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Abstract

Learning safe solutions is an important but challenging problem in multi-agent re-
inforcement learning (MARL). Shielded reinforcement learning is one approach
for preventing agents from choosing unsafe actions. Current shielded reinforce-
ment learning methods for MARL make strong assumptions about communica-
tion and full observability. In this work, we extend the formalization of the
shielded reinforcement learning problem to a decentralized multi-agent setting.
We then present an algorithm for decomposition of a centralized shield, allowing
shields to be used in such decentralized, communication-free environments. Our
results show that agents equipped with decentralized shields perform comparably
to agents with centralized shields in several tasks, allowing shielding to be used in
environments with decentralized training and execution for the first time.

1 Introduction

Recently, the advent of deep reinforcement learning has produced solutions in highly complex do-
mains such as Atari [17], and the game of Go [20]. However, the neural networks which power these
methods are opaque, and there is a significant risk of unintentional harm when a poorly understood
reinforcement learning method is applied to a safety-critical system [2].

One common approach for safe RL is the idea of a shield—a reactive system which monitors a
reinforcement learning agent and environment [1]. During each step, the agent proposes an action,
the shield evaluates whether this action is safe, and then the shield potentially replaces the proposed
action with a known-safe action. This method has been extended to multi-agent environments, but
the shield remains centralized [10]. Such methods assume instantaneous communication with a
centralized coordination algorithm, which is not realistic in many environments.

In this work, we first discuss the centralized shield synthesis problem, and outline its proposed so-
lutions. We describe several implicit communication assumptions present in the existing centralized
shield definition, and define a novel framework for decentralized shielding. These decentralized
shields enable each agent to act independently, without any coordination after shield synthesis.
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Our main technical contribution is an algorithm which, using any centralized shield as input, pro-
duces a decentralized shield that guarantees safety. We also discuss various properties of input
centralized shields, and the effect of these properties on the permissiveness of the output shield.

Lastly, we evaluate the performance of our shield decomposition algorithm on shields from several
domains. We first analyze the structure of the shield itself, ensuring that the majority of actions
allowed by the centralized shield are still allowed by the decentralized shield. We then train a
shielded reinforcement learning agent to solve these tasks, and measure the performance of the
learned policy. We find that all agents achieve a comparable value in the environment, and that, as
is to be expected from the theoretical guarantees of our framework, decentralized shielding achieves
100% safety. These results show that our shield decentralization approach can, for the first time,
allow reinforcement learning methods to be provably safe in decentralized multi-agent settings.

2 Related Work

The concept of shielded reinforcement learning [1] draws from the idea of Runtime Enforcement
[6], from the Formal Methods community. In the single-agent case, shielding has been extended
to environments with continuous action spaces [8], stochastic or adversarial environments [15], and
partially-observable environments [7]. As with all shielding methods, these extensions require a
model of the environment, with a varying degree of abstraction. This differs slightly from contract-
based decomposition [5]; instead of defining a contract first, and then constructing systems whose
interfaces satisfy this contract, shielding involves constraining an agent to act safely within an envi-
ronment whose dynamics are fixed.

Other proposed methods specify algorithms for enforcing safety in the presence of communication
constraints or delays for pathfinding agents [23], or for general LTL specifications [12], but neither
method eliminates communication entirely.

Several pieces of work focus on verifying a neural network or closed-loop reinforcement learning
system after training is complete [4, 14]. These methods could potentially succeed in a multi-agent
reinforcement learning system if successfully scaled up, but such approaches typically make no
guarantees of safety during training.

3 Preliminaries

We first describe several relevant structures, and a formalization of the centralized shielding problem.
Many elements of this framework have been described in prior formulations [1, 6], and extended to
the multi-agent setting [10].

Let A(X) be the set of all probability distributions over set X. Let R denote the set of reals.

An environment with cooperative agents and full observability is often characterized as a MMDP:

Definition 1 (MMDP) A Multi-agent Markov Decision Process (MMDP) is a tuple M =
(D,S,A,&,T,v,R,by) where D = {1,...,n} is a set of agents, S is a set of states, A = ], A; is
a finite joint action space, factorizable into n individual action spaces, £ : S — P(A) represents the
set of actions available to the agents at a given state, T : S x A — A(S) is the transition probability
distribution function, v € [0, 1] represents the discount factor for future rewards, R : S x A — Ris
the reward given after a transition, and by € A(S) is the distribution of initial states.

We call a sequence of states and joint actions ((sg, S1, - - -, Snt1), (@0, a1, ..., ay)) an environment
trace of MMDP M if every pair (s;, a;, $;11) is allowed by the transition function of the MMDP.

M is said to be in a deadlock at state s € S if E(s) = 0. M is deadlock-free if there are no
environment traces of M that end in a deadlock state.

We will often have some prior knowledge of how to abstract the states in a meaningful way for
safety properties. For example, in a domain where we avoid collisions between agents, the relative
positions of the agents may be useful, even if the absolute positions of all agents are not known.
We call a function f : S — L which translates MMDP states into members of a given label set
an abstraction function. Note that some prior work refers to f as the observer function [1, 10]; we



use a different name to avoid potentially conflicting terminology. Every environment trace through a
MMDP has a corresponding label trace ((lg, o), - - - , (In, a,)), where Vi € {0, ... ,n},l; = f(s;).!
Several unique environment traces may correspond to the same label trace.

‘We note that an environment with partial observability or a more complex reward structure is accept-
able. As long as each agent can independently calculate the current label, a shield can be constructed
using this framework. However, for simplicity, we continue to use MMDPs in our description.

Definition 2 (DFA) A Deterministic Finite Automaton (DFA) is a tuple ¢ = (Q, %, 9, so, F') where
Q is a set of states, sg € @ is the initial state, 3. is an alphabet, § : Q X X — @ is the transition
function, and F' C @ is the set of accepting states.

Given a word (wg, w1, ...,w,) € ¥*, the corresponding DFA trace (qo,q1,---,qn+1) € QF is
obtained by stepping through the transition function. A word is accepted by the DFA iff the last
state of its corresponding DFA trace is a member of F.

For a given MMDP M = (D, S, A, £, T, v, R, by) and label set L, we define a safety specification
over M and L to be a DFA ¢° = (Q°, (L x A),d%, s§, F*) which accepts the empty word and
does not contain any transitions from @Q° \ F*® to F'*. M satisfies ¢° (M F ¢°) iff all possible
label traces of M are accepted by ¢*. ¢* induces the accepting action function C® : Q° x L —
P(A) = (q,1) = {a € A|6°(q, (I,a)) € F*}; given a DFA state and label, output the actions which
transition the DFA to an accepting state.

We can compose a DFA ¢¢ and a MMDP M to form a new MMDP (M||¢¢). The state space of the
resulting MMDP is the product of the state spaces of M and ¢9, and the transition function steps
through the DFA and MMDP’s states in lockstep. At state (s, ¢), a given action is only enabled in
the resulting MMDP if it is a member of both £(s) and C*’ (g, f(5s)).

4 Centralized Shielding

We use a definition of a centralized shield based on the joint actions which are allowed at each
shield state. Note that some prior formulations define the shield as a Moore machine which outputs
a specific safe action in response to an input action [6]; the following definition is equivalent.

Definition 3 (Centralized Shield) A DFA ¢9 is a centralized shield for MMDP M that enforces
safety specification ¢° iff M||¢9 E ¢*° and M||¢? is deadlock-free.

Problem 1 (Centralized Shield Synthesis) Given a MMDP M = (D, S, A, E,T,~, R, by), a label
set L, an abstraction function f over M and L, and a safety specification ¢* over M and L,
synthesize a centralized shield for M that enforces ¢°.

This problem has previously been explored in [1] for the single-agent case, and [10] for the multi-
agent case; we do not aim to advance the state of the art in this domain. Briefly, centralized
shield synthesis works by constructing a game with two players: the agents, and the environment.
When constructing a shield for a multiagent environment, all agents are collectively considered one
“player” whose action set equals the space of joint actions for all of the agents. The environment
proposes a label, and the agents must respond with a joint action which does not violate the safety
specification. The safety game is solved, typically by iterating to a fixpoint [9].

