(pi) before we see
t successes. Then, Var[[[log(X/t)]]] = O(log2 k).

Proof. Let Xmax = 2kt, and consider the random variableX ′ = min{X, Xmax}. Then

Var[[[log(X/t)]]] ≤ E
[[[(

log(X/t)− log(X ′/t) + log(X ′/t)
)2]]]

≤ 2 ·E
[[[(

log(X/t)− log(X ′/t)
)2]]]

+ 2 ·E
[[[

log2(X ′/t)
]]]

≤ 2 ·E
[[[

log2(X/X ′)
]]]

+ 2 log2(2k)

≤ 4

ln2(2)
·E

(√X

X ′
− 1

)2
+ 2 log2(2k),

where we used that log(X ′/t) ≤ log(2k) always, and that log(z) ≤
√
z − 1/ ln(2) for all z ≥ 1.

Then,

E

[[[
X

X ′
− 1

]]]
≤ E

[[[
X

Xmax

]]]
=

1

Xmax

k∑
i=1

pi ·
t

pi
=

tk

Xmax
= 2.

B Omitted Details from Section 2

Proof of Claim 2.5. Notice thatX is the number of trials from Ber(pi) until we see t successes. We
now have the following string of equalities:

EX,B1,...,Br

[[[
η − log

(
1

pi

)]]]
= EX[[[logY]]]−EB1,...,Br[[[g (B1,B2, . . . ,Br)]]]

= EX[[[f(Y) + h(Y)]]]− g(pi, p
2
i , . . . , p

r
i) = EX[[[h(Y)]]] ,

where we used the fact that g is a linear function, and that E[[[B`]]] = p`i in order to substitute

EB1,...,Br[[[g(B1, . . . ,Br)]]] = g(pi, p
2
i , . . . , p

r
i).

Furthermore, we divide logY = f(Y) + h(Y), where f(z) is the degree-r Taylor expansion of
log z at 1, and h(z) = log z − f(z) is the error in the degree-r Taylor expansion of log(z), i.e.,

h(z) = log(z)− f(z).

Finally, by construction of g, E[[[f(Y)]]] = g(pi, p
2
i , . . . , p

r
i), which gives the desired equality.

Verifying Y is subgamma. Recall that X is the number of independent draws from a Ber(p)
distribution until we see t successes. In other words, we may expressX = X1 + · · ·+Xt, where
Xi is the number of draws of Ber(p) before we get a single success. Then, we always satisfy

E[[[Xi]]] =
1

p
Pr[[[Xi > `]]] = (1− p)d`e < e−p` .

This, in turn, implies that for any r ≥ 1

(E[[[|Xi − 1/p|r]]])
1/r ≤

(
EXi,X′

i

[[[
|Xi −X ′i|r

]]])1/r ≤ 2 (E[[[|Xi|r]]])
1/r

= O(r/p) ,

14

where the first line is by Jensen’s inequality, and the second is by the triangle inequality and Hölder
inequality. Finally, we use the tail bound onXi to upper bound the expectation of |Xi|r. Then, we
have

E
[[[
eλ(Xi−1/p)

]]]
= 1 + λE[[[Xi − 1/p]]] +

∞∑
k=2

λk

k!
·E[[[|Xi − 1/p|]]]

= 1 +
∞∑
k=2

λk

k!
(O(k/p))

k ≤ 1 +O(λ2/p2), when |λ| sufficiently smaller than p

≤ exp
(
O(λ2/p2)

)
Then, sinceX1, . . . ,Xt are all independent, we have

E
[[[
eλ(X−t/p)

]]]
≤ exp

(
O(λ2t/p2)

)
=⇒ E

[[[
eλ(Y −1)

]]]
≤ exp

(
O(λ2/t)

)
,

and this bound is valid whenever |λ| is sufficiently smaller than t.

C Omitted Proofs from Section 3

Proof of Lemma 3.1. The approach is to estimate

Ei∼D[[[ht(pi)]]] = Ei∼D
[[[
g(pi, p

2
i , . . . , p

r
i)
]]]
. (10)

There exists an algorithm using O(log(1/ε)/ε2) samples to estimate the above quantity: for j ∈
{0, . . . , O(1/ε2)}, one takes a sample ij ∼ D and uses r = O(log(1/ε)) additional samples
s1, . . . , sr ∼ D to define

B(j)
m

def
= 1{s1 = · · · = sm = ij} and Zj = g(B

(j)
1 , . . . ,B(j)

r) .

Then, let Z be the average of all Zj’s, which is an unbiased estimate to Ei∼D
[[[
g(pi, p

2
i , . . . , p

r
i)
]]]
.