A complete model of the environment is not necessary for this synthesis; an abstraction which cap-
tures all possible label traces is sufficient. For example, our test environments all involve avoiding
collisions. We therefore use the relative positions of the agents as the label set. The environment
abstraction only captures information about how the relative positions of the agents change with
each joint action, not any information about rewards or walls.

When using a centralized shield, the agents never explicitly construct the full composition of M||¢9,
as M may have an infinite state space, and its exact dynamics may not be known. Instead, the agents
maintain the current centralized shield state g, initialized to s. At every time step, they observe
the label [ from the environment. Using the shield’s induced accepting action function, the agents
compute the set of safe actions C*’ (g, 1).

'We intentionally omit f(s,11) to allow label traces to be a word of (L x A)*.



At this point, there are two common design choices in how the shield gets used [1]. In pre-posed
shielding, the agent’s action space is restricted to C%’ (g, 1); it is unable to choose an unsafe action.
In post-posed shielding, the agent is free to choose any action. However, if the action is not safe,
the shield substitutes the action with an arbitrary action a’ € C?°(g,1). The agent observes, and is
trained on the environment transition (s, a’, r, s’). The agent is additionally trained on the synthetic
transition (s, a,r + rp, s’) where 7, is a penalty reward. For both designs, the shield’s transition
function ¢¢ is then used to obtain the next centralized shield state. We choose to use post-posed
shielding for our experiments, as this method is generalizable to a greater variety of agents.

S Decentralized Shielding

The use of a centralized shield requires agents to communicate with each other for two reasons:

First, the set of safe individual actions for a given agent may depend on the action choice of all
other agents. For example, consider the safety specification where an even number of agents must
pick a given action. Unless a single joint action is decided upon in advance, the agents must all
communicate before action selection in order to choose a safe action.

Furthermore, even if the set of safe individual actions are independent, the centralized shield may
transition to different states in response to different joint actions—even if both joint actions produce
the same result in the environment. Alshiekh et al. [1] gives the example of an industrial valve
controller, where the flow of water through the valve is stochastic when the valve is open. Consider
a similar environment where multiple agents each control an independent valve, and are unable to
observe other agents’ valve states, but they do observe the flow of water through each valve. An
agent would not be able to tell the difference between other agents’ valves being closed, versus their
valves being open without water flowing during a given step due to chance. Depending on the shield
structure, there may be no way to calculate what the next shield state is based on flow rates alone.

Therefore, in a no-communication environment, each agent must be equipped with a shield which
has the following two properties: First, each agent must be able to independently choose actions. No
matter what combination of actions are chosen by the various agents, the joint action must be safe.
We call a shield with this property Cartesian, as the safe joint action set results from the Cartesian
product of each agents’ safe individual action sets. Second, each agent’s local shield must be able
to independently determine its next internal state, without direct knowledge of the actions that other
agents have taken. We call a shield with this property unambiguous.

We call a DFA an individual shield for agent ¢ € D if the transition alphabet of this DFA is L x A;. If
the product? of a series of individual shields forms a centralized shield which enforces specification
¢°, we say that the individual shields collectively form a decentralized shield which enforces ¢°.

Problem 2 (Dec-A Shield Synthesis) Given a MMDP M = (D,S,A,E,T,v, R, by), a label set
L, an abstraction function over M and L, and a safety specification ¢°, synthesize a decentralized
shield which enforces ¢°.

Problem 2 is generally hard to solve, and may even be undecidable in some cases, as it is related
to decentralized controller synthesis problems [18, 21]. Therefore, instead of solving Problem 2 di-
rectly, we opt for the following approach. First, we attempt to synthesize a centralized shield (i.e., to
solve Problem 1) using the methods described in Section 4. If this fails, i.e., if no centralized shield
exists, than we can conclude that no decentralized shield exists either. If, on the other hand, we man-
age to synthesize a centralized shield, than we can decentralize it, thereby turning our decentralized
shield synthesis problem into the following shield decomposition problem:

Problem 3 (Dec-A Shield Decomposition) Given a MMDP M = (D, S, A, E,T,~, R,by) and a
centralized shield ¢9 for M, synthesize a decentralized shield for M which enforces ¢9.

Problem 3 admits a trivial solution, where for every shield state and label, we prescribe a single
safe joint action in advance. Such a joint action is guaranteed to exist for all reachable states due to
the deadlock-free property of the centralized shield. While the result is technically a decentralized

?Unlike a standard automaton product, we synchronize on L, so the resulting automaton’s alphabet is L x A.



shield that enforces ¢°, this trivial solution does not allow the agents any freedom to explore actions
and optimize for expected returns.

Instead, we would ideally like to synthesize a maximally permissive shield; i.e. a shield for which
there does not exist an alternate shield that admits a strict superset of label traces. However, this
is a fundamentally difficult problem in the general case. We therefore present a procedure which
produces a maximally permissive decentralized shield when the input centralized shield is Cartesian
and unambiguous, and in all other cases produces a shield which is at least as permissive as the
trivial solution. The steps of our algorithm are illustrated in Figure 1, and described in what follows.

Algorithm 1 Step 1 of Shield Decomposition: Determining Safe Actions

1: Input
2: 9 = (G, (L x A),89,s5, F9) /I A centralized shield where A = [, A;
3: Output
4: D;:GxL—PA) /I A set of safe individual actions for agent ¢
5: R:GxL—[L— G // Uniquely determine the next state, given the observed label
6: procedure CALCULATESAFEACTIONS(¢Y)
7: for s € G,l € L(s)do [/ L(s) = set of all labels which may be observed in shield state s
8: C(s,l) « {a € Al09(s,(l,a)) € F9} /I All legal joint actions from s,
9: Pick arbitrary a = (a1, as,...,a,) € C(s,1) // Guaranteed to exist, given that [ € L(s)
10: Vi E]D)DZ(S,Z) = {al}
1 R(s,1)  [L(39((s,1), ) = 59((s,1), a)]
12: for i € Ddo // Optimization: randomly permute ID at each time step
13: for a; € A; do
14: A< A{ai} x [Ljep j2: Pils: 1) // New joint actions if a; were added to D;
15: if A C C(s,1) and UNAMBIGUOUSACTIONS(R(s,1),s,l, A) then
16: Di(s,1) + Di(s, 1) U{al}
17: Va € A, R(s,1) < R(s,1) U[L(69(s, (I,a))) — §9(s, (I, a))]
18: end if
19: end for
20: end for
21: end for

22: return D,;Vi € D, R
23: end procedure

First, for every centralized shield state, and for every label which can be observed from that state,
find a subset of safe joint actions which is Cartesian and unambiguous. This step works by first
choosing a single safe joint action, like in the trivial solution. The algorithm then attempts to add
individual actions for each agent in turn. When considering a given individual action, the algorithm
first calculates the set of all joint actions which would be enabled if this individual action were
enabled. For example, if the algorithm has previously decided that agent 1 may take either actions
a or b, then enabling agent 2’s action b would require checking that both joint action candidates
(a,b) and (b,b) are suitable. In this manner, the set of enabled joint actions remains Cartesian. If
any joint action candidate is unsafe, or if adding any of them would cause ambiguity in the next
state, then the individual action is rejected. Since the starting joint action and the order of candidate
individual actions are arbitrary, this algorithm’s output is not unique. The details of this step are
further illustrated in Figure 2, and described more specifically in Algorithm 1.

Algorithm 1 performs most of the work in this sequence of algorithms; it takes a centralized shield as
input, and outputs a set of safe actions for every state-label combination, as well as the information
necessary to determine the next state of the environment.

Algorithm 2 (in appendix) projects the actions found by the previous step into an input-output state
machine for each agent, which we call a transient-state individual shield. This structure has two
categories of states: label states, which receive an observation from the environment (shown as black
dots in Figure 1); and action states, which show the allowed actions of the agent (shown as white
circles). Lastly, Algorithm 3 (in appendix) performs some mild post-processing so that this structure
conforms to the shield interface. Additional information about these structures and algorithms can
be found in Section A.
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Figure 1: An overview of our algorithm sequence, in a hypothetical environment where D =
{1,2},A1 = Ay = {Q),«,—},{L1,La,Ls} € L. (a) The input centralized shield, showing
L) ={L1, Lo}, L(2) = {L1},L£(3) = {Lo, L3}, L(4) = {L1, L3}, as well as several transitions.
(b) The output of Algorithm 1: D;_,,, which denotes the allowed actions for each agent, and R,
which maps labels seen in the next state to the state number. Here, for shield state 1 and label L1, it
is safe for agent 1 to take actions () or +—, while agent 2 may take () or —. (c) The output of Al-
gorithm 2: transient-state individual shields for each agent, constructed using D;_,, and R. (d) The
output of Algorithm 3: individual shields, constructed by transforming the transient-state individual
shields. These can be used by agents in communication-free environments to ensure safety.
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If the centralized shield given as input to this sequence of algorithms enforces a given specifica-
tion, the decentralized shield will also enforce that specification. This important safety property is
formalized as the following theorem, and proven in Section B.2 of the appendix:

Theorem 1 Given a MMDP M = (D, S,A,E,T,~, R,by) where Vs € S,E(s) = A, and a cen-
tralized shield @9 for M, the result of Algorithms 1, 2, and 3 is a decentralized shield for M which
enforces ¢9.

As mentioned previously, given an input centralized shield which is already both unambiguous and
Cartesian, the resulting decentralized shield will be maximally permissive. A shield is trivially
unambiguous if each label only appears in a single state; many safety specifications, especially in
fully observable environments, are enforceable by such a shield. This includes all stateless shields—
shields where F'Y = {s{}. For input shields which are non-Cartesian, our algorithm gives one agent
“right of way”’; an agent with higher priority cannot put another agent in a situation for which there
are no safe actions, but the lower-priority agent must otherwise accommodate any potential actions
that the higher-priority agent may take. A centralized shield is usually Cartesian in states where such
a “right of way” is not necessary, i.e. when agents are not in contention with each other.
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Figure 2: A detailed view of Algorithm 1, which finds a Cartesian set of safe, unambiguous actions.
The shield from Figure 1 is used as input. This figure focuses on the process of finding safe actions
for state 1, after L1 has been observed. The 3x3 grid of squares represents the joint actions allowed
by the centralized shield for a given state-label pair. The 3x1 rectangles on the top and left represent
the individual actions which the decentralized shield will allow. Green with a check mark represents
that the individual action is allowed, red with an “X” represents that the action is not allowed, and
yellow with “?” represents that the action is under consideration. The mapping from diamonds to
circles represents knowledge of what the next state will be, given the next shield. (a) A single safe
joint action—(), X))—is chosen arbitrarily. R reflects that if the agents see L next, state 2 comes
next. (b) The agent considers adding agent 1, action —; it is safe so this action is allowed. (c) The
algorithm considers agent 1, action —. It may lead to an unsafe state, so this individual action is
rejected. (d) The algorithm considers agent 2, action <—. This would add two joint actions. Adding
state 4 as a possible next state means that the states are ambiguous if Ly or L3 is observed, so it is
rejected. (e) The algorithm considers agent 2, action —. Both joint actions which this would add are
safe, so it is allowed. We don’t consider the effects of action (—, —), as agent 1 is prevented from
selecting —. (f) The finished result, used for the next step of the shield decentralization procedure.

No matter what, the decentralized shield which our algorithm generates will always allow at least one
safe joint action, in a manner similar to the trivial solution described above. In practice (c.f. Section
6), we find that the resulting decentralized shield tends to allow a large range of joint actions, even
on input shields which are not fully unambiguous or Cartesian.

6 Experiments

We aim to show with our experiments that, as predicted by Theorem 1, decentralized shields cor-
rectly prevent the agents from taking unsafe actions, while an equivalent unshielded agent may take
unsafe actions in the same situation. Furthermore, we hypothesize that agents which use our decen-
tralized shielding method perform comparably to agents which use a centralized shield.

6.1 The Gridworld Collision Domain

We adapt the gridworld maps from Melo and Veloso [16] to test our method. These maps, shown
in Figure 3, have previously been used to test multiagent shielding, with an assumption of instan-
taneous local communication [10]. Each agent has five actions available: movement in the four
cardinal directions, or a no-op. If all agents reach their goal positions, they each receive a +100
reward. Any agents which hit a wall receive a -10 reward. The safety specification is that a collision
between two agents should never occur (including agents crossing over each other). In an unshielded
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Figure 3: The four gridworld environments adapted from Melo and Veloso [16]. One agent each
starts in the red and green squares; the goal is to switch positions.

environment, if an agent violates this specification, all agents receive a -30 reward. Agents receive
a -1 reward at all other time steps. We use the four maps “MIT,” “ISR,” “SUNY,” and “Pentagon,”
both with and without randomized start positions. These maps range in size from 8x10 to 10x23.

We synthesized a centralized shield which avoids collisions, using a reactive synthesis tool [9]. Note
that this shield is shared across all four environments—it is a coarse abstraction which operates
solely on relative agent positions, ensuring collision-free behavior in any gridworld with similar
dynamics. The synthesis tool outputs a shield with many redundant states; we remove duplicate and
unreachable states. In the resulting shield, each environment label only appears in a single state, so
the resulting shield is trivially unambiguous (though it is not fully Cartesian).

We then utilized the procedure described in Section 5 to obtain a decentralized shield which works
for all of our gridworld environments. The resulting individual shields are more conservative when
the agents are near each other, ensuring that no more than one agent moves into a potentially con-
tested area. Centralized shield synthesis took approximately five minutes on a M1 Macbook Pro,
and our decentralization algorithm ran in under 30 seconds.

We analyzed the structure of the shields to determine how much the decentralization procedure
restricts the set of actions available. With the centralized shield, there are an average of 23.30 safe
joint actions available to the agents for a given shield state. Using the trivial solution from Section 5,
every shield state would only have 1 joint action available. Our decentralization algorithm produces
a shield where there are an average of 22.07 joint actions available—not much more restrictive than
the centralized shield.

We trained independent tabular Q-learning agents using e-greedy exploration, with a linear € an-
nealing schedule from 1 to 0.05. The discount factor is 0.9. Agents were trained with a centralized
shield, a decentralized shield, and with no shield. When an agent attempts to take an action a
which is not allowed by the shield, the penalty reward for the synthetic transition r, = —10. These
hyperparameters were chosen to closely match the parameters from [10], where possible.

Agents were trained for 2.5 million timesteps each, using 10 different random seeds for each config-
uration. Each individual run took approximately 5 minutes on a single core of an Intel server CPU;
we trained 240 agents in total. This was sufficient for convergence in all variations. Results are
shown with both fixed and random starting positions in Table 1. Extended tables and training curves
are listed in the appendix.

As guaranteed by Theorem 1, this experiment shows that, because the centralized shield protects
the agents from taking such unsafe actions, the agents which use a decentralized shield are also
prevented from taking unsafe actions. The experiment also reveals that neither shielding method
consistently performs better than the other method, as the highest-performing agent is generally
within the margin of error. Therefore, our decentralized shielding approach allows safe, high-quality
learning during training and execution in environments without communication. The training curves
(Figure 4, in the appendix) tell the same story—no method works significantly faster during training.

6.2 The Relative Particle + Momentum Domain

One advantage of formally synthesizing a shield, rather than naively blocking actions which directly
lead to an unsafe state, is that a shielded agent can avoid states which do not immediately violate
a specification, but where all future paths end in an unsafe state. This can occur in domains with
momentum; if a car is driving towards a cliff, it must slow down well before it reaches the edge.
Therefore, we would like to evaluate agents which use our shield in momentum-based environments.