Since g is bounded (from Lemma 2.3), the variance of O(1/ε2) such values is a large constant factor
smaller than ε2. By Chebyshev’s inequality, we estimate (10) to error ±ε with probability at least
0.9. With that estimate, we will now use Lemma 2.4. Specifically, the entropy of D is exactly
Ei∼D[[[log(1/pi)]]], and we have∣∣∣Ei∼D[[[log(1/pi)]]]−

(
Ĥ −Z

)∣∣∣ ≤ ε+
∣∣∣Ei∼D[[[log(1/pi)]]]−

(
Ĥ −Z

)∣∣∣
≤ ε+ Ei∼D

[[[∣∣∣∣log

(
1

pi

)
−E[[[ηi]]]

∣∣∣∣]]] ≤ 2ε,

where ηi is the result of running LogEstimator(D, i).

Proof of Lemma 3.2. We note that since log(·) is monotone increasing, we must have H ≥ H̃ . To
see that it is not much larger, note that we always have log z = ln(z)/ ln(2) ≤ (z − 1)/ ln(2), which
means

H − H̃ = Ei,X

[[[
log(X/X ′)

]]]
≤ 1

ln(2)
Ei,X

[[[
X

min{X, Xmax}
− 1

]]]
≤ 1

ln(2)
Ei,X

[[[
X

Xmax

]]]
=

1

Xmax · ln(2)

k∑
i=1

pi ·
t

pi
=

tk

Xmax · ln(2)
= ε.

Proof of Lemma 3.4. Substituting the r` values into Lemma 3.3 ensures E
[[[
Error2

]]]
≤ ε2/10. Hence

the estimator is within ±ε of H̃ with probability 0.9 by Chebyshev’s inequality.

For the intervals ` = {1, . . . , L− 1}, we always spend r` tries to determine whether a sample falls
within a particular interval. Note that we take one sample to determine i ∼ D, and then we take at

15

most b` samples. Therefore, the sample complexity for these is

L−1∑
`=1

r` · b` =
80tk

ε2
·
L−1∑
`=1

log2(log(`−1)(k)/ε)

(log(`) k)3
=

80tk

ε2
·
L−1∑
`=1

(3 log(`)(k) + log(1/ε))2

(log(`) k)3

≤ kt ·O(log2(1/ε)/ε2),

where we used the fact that
L−1∑
`=1

1

(log(`) k)
≤ 1

1
+

1

exp(1)
+

1

exp(exp(1))
+

1

exp(exp(exp(1)))
+ . . . = O(1) .

Finally, it remains to bound the expected sample complexity of the bucket L. Here, we note

rL =
O(1)

ε2
· log2

(
log(L−1) k

ε

)
≤ O

(
log2(1/ε)

ε2

)
.

Therefore, the expected sample complexity for interval L is rL ·
∑k
i=1 pi ·

t

pi
= O(k log4(1/ε)/ε2).

D Conjectured Lower Bound

Recall that without a memory constraint the sample complexity is known to be n = Θ(max{ε−1 ·
k/ log(k/ε), ε−2 log2 k}) [VV17, VV11, JVHW15, WY16]. To prove a Ω(k/ε2) lower bound for
the memory constrained version, we conjecture the following randomized process can be used to
generate distributions over [2k] that look alike to any constant space algorithm that uses o(k/ε2)
samples but they have different entropies.

Suppose we have k Bernoulli random variables with parameter α: Y1, . . . , Yk. And, we have k
Rademacher random variables Z1, . . . , Zk (that are +1 or −1 with probability 1/2). We construct
distribution p in such a way that it is uniform over k pairs of elements (1, 2), (3, 4), . . . , (2k− 1, 2k).
However, conditioning on pair (2i − 1, 2i), we may have a constant bias based on the random
variable Yi. And, we decide about the direction of the bias based on Zi. More precisely, we set the
probabilities in p as follows:

p2i−1 =
1 + Yi · Zi/4

2k
, p2i =

1− Yi · Zi/4
2k

∀i ∈ [k] .

Now, it is not hard to show that if we generate two distributions as above with α = (1 + ε)/2
and α = (1 − ε)/2, then their entropies are Θ(ε) separated with a constant probability. Thus, any
algorithm that can estimate the entropy has to distinguish α = (1 + ε)/2 from α = (1 − ε)/2.
Intuitively, to learn α, we would require to determine Ω(1/ε2) many of Yi’s. Since we have only
a constant words of memory, we cannot perform the estimation of the Yi’s in parallels. Thus, any
natural algorithm would require to draw Ω(k/ε2) samples.

16

	Introduction
	A Simple Algorithm and Analysis
	An Estimator for log(1/pi)- .4
	Bounding Bias of Estimator

	Improving Sample Complexity via Bucketing
	Conclusions
	Variance of LogEstimator
	Omitted Details from Section 2
	Omitted Proofs from Section 3
	Conjectured Lower Bound