Table 1: Agent performance after 2.5 million environment steps, using the same shield for training
and testing. Results show average evaluation return and standard error over 10 seeds, as well as
average total violations over 100 testing episodes in parentheses. Note that centralized shielding is
only for comparison; in a no-communication environment, this method would not be feasible.

Start Type Map Name Centralized Decentralized No Shield

ISR 90.4 £ 0.6 (0) 89.9+0.5(0) 90.0+0.6(12.3)
Fixed MIT 7204+ 08(0) 71.6+03(0) 72.8+0.5(0)
Pentagon  89.0 = 0.4 (0) 82.0+:5.8(0) 89.7+0.3 (4.8)
SUNY 833+ 1.4(0) 86.6+0.6(0) 862+ 0.4(0)
ISR 786 £22(0) 76.1E20(0) 83.6FL1.4(2.0)
Random MIT 82.6£02(0) 8324+02(0) 81.4+0.9(0.4)
Pentagon  88.4 4+ 0.5(0) 80.3+3.5(0) 89.1+0.3(0.9)
SUNY 78.14£0.4(0) 73.1+1.7(0) 77.3+0.4(0.4)

Table 2: Individual DQN Agent Performance in the Particle-Momentum domain.

Observability  Start Type Centralized Decentralized No Shield

Partial Fixed 709 £58(0) 82.8+23(0) 67.8+3.0(34.3)
Random  70.8 4+ 1.7(0) 80.5+1.4(0) 332 +24(115.7)
Full Fixed 91.6 £0.0(0) 91.6L0.0(0) 90.7£023.0)

Random  94.6 £ 0.1(0) 94.6+0.1(0) 93.7+0.2(2.8)

We introduce an environment as follows. There are two agents, representing particles on a dis-
cretized grid. Agent 1 begins 9 units above, and 9 units to the left of agent 2, with both agents at
rest. Both agents obtain a reward of 100 when agent 1 gets to the position 9 units to the right of
and below agent 2. If the agents get more than 10 units apart in any individual dimension, or collide
or cross with each other, it is considered a safety violation (and the agents get a reward of -30).
Otherwise, all agents get a reward of -1 at each time step. Each agent can move in any of the four
cardinal directions, or do nothing. Additionally, agents have momentum; an agent’s action is added
to its previous movement to obtain its next movement in the environment. The relative velocity is
capped at 2 units per time step in each direction. In the fully observable variant of this environment,
both agents observe the relative positions and relative velocities. In the partially observable version,
the agents only observe the relative positions.

We synthesized shields which only use the relative positions of the agents as the label set; such
shields can be utilized in either variant of the environment. Using the same structure analysis as in
Section 6.1, we calculated that the centralized shield allows an average of 21.67 actions, while the
decentralized shield allows an average of 20.81 actions.

To show that our decentralized shielding algorithm is also effective regardless of the underlying
reinforcement learning algorithm used by the agent, we trained reactive DQN agents to solve this
task [17]. Full hyperparameters for this agent are located in the appendix. 10 random seeds were
used in the fully observable case, and 50 seeds were used in the partially observable version of the
environment. Each run took approximately 8 hours using 3 threads on a server CPU.

The results are shown in Table 2. Under full observability, we reach similar conclusions as in
the gridworld-collision domain: the agents protected by centralized and decentralized shields both
achieve comparable performance. As guaranteed by Theorem 1, the agent which uses the decen-
tralized shield is as safe as the agent which uses a centralized shield. This is further emphasized
under the partially observable variant of the environment, where the unshielded reactive agents do
not have sufficient information about the environment, and thus behave in a wildly unsafe manner.
In contrast, the shields are able to infer the current momentum based on the incremental changes in
relative agent positions, leading them to never take an unsafe action.



7 Broader Impact and Limitations

We believe that the algorithms presented in this work represent progress towards the more general
goal of safe reinforcement learning. Like most provably correct methods, shielding suffers from
scalability issues such as the well-known state explosion problem [3]. For example, prior to de-
duplication and removal of unreachable states, the shield which we synthesized for the gridworld
experiments contained 71130 states. The particle environment’s shield, including momentum infor-
mation, contained 170348 states. The size of a centralized shield tends to scale exponentially with
the number of agents. Our decentralization algorithm takes linear time with respect to the number
of state-label pairs in the input shield, so we are well positioned to take advantage of methods which
synthesize a centralized shield without such state explosion.

Additionally, obtaining an environment abstraction is difficult—we wrote several iterations of our
abstractions, each containing subtle but serious bugs, before finally obtaining precise and accurate
models of the environments. If our algorithm is given an inaccurate centralized shield, the decentral-
ized shield which the algorithm outputs cannot be expected to perform well. We therefore caution
against overreliance on an abstraction which may not accurately represent the environment.

Furthermore, there exist some environments where it is difficult, or even impossible, to determine
a shared label set. For example, an environment with highly asymmetric observations would not
satisfy the assumptions of the shielding framework we use. However, there may still be sufficient
information to ensure safety in these challenging environments; we are working on developing meth-
ods to synthesize a decentralized shield without a shared label set.

As with any advance in machine learning, it may be possible to use our method to safely train an
agent to perform an unethical task. However, we hope that as a whole, a process for safe reinforce-
ment learning training and execution will reduce potential societal harms resulting from Al

8 Conclusion & Future Work

Our experiments show that the shield decomposition method described in this paper results in shields
that are safe and do not require any communication between agents. Furthermore, agents which are
trained and evaluated with a decentralized shield perform comparably to agents which are trained
and evaluated with a centralized shield, or without any shield.

We are currently working to extend our results in several ways. First, we are implementing ad-
ditional agents and training schemes, including individual Deep Q Networks with convolutional
layers [17], and Centralized-Critic Decentralized-Actor methods [11]. Second, we are investigat-
ing methods to scale our shield decomposition method to the more complicated shields and safety
specifications necessary to describe complex continuous or partially-observable environments. Our
algorithm makes a number of arbitrary choices which do not impact safety, but which could affect
shield performance. It may be useful to define additional metrics for shield performance and per-
missiveness that do not necessarily involve training and testing agents over thousands of episodes,
and to use these metrics to improve the decisions that our algorithm makes. We would like to even-
tually develop a method which obtains a maximally permissive decentralized shield, no matter what
properties hold for the input shield. Finally, although similar problems in formal methods are unde-
cidable [18, 21], we would like to explore heuristic methods for direct decentralized shield search
and synthesis.
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(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] We present a method to decentralize a central-
ized shield, and verify experimentally that this method does not significantly affect
performance in the gridworld domain.

(b) Did you describe the limitations of your work? [Yes] See Section 7

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We dis-
cuss the topic in Section 7
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them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Sections 4
and 5 discuss the relevant assumptions.
(b) Did you include complete proofs of all theoretical results? [Yes] See appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We attach our
code as supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6, and the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The tables and figures are all reflective of this.
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type of GPUs, internal cluster, or cloud provider)? [Yes] The total compute time is
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A Additional Algorithms for Shield Decentralization

Algorithm 2 accepts information about allowed actions, and outputs a Transient-State Individual
Shield for each agent.

Definition 4 (Transient-State Individual Shield) Given a label set L and a MMDP M =
(D,S,A = [[;cp Ai, €, T, 7, R, bo), a transient-state individual shield for agent i € D is a tuple
ot = (Q1,L,61,Q2,A;, A, s, 50) where Q1 and Q2 are sets of states, 61 : Q1 X L — Q2 is the
environment transition function, A : Q2 — A,; is the allowed action function, 6o : Q2 — Q1 is the
agent transition function, and sy € Q1 is the initial state.

()1 represents states in which an agent has just taken an action, but the next environment label has
not been observed; (o represents states in which a label has been observed, and the agent is about
to take an action. For a given state ¢ € (02, no matter what action in .A(q) the agent takes, the next
state is always d2(q). Most states in (1, aside from s;,,;;, can be thought of as “post-states™ of states
which are in Q)o; Figure 1 is reflective of this.

Algorithm 2 Step 2: Projection onto Individual Automata

1: Input

2: 9 = (G, (L x A),89,s5, F9) /I A centralized shield
3: Di, R // Outputs from Algorithm 1
4: Output

5 ¢! = (Q1,L,01,Q2, A, A, b2, 50) /I Transient-state individual shields
6: procedure PROJECTINDIVIDUALSHIELDS(¢Y, D;)

7: fori € D do
8: Q1+ (G x L)Q1 U Sinit

9: S0 ¢ Sinit

10: Q2 +— (G X L)Qz

11: for s € G,l € L(s) do

12: for [I' — §'] € R(s,l) do

13: 51((5, D 1)  (',1)q,

14: end for

15: 62((371)622) A (Svl)éh

16: A((57Z)Q2) HID?(‘S?Z)

17: end for

18: for ! € L(so) do

19: 61(Sinital) — (Sg,l)Qz

20: end for

21: end for
22: end procedure

B Decentralized shield safety

B.1 Definitions

We informally described how a DFA composes with a MMDP in the main body of the paper. We
re-state this composition more precisely.

1, is the indicator function, taking a value of 1 when x is true, and 0 when false. Cc¥ G xIL—
P(A) is the set of joint actions in a centralized shield which lead to an accepting state, as defined on
line 8 of Algorithm 1.

Definition 5 (DFA-MMDP Composition) Given an MMDP M = (D,S,A,E,T,~, R, by), la-
bel set L, an abstraction function f over M and L, and DFA ¢9 = (G, (L x A),89,s], F9)
where s € F9, the composition of M and ¢9 is a new MMDP denoted as M||¢9 =
(De, S, A°,E°,T°, v, R, b§), where

«D°=D
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Algorithm 3 Step 3: Eliminate Transient States

1: Input

2 ¢ =(Q1,L,01,Q2,A, A, 02, 50) // From Algorithm 2.
3. Output

4 @% = (Q%, (L x Ay),0%, sy°, F*7) // Individual shield for agent i
5: procedure ELIMTRANSIENTSTATES(¢})

6: QSi FQlaSSi %SOaFSi <;621

7: for s € (), do

8: forl e L,ac A;do

9: for a € A(61(s,1)) do
10: 0% (s, (I, a)) < 62(d1(s,1))
11: end for
12: end for

13: end for
14: end procedure

Algorithm 4 Subroutine: Determine Unambiguous Actions

1: Input
2: ¢? = (G,(L x A),09,s8, F9) /I (Implicit input) A centralized shield
3: R:[L—S] // The mapping of next states, given the next label
4: s:S,1:L /I The state and label to check for ambiguity
5: A:P(A) /' A set of actions to check for ambiguity
6: procedure UNAMBIGUOUSACTIONS(R, s, [, A)
7: fora € Ado
8: ns + 69(s, (I, a))
9: for ! € L(ns) do

10: if NOTEMPTY(R[!]) and R[l] # ns then

11: return false

12: end if

13: R+ RUJ[l — ns]

14: end for

15: end for

16: return true

17: end procedure

«S=SxG

« A=A

* E((s,07)) = E(s) N CY" (a7, f(5))

* T°((s',q")I(s,q%),a) = T(s'|s,a) - Lgro—so(go,(f(s),0))
* =

* R((s,¢7),a) = R(s,a)

* PribG = ((5,97))] = Prlbo = s] - Lgo—sg

Algorithm 1 outputs two objects; an “Allowed Action Function” D; for each agent ¢, and a “Reverse
State Mapping” R. It is possible to compose a MMDP with these objects directly, as follows:

Definition 6 (MMDP Composition with Allowed Action Functions and Reverse State Mappings)
Given an MMDP M = (D,S,A,E,T,v, R,by), label set L, an abstraction function | over M
and L, centralized shield ¢9 = (G, (L x A), 89, sy, F9), a set of allowed action functions for each
agent D1, ..., D,, and a Reverse State Mapping R, the composition of M, ¢9, R, and each D; is

a new MMDP denoted as M||*(¢9,D1.n, R) = (D*,S*, A*, E*, T*, v*, R*, b}}) where
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e D*=D
. S*:SX((GXL)Usmn)

c A=A

* £7((s,sinit)) = E(s) N (D1(sg, £(s)) x ... x Dn(sf, f(s)))

* &7((s, (¢, l:-1))) = E(s) N (DR L-D)[f(s)], f(s)) > ... %
D, (qgﬂltfl)[f(S)Lf(s)))

(R
« T((s', (¢, W))I(s, sinit), @) = T(s]s,a) - Lgra—gg - Liy=(s)
T((s", (¢, 1e)|(s, (¢ le—1)),a) = T(s'|s,a) - Lyo=r(go,t,_1)f(s)] * Lii=1(s)
=7
* R*((s,"),a) = R(s,a)
o Pribg = ((s,@))] = Prlbo = s] - Lo=s,,,,.

Algorithm 2 likewise outputs a transient-state decentralized shield per agent, defined in Section 5.
We define the composition of a MMDP with a set of transient-state decentralized shields as follows:

Definition 7 (Transient-State-Shield-MMDP Composition) Given an MMDP M
(D, S, A, E,T,v, R,by), label set L, an abstraction function f over M and L, and a set of |D|
tmnszent—state individual shields ¢¢ = (Q1,i, L, 614, Q2.4, i, Ai, 02,4, S0.1), the composition of M

and (¢4, ..., ¢L) is a new MMDP denoted as M||i(¢},...,¢L) = (D', St AL EL T~ R bh)
where

e D!=D

b St:SX (QLl X ... XQl,n)

o At =A

* EN(s:(q1y -1 qn))) = E(5) N (A1 (d1,1(q1, f(5))) X oo X An(01,0(qn, f(5))))

* Tt((8/7(Qi7"'aq;z))‘(S7 (Qh--'7qn))7(a1""7an)) = T(SI|S’ (a17""an))

Hie]D) ]]'q£:52,i(51,'i(Qi7f(5)))
*qt=n

* R'((s,"),a) = R(s,a)
s Pr [b6 = (( (qla v 7qn)))] = Pr[bo = 5} : HieD ]]'(h:SO,i

Finally, the output of Algorithm 3 is an individual shield for each agent; collectively, these form a
decentralized shield. As stated in Section 5, the product of a set of individual shields can be taken
to obtain a centralized shield. Unlike a standard automaton product, we synchronize on the labels:

Definition 8 (Action Product) Given a MMDP M = (D,S,A = [[,.p Ai, €, T, 7, R, bo), a label
set L, two agents i,j € D, and two individual shields ¢ = (Q%, (L x A;), 0%, sy, F*), ¢% =
(Q%, (L x A;),8% sy, F*), the Action Product of ¢** and ¢*i is a new DFA denoted as ¢* R
¢% = (Q%, (L x A,), 8%, 5,7, F*») where

¢ QP = Q% x Q%

. Ap = Ai X Aj

* 0% ((in qj)’ (l’ Qi, aj)) = (697 (Qia (l’ ai))a 9% (qj7 (l7 aj)))

¢ Sgp = (Sgi’sgj)

o F% = F5i x Fi
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This results in a regular DFA which can be composed with a MMDP.

We will also use the notion of an underlying environment trace.

Definition 9 Given an environment trace (((so,-), ..., (8¢, ), (ag, ..., as_1)) for M||¢9, the un-
derlying environment trace for M is ((so, - - ., st), (ao, - .., ar))
Definition 10 Given an  environment  trace  (((so,+),.-.,(st,°)), (ag,...,at—1)) for

M||*(¢9,D1..n, R), the underlying environment trace for M is ((so, - .., 8¢), (ag,---,a¢))

Definition 11 Given an environment trace (((sg, -), . . .
underlying environment trace for M is ((so, . . ., St

5 (Stv ))’ (ao, SR at—l))forM||t¢t1..n’ the

), (ag,...,a))
B.2 Proof of correctness
We restate the following theorem from Section 5:

Theorem 1 Given a MMDP M = (D, S,A,E,T,~, R,by) where Vs € S,E(s) = A, and a cen-
tralized shield ¢9 for M, the result of Algorithms 1, 2, and 3 is a decentralized shield for M which
enforces ¢9.

Note the assumption that the underlying MMDP allows all joint actions. Without this assumption, it
is possible to construct a MMDP, abstraction function, and centralized shield for which there does
not exist any deadlock-free decentralized shield as follows:

e D={1,2}

e S={s0,51}

* A ={ap,a1} x{ap,a1}

* &(s0) = {(ao,a1)}

* &(s1) = {(a1,a0)}

s T(sg|) =T(s1]") =0.5

* L={lo}, f()=1lo

* G={q,q1}

* 6'(]('7 (107 (aOval))) = 59('7 (107 (ah aO))) = 4o
* 69(-, (lo, (a1, a1))) = 69(-, (lo, (a0, a0))) = @1
« F9={g}

In short, the environment only allows either the joint action (ag, a1 ) in state sg, or the the joint action
(a1, ap) in state s1, but not both at the same state. However, because the labels in both sg and s; are
the same, it is impossible for a shield to distinguish between the two cases. A decentralized shield
cannot allow both of these joint actions in a single shield state, but not (ag, ag) or (a1, a1), because
the agents could not communicate in advance to determine which joint action to choose—the set is
not Cartesian. Therefore, any decentralized shield can allow at most one of these actions, meaning
that the composition of the MMDP with the decentralized shield may deadlock.

This assumption is used for the rest of the proof. We note that many standard RL problems follow
this assumption.

To prove Theorem 1, we must show:
Lemma 1 Given a MMDP M = (D,S,A,E,T,v, R, by), a centralized shield ¢? for M, and the

decentralized shield D = (¢°* x ... X ¢°*) resulting from the applications of Algorithms 1, 2, and
3 to ¢9, all possible underlying environment traces allowed by M||D are also allowed by M||¢9.

Lemma 2 Given a MMDP M = (D,S,A,E,T,~, R, by) and a centralized shield ¢9 for M, the

decentralized shield D = (¢°* x ... X ¢°*) resulting from the applications of Algorithms 1, 2, and
3 to ¢? does not contain any deadlocks.
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Lemma 1 is sufficient to show that M|| D E ¢9; for every underlying environment trace which could
be produced by M ||¢9, the corresponding label trace must be accepted by ¢9. The combination of
both lemmas is sufficient to show that D is a shield for M that enforces ¢9.

We proceed by analyzing each algorithm individually.

Lemma 3 Given a MMDP M = (D,S,A,E,T,v, R, by), a centralized shield ¢? for M, and the
outputs D1, R of Algorithm 1 with ¢9 as the input, all underlying environment traces which are
possible in M||*(¢9, D1, .n, R) are also possible in ¢9.

We use an inductive proof to relate the environment traces of the MMDPs:

The initial state of M||*(¢9, D1. ., R) is always of the form (sg, S;ni¢). The initial state of M||p?
is likewise (so, s ), with the same distribution over possible values of sg.

Lemma 4 Given M||*(¢9, D1. n, R) with an initial state of (8o, Sinit) and M||¢? which is in state
(S0, 89), all joint actions which are allowed in M||*(¢9, Dy, R) are also allowed in M||¢9.

Proof: The allowed actions in M||*(¢?, D1, R) are E(s) N (D1(s§, f(s)) x ... x Dp(sy, f(5))).
while the allowed actions in M||¢9 are E(s) N C?°(s], f(s)). It is therefore sufficient to show

(D1(s3, £(5)) % ... x Du(sd, f(s))) € C¥(s§, f(s)). Because we assume ¢ is a centralized
shield, it is guaranteed that f(s) € £(s{), and so we can use the following lemma.

Lemma 5 Given a centralized shield ¢ = (G, (L x A), 89, s{, F'9) and the outputs D; _,, of Algo-
rithm 1 applied to ¢9, ¥q? € G,1 € L(¢9),(D1(q%, 1) x ... x Dy(q9,1)) € C* (¢9,1).

Proof: This invariant is established on line 10 of Algorithm 1, when D1 (¢?,1) X ...x D, (¢%,1) is set
to an arbitrary element of C®’ (¢9,1). D1(¢9,1) x ... x D,,(¢?,1) only expands on line 16; however,
the check on line 15 means that all new elements of this set are also known to be in C®* (¢9, 1).

We return to the base case of the inductive proof. Every possible second state of M||*(¢9, D1, R)
is of the form M||*(¢?, D1.., R) (81, (s, f(s))). Every second state of M||¢ after the same ac-
tion is taken has the form of (s, ¢1), where s has the same distribution. Using line 17 of Algorithm
1, we establish the invariant that g1 = R(s{, f(s0))[f(s1)]- The check on line 15 ensures that there
is only a single possible g; for any ag.

For the inductive case, we would like to prove the following:

Lemma 6 If ((s¢, (gi—1, f(st—1))), as, (st41, (¢, f(8t)))) is a possible transition of
M|[*(¢9, Dy..n, R) where q¢ = Rlaqr—1, f(s-1))[f(se)l. then ((st,qt); ar, (st41,qe41)) is a
possible transition of M||¢9 such that g1 = R(qs, f(5¢))[f(St41)]-

First, we need to show that if a; is allowed by M||*(¢9, D1 ., R), then it is also allowed by M ||@9.

The allowed actions in M||¢9 are £(s) N C?’(¢7, f(s)), similar to as in the base case. The
allowed actions in M||*(¢9, Dy, R) are E(s;) N (D1(R(qi—1, f(si=1))[f(se)], f(s1)) x ... %

Dn(R(q%; f(s:-1))f (s1)], f(s1))). Using the invariant of q; = R(qi—1, f(st-1))[f(s¢)], the same
application of lemma 5 suffices here.

Likewise, the check on line 15 and the assignment on line 17 again ensure that ¢,.y; =

Roqt, f(s6))[f(st+1)]-

Lemma 7 Given a MMDP M = (D,S,A,E,T,v, R, by), a centralized shield ¢? for M, and the
outputs D1, and R of Algorithm 1 with ¢ as the input, M||*(¢9, D1..n, R) does not deadlock.

For each reachable state ¢ and observable label [, line 10 of Algorithm 1 initializes (D;(g,1) X
... X Dp(g,1)) to contain some arbitrary element of C(q, ). Because ¢9 is a centralized shield and
thus does not deadlock, C(q, [) always contains at least one element. Therefore, M||*(¢9, D1..n, R)
always has a joint action is always available, so it does not deadlock either.

Now that we have proven that Algorithm 1 maintains the safety and deadlock-free properties of the
input centralized shield, we must do the same for Algorithms 2 and 3.
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Lemma 8 Given an MMDP M, an abstraction function f over M and L, a centralized shield ¢9
for M, the output of Algorithm I D;, R given ¢, and the output of Algorithm 2 ¢t given ¢9, D;, R:
the same set of underlying environment traces are allowed by M||*(¢9, D1 n, R) as in M||1¢} ..

Note that this lemma implies that M||,¢} ,, is deadlock-free, as it says that the same set of under-
lying environment traces are allowed, not just a subset. We again use an inductive proof here.

For the base case, we must show that all possible first transitions

((s, (Sinits - - -+ Sinit))s @, (8", ((s8, £(5)), .., (80, f(5))))) allowed by M|[,¢} , are also al-
lowed as the first transition ((s, Sinit), a, (8, (s3, £(5)))) in M|[*(¢9, D1..n, R), and vice-versa.

There are two parts to this: showing that the enabled actions are the same in both constructions; and
showing that after taking the same action, the possible next states correspond.

By definition, the enabled actions in M||:¢} , are (A1(611(Sinit, f(8))) X ... X
A (010 (Sinat, £(5)))); in M||*(¢9, D1..n, R), the enabled actions are (Dy(sd, f(s)) x ... x
Dn (s, f(5)))

Therefore, we must show that

(A1(51,1(5i7Lit7 f(S))) X ... X An(51,7z(5i7zit7 f(S)))) = (Dl(sgv f(S)) XX Dn(sg7 f(S)))

It suffices to show that for all 7,

Ai(61,i(5init, f(5))) = Dz-(S& f(s))
Ai((s8, f(5))qs) = Di(sg, £(s)) (Algorithm 2, line 19)

This final equality is true due to Algorithm 2, line 16.

The next state in M|[;¢7 ,, is (8", ((92,1(1,1(Sinit, f(5))); £(5)), - - - s (62,0 (01,n(Sinit, £(5))), £(5)))),
with s’ chosen from the distribution 7'(s'|s, a). Due to Algorithm 2, lines 19 and 15, this is equal to
(s, ((s8, F(5))y..-, (55, f(s)))), with s’ chosen from the same distribution.

Correspondingly, the possible next states of M|[*(¢?, Dy ,,, R) are of the form (s, (s, f(s)),
where s’ follows the same distribution.

For the inductive step, we first need to show that the available actions are the same for state
(3t7 (Qt 1 f(st—l)) of MH*(qbgaDl..an)’ and state (Stv ((Qt—la f(st—l))v s qt—1, f(st—l))) of

Ht 1.n*

In M||*(¢9, D1..n, R), the possible actions are E(s¢) N (D1(R(qe—1, f(st—1))[f(st)], f(st)) X
- X Dp(R(qi—1, f(5:—1))[f(st)], f(s))). The enabled actions in M||;¢ , are E(sy) N

-(;41(51,1((%—17 f(se-1)), f(s1))) x ... x An@l,n((‘]t—l, f(st-1)), f(51))))-

It is thus sufficient to show that V2 € D

Di(R(qi—1, f(se—1)f (50)], f(5¢))) = Ai(01,i((q—1, f(5t-1)), f(5¢)))
= Ai(R(qt—1, f(st-1))[f(50)]) (Lines 12 and 13)

Line 16 proves this equality.

Finally, we must show that after taking the same action, the possible next
states of M]|[*(¢9, D1 n,R) and M||;¢} ,, respectively are (si11,(qs, f(s¢)) and
(se+1, ((qe, f(8))s .-+ aqr, f(s¢))) for some value of ¢;, and with s;y; picked from the same
distribution; this re-establishes the state at the start of the inductive step.

The next state in M|[*(¢?,D1.n,R) is (Set1, (R(q—1,f(se—1))[f(st)], ( ¢))) with
S¢+1 picked from the distribution T'(s¢41]|st,a). The next state in M|[;¢¢ . is

(st-‘rlv((5271(61,1((%—1;f(st—l))?f(st))))a'--a62,n(61,n((%—17f(5t 1)) f(s ))))) with  s¢11

also picked from the same distribution.

Now, we just need to show that Vi € D,
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(Rqe—1, f(se—1))[f (st)], f(s¢)) = 62,i(01,i((qe—1, f(st-1)), f(5¢)))
=02, ((R(gt—1, f(5e=1))[f(s¢)], f(st))) (Lines 12 and 13)

Algorithm 2 line 17 proves this identity, concluding the proof that this algorithm preserves safety
and deadlock-freedom.

Lemma 9 Given an MMDP M, an abstraction function f over M and L, a centralized shield
@9 for M, the outputs D;_,,, R of Algorithm 1 given ¢9, the outputs ¢! . of Algorithm 2 given
&9, D1..n, R, and the outputs ¢*1- of Algorithm 3 given ¢} ., the same set of underlying environ-
ment traces are possible in M||(¢** K ... X ¢**) as are possible in M|| ¢t ..

We again use an inductive proof here. However, as the first transition is treated no differently than
the others for both M||;¢% ,, and M||(¢* K ... K ¢°), we are able to induct over states, rather
than transitions.

For the base case, all possible starting states in both M|[;¢} ,, and M||(¢** K ... X ¢*») are of
the form (s, (Sinit, - - -, Sinit)) such that, in the underlying MDP M = (D, S, A, &, T,~, R, by),
Pl‘[bo = 80] > 0.

For the inductive case, M||;¢! ,, and M||(¢** K. ..X¢*") begin in the same state (s¢, (7, ..., q})).
If the same label is observed in the environment, we would like to show that same set of actions are

enabled in both constructions, and after a given enabled action is taken, the set of possible next states
are the same.

The enabled actions in M||:¢% ,, are E(s¢) N (A1(61.1(qf, f(s1))

The enabled actions in M||(¢°* K ... K ¢°) are é(st) nce
E(s1) N (C¥ (ars (50)) X - C¥7" (a1, F(54)))-

Therefore, it is sufficient to show that Vi € D, C?" (g, f(s¢)) = Ai(1.i(qs, f(s¢))). This equality
holds due to Algorithm 3, lines 9 and 10.

In M|;¢% ,,, after an enabled action a; is taken, the next state is

(st41, (02,1(011(at, F (1)) -+, 02 (1.n (g}, F(5:))))), with  s;41  picked  from
the distribution T'(s;y1]s¢, ar). After the same action is taken in M]||(¢% K

L. B ¢%), the mext state s (siy1,0°" BB (gl gn), (f(si) @) =
(51, (07 (g, (F(s0)sal))s oo, 697 (g, (f(s0),a}))). with si1 picked from the same
probability distribution.

Therefore, we just need to show that Vi € D, 6% (¢i, (f(s¢),a})) = 62.:(61.:(q}, f(s¢))). This
equality also holds due to Algorithm 3, lines 9 and 10.

) X . - X An((sl,n(q?af(st))))
X...Kgpsn ((qtl’ L 7Q?)’ f(Sf)) =

By combining Lemmas 3, 8, and 9, Lemma 1 is proven. By combining Lemmas 7, 8, and 9, Lemma
2 is proven.

C Decentralized Shield is Maximally Permissive for Cartesian &
Unambiguous Shields

We should more formally specify what it means for a shield to be Cartesian and unambiguous:

Definition 12 (Cartesian Actions) A ser of joint actions A is Cartesian iff (A1, ..., A,), A =
A X ... x A,

Intuitively, when a set of joint actions A is Cartesian, it can be decomposed into the Cartesian
product of Ay x ... x A,. Aslong as for all i € D, agent ¢ picks an action in A;, the selected joint
action will be in A. A shield is Cartesian iff Vs € G,l € L(s),C(s,[) is Cartesian.

Definition 13 (Unambiguous Actions) Given MMDP M = (D,S,A = [],c.p Ai,E,T,7, R, bo),

a label set L, an abstraction function f : S — L, and centralized shield ¢9 = (G, (L %
A), 89,85, F9), a set of joint actions A is unambiguous at state s € G and label | € L(s) iff
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Val = (ai,...,al) € A,a®> = (a3,...,d2) € A,3i € D,al = a? = (89(s,(l,a1)) =
‘C((Sg(sa (l,CU)) n ‘C((Sg(sa (lva2))) =0.

This means that as long as some joint action in A was taken, it is possible to deduce the next shield
state upon observing the next label, without knowing which specific joint action was taken. A shield
is unambiguous iff Vs € G,l € L(s),C(s,l) is unambiguous. Algorithm 4 is a straightforward
incremental check of Definition 13; if the shield is unambiguous, and only safe actions are given as
input to this function, it will always return true.

If the input centralized shield is both Cartesian and unambiguous, we argue that the same set of
behaviors are allowed by the resulting decentralized shield as are allowed by the input centralized
shield; therefore, the decentralized shield is maximally permissive.

We modify Lemma 5 to the following:

Lemma 10 Given a Cartesian and unambiguous centralized shield ¢? = (G, (L x A), 89,59, F9)
and the outputs Dy, of Algorithm 1 applied to ¢9, V¢? € G,l € L(¢?),(D1(¢%,1) x ... X
Dn(q%,1)) = ce’ (¢%,0).

Because the shield is Cartesian, there must exist some D;(¢?,1),...,D,(¢%,1) that satisfies this
property; our algorithm just needs to find this set.

One invariant established during the proof lemma 5 is that at all times, D1 (¢9,1) X ... x D, (¢9,1) C
C(s,l). Because we assume C is Cartesian, we can expand this invariant to D;(¢%,1) X ... X
Dn(q9,1) C Ay x...x Ay, where Ay x...x A, = C(s,l). Thisis equivalent to Vi € I, D;(¢,1) C
Therefore, at every loop, when line 15 is evaluated, a; C A; <> {a;} X [[;ep j2: DPj(s,1) € C(s,1).
If the shield is unambiguous as well, the conditional passes, and a; is added to D;(s,l). Since

all actions of each agent are evaluated, this means that all elements of A; are eventually added to
D;(s,1), and thus D;(s,1) = A;, s0 D1(¢9,1) X ... x D,(¢9,1) = C(s,1).

With Lemma 10 proved, the following lemma holds, given Lemma 4.

Lemma 11 Given M||*(¢9,D; ., R) with an initial state of (o, Sinit) and M||¢9 which is in
state (so, 3, the same set of joint actions are allowed in M||*(¢9, Dy, R) as in M||¢9.

We already show in the previous section that Algorithms 2 and 3 maintain the same set of behaviors;

therefore, the above is sufficient to show that the entire sequence of algorithms maintains the same
set of behaviors when ¢9 is Cartesian and unambiguous.

D Time Complexity Analysis

We analyze the time complexity of Algorithm 1 as follows:

The time complexity is therefore O (|G| x |L|? x |A| x 3, |A;]): linear with respect to the size
of the centralized shield. In practice, the coefficient is fairly small, as usually |£(s)| < |L| for most
shield states.

E Shield Generation Times

On a Macbook Pro with a M1 Max processor, the shield for the gridworld-collision domain required
273 seconds for synthesis, and the shield for the particle-momentum domain required 326 seconds.
The vast majority of this time was spent in centralized shield generation.

F Full agent performance in the gridworld-collision domain
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Algorithm 5 Time Analysis of Algorithm 1

6. procedure CALCULATESAFEACTIONS(¢Y)

7: for s € G,l € L(s) do // Loop runs O(|G||L|) times
8: C(s,l) < {a € Alé9(s,(l,a)) € F9} 11 O(A])
9: Pick arbitrary a = (a1, az, ..., a,) € C(s,1) 11 0(1)
10: VieD: Dy(s,1) = {a;} /1 O(|D))
W R(s,D)  [L0((s,0), ) — 59((s,1), )] 1 O(IL])
12: for i € Ddo /I Loop runs O(|D|) times
13: fora; € A; do // Loop runs O(|A;]) times
14: A —{ai} X [[jep,j2 Dils, 1) aeqivy
15: if A C C(s,l) and UNAMBIGUOUSACTIONS(R(s,1),s,1, A) then // O(|L||A])
16: D;(s,1) < D;(s, 1) U{ai} 110(1)
17: Va € A, R(s,1) < R(s,1) U[L(69(s, (I,a))) — §9(s, (I, a))] /I O(JA])
18: end if
19: end for
20: end for
21: end for
22: return D;Vi € D, R /1O(|D))

23: end procedure

Table 3: Agent performance after 2.5 million environment steps, with fixed start positions. Rows
denote the shield that the agent used for training; columns denote the shield during testing.

Eval Shield Centralized Decentralized  No Shield
Map Shield
Centralized 90.4+06(0) 89.5+04(0) 853+1.5(50.6)
ISR Decentralized 90.0£0.4 (0) 899 £0.5(0) 87.2+1.3(25.8)
No Shield 88.8+09(0) 88.64+0.8(0) 90.040.6(12.3)
Centralized 72.0+08(0) 72.0+0.8(0) 72.0+0.8(0)
MIT Decentralized 71.6+03(0) 71.6+03(0) 71.6=+0.3(0)
No Shield 728 £05(0) 72.8+05(0) 72.8+0.5(0)
Centralized 89.0+04(0) 87.8+04(0) 8I.6+25(66.9)
Pentagon Decentralized 83.7 £4.0(0) 82.0+5.8(0) 832+44(54)
No Shield 8334+27(0) 804+49(0) 89.74+0.3(4.8)
Centralized 833+ 14(0) 833+£13(0) 833E£1.4(0)
SUNY Decentralized 86.6 0.6 (0) 86.6 0.6 (0) 86.6 % 0.6 (0)
No Shield 86.2+04(0) 862+04(0) 86.24+0.4(0)

Table 4: Agent performance after 2.5 million environment steps, with randomized start positions.

Eval Shield Centralized Decentralized No Shield
Map Shield
Centralized 786 +22(0) 78.1+1.8(0) 81.3+1.6(31.7)
ISR Decentralized 73.7 £2.4(0) 76.1 £2.0(0) 83.6+0.6(7.4)
No Shield 72.1+£3200) 753+35(0) 83.6+1.42.0)
Centralized 826+02(0) 8224+03(0) 82.54+0.3(1.8)
MIT Decentralized 83.2+02(0) 832+02(0) 83.2+0.2(0)
No Shield 81.54+09(0) 81.34+08(0) 81.44+09(0.4)
Centralized 884 +£05(0) 87.8+0.7(0) 86.9+0.8(16.4)
Pentagon Decentralized 83.54+1.9(0) 803+35(0) 832+2.1(1.2)
No Shield 8854+04(0) 8844+03(0) 89.14+0.3(0.9)
Centralized 781 £040) 775+0.7(0) 764+1.1(10.4)
SUNY Decentralized 73.5+£1.7(0) 73.1£1.70) 72.1£23(17.3)
No Shield 749 +120) 744+1.00) 77.3+04(0.4)
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Figure 4: Training curves showing average agent returns and standard error during training, in all

SUNY, Fixed Starts

.....

aaaaaaaaaaaaaaaaa

map configurations.

G Full agent performance in the particle-momentum domain

Table 5: Agent performance and standard error in the particle-momentum domain, using deep g-
learning. The partially observable environments used 50 random seeds each, while 10 seeds were

used for each fully observable case.

Eval Shield Centralized Decentralized  No Shield
Obs. Starts Shield
Centralized 709 £5.8(0) 622+55(0) 50.5+8.0(80.1)
Fixed Decentralized 77.5+2.8(0) 828 +£2.3(0) 483+ 12.0(104.0)
Partial No Shield 765 +£23(0) 543+39(0) 67.8+3.0(34.3)
Centralized 70.8 = 1.7(0) 74.0+1.6(0) 20.7+6.3(191.6)
Random Decentralized 71.8+1.6(0) 805+14(0) 7.04+6.1(235.1)
No Shield 57.8+19(0) 61.6+25(0) 33.2+24(115.7)
Centralized 91.6 00(0) 91.0+02(0) 89.9+04(5.7)
Fixed Decentralized 91.6 £0.0(0) 91.6£0.0(0) 90.0£0.3(5.4)
Full No Shield 91.6 20.0(0) 91.24+02(0) 90.7+0.2(3.0)
Centralized 946 +0.1(0) 942+0.1(0) 934+0234.1)
Random Decentralized 94.6 £0.1 (0) 94.6 0.1 (0) 93.5+0.2(3.8)
No Shield 945+0.1(0) 942+0.1(0) 93.7+0.2(2.8)
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H DQN Agent Architecture and Hyperparameters

Our DQN agents have a standard architecture of linear layers with ReLLU nonlinearities [13]. The
first linear layer is from the input (a one-hot encoding of position and momentum) to a layer size of
128. Successive linear layers are of size 128, 64, and 5, with the last layer’s output corresponding to
the Q-values for each action. There is no ReLU after the last layer.

We used a Double DQN architecture [22] with prioritized experience replay [19]. The agent is
trained on a batch of 32 samples every 4 time steps. The target network is updated every 200 time
steps. The replay buffer has a capacity of 10° transitions, and we use the prioritized experience
replay hyperparameters o = 0.7, 3 = 0.9. All other hyperparameters are the same as in the tabular
Q-learning case. Due to the large variety of other configuration parameters—observability, starting
configuration, and training and testing shields—we did not perform a formal hyperparameter search
to arrive at these values.
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